Graph 500 Performance on a Distributed-Memory Cluster
REU Site: Interdisciplinary Program in High Performance Computing

Jordan B. Angel', Amy M. Flores?, Justine S. Heritage®, Nathan C. Wardrip*
Graduate Assistant: Andrew M. Raim®
Faculty Mentor: Matthias K. Gobbert®
Clients: Richard C. Murphy®, David J. Mountain”

Technical Report HPCF-2012-11, www.umbc.edu/hpcf > Publications

Abstract

Social network and medical informatics analysis are examples of modern computing problems
that involve large data sets. These data can be represented using graphs, which are are sets
of vertices that are connected by edges. While traditional performance benchmarks for high-
performance computers measure the speed of arithmetic operations, memory access time is a
more useful performance standard for large graph problems. The Graph 500 benchmark is
intended to rank high-performance computers based on speed of memory retrieval.

The implementation of this benchmark considers a large, randomly generated graph. It then
executes a breadth-first search of the graph starting at one vertex and visiting all other vertices
that are connected to the source. The search is executed 64 times using a different vertex as
the root each time. Each search records billions of traversed edges per second (GTEPS), and
the harmonic mean of these measurements establishes the ranking on the Graph 500 list.

We implement the Graph 500 benchmark on the distributed-memory cluster tara in the
UMBC High Performance Computing Facility (www.umbc.edu/hpcf). The cluster tara has 82
compute nodes, each with two quad-core Intel Nehalem X5550 CPUs and 24 GB of memory,
connected by a quad-data rate InfiniBand interconnect. Our best run to date using 64 nodes
achieved a GTEPS rate that would put tara at rank 58 on the June 2012 Graph 500 list. We
intend to submit an official benchmark run for the next publication of the Graph 500 list in
November 2012.

Key words. Graph 500, benchmark, distributed computing, breadth-first search.

AMS subject classifications (2010). 68N30, 68R10, 68W15, 90C06, 90C35.

1 Introduction

An increasing number of modern computational problems involves the analysis of large data. These
data-centric problems tax a computer’s memory and stress its capability to read and write to
memory quickly. The Graph 500 benchmark (www.graph500.org) is a benchmark that aims to
measure these capabilities in order to compare various machines [3], similar to the well-known
LINPACK benchmark used to rank computers for the TOP500 benchmark (www.top500.org).
This report studies execution of the Graph 500 benchmark on the distributed-memory cluster
tara in the UMBC High Performance Computing Facility (HPCF) and explains, scientifically, the

!Department of Mathematics and Statistics, East Tennessee State University
2Department of Mathematics and Statistics, Grinnell College

3Department of Mathematics and Computer Science, Dickinson College

4Department of Mechanical Engineering, Saint Cloud State University

SDepartment of Mathematics and Statistics, University of Maryland, Baltimore County
5Sandia National Laboratories

"Advanced Computing Systems Research Program

1,000.000

100.000

10.000

v
.g ®e o . e e
"5 . Q .
= 1,000 . oo o o o
=
° . *eee o LA LN J
(%]
c . ® e
o
E . "e . L]
5 0100
. . ee 0 .
« Graph 500 Entries
.
0.010
. = UMBC's Tara
0.001
0.01 0.1 1 10 100 1000 10000
GTEPS

Figure 1.1: Placement of the computers on the June 2012 Graph 500 list in relation to GTEPS and
billions of vertices and tara’s placement among them.

performance of the code on the machine architecture. Based on the best result, 0.946 GTEPS, tara
would rank 58 in the June 2012 Graph 500 list, as shown in Figure 1.1.

A high-performance computer’s ability to access memory is becoming increasingly crucial as
the number and magnitude of large data problems continues to grow. A prime example of this type
of problem is social networking. For example, as of July 2012, Facebook reports approximately
955 million active users, each with an average of about 150 friends'. If each user is represented
as a vertex and each friendship is represented as an edge, the result is a large graph. Facebook
would benefit from efficient traversal of graphs as a means of analyzing data about its users and
their interactions. As databases like Facebook’s continue to expand, identifying machines that are
powerful enough to manage such extensive data is of paramount importance. The ranking based on
the Graph 500 benchmark attempts to draw the focus of the HPC community to these problems.

Benchmarks are intended to stress machine hardware to reveal design flaws or shortcomings.
Having a reliable tool to measure hardware performance is valuable to manufacturers. Such a tool
is also valuable for consumers who are interested in the best machine for solving their problems.
The well-known LINPACK benchmark used in the TOP500 benchmark (www.top500.o0rg) mea-
sures a computer’s floating operations per second (FLOPS) as it solves a large system of linear
equations. Therefore, TOP500 emphasizes speed of numerical calculations in its rankings. Graph
500 complements the LINPACK benchmark by recognizing data-intensive applications, focusing
instead on speed of memory access.

In Section 2 we outline the technical details of the cluster tara. Section 3 provides a description
of the Graph 500 specifications as well as code modifications code needed for this project, based
on reference code of the Graph 500 benchmark. Section 4 presents the results of the benchmark on
tara, and Section 5 concludes the report.

'Key Facts, http://newsroom.fb.com/content/default.aspx?NewsAreald=22, accessed August 19, 2012

2 Computational Environment

The distributed-memory cluster tara in the UMBC High Performance Computing Facility (www.
umbc . edu/hpcf) has 82 IBM (System x3650 M2) compute nodes each with two quad-core Intel
Nehalem X5550 CPUs (2.66 GHz, 8 MB cache) and 24 GB of memory each.

Nodal architecture: The nodal architecture is outlined in Figure 2.1. The key advance of the
Intel Nehalem processors is their direct connection to portions of the node’s memory through
three memory channels from each CPU. This implies that both CPUs can access memory
simultaneously, provided each only requires data in memory connected through its channels.
In the case that one CPU needs to access data in the memory connected to the other CPU, it
needs to go through the QPI to the second CPU, before accessing that node’s memory. This
situation would arise in particular if a serial job on a node (that is, a job that only uses one
computational core in one CPU) uses more than 50% of the node’s memory of 24 GB, since
a portion of this memory is necessarily connected to the second CPU.

CPUO CPU1

QPI

Memory Controller Memory Controller

|acs [4cB[4c8] |4cB [acB][4c8]

Figure 2.1: The Intel Nehalem CPUs on a compute node have three memory channels, each with
one DIMM of 4 GB. The two CPUs are connected to each other via Intel’s ultra-fast QuickPath
Interconnect (QPI).

Interconnect architecture: All nodes contain an InfiniBand network card (4x QDR, 8x PCI-
e 2.0). The nodes are connected to each other and 160 TB of central storage by a QLogic 12800
Ultra-HP InfiniBand switch (25.92 Tbps switching capacity). There are several paths that
memory can be accessed through: the memory channel, QPI, PCI-e 2.0 bus, and InfiniBand
network. The bandwidths of these paths are listed in Table 2.1. Memory that is stored on
another node is accessed by first by going from a CPU through the PCI-e 2.0 bus to the
InfiniBand network card and then out through the InfiniBand switch to the second node’s
InfiniBand network card, the second node’s PClI-e 2.0 data bus, followed by the second node’s
CPU and its connected memory channel.

Table 2.1: Bandwidth of tara’s architecture.

Device/Bus Bandwidth (GB/s)
QPI 12.8
Memory Channel 10.8
8x PClI-e 2.0 3.9
Infiniband 4x QDR 3.5

3 Graph 500 Specifications

3.1 The Benchmark Specifications

For the purposes of the benchmark, we will consider an unweighted, undirected graph to be G =
(V, E), where G is a collection of a set of vertices V and a corresponding set of edges E. While graphs
can have any number of vertices and edges, the Graph 500 benchmark has particular specifications
for them. It introduces the scale S of a graph and then requires that the number of vertices be a
power of 2, that is, |V| = 25 and that there are 16 edges per vertex, that is, the number of edges
is |E| =16 |V].

The Graph 500 benchmark requires the execution of the following steps:

e Generate an edge list
For a given scale S, a random edge list is created for the purpose of constructing the graph.
The output edge list contains pairs of vertices (v1, v2) where v; is the index of the start vertex
and v9 is the index of the destination vertex.

The edge list is generated with a Kronecker generator or a similar generator that produces
an equivalent edge list. For detailed information on the Kronecker generator, see [2].

e Kernel 1: Construct a graph
This step accepts the edge list and creates a valid graph. This requires the removal of self-
loops (instances where the start and destination vertex are the same) and then constructs the
graph using a convenient data structure, such as an adjacency matrix or adjacency list.

e Randomly generate 64 search keys
The specification requires that a different start vertex be used in each of 64 executions of the
search. The search keys indicate the root vertex for a given iteration. The start vertex should
produce a non-trivial search, meaning it must have at least one edge to another vertex.

e Kernel 2: Perform a breadth-first search starting at each search key
Kernel 2 is the step of the benchmark, whose performance determines the ranking in the list.
Using each of the 64 different start vertices in turn, a breadth-first search (BFS) uncovers the
connected component of the graph. A connected component is defined as the set of vertices
and edges that are reachable from the starting vertex. Figure 3.1 provides a visual explanation
of the search. The general algorithm for a breadth-first search is as follows:

1. Add the root vertex to a queue

2. Dequeue the root vertex and mark it as visited, add each of its neighboring vertices to
the queue

3. Dequeue each vertex individually, marking the vertex as visited and add its unvisited
neighbors to the queue

4. Repeat the previous step until the queue is empty, indicating that all connected vertices
have been visited

e Validate that search results are correct
This step checks for errors in the discovered graph by performing the following tests:

1. The BFS tree does not contain cycles,

Figure 3.1: Demonstration of a breadth-first search starting from root vertex 1. Coloring indicates
the level of the search: The red node (the root) is discovered at initialization, the blue nodes are
discovered in the first step, the orange nodes are discovered in the second step, and the green nodes
are discovered in the third step which is the final step for this small example.

2. each edge connected vertices whose BES levels differ by exactly one,

3. every edge in the input list has vertices with levels that differ by at most one or that
both are not in the BFS tree,

4. the BFS tree spans the entire connected component, and

5. a vertex and its parent are joined by an edge in the original graph.

e Output
The output must include the following information: scale, number of edges, number of
breadth-first searches, graph construction time, search timings (min, max, median, mean,
standard deviation), number of edges traversed (min, max, median, mean, standard devia-
tion), and traversed edges per second (min, max, median, mean, standard deviation, harmonic
mean). An example of this output, taken from our highest GTEPS run, is shown in Figure 3.2.

The Graph 500 uses the harmonic mean of the traversed edges per second (TEPS) to determine
a supercomputer’s ranking on their list. The harmonic mean is a type of average used when
considering rates. Here, the final TEPS result is calculated as

1 1 1 !
<TEP51 TTEPS, T TEP564> ’

where TEPS;, i =1,...,64, is the traversed edges per second for the i*” execution of the search. By
examining the average rate at which a machine can traverse these edges, the Graph 500 benchmark
is able to provide information about the computer’s aptitude for solving data-intensive problems.

5

SCALE: 31

edgefactor: 16

NBFS: 64
graph_generation: 114.382
num_mpi_processes: 256
construction_time: 135.525
min_time: 36.0322
firstquartile_time: 36.2045
median_time: 36.296
thirdquartile_time: 36.3707
max_time: 37.5305
mean_time: 36.3153
stddev_time: 0.201449
min_nedge: 34359738368
firstquartile_nedge: 34359738368
median_nedge: 34359738368
thirdquartile_nedge: 34359738368
max_nedge: 34359738368
mean_nedge: 34359738368
stddev_nedge: 0

min_TEPS: 9.15514e+08
firstquartile _TEPS: 9.4471e+08
median_TEPS: 9.46654e+08
thirdquartile _TEPS: 9.49047e+08
max_TEPS: 9.53585e+08
harmonic_mean_TEPS: 9.46149e+08
harmonic_stddev_TEPS: 661248
min_validate: 2.35621e-310
firstquartile_validate: 0

median_validate: 0
thirdquartile_validate: 0
max_validate: 0
mean_validate: 0
stddev_validate: 0

2

total_time: 575.74 seconds

Figure 3.2: Output taken from our highest GTEPS run. Note that validation step statistics are
not meaningful, since we have bypassed this step.

3.2 Reference Code

We downloaded version 2.1.4 of the Graph 500 reference code from the benchmark’s website. This
code, which is written in the programming language C with the standard parallel communica-
tions library MPI, was compiled on tara using the gcc compiler with OpenMPI 1.3.3 (on tara,
this corresponds to setting the switcher program to use the gcc-openmpi-1.3.3-pl configura-
tion). Since OpenMPI 1.3.3 is not MPI 2.2 compliant we are forced to remove an error check
in the header file /graph500-2.1.4/mpi/mpi_workarounds.h so that the code may define the
MPI datatypes it needs. Compilation produces five executables. For this study we use the exe-
cutable /graph500-2.1.4/mpi/graph500_mpi_simple, which distributes vertices across processes.
The breadth-first search is executed using nonblocking point-to-point communication commands
MPI_Isend and MPI_Irecv to update visited status and parents on the owner process. This in-
formation is also used to update local queues. These queues are collected with MPI_Allreduce to
check if queues are globally empty, indicating the search is complete. The code for this procedure
can be found in the run_bfs function written in the file /graph500-2.1.4/mpi/bfs_simple.c.
The validation step sometimes produced segmentation faults. To avoid this we removed the
validation step from /graph500-2.1.4/mpi/main.c, but this portion of code is also responsible for

counting the number of traversed edges. To get a TEPS rating we divide the total number of edges
by the search time. Due to the benchmark specification of 16 edges connected to each vertex, the
graph is almost entirely connected, so this has almost no effect on the results. Logging was inserted
to record overall run time of the benchmark. For debugging purposes, the reference code was also
modified to output edge list, search keys, and timings if the appropriate flags are set on execution.

The following is a complete list of all code changes which were made to the original reference
code, for the purposes of running the benchmark on tara and writing this report.

Source file: graph500-2.1.4/mpi/main.c

e In main(), recorded start and end time of the whole program

e In main(), collected total memory usage summed over all processes. When calling this, the
maximum and minimum memory usage over all processes is printed to stdout

e Inmain(), added support for an additional (optional) command line argument debug. When

this is present, code prints out the edgelist, search keys, and parent list

In main(), added logging of search keys if debug flag is set

In main(), added logging of edgelist if debug flag is set

In main(), computed “traversed edges” as total edges in graph (workaround)

In main(), printed out parent list (result of BFS) if debug flag is set

In main(), commented out validation block

In main(), printed out total memory usage VmRSS and VmSize

In main(), printed elapsed time of entire program

Source file: graph500-2.1.4/mpi/Makefile
e Added compilation of new source files memory_parallel.c and memory.c

Source file: graph500-2.1.4/prng.c. Note that this code does not get used in the build of the
executable graph500_mpi_simple that is used in our runs.

e In make_mrg_seed() and init_random(), added logging of seed
e In make_mrg_seed() and init_random(), added an undefined constant to prevent compila-
tion

New source files:

® memory.c
e memory.h

e memory_parallel.c
e memory_parallel.h

3.3 Scale Size and Memory Requirements

Performance benchmarks are intended to stress the system, therefore intuition suggests it is benefi-
cial to push the scale S of the problem as large as possible. This increases the memory required by
the code, and the available memory of the system will constrain the size of the graph size eventually.
The benchmark specifications require that the number of MPI processes be a power of 2. Since our
cluster tara has 82 computer nodes with two quad-core CPUs, the possible numbers of nodes are
1, 2, 4, 8, 16, 32, and 64, with 1, 2, 4, or 8 processes per node.

Table 3.1 states the number of vertices |V, the number of edges |E|, memory usaged predicted
and observed, and the minimum number of compute nodes required for running problems with

7

Table 3.1: Graph size in number of vertices |V|, number of edges |E|, predicted memory usage,
observed memory usage, and minimum number of nodes required on tara, as the scale S is increased.

Scale | V] =25] |E]=16]V] Predicted Memory | Minimum nodes
(millions) (millions) | memory (GB) | used (GB) required

20 1.04 16.77 0.25 3.67 1
21 2.09 33.55 0.5 4.20 1
22 4.19 67.10 1 9.25 1
23 8.38 134.21 2 7.35 1
24 16.77 268.43 4 11.53 1
25 33.55 536.87 8 19.90 1
26 67.10 1,073.74 16 36.62 2
27 134.21 2,147.48 32 70.01 4
28 268.43 4,294.96 64 136.79 8
29 536.87 8,589.93 128 270.28 16
30 1,073.74 17,179.86 256 537.17 32
31 | 2,147.48 34,356.73 512 1,096.53 64

some selected scale sizes on tara. The Graph 500 specification provides the formula 256 - 25 to
predict the number of bytes required by the reference code. However, we found that the predicted
memory formula represents approximately half of the actual memory usage observed in our runs.
The last column of the table displays the minimum number of nodes required to hold a graph of
the given scale size, using the actual memory usage. We combine here the facts that each node has
24 GB of memory and that the number of nodes has to be a power of 2. Since 64 is the largest
such number of nodes which tara can accommodate, S = 31 is the largest scale possible to run on
tara.

Since memory is the limiting factor for the largest possible problem size, we first addressed
the actual memory used on tara in the execution of the code. We added a check for memory
usage toward the end of the benchmark program, after the breadth first search and just before
memory is deallocated. In Unix, memory usage and other system information is stored in the proc
filesystem. We record the memory usage on each process by reading the field VmSize from the file
/proc/self/status. Note that the VmSize field represents both physical memory and swap space
in use by a process. These readings are summed to yield the global memory usage for the entire

program, and the minimum and maximum are taken across all processes?.

4 Results

The Graph 500 reference code was executed a total of 252 times on tara. Each run used a different
scale size starting from 20 and going up to 31, a different number of nodes (1, 2, 4, 8, 16, 32, 64),
and a different number of processes per node (1, 2, 4, 8). The numbers of processes per node are
abbreviated as 1ppn, 2ppn, 4ppn, 8ppn in the following tables, and the long dashes “—” indicate
the cases where more memory would have been required than available on the given number of
nodes, in accordance with the minimum number of nodes required for each scale in Table 3.1.
Table 4.1 shows the maximum observed memory usage per process and Table 4.2 expresses this

?Detailed instructions on how to collect memory usage from within a C program can be found on UMBC’s HPCF
website http://www.umbc.edu/hpcf/resources-tara/checking-memory-usage.html

Table 4.1: Maximum memory used per process (GB). Insufficient memory denoted by

1 node 2nodes 4 nodes 8mnodes 16 nodes 32 nodes 64 nodes

Scale 1ppn 0.73 0.48 0.41 0.38 0.37 0.36 0.37
=20 2ppn 0.52 0.47 0.44 0.43 0.43 0.43 0.45
4ppn 0.45 0.44 0.43 0.42 0.43 0.45 0.49
8ppn 0.42 0.43 0.43 0.44 0.45 0.49 0.57
Scale 1ppn 1.26 0.75 0.48 0.42 0.39 0.37 0.37
=21 2ppn 0.79 0.55 0.48 0.45 0.43 0.44 0.45
4ppn 0.52 0.48 0.45 0.44 0.44 0.46 0.49
8ppn 0.45 0.45 0.44 0.44 0.47 0.49 0.57
Scale 1ppn 2.32 1.28 0.75 0.49 0.42 0.39 0.38
=22 2ppn 1.32 0.81 0.55 0.48 0.46 0.45 0.48
4ppn 0.79 0.55 0.48 0.46 0.45 0.47 0.49
8ppn 0.53 0.48 0.46 0.45 0.48 0.49 0.57
Scale 1ppn 4.45 2.34 1.28 0.76 0.50 0.43 0.40
=23 2ppn 2.38 1.34 0.82 0.56 0.49 0.47 0.49
4ppn 1.32 0.82 0.55 0.49 0.47 0.48 0.51
8ppn 0.79 0.55 0.50 0.47 0.49 0.51 0.58
Scale 1ppn 8.70 4.47 2.35 1.29 0.76 0.50 0.44
=24 2ppn 4.51 241 1.35 0.82 0.57 0.51 0.50
4ppn 2.39 1.35 0.83 0.57 0.51 0.50 0.52
8ppn 1.33 0.82 0.57 0.51 0.50 0.52 0.59
Scale 1ppn 17.20 8.73 4.49 2.35 1.30 0.77 0.51
=25 2ppn 8.77 4.55 2.42 1.36 0.83 0.59 0.54
4ppn 4.52 241 1.36 0.84 0.58 0.54 0.56
S8ppn 2.39 1.36 0.84 0.58 0.54 0.56 0.59
Scale 1ppn — 17.23 8.74 4.49 2.37 1.31 0.80
=26 2ppn — 8.80 4.55 2.43 1.37 0.86 0.62
4ppn — 4.55 2.43 1.37 0.86 0.61 0.57
S8ppn — 2.43 1.38 0.86 0.61 0.59 0.63
Scale 1ppn — — 17.23 8.75 4.50 2.39 1.32
=27 2ppn — — 8.81 4.56 2.45 1.39 0.87
4ppn — — 4.56 2.45 1.39 0.88 0.65
S8ppn — — 2.46 1.39 0.89 0.65 0.74
Scale 1ppn — — — 17.26 8.75 4.52 2.43
=28 2ppn — — — 8.81 4.59 2.49 1.44
4ppn — — — 4.59 2.49 1.43 0.95
8ppn — — — 2.49 1.43 0.95 0.76
Scale 1ppn — — — — 17.30 8.78 4.55
=29 2ppn — — — — 8.84 4.61 2.51
4ppn — — — — 4.61 2.51 1.48
8ppn — — — — 2.51 1.48 1.03
Scale 1ppn — — — — — 17.28 8.82
=30 2ppn — — — — — 8.88 4.64
4ppn — — — — — 4.64 2.55
8ppn — — — — — 2.55 1.58
Scale 1ppn — — — — — — 17.37
=31 2ppn — — — — — — 8.95
4ppn — — — — — — 4.76
8ppn — — — — — — 2.71

Table 4.2: Percent of node’s memory used per process. Insufficient memory denoted by “—.

1 node 2mnodes 4 mnodes 8 nodes 16 nodes 32 nodes 64 nodes

Scale 1ppn 3.03 2.01 1.72 1.58 1.53 1.51 1.54
=20 2ppn 2.18 1.98 1.84 1.80 1.77 1.81 1.88
4ppn 1.89 1.83 1.78 1.77 1.80 1.87 2.05
8ppn 1.74 1.78 1.78 1.82 1.87 2.04 2.38
Scale 1ppn 5.24 3.12 2.02 1.74 1.61 1.56 1.56
=21 2ppn 3.30 2.27 1.99 1.86 1.81 1.84 1.89
4ppn 2.19 1.99 1.87 1.82 1.85 1.91 2.05
8ppn 1.89 1.85 1.83 1.85 1.94 2.04 2.39
Scale 1ppn 9.67 5.34 3.14 2.04 1.76 1.64 1.60
=22 2ppn 5.51 3.39 2.29 2.02 1.90 1.88 2.00
4ppn 3.30 2.28 2.01 1.90 1.88 1.98 2.06
8ppn 2.19 2.01 1.90 1.89 1.99 2.06 2.39
Scale 1ppn 18.52 9.76 5.34 3.15 2.07 1.79 1.69
=23 2ppn 9.94 5.60 3.40 2.31 2.06 1.96 2.03
4ppn 5.51 3.40 2.31 2.06 1.96 2.02 2.11
S8ppn 3.30 2.31 2.08 1.97 2.02 2.11 2.42
Scale 1ppn 36.24 18.63 9.79 5.37 3.18 2.08 1.83
=24 2ppn 18.80 10.05 5.63 3.43 2.36 2.13 2.10
4ppn 9.96 5.62 3.44 2.36 2.12 2.09 2.15
S8ppn 5.53 3.43 2.36 2.12 2.09 2.17 2.44
Scale 1ppn 71.67 36.36 18.69 9.81 5.40 3.21 2.14
=25 2ppn 36.53 18.94 10.07 5.66 3.48 2.44 2.26
4ppn 18.85 10.06 5.65 3.49 2.40 2.25 2.33
8ppn 9.97 5.66 3.50 241 2.27 2.34 2.47
Scale 1ppn — T1.77 36.40 18.70 9.89 5.45 3.32
=26 2ppn — 36.66 18.95 10.15 5.71 3.58 2.56
4ppn — 18.95 10.14 5.73 3.58 2.54 2.39
8ppn — 10.14 5.73 3.57 2.56 2.47 2.62
Scale 1ppn — — 71.80 36.45 18.74 9.95 5.52
=27 2ppn — — 36.73 19.00 10.21 5.78 3.65
4ppn — — 18.99 10.21 5.77 3.65 2.70
8ppn — — 10.24 5.80 3.69 2.71 3.07
Scale 1ppn — — — 71.93 36.46 18.85 10.11
=28 2ppn — — — 36.72 19.11 10.37 5.98
4ppn — — — 19.12 10.37 5.98 3.97
8ppn — — — 10.37 5.98 3.97 3.16
Scale 1ppn — — — — 72.09 36.59 18.95
=29 2ppn — — — — 36.85 19.21 10.46
4ppn — — — — 19.21 10.45 6.17
8ppn — — — — 10.45 6.17 4.29
Scale 1ppn — — — — — 72.00 36.73
=30 2ppn — — — — — 36.99 19.33
4ppn — — — — — 19.33 10.64
8ppn — — — — — 10.65 6.58
Scale 1ppn — — — — — — 72.36
=31 2ppn — — — — — — 37.31
4ppn — — — — — — 19.82
8ppn — — — — — — 11.28

10

2

Table 4.3: Total kernel 2 runtime in HH:MM:SS. Insufficient memory denoted by “—.

1 node 2nodes 4 mnodes 8mnodes 16 nodes 32 nodes 64 nodes

Scale 1 ppn | 00:00:27 00:00:29 00:00:16 00:00:08 00:00:05 00:00:02 00:00:02
=20 2ppn | 00:00:31 00:00:19 00:00:09 00:00:05 00:00:03 00:00:03 00:00:03
4 ppn | 00:00:21 00:00:10 00:00:05 00:00:06 00:00:05 00:00:06 00:00:11
8 ppn | 00:00:11 00:00:06 00:00:09 00:00:12 00:00:13 00:00:19 00:00:51

Scale 1 ppn | 00:00:55 00:01:00 00:00:33 00:00:17 00:00:09 00:00:05 00:00:03
=21 2ppn | 00:01:10 00:00:39 00:00:19 00:00:09 00:00:06 00:00:05 00:00:04
4 ppn | 00:00:46 00:00:22 00:00:11 00:00:12 00:00:10 00:00:09 00:00:12
8 ppn | 00:00:22 00:00:11 00:00:17 00:00:22 00:00:20 00:00:23 00:00:39

Scale 1 ppn | 00:01:47 00:02:05 00:01:10 00:00:36 00:00:20 00:00:10 00:00:05
=22 2ppn | 00:02:26 00:01:20 00:00:38 00:00:20 00:00:13 00:00:09 00:00:07
4 ppn | 00:01:32 00:00:42 00:00:22 00:00:22 00:00:19 00:00:15 00:00:15
8 ppn | 00:00:47 00:00:24 00:00:38 00:00:40 00:00:34 00:00:31 00:00:45

Scale 1 ppn | 00:04:05 00:04:24 00:02:17 00:01:13 00:00:40 00:00:21 00:00:11
=23 2ppn | 00:04:55 00:02:46 00:01:20 00:00:39 00:00:28 00:00:19 00:00:13
4 ppn | 00:02:55 00:01:30 00:00:46 00:00:49 00:00:35 00:00:25 00:00:21
8 ppn | 00:01:34 00:00:48 00:01:19 00:01:19 00:01:00 00:00:47 00:00:54

Scale 1 ppn | 00:07:51 00:08:23 00:04:46 00:02:39 00:01:17 00:00:41 00:00:22
=24 2ppn | 00:09:25 00:05:28 00:02:43 00:01:21 00:00:55 00:00:35 00:00:23
4 ppn | 00:06:17 00:03:07 00:01:34 00:01:38 00:01:15 00:00:48 00:00:34
8 ppn | 00:03:17 00:01:41 00:03:03 00:02:41 00:01:39 00:01:17 00:01:15

Scale 1 ppn | 00:23:03 00:16:06 00:09:27 00:05:14 00:02:45 00:01:26 00:00:43
=25 2ppn | 00:20:53 00:11:05 00:06:33 00:02:53 00:01:46 00:01:09 00:00:42
4 ppn | 00:12:19 00:06:03 00:03:02 00:03:39 00:02:25 00:01:29 00:00:57

8 ppn | 00:06:33 00:03:18 00:04:51 00:05:02 00:03:37 00:02:11 00:02:24

Scale 1 ppn 00:43:06 00:19:29 00:10:13 00:05:45 00:02:53 00:01:29
=26 2 ppn — 00:22:26 00:11:05 00:06:12 00:03:46 00:02:29 00:01:34
4 ppn — 00:12:31 00:06:07 00:06:34 00:05:22 00:02:33 00:01:36
8 ppn — 00:07:03 00:09:37 00:10:19 00:06:40 00:04:19 00:02:46
Scale 1 ppn — — 00:48:55 00:21:45 00:10:53 00:05:40 00:03:00
=27 2ppn — — 00:23:11 00:12:44 00:07:26 00:04:51 00:02:31
4 ppn — — 00:12:34 00:14:24 00:10:53 00:05:10 00:02:54
8 ppn — — 00:20:51 00:21:00 00:12:05 00:07:53 00:04:46
Scale 1 ppn — — — 00:50:49 00:22:26 00:12:06 00:05:59
=28 2 ppn — — — 00:24:44 00:13:40 00:09:57 00:05:37
4 ppn — — — 00:28:31 00:22:10 00:10:06 00:05:30
8 ppn — — — 00:45:05 00:27:28 00:14:16 00:09:09
Scale 1 ppn — — — — 00:52:58 00:25:49 00:12:09
=29 2ppn — — — — 00:28:14 00:19:39 00:09:55
4 ppn — — — — 00:40:55 00:19:48 00:10:54
8 ppn — — — — 00:48:00 00:28:44 00:17:12
Scale 1 ppn — — — — — 01:00:30 00:25:45
=30 2 ppn — — — — — 00:39:53 00:19:24
4 ppn — — — — — 00:38:19 00:19:35
8 ppn — — — — — 00:54:40 00:33:25
Scale 1 ppn — — — — — — 01:00:06
=31 2ppn — — — — — — 00:39:32
4 ppn — — — — — — 00:39:00
8 ppn — — — — — — 01:04:45

11

Table 4.4: Billions of traversed edges per second (GTEPS). Insufficient memory denoted by “—.

1 node 2nodes 4 nodes 8mnodes 16 nodes 32 nodes 64 nodes

Scale 1ppn | 0.039 0.036 0.065 0.124 0.219 0.406 0.597
=20 2ppn | 0.034 0.056 0.111 0.214 0.291 0.348 0.334
4ppn | 0.052 0.102 0.191 0.179 0.184 0.174 0.096
8ppn | 0.092 0.171 0.114 0.082 0.078 0.053 0.029
Scale 1ppn | 0.039 0.036 0.062 0.122 0.203 0.399 0.654
=21 2ppn | 0.029 0.058 0.107 0.203 0.313 0.382 0.447
4ppn | 0.048 0.095 0.190 0.187 0.219 0.243 0.153
8ppn | 0.094 0.182 0.107 0.095 0.108 0.091 0.055
Scale 1ppn | 0.040 0.034 0.063 0.123 0.228 0.402 0.725
=22 2ppn | 0.029 0.056 0.108 0.208 0.316 0.403 0.598
4ppn | 0.047 0.099 0.196 0.167 0.252 0.320 0.251
8ppn | 0.092 0.177 0.115 0.098 0.135 0.142 0.093
Scale 1ppn | 0.037 0.034 0.061 0.119 0.199 0.340 0.765
=23 2ppn | 0.031 0.052 0.106 0.215 0.318 0.370 0.662
4ppn | 0.048 0.092 0.198 0.181 0.223 0.361 0.429
8ppn | 0.089 0.172 0.103 0.109 0.159 0.191 0.153
Scale 1ppn | 0.029 0.032 0.061 0.101 0.225 0.398 0.783
=24 2ppn | 0.028 0.053 0.103 0.204 0.310 0.392 0.748
4ppn | 0.045 0.094 0.195 0.155 0.248 0.367 0.503
8ppn | 0.086 0.176 0.119 0.103 0.170 0.232 0.220
Scale 1ppn | 0.024 0.034 0.060 0.116 0.191 0.370 0.762
=25 2ppn | 0.029 0.051 0.105 0.207 0.279 0.481 0.815
4ppn | 0.047 0.094 0.196 0.155 0.217 0.358 0.613
S8ppn | 0.084 0.166 0.128 0.107 0.178 0.266 0.116
Scale 1ppn — 0.027 0.059 0.111 0.207 0.335 0.750
=26 2ppn — 0.049 0.100 0.205 0.274 0.473 0.870
4ppn — 0.092 0.183 0.177 0.240 0.445 0.669
8ppn — 0.164 0.120 0.113 0.187 0.301 0.400
Scale 1ppn — — 0.049 0.102 0.195 0.416 0.758
=27 2ppn — — 0.099 0.179 0.292 0.484 0.835
4ppn — — 0.176 0.150 0.256 0.447 0.769
8ppn — — 0.116 0.104 0.172 0.281 0.493
Scale 1ppn — — — 0.093 0.185 0.402 0.762
=28 2ppn — — — 0.182 0.309 0.478 0.773
4ppn — — — 0.145 0.211 0.457 0.839
S8ppn — — — 0.107 0.180 0.299 0.503
Scale 1ppn — — — — 0.174 0.373 0.735
=29 2ppn — — — — 0.308 0.482 0.929
4ppn — — — — 0.251 0.476 0.907
S8ppn — — — — 0.183 0.346 0.547
Scale 1ppn — — — — — 0.311 0.691
=30 2ppn — — — — — 0.468 0.929
4ppn — — — — — 0.477 0.929
8ppn — — — — — 0.362 0.583
Scale 1ppn — — — — — — 0.605
=31 2ppn — — — — — — 0.911
4ppn — — — — — — 0.946
8ppn — — — — — — 0.621

12

2

Table 4.5: Processes per node with highest GTEPS rate for given scale size and number of nodes.

7

Insufficient memory denoted by “—”.

Scale | 1 node 2nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
20
21
22
23
24
25
26 —
27 — —
28 — —
29 — —
30 — —
31 — — — —

Co GO GO 0O GO o
Co Co GO0 CO Co Co o
[l S
NN NDNDNDNDNDN

NN NNNNNDNDDND

= NN NDNNNRFRNN R~ -~

B RN A DNDNDN R - =

maximum as a percentage of a node’s 24 GB memory.

Table 4.3 displays the total wall clock time for kernel 2 in each run; that is, the sum of wall
times of the 64 breadth-first searches. For each scale, doubling the number of nodes in each row
of the table is seen to approximately halve the time, except in the very small cases. For small to
moderate scales, it is also beneficial to run more processes per node. However, for large scales, the
wall clock times eventually do not benefit from more processes per node any more, and we see that
2 or 4 processes per node are better than 1 or 8 processes. This begins to point at the fact that the
Graph 500 benchmark stresses the memory access on each node and thus more processes per node
compete more for the access, which is detrimental to performance. Table 4.4 shows the billions of
traversed edges per second (GTEPS) for each run. These GTEPS results are related to the times
in Table 4.3, where the higher the GTEPS rate for a given scale and node combination, the lower
the overall runtime. Notice toward the left side of Table 4.4, there is increased performance for
increasing number of processes. However, this changes as the number of nodes and the scale of the
problem are increased. Towards the bottom right of the same table, four processes performs the
best. When a large number of processes are in use to handle a small scale problem (upper right
of the table), it is clear that communication overhead is dominating useful work. The best overall
result of 0.946 GTEPS was observed using 64 nodes with 4 processes per node for scale 31. This
would place tara at rank 58 on the June 2012 Graph 500 list, as shown in Figure 1.1 in Section 1.

In order to understand why one process per node is slower, the memory architecture discussed in
Section 2 must be understood. On each node there are six 4 GB DIMMs. Each Nehalem processor
has only three memory channels connecting them to their local memory. When the code is run
using only one process per node, this process has direct access to half of the node’s memory. When
the other half of memory needs to be accessed, communication must take place from one Nehalem
processor to the next and then on to the its connected memory. The latency is close to 75% higher
when accessing memory going from one processor through the second [1]. By eight processes per
node, the memory channels have been saturated with processes reading and writing memory so that
processes must compete for access. Four processes appears to give the best compromise between
CPU usage and memory access.

3http://www.graph500.org/results_june_2012

13

Consider the network connecting the compute nodes for another potential bottleneck. Recall
that when multiple nodes are in use, the randomly generated graph is distributed across the nodes’
pooled memory. A breadth-first search being conducted on 64 nodes has roughly a 1 in 64 chance
(or 1.6%) that a vertex stored on a given process has one of its neighbors also stored locally. The
other 98.4% of the time the neighbor will be located on a different node and communication will
need to take place over the InfiniBand network to conduct the search. For 8 processes per node
(ppn) and scale 31, the InfiniBand network becomes saturated and acts as a bottleneck due to
the high amount of traffic and relatively lower bandwidth. Therefore, twice as many processes
competing for network resources is another reason that 8 ppn is slower than 4 ppn.

The network becoming saturated is not unique to 64 nodes, but happens much earlier with as
few as 4 nodes. Let us first consider taking the InfiniBand out of the equation by looking at the
GTEPS of only 1 node. For every scale size on 1 node there is an approximate doubling of GTEPS
with the doubling of processes. However, 1 has a higher GTEPS rate than expected, but can
be explained by the fact that no communication overhead needs to take place between processes.
When the number of nodes is increased to 2, the doubling effect between ppn continues. However,
when the number of nodes is increased to 4, the approximate doubling of GTEPS happens only
up to 4 ppn. The GTEPS drops lower at 8 ppn because the network is now saturated. Increasing
the number of nodes to 8 the approximate doubling of GTEPS only happens between 1 ppn and
2 ppn. One may expect this trend to continue on 16 nodes with 1 ppn but instead the GTEPS rate
is higher on 2 ppn.

To explain the trend of a decreasing number of ppn having highest GTEPS for increasing the
number of nodes used from 1 to 16, and the reversal of this when using above 16 nodes, the
architecture of a network switch must be understood. A switch is capable of giving full bandwidth
communication between any two pairs of nodes. For example, when a 64 node case is run, if each
node were to be paired up with another node there would be 32 full speed network connections
each transmitting data between the pairs at 3.5 GB/s. However if 63 of the nodes all tried to
communicate with the remaining node they would all need to share the 3.5 GB/s connection to
that node. Recall that point-to-point MPI operations are utilized in the reference code, so that all
pairs of processes may be communicating. As the number of nodes increases, the possible number
of parallel connections through the network switch increases and more efficient load balancing is
able to take place. Table 4.5 shows which ppn has the highest GTEPS rate for a scale and node
combination. As the number of nodes increases, the interplay between an increasing number of
processes communicating and the potential bandwidth increase can be seen.

5 Conclusions

We have discussed the Graph 500 as a benchmark to measure a computers ability to efficiently
access memory. The benchmark prescribes a series of random graph generations, and breadth-first
searches of these graphs, using traversed edges per second (TEPS) as a performance measurement.
Starting with the Graph 500 reference implementation, we have made some customizations to run
the benchmark on our cluster tara, and obtain a series of results. We found that the fastest GTEPS
rate obtained was 0.946 on 64 nodes using 4 processes per node and a scale size of 31. A careful
look at the memory and network architecture of the nodes helped to explain the changes in GTEPS
as nodes and processes per node were varied. The GTEPS rate of 0.946 would place tara at rank 58
on the June 2012 Graph 500 rankings, out of 89 machines ranked so far. We plan to submit this
result for consideration to the November 2012 list.

14

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High Perfor-
mance Computing (www.umbc.edu/hpcreu) in the Department of Mathematics and Statistics at
the University of Maryland, Baltimore County (UMBC) in Summer 2012. This program is funded
jointly by the National Science Foundation and the National Security Agency (NSF grant no. DMS—
1156976), with additional support from UMBC, the Department of Mathematics and Statistics, the
Center for Interdisciplinary Research and Consulting (CIRC), and the UMBC High Performance
Computing Facility (HPCF).

References

[1] Ganesh Balakrishnan and Ralph M. Begun. Optimizing the performance of IBM System x and
BladeCenter servers using Intel Xeon 5500 series processors. IBM White Paper, March 2009.

[2] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. Realistic, mathe-
matically tractable graph generation and evolution, using Kronecker multiplication. In A. Jorge,
L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, Knowledge Discovery in Databases:
PKDD 2005, vol. 3721 of Lecture Notes in Computer Science, pp. 133—-145. Springer-Verlag,
2005.

[3] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. Introducing the
Graph 500. In Cray User Group 2010 Proceedings, 2010.

15

