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Abstract—Gunshot detection traditionally has been a task
performed with acoustic signal processing. While this type of
detection can give cities, civil services and training institutes a
method to identify specific locations of gunshots, the nature of
acoustic detection may not provide the fine-grained detection
accuracy and sufficient metrics for performance assessment. If
however you examine a different signature of a gunshot, the
recoil, detection of the same event with accelerometers can
provide you with persona and firearm model level detection
abilities. The functionality of accelerometer sensors in wrist worn
devices have increased significantly in recent time. From fitness
trackers to smart watches, accelerometers have been put to use
in various activity recognition and detection applications. In this
paper, we design an approach that is able to account for the
variations in firearm generated recoil, as recorded by a wrist
worn accelerometer, and helps categorize the impulse forces. Our
experiments show that not only can wrist worn accelerometers
detect the differences in handgun rifle and shotgun gunshots, but
the individual models of firearms can be distinguished from each
other. The application of this framework could be extended in the
future to include real time detection embedded in smart devices
to assist in firearms training and also help in crime detection
and prosecution.

I. INTRODUCTION

How participants of shooting sports are able to transfer
recoil impulses generated from the discharge of firearms to
the ground can affect accuracy, general safety, and overall
endurance. As outlined in the governing Test Operation Proce-
dure 3-2-504 set forth in 1977, the equation for recoil energy
and limits for daily firing can be used as a means to compare
and group calculated recoil with recorded accelerometer sensor
data. Using this equation as a starting point, we will examine
how firearms can take generated recoil, and impart it into
the user in varying ways. The interaction between user and
weapon plays an important role in recoil mitigation, along with
the different mitigation techniques implemented in firearms
[1]. As examined in [2] the recoil energy generated from a
firearm may differ from the perceived recoil.

Mitigation techniques that are implemented into the design
of firearms can greatly reduce recoil and are not taken into
account with this basic recoil equation. This can include
action/ auto loading features, muzzle brakes and recoil pads
among others. Other main influences on recoil are differences
in the basic types of firearms. The types being examined in
this study are pistols, rifles and shotguns. For handguns, the
only point of contact between the user and the firearm is near
the wrist. This rearwards generated recoil is imparted into the

user differently from that of rifles and shotguns. With rifles
and shotguns, a user typically has 3 points of contact with
the firearm: shoulder, dominant hand at the trigger and non-
dominant hand on a forward handguard/ grip. These contact
points, depending on the users grip and design of the firearm
regardless of type are examples of how recoil can be passed
through a user.

Taking into consideration these differences in firearms and
how a typical user handles and fires them in a safe manner,
we examine how wrist worn accelerometers could detect
these basic differences. Typical detection research of firearms
and gunshots have been acoustical in nature [3]. Acoustic
features generated by a firearm have also been examined
along with performance of detection algorithms [4]. This
can be beneficial in detection systems employed within cities,
however one variable within a firearm such as barrel length
can influence acoustical features of a gunshot [5]. To better
address the high variability seen within basic firearm design
and usage, we examine how 15 different firearms of similar
and differing calibers create similar and dissimilar patterns
in sensor readings from a wrist worn accelerometer. Potential
applications include crime evidence collection where everyday
accelerometer sensors such as those in fitness sensors and
smart watches record gunshot recoil. In regards to gunshots,
acoustic detection could identify an area and direction of a
gunshot. Gunshot recoil sensor data will be able to identify
the person who held the firearm since recoil is contact spe-
cific and not easily transferred between people. This level
of detection could prove useful to law enforcement as un-
obtrusive and pervasive sensor usage increases. Perpretrators
of violent crimes could be identified if sensors worn during
crimes recorded gunshot signatures. Data could be analyzed
to identifying signatures of shooter specific recoil. Military
and law enforcement may also benefit from the application
of recoil detection, characterization, and classification during
training. Differences in firearms and users can be analyzed
easier based on the actual felt recoil and not based off a simple
calculation.

Main contribution of this paper is as follows.
• We study the problem of various types of firearm de-

tection in this experiment. Three categories of firearms
{”handgun’, ’rifle’, ’shotgun’} are used in this work.
To infer individual firearm, we build three classifier
model with Decision Tree (DT) classifier for each of the



categories. We use SVM based approach to recognize
whether a firearm is autoloaded or manual.

• Firearm shooting generates recoil force and impacts the
sensor signals. To collect firearm shooting accelerometer
signal with the help dominant hand worn accelerometer.
In this work, fifteen different firearms are deployed for
collecting firearm shooting dataset.

• We evaluate the efficacy of our proposed framework with
the collected fifteen firearm shooting dataset. We demon-
strate how our proposed framework helps determine -
categories of firearm, firearm and the type of the firearm.

II. RELATED WORK

By examining how recoil is transferred to a shooter through
the use of accelerometers, the differences in firearms can be
examined. This was examined briefly in [6] where recoil force
was compared between different weapons but with sensors
embedded into the rifle and not the user. [7] used wrist worn
accelerometers in order to develop a recoil based gunshot
detection algorithm where the signature of the recoil generated
by a handgun was examined. A later study examined the same
principles of gunshot detection but with the use of a smart-
phone [8] where user behavior and sensor fusion was utilized.
The effects of recoil was examined in [9] but focused on its
impact on accuracy. Their research indicated that recoil did
not influence accuracy of the shot but the subjects shooting
position, experience and movement leading up to the shot had
the greatest impact on accuracy.

One limitation to these studies is that they do not examine
the differences in firearms and the associated recoil or attempt
to account for the differences in how users may mitigate the
recoil. This issue had been researched in the ”British Textbook
of Small Arms” published in 1929 and again in the SAAMI
Technical Data Sheet Technical Correspondent’s Handbook of
1976. Both of these still do not fully take into account the wide
variations of barrel length and other firearm recoil mitigation
techniques.

The effects of barrel length on bullet velocity was examined
in [5]. Direct port pressure measurement was conducted with
a piezoelectric transducer, while velocity (at 2 meters), and
sound pressure level were recorded for each shot. Their study
showed how changing one variable in a firearm (barrel length)
could change the behavior of a firearm. Pressure in the bore
(uncorking pressure) and sound pressure level increased ex-
ponentially as barrel length decreased and velocity decreased
from 2,964 fps at 24 ′′ to 1,823 fps at 5 ′′. Current detection
and classification methods have not covered this variation in
firearm performance within their studies.

The ShotMaxx timer developed by Double Alpha-Academy
[10] utilizes sound and accelerometers for gunshot detection.
Shot timers do not take into account the type of firearm since
the purpose is to detect and track times between shots for
training and competitive shooting. When examining gunshot
detection algorithms in [4], signal preprocessing focused on
acoustics of firearms not on recoils. Even within the area
of activity recognition, one of the main differences with

Category Firearm Type (Autoloading) Caliber
Ruger MK2 Yes 22 LR

Handgun FN 5.7 Yes 5.7x28
Glock 19 Yes 9mm

Ruger 10/22 Yes 22 LR
Bolt Action .22 No 22 LR
ADCOR AR15 Yes 5.56x45

M16 AR15 Yes 5.56x45
Rifle Yugo SKS No 7.62x39

WASR 10 AK47 Yes 7.62x39
Scoped M91/30 No 7.62x54R
Romanian PSL Yes 7.62x54R

M44 No 7.62x54R
Remington 1100 Yes 12 Gauge

Shotgun VEPR 12 Yes 12 Gauge
Remington 870 No 12 Gauge

TABLE I: The table represents the set of firearms, their
corresponding category, autoloading types and caliber.

gunshot detection and other typical activities is the duration
of the event. Muzzle blasts last for around 5 milliseconds as
examined in [4], and recoil evens were found to last for
around 50 milliseconds for handguns in [7]. The sampling
rate for this study was reduced to 1,600 Hz but it is still
much higher than rates used for activity recognition. For this
application the sampling rate allows for better collection of
the short lived events created by gunshot recoil, aiding in
feature extraction. A sampling rate of 100 Hz was applied
to a real time pothole detection application in [11]. Their
approached applied different methods including thresholds
examined with sliding window, consecutive measurements,
and basic values above and below certain levels all designed
to run on Android smartphones. Another smartphone based
study examined the performance of hotword detection utilizing
accelerometers [12]. One of the limitations on audio signal
processing is the collection rate required and the subsequent
computational power needed to process it whether it is for
gunshot detection or activity recognition. Their solution in-
stead utilized an accelerometer at 200 Hz with a high-pass
filter to remove interference can reduce energy efficiency while
retaining an accuracy of 98%. Both of these methods required
the processing of accelerometer data for quick short lived
events such as potholes detected while driving, or recognizing
keywords spoken by a user.

III. SYSTEM DESIGN AND ALGORITHM

In this work, we focus on recognizing firearm described
in Table I. Raw accelerometer sensor signals from gunshots
of each firearm is processed to examine the firearm and
it’s type. We remove noise and generate frames from the
signal. Gunshot produces recoil for a short amount of time
hence not all the frames contains gunshot related signals and
need to be discarded. We admit only the gunshot related
signals and determine the specific firearm and type. Figure 1
represents our proposed firearm detection framework. Our
framework comprises of two component i) Data Processing
and ii) Recognition Modeling. Data processing component
processes raw accelerometer signals and generate features
while the recognition modeling use these extracted features to
infer specific firearm. We discuss the details of our framework
in the next section.
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Fig. 1: Firearm Detection Framework

A. Data Processing

This module comprises of i) Preprocessing, ii) Frame Se-
lection and iii) Feature Extraction. Preprocessing filters the
raw accelerometer signals and create frames. Frame selection
admits gunshot related frames to the feature extractor which
extracts statistical and frequency domain features. we discuss
the details as below.

i) Preprocessing: While collecting the firearm data, we
ensure datasets contains only successful gunshots by removing
non-gunshot related signals such as removing jams or the
rounds that failed the fire. Typical auto loading handguns
rifles or shotguns do not require the user to load a new round
after the trigger is pulled, they simply release the trigger and
are ready to fire the next round. However, non-auto loading
firearms require the user to cycle a new round. One shotgun in
this study was pump action, and four rifles were bolt action.
While these features are not directly related to gunshots, they
are retained in the datasets. Once we collect the gunshot
dataset, we deploy low-pass filter to remove noise. Upon
examining the frequency range of different types of guns,
we determine the cutoff frequency to 150 Hz. Frames are
created from these filtered accelerometer signals. We create
frames from the accelerometer signals using sliding window
based approach with 50% overlap. Each window contains 1600
sample data points. These frames are then fed into the frame
selection module for further processing.

i) Frame Selection: In this module, we admit only the
gunshot related frames and discards all unrelated frames to
further get the fine-grained gunshot frames. Accelerometer
signals show typical short (10ms) high peak values due to
recoil force of the gun. Most of the non spike signal remains
flat and do not contribute to the firearm detection process.
We discard the frames that do not contain firearm related
information. For this purpose, we calculate energy of the
frames, E =

∑L
i=0(x

2 + y2 + z2), where L is the window
length in terms of the number of samples. Once the energy
of the frame E, crosses the threshold δe (determined with
empirical evaluation), we select this frame for the feature
extraction process and discard frames that fails to meet the
threshold. Figure 2 represents frame selection strategy of our
framework.

i) Feature Extraction: We extracted relevant time domain
and frequency domain features from the selected frames.
Gunshot related frames have high spikes in the signals and
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Fig. 2: Frame Selection Approach. L represents frame length.
Threshold is shown with horizontal dashed line.

therefore time domain features play a significant role in firearm
determination. Time domain features like mean, standard devi-
ation, signal magnitude area, energy are calculated. We employ
Hamming window to normalize the frequency and compute
Fast Fourier Transform (FFT) on each frame. We then compute
frequency domain energy for each frame.

(a) (b) (c)
Fig. 3: Shooting setting and styles. (a) Shooting the target with
handgun, (b) Handgun shooting style, and (c) Rifle/Shotgun
shooting style

B. Recognition Modeling

This module consists of i) Firearm Type Detection, ii)
Category Selection and iii) Firearm Recognition. Firearm
type detection infers whether a firearm is autoloaded or not.
Category selection determines in which category a firearms
belongs to (i.e., handgun, rifle, shotgun). Firearm classification
infers individual firearms depending on the category. The
details are discussed below.

i) Firearm Type Detection: Given the set of features, our
task is to train a firearm type detector in order to infer whether
a firearm is autoloaded or manual. Of the 15 firearms, 10 are
autoloading. This provides a larger dataset using autoloaded
gunshot samples as positive samples for training, and manual
firearms for negative. A one-class Support Vector Machine

Fig. 4: Accelerometer sensor signals of different gunshot



Fig. 5: Firearm Category Detection Performance

(SVM) classifier [13] is trained with only the autoloaded
gunshot samples as positive instances. In the testing phase both
positive and negative samples are passed through this trained
model to determine whether samples come from autoloaded
gun or manual gun.

ii) Category Selection: In this phase, we determine which
category of firearm a gunshot comes from {’handgun’, ’rifle’,
’shotgun’}. Our training class contains the firearms from all
three classes. We then train a Decision Tree (DT) classi-
fier [14] with the annotated samples of the three classes. We
use DT for the simplicity and ease of implementation and
ability to perform realtime detection. In the testing phase,
samples are passed through this constructed tree to determine
the final class labels (gun type).

iii) Firearm Recognition: In this work, firearm classification
is performed by employing a DT [14]. This classifier builds a
tree structure using annotated features from the training data
and each leaf represents class labels. In the testing phase, this
constructed tree is traverses through the branch to determine
the firearm classifier. The DT can be implemented with simple
if else conditions, hence lower computation complexity. In this
experiment, we construct a DT for each category and we use
corresponding gunshot data to train the DT classifier. In the
testing phase, once a category is determined the corresponding
DT model is used to infer the firearm.

IV. EXPERIMENTAL SETUP AND EVALUATION

A. Data Collection

In this experiment, an AX3 Watch, Axivity Ltd triaxis
accelerometer sensor is used. Data collection was performed
at 1600 Hz with offset ± 16g based on performance during
the calibration tests. To ensure the safety of participants only
one user performed the shooting for this initial study. The age
of the participant was 27 years and height and weight was
6’2” and 180lbs respectively.

To reduce collection time all firearms where set up before-
hand and loaded with the pre-determined number of rounds of
ammo. This reduced the number of actions the shooter would
need to take to fire the weapon, eliminating non gunshot noise
from the data such as loading magazines and releasing firearm
bolts and slides. With the accelerometer recording the subject
was then handed firearms in order of lowest calculated recoil
to highest, handguns followed by rifles and shotguns. Due to
safety concerns, firearms with calculated recoil under 10 ft.
lbs. were loaded with 10 rounds while firearms with calculated

Fig. 6: Performance Comparison of Firearm Category Selec-
tion

recoils over 10 were only loaded with 5 rounds. The subject
was instructed to take aimed deliberate shots like they would
for target practice. This was done at a private shooting range on
flat level ground with a target placed at torso height 10 yards
down range. All shots were performed with the shooter in the
standing position; feet shoulder width apart and shooting all
firearms unsupported. After firing all rounds for each firearm,
the next firearm was handed to the shooter. During firing
the subject was instructed to clear any jams or malfunctions
normally and these incidents were noted for data processing.
Start and stop times were recorded to ensure accurate data
processing. The shooting setup, difference in weapon grips,
and accelerometer sensor signals are shown in Figure 3 and
Figure 4.

B. Performance Metrics

We evaluated our framework based on standard precision,
recall, f1 score and accuracy. We also compare our framework
performance with standard classifier Naive Bayes (NB) [15],
Support Vector Machine (SVM) [16] classifier.

C. Experimental Results

We evaluated our firearm detection framework with fifteen
firearms’ gunshot data traces and demonstrated individual
component performances. We also discussed overall perfor-
mance of our framework as well.

i) Category Inference Accuracy: Selected feature frames are
fed into the firearm category selection module to infer the
firearm categories. In this experiment, different firearm gun-
shot data is aggregated based on the firearm category to create
category dataset containing three classes - ’handgun’, ’rifle’,
’shotgun’. We then randomly split the dataset into training and
testing dataset. Our training dataset contains approximately
70% data and testing dataset contains 30% data. We train
our DT classifier with the training dataset and evaluate the
trained model with testing dataset. Figure 5 represents category
selection performance of our framework. We see that our
framework achieves F1 scores approximately 90%, 93% and
76% for handgun, rifle and shotgun respectively. We observe
that handgun and rifle gunshot signals are more distinctive
compare to shotgun, hence it achieves lower F1 score.

ii) Firearm category selection performance comparison:
We also compare our firearm category selection performance
against SVM and NB classifier. In this experiment, we use



(a) (b) (c)
Fig. 7: Firearm detection performance of our framework. (a) Handgun detection performance, (b) Rifle detection performance,
and (c) Shotgun detection performance

standard 10-fold cross-validation technique to evaluate our
framework performance. Figure 6 represents the performance
comparison of our firearm category selection performance.
From the figure, we see that our framework performance gain
approximately 17% compare to NB classifier. Our DT based
approach performs better because it ables to partition the
feature space into three category classes more appropriately
than the NB classifier.

iii) Firearm Type Detection Performance: In this experi-
ment, we evaluate the performance of our firearm type detector
performance. We use one-class SVM and determine whether
a firearm is autoloaded or manual. We trained two SVM
model. First SVM model is trained with autoloaded firearm
samples from all the gunshot as positive classes and second
SVM model with manual firearm instances as positive classes.
The training dataset for each classes was splitted randomly to
generate the training and validation dataset. We use the testing
samples to measure the performance of these two SVM model
performance. The average of these results are presented in
Table II. We see that our model achieves ≈ 90% accuracy on
average. Our firearm type detector capable detecting whether
a firearm is autoloaded or manually 90% times correctly.

Accuracy (%) F1 score (%) Precision (%) Recall(%)
90.40 94.96 1.0 90.40

TABLE II: Firearm type detection performance (Percentage)

iv) Firearm Recognition Performance: We classify firearms
in three separate categories. Therefore, we design three DT
models to infer individual firearm class. We trained our DT
model with the corresponding categories (’handgun’, ’rifle’,
’shotgun’) firearms instances. Each categorys datasets are also
randomly split into 70% training and 30% testing data. DT
models are trained with this 70% training data and evaluated
with the remaining gunshot data. The detail results are reported
in figure 7. Our handgun, rifle and shotgun have three, nine
and three firearms respectively. From Figure 7a we observe
that ’Ruger MK2’ handgun detection performance is 100% as
the recoil force of this firearm generates unique signals that
helps detects all testing instances correctly. Utilizing the recoil
equation provided in TOP-3-2-504 we calculated the recoil
to be about 0.23 foot pounds. With the ’FN 57’ and ’Glock
19’, some samples are incorrectly classified. The calculated
recoil was 2.29 and 4.45 ft lbs respectfully and could indicate

that recoil of similarly performing handgun could produce
similar signals when compared against the MK2. Figure 7b
represents the individual rifles detection performance. We
observed that ’M44’ and ’Scoped M91/30’ have F1 scores
60% and 58% respectively as these firearms gunshot recoil
have similar impact on accelerometer signal compared to other
firearms. Note that these two both fired the same cartridge and
are not auto-loading. We can also infer that frame selection
module also admits more non-gunshot/ manual loading (in
case of ’M44’, ’Scoped M91/30’) related frames and our
firearm recognition model incorrectly classify these instances.
From the figure, we also see that ’Ruger 10/22’ achieves
F1 score 93% as it has a unique low recoil force that is
auto loading like the MK2 which fires the same cartridge.
Figure 7c represents the shotgun detection performance. F1
scores for shotguns are 83%, 87% and 89%, respectively. The
similar performance for shotguns could be due to their high
recoil maxing out the accelerometer signal resulting in similar
recoil peaks when their calculated recoil actually ranges from
about 20-34 ft lbs. We conclude that firearms with calculated
recoil forces distinct (outliers) from other firearms generate
more distinguishable accelerometer signals. Classes with fewer
firearms like handguns and shotguns had less variation within
their class in regards to caliber/ gauge and calculated recoil
resulting in lower performance.

v) Firearm Recognition Performance Comparison: In this
experiment, we compare the average performance of our indi-
vidual firearm detection DT model. We perform 10-fold cross
validation and keep track of the results. Figure 8 represents
the average firearm detection performance for each individual
firearm detection DT model. From Figure 8a, we see that
average F1 scores for individual handgun detection are 93.77,
93.96 and 94.22 (percent) for DT, SVM and NB model,
respectively. Our handgun DT model performs similar as SVM
and NB model. In Figure 8b, average F1 scores of individual
rifle firearm detection is 73.62%, 65.08% and 69.52% for DT,
SVM and NB models. It is noted that with a higher number
of individual rifle classes, SVM and NB model performance
degrades compared to DT model. In Figure 8c, we note that
average F1 scores of individual shotgun detection models are
88.41, 77.97% and 82.41% respectively for DT, SVM and NB.
We also observe that our DT model performance gain is ≈ 5-



(a) (b) (c)
Fig. 8: Firearm detection performance comparison of our framework. (a) Handgun detection performance comparison, (b) Rifle
detection performance comparison, and (c) Shotgun detection performance

6% for individual handgun detection. We conclude that our
individual firearm detection DT model performs better than
other classifier when large number of different firearms shots
present in the dataset.

V. DISCUSSION AND FUTURE WORK

Limitations of this work include the volume of data an-
alyzed. Safety and training requirements for a study of this
nature restricted the number of gunshots and participants.
Our model can be expanded to a multi user multi firearm
study examining performance between users. Under similar
conditions in [8], handgun recoil and gunshot sound was
detected by smartphone sensors with sampling rates of under
200 Hz. Examining the effects of sampling rate and system
accuracy could provide a balanced and realistic approach that
can be utilized in current wearables. The impact of different
users can also be examined in future applications of this
system. The interaction with a firearm could be examined by
identifying differences in the recoil signals of the same firearm
in different people. This system can be employed for multiple
users to examine how their interactions impact accuracy and
overall handling of the firearm.

VI. CONCLUSION

Firearm shooting generates recoil force and this recoil force
has an impact on the sensor signal. The recoil force is fairly
unique for each firearm. We deployed a wrist worn accelerom-
eter on the users dominant hand and collected firearm shooting
signals of 15 different firearms shooting. These collected sig-
nals were then preprocessed to remove unwanted portion of the
signal. We exploited the firearm shooting signals characteristic
and select only firearm related frames for further processing.
Our feature extractor module generates related feature sets for
next step. In this work, we built DT based firearm category
model and recognized {’handgun’, ’rifle’, and ’shotgun’}.
We then built individual firearm recognition model for each
of the categories using DT classifier. Our individual firearm
detector achieves recognition accuracy ≈ 86.67%. Finally, we
used one-class SVM to determine the whether a firearm is
autoloaded or manual type.
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