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Abstract

Information Reconciliation for Erasure Channels

Kyle Sherbert

Say Alice and Bob have n-bit strings which are identical except that Bob’s contains

t “erasures”: the corresponding bit may be either zero or one. Alice will send Bob a

message he can use to fill in his erased bits. The Slepian-Wolf bound suggests Alice

may send as few as t bits, even when Alice does not know which t bits of are erased.

We present several protocols acheiving this bound with varying degrees of success.

A binary, linear, and deterministic protocol exists only for t ∈ {0, 1, n − 1, n}. A

nonbinary protocol exists for any t ≤ n ≤ 2m − 1, but requires that erasures occur

in m-bit blocks. A nonlinear protocol seems promising, but the theory to prove it

in general is difficult to explore. Finally, a probabilistic protocol has no parameter

constraints, but has suboptimal communication complexity based on an additional

parameter c, and will fail with an error-rate ε dependent on c and t.
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Glossary

Symbols not listed here are only used locally where they are defined. All indices

(usually denoted by i, j, or k) begin numbering from 1.

α - the generator of a finite field, or a primitive nth root of a polynomial

c - the number of symbols in a redundancy s, or a constant

γ - an element of a code (ie. a codeword)

d - the minimum Hamming distance of a set of vectors

δ - the number of extra bits sent, c− t
∆ - the effective excess communication complexity

e - an error-vector

ε - the failure-rate of a protocol

Fq - a finite field of order q

Fn
q - a string of n elements of finite field of order q

h - an entropy

H - a parity-check matrix

|M| - the determinant of a square matrix M

m - the number of bits in a symbol of x

µ - number of variables of an RM code polynomial

n - the number of symbols in a message x

p - a probability, or the characteristic of a finite field

q - the size of an alphabet, the order of a finite field (generally a power of 2)

ρ - degree of an RM code polynomial

R - a random number generator

rk [M] - the rank of a matrix M

viii



s - Alice’s redundancy, or the syndrome of a given string x such that s = H · x
t - the number of erasures

x - Alice’s original string, or a coefficient vector

y - Bob’s received string, with erasures

X, Y - random variables for X and Y

χ - a variable over which polynomials are written - does not always have physical
meaning

ix
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1 Introduction

In this thesis, we explore the communication problem of erasure reconciliation over a

noiseless channel.

In communication theory, we consider the system where an information source

generates a message, which is transformed into a signal by a transmitter, which

then sends the signal over a channel to a receiver, which converts it back into the

original message. In discrete systems, which we are concerned with, the signal is a

series of symbols drawn from a finite set, most often {0, 1}. For the sake of clarity,

we will name our transmitter “Alice” and our receiver “Bob”.

The quintessential problem in communication theory is to develop a protocol

which allows Bob to reconstruct Alice’s original message, minimizing communica-

tion complexity, which usually means sending as few bits as possible. If the channel

is noiseless, the signal Alice sends is identical to the signal Bob receives. Bob can

recover the original message by performing the inverse of the transformation Alice

used to generate the signal. If the channel is noisy, the signal Alice sends experiences

random alterations before Bob receives it, and message recovery is more complicated.

For example, in a “symmetric channel”, each symbol is exchanged for another

at a certain probability. That is, a 0 might be replaced with a 1, and a 1 might

be replaced with a 0. Bob must determine which bits were flipped before he can

perform his inverse-transformation. In the “erasure channel”, each symbol is erased
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at a certain probability. That is, both 0 and 1 might be replaced with an X. Bob

can see very plainly which bits were erased, but he must determine what they were

originally before he can perform his inverse-transformation. The erasure-channel is

of interest to us in this thesis.

Perhaps the best known communication scenario is that of Forward Error Cor-

rection (FEC), in which Alice sends a signal with redundant bits - that is, more

bits than are necessary to represent the message. This way, Bob can theoretically

have enough information in his partially erased signal to extract the message.

In this thesis, we instead consider a variant of the reconciliation scenario, where

Alice sends the message untransformed through the erasure channel, and she is then

allowed a second transmission over a noiseless channel, omnisciently aware of how

many erasures occurred. We will call this second transmission the redundancy.

Recall that we would like to minimize communication complexity - Alice could re-

send the entire message, but Bob should need far fewer bits in order to reconcile his

partially-erased version.

We will explore several protocols accomplishing this task, present some relevant

theoretical proofs, and discuss the benefits and disadvantages of each. We also provide

an interactive application implementing each protocol.
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2 Background and Literature Review

2.1 Background

This section describes some of the mathematical and information theoretical concepts

necessary to understanding the main work of the thesis.

2.1.1 Finite Fields

In this section, we briefly describe the theory of finite fields, as can be found in a

number or coding theory textbook such as [1]. A field is a set F combined with two

commutative and associative operations (denoted +, or addition, and ·, or multipli-

cation) that take any two elements of F to produce a third. In addition, a field has

the following properties:

1. F has an additive identity, called 0: such that ∀a ∈ F, a+ 0 = a

2. F has a multiplicative identity, called 1, such that ∀a ∈ F, a · 1 = a

3. All elements a ∈ F have an additive inverse, called −a, such that a+−a = 0

4. All elements a ∈ F except 0 have a multiplicative inverse, called a−1, such that

a · a−1 = 1

5. Multiplication is distributive over addition, such that ∀a, b, c ∈ F, a · (b + c) =

a · b+ a · c
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Finite fields are fields where F has a finite number of elements. The number of

elements q is called the order of the finite field, and a finite field is referred to by Fq.

We use the notation Fn
q to represent an n-length string of Fq elements, which can be

thought of more formally as a point in a finite n-dimensional space.

Finite fields are also called Galois fields, named for the mathematician who showed

that the finite field GF(q) exists if and only if q = pm, where p is a prime number

(generally 2). The prime number p also serves as the characteristic of the finite

field, which is the number of times an element can be added to itself before the result

is guaranteed to be 0.

Galois also showed that all finite fields with q elements are isomorphic, meaning

no matter what you happen to call each element, the fundamental relationships are all

the same. This allows us to standardize our represention of each finite field Fq. When

q is prime (so m = 1 and q = p), Fq is arithmetic in Zq, that is, the set of integers

modulo q. Addition and multiplication function exactly as we are accustomed to,

save that we must take the result modulo q. Inverses are not as we are accustomed,

but they are guaranteed to exist and can be calculated efficiently.

When q is not prime, Fq is arithmetic in Zp[χ] mod P (χ), that is, the extension

of integers modulo p over χ, modulo P (χ). The extension of Zp over χ can be

thought of as a polynomial of χ, where each coefficient is in the field. P (χ) can be

any irreducible polynomial of degree m. Addition and multiplication function exactly

as we are accustomed to with polynomial arithmetic, save that each term’s coefficient

reduces to its residue modulo q, and we must take the final result modulo P (χ).

A polynomial’s additive inverse is simply the same polynomial with each coefficient

replaced by its additive inverse in Zp. Multiplicative inverses are guarateed to exist

and can be calculated efficiently.

All finite fields have at least one generator α, which is an element with the
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following properties:

αi = 1 ⇐⇒ i mod (q − 1) = 0

αi = αj ⇐⇒ i ≡ j mod q − 1
(1)

It is called a generator because every element of the finite field except 0 can be

generated by raising α to some power. The set F = {0, αi} for each i ∈ {1..q − 1}.

The simplest finite field is F2, which consists only of the elements 0 and 1. Addition

is equivalent to the XOR operation, and multiplication is equivalent to the AND

operation. We will call a protocol binary if it operates entirely within F2.

2.1.2 Linear Algebra

In this section, we briefly describe some key tools of linear algebra, as may be found in

mathematics or in this case physics textbooks on the subject (see [2] and [3]). Linear

algebra is the algebra of matrices and vectors. An (a×b) matrix M over finite field

F is a two-dimensional array of elements of F, with a rows and b columns. We will

use the notation Mij to represent the (scalar) element in the ith row and jth column

of M.1

An n-vector is a one-dimensional array of length n. It may be arranged as a row

(a 1 × n matrix) or a column (an n × 1 matrix). We will use the notation vi to

represent the (scalar) ith element of v. When we refer to n-length strings throughout

this thesis, we will assume they are in the form of a column vector.

The transpose of a matrix M, represented by MT , is the same matrix with the

columns and rows swapped. Thus, if M is an (a × b) matrix, then MT is a (b × a)

matrix. Each element of MT is given by MT
ij = Mji. The transpose of a column

1Unless otherwise noted, we will use indices starting from 1.
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vector is a row vector and vice versa.

The product of a scalar c and a matrix M, denoted Ω = cM, always exists and

has the same dimensions as M. Each element of Ω is given by Ωij = cMij.

The dot product of two vectors z = v ·w exists if both vectors have the same length

n, the first vector v is a row vector and the second vector w is a column vector. The

result z is a scalar equal to the following sum:

z =
n∑
i=1

vi · wi (2)

The sum of two matrices Ω = M + K exists if both matrices have the same

dimensions, ie. if aM = aK and bM = bK . Ω also has the same dimensions. Each

element of Ω is given by Ωij = Mij + Kij.

The product of two matrices Ω = MK exists if the inner dimensions of the

matrices match, ie. if bM = aK . Ω inherits the outer dimensions, so that it is an

(aM × bK) matrix. Each element of Ω is given by the dot product Ωij = Mi∗ ·K∗j

where Mi∗ is the ith row of M and K∗j is the jth column of K.

The span of a collection of n-vectors is the set of all vectors which can be produced

by a linear combination of each vector in the collection. That is, w is in the span of

{v1, v2, . . . } if there exists a set of constants {c1, c2 . . . } such that:

w =
∑

civi (3)

A set of vectors is linearly independent if no vector in the set is in the span of the

collection of remaining vectors. Note that when c1 = c2 = . . . = 0, the vector w is

the zero vector, [0 0 · · · 0]. Thus, the zero vector is in every span, and any collection

including the zero-vector is not linearly independent.
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The rank of a matrix rk[M] is the number of dimensions needed to represent the

span of the rows or columns of M. Alternatively, the rank is the size of the largest

set of linearly independent rows or columns in the matrix M. The span of rows and

the span of columns of any matrix always have the same dimension, so either can be

used to calculate rank. Note that rank can never be greater than the number of rows

or columns in M.

The equation Mx = z, where x is an unknown b-length column vector and z

is a known a-length column vector, is equivalent to the following linear system of

equations, with b variables and a equations:

M11x1 +M12x2 + . . . = z1

M21x1 +M22x2 + . . . = z2
...

Let A = [M z], the “augmented” matrix formed by concatenating z to the right of

M. Whether or not this system can be solved for x depends on the relation between

its length a and the rank of A):

1. rk[M] < rk[A] - there are no solutions for x (equations are inherently contra-

dictory)

2. rk[M] = rk[A] = a - there is a unique solution for x

3. rk[M] = rk[A] > a - there are several solutions for x

In case 1, when there are no solutions for x, the system is said to be singular. In

case 2, where there is a unique solution for x, linear algebra theory provides several

algorithms for efficiently solving the system. We will not describe them here, although

we will make use of them throughout the thesis. In case 3, where there are multiple

solutions for x, we cannot solve the system without imposing additional constraints.
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The determinant of a square (n×n) matrix, represented by |M|, is another way

of seeing if a system is solvable. We will not describe here how to calculate it, but it

can be done efficiently, on the order of Θ(n3). If |M| 6= 0, its rank is exactly n, and

a system of equations with M as its coefficient matrix must have a unique solution.

If |M| = 0, the matrix itself is said to be singular.

2.1.3 Information Entropy

In this section, we formalize the amount of information generated by some information

source, as defined by [4] and described in an information theory textbook such as [5].

In general, this is accomplished with information entropy. Consider the set of all

possible messages M. Some elements of M may be produced by our information

source more frequently: let message xi ∈ M appear with probability pi, so that p is

the probability distribution describing how likely each message appears. Intuitively,

more common messages are less informative: if, for instance, p is a unary distribution

around p1, we should be completely unsurprised to see m1, no matter how many times

it appears. We define the entropy h of the information source as follows:

h = −
|M|∑
i=0

pi log pi (4)

When M is continous, we instead use differential entropy, which replaces the sum

with an integral. The units for entropy are determined by the base of the logarithm.

In this thesis, we will only discuss messages consisting of a string of n symbols,

meaning we are dealing with a discreteM. Furthermore, we will only discuss symbols

which can be represented by an integer number of bits m. For example, when we are

discussing strings of bits, m = 1, and when we are discussing strings of bytes, m = 8.

Thus, the natural base to use in our logarithm is 2, so our entropy unit is called a
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Shannon, in honor of Claude Shannon, the father of information theory.2 Finally,

we will assume that all messages are equally likely, so pi = |M|−1 and h simplifies to:

h = log2 |M| = log2 2mn = mn (5)

which is simply the number of bits in our message. You may assume m = 1 except

where otherwise noted.

Also of interest are conditional and joint entropies, which are derived directly

from the analogous concepts in probability. Let X be a random variable representing

the signal Alice sends, and Y be a random variable representing the signal Bob

receives. Exact quantity depends on the type of noise in the channel, but the following

relation is true:

h(X, Y ) = h(X) + h(Y |X) = h(Y ) + h(X|Y ) (6)

For example, if Alice transmits a binary (m = 1) message directly, h(X) = n. If

the channel introduces exactly 1 erasure at a random location, then Bob may receive

n different messages for a given x. Thus, the conditional entropy h(Y |X) = log2 n.

For a given y containing one erasure, the erasure could be replaced by one of two

symbols. Thus, the conditional entropy h(X|Y ) = log2 2 = 1. Using the above

relation, h(Y ) = n+ log2 n− 1.

In general, if Alice sends n m-bit symbols over a channel introducing exactly t

2“Shannons” are also simply called “bits”, but that may get confusing, since not every bit we
meet will contain a “bit” of information.
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erasures, we have the following entropies:

h(X) = mn

h(Y |X) = log2

(
n
t

)
h(X|Y ) = mt

h(Y ) = m(n− t) + log2

(
n
t

)
h(X, Y ) = mn+ log2

(
n
t

)
(7)

2.1.4 Channel Rate

In this section, we formalize the amount of information that can be sent along a

channel, ie the channel capacity, designated C. Normally this is defined as the most

amount of information that can be transmitted per second [4, 5], because engineers

care about how long things take. As theorists, we shall assume every bit we send

over the channel takes the same amount of time, and therefore our channel capacity

is only a measure of how many bits must be sent in order to transmit a Shannon of

information.

The capacity of a noiseless channel is simple: in order to send one Shannon of

information, we must send one bit. Thus, we say C = 1.

To determine how noise affects the capacity of a channel, we must consider how

much information is lost when an information-rich (h(X) = mn) signal is transmitted

through that channel. This turns out to be the conditional entropy h(X|Y ), which

was discussed in Section 2.1.3. In order to send mn Shannons, we must send an extra

h(X|Y ) bits to make up for the information lost to noise.

For an erasure channel which erases exactly t symbols, we must send an extra mt
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bits (Equation 7). Thus, our capacity is:

C = 1 +
t

n
(8)

The concept of channel capacity is closely related to the concept of rate, designated

R, which is the number of bits we actually do send, in order to transmit a Shannon of

information. A communication protocol is optimal if its rate is equal to the capacity

of whatever channel it is designed to communicate over, or at least that it does so in

the limit where n→∞. Communication complexity is the rate R times the number

of bits transmitted.

Consider the reconciliation scenario described in Section 1 where Alice sends Bob

a message which is partially erased, and then she sends a redundancy s which Bob

uses to reconcile his original message. Let c be the length of s, the number of symbols

Alice sends in the second part of the protocol (and as usual n is the number of symbols

in the message). Then the rate of the protocol is:

R = 1 +
c

n
(9)

which is optimal on an erasure channel when c = t. Technically this is not quite

accurate, since a part of the protocol takes place over a noiseless channel, but we

shall consider it “close enough”.

Some protocols are probabilistic (as opposed to deterministic), meaning Alice

fails to transmit any information with failure-rate ε. We shall discuss one such pro-

tocol, where Alice’s redundancy may or may not allow Bob to reconcile his partially-

erased string. In order to compare such a protocol fairly, let us assume that Alice

omnisciently knows when the protocol has failed, so that she knows to send another
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c bits. Thus, the expected number of bits she ultimately sends Ec is equal to:

Ec = c+ cε+ cε2 + cε3 + · · · = c
∞∑
i=0

εi (10)

which reduces by calculus to Ec = c(1− ε)−1. Thus, the effective rate RE is:

RE = 1 +
c

n
(1− ε)−1 (11)

2.1.5 Random Number Generators

Any probabilistic protocol relies on randomness. This randomness comes from making

decisions based on numbers drawn from a random source, or generator, denoted

R. A true random source is one based on physical processes such as light propaga-

tion or thermal vibration. A pseudorandom source is one based on deterministic

algorithms. A seed is the initial parameterization of a pseudorandom source, such

that two generators seeded with the same value will generate the same numbers.

If all parties in the protocol (ie. Alice and Bob) have access to the same random

source, it is called shared randomness. In general, it is difficult for distantly

removed parties to reliably share a source of true randomness, so we will assume

any protocol calling for shared randomness requires a pseudorandom generator and

a common seed. In Section 3.5, we will use a protocol requiring shared randomness.

We will discuss several pseudorandom generators then.

A pseudorandom source is called linear if each number it produces can be calcu-

lated as a function of the previous number it produced. These are not generally con-

sidered good random generators, without significant post-processing. For one thing,

anyone can easily calculate exactly what numbers will follow, if one knows the al-

gorithm to do so. For another, in order to generate the same number twice, one
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must necessarily repeat the entire sequence. The number of unique numbers a linear

pseudorandom generator produces before repeating is called its period. Despite their

disadvantages, they are very easy to use and will suit our purposes fine as long as the

period is long enough.

2.1.6 Linear Codes

In this section, we briefly describe the theory of linear codes, which will play a major

role in our discussion. This information is available in a coding theory textbook such

as [6] or [1]. Consider the forward error correction scenario described in Section 1.

Alice must transform a message into some longer codeword that she transmits to

Bob, and Bob must then decode it in spite of any errors it incurred along the way. A

code is the set of all possible codewords for a given communication protocol. A linear

code is a code which can be produced from a linear transformation of all possible

messages, making for very simple encryption and an easy-to-understand strategy for

decryption. We will refer to such protocols as linear also.

Many linear codes have associated with them a (k × n) generator matrix G,

which relates a given message ξ to its codeword x such that ξT ·G = x. In fact, the

code is the span of G, ie the set of all possible linear combinations of the rows of G.

The message ξ serves to select which rows to combine to produce the codeword x.

All linear codes also have associated with them a so-called parity-check matrix

H, with the property that HG = 0. This property also means that, for any n-length

string r, H · r = 0 if and only if r is in the code. We define the syndrome s of r to

be the following vector product:

s = H · r (12)

The syndrome serves to identify the cosets of r, which is the code offset by an “error”
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vector e. A perfect code is one in which every n-length string r belongs to exactly

one coset, meaning that the syndrome is enough to map r to the “closest” codeword.

Closeness is given by the concept of Hamming distance, which is the number of bits

in which two strings differ.

Error-detection protocols basically amount to Bob finding the syndrome of his

received signal r. If it is anything but 0, he knows he has an error. Error-correction

protocols basically amount to Bob exploiting the syndrome to find the error e, which

in combination with r produces the codeword γ. That is, r = γ + e, where e is given

by s.

The smallest distance you can find between two codewords for a given code is called

the minimum Hamming distance, d. All linear codes are subject to the Singleton

bound:

d ≤ n− k + 1 (13)

A code is called Max Distance Separable (MDS) if this is an equality, so that

d = n − k + 1. One can find d by finding the codeword with the least weight, ie

the least number of non-zero elements. It can be shown that for a linear code, that

weight is d.

A code with codeword-length n, message-length k, minimum Hamming distance

d, and symbol alphabet size q is called an (n, k, d)q code. If the code is linear, use

brackets: [n, k, d]q

Consider codes designed for a symmetric channel, meaning any bit has a certain

probability of being flipped. A code is guaranteed to be able to detect up to d − 1

errors. If there are any more than that, one codeword may be transformed entirely

into another and evade detection. The same code is guaranteed to be able to correct

up to d−1
2

errors. Any more than that and r may be equally close to two codewords,
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and Bob has no way to know which was sent.

Now consider the erasure channel: if r contains any X’s, then Bob can detect

there have been erasures. Given the same code from the previous paragraph, Bob

can correct up to d− 1 erasures. Any more than that and r may be equally close to

two codewords. In general, any given code can correct twice as many erasures as it

can errors.

2.2 Literature Review

The reconciliation problem is closely related to that of distributed coding, first

explored by Slepian and Wolf [7]. In distributed coding, the goal is for a single

receiver to decode information from two sources X and Y . Each message is encoded

and transmitted independently, at which point the receiver can decode both messages

together.

Say transmission is over a noiseless channel. If the sources are entirely inde-

pendent, each message should be transmitted directly, resulting in a total commu-

nication complexity of 2n. Each transmission has rate R = 1. Slepian and Wolf

showed that if the two sources are correlated, meaning that their joint entropy

h(X, Y ) < h(X) + h(Y ), the number of bits c for each transmission are bounded

as follows:

cX ≥ h(X|Y )

cY ≥ h(Y |X)

cX + cY ≥ h(X, Y )

(14)

Bob from our reconciliation problem can be thought of as both the receiver and

the second transmitter of a distributed coding problem. Essentially, the transmit-

ter at Y “sends” its entire message directly, thus having cY = mn. Our proto-

col is only interested in cX , so we’ll drop the subscript. Its theoretical bound is
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c ≥ max(h(X|Y ), h(X, Y ) −mn). Using our entropies for the erasure channel from

Equation 7, we find the latter argument is always negative, and therefore our com-

munication complexity is:

c ≥ mt (15)

This limit makes intuitive sense: there are precisely mt bits that Bob does not know,

so Alice must send him at least mt bits. The surprising bit is that this is theoretically

achievable even when Alice does not know which bits Bob does not know.

Practical coding schemes acheiving the bounds Slepian and Wolf proved in 1973

were not realized for nearly three decades, but in 1999, Pradhan and Ramachandran

[8] proposed the idea of using syndromes to acheive the reconciliation case. [8] goes

far beyond what we will explore in this thesis, immediately generalizing to continuous

signals and Gaussian channels.

Gehrig and Dragotti in [9] keep to binary n-length messages, but their protocol

generalizes to a true distributed coding problem with any number of sources. Here

we present a diluted version of their argument, as applied to the reconciliation case.

For now, assume X and Y are correlated by a symmetric channel; we will adapt the

argument to erasures in Section 3.2.

Let Alice have the n-length string x, and Bob have string y = x + e, where e is

an error vector with no more than t non-zero elements, indicating exactly where each

error occurred. Now consider a binary FEC linear code [n, k, 2t+ 1]q for some k, with

parity-check matrix H. Neither y nor x are necessarily in the code, but they each

have a syndrome sx, sy. Let Alice transmit sx to Bob. Now Bob subtracts sx from

Hy to find the syndrome of e:

Hy − sx = Hy −Hx = H(y − x) = He (16)
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Bob may then reconstruct e using standard error decoding techniques, and reconstruct

x by x = y− e. Depending on the code used (and therefore the properties of H) this

may not be optimal, and may even be probabilistic, but the reconciliation has been

performed.

Note that Bob could have written the equation Hx = sx and solved using standard

linear algebra techniques described in Section 2.1.2, which are usually much simpler.

This doesn’t work because the rank of H is too high: the system of equations has

several solutions which produce the same syndrome, and Bob can’t know which is

correct without accounting for y as described above.

[10] explores the theoretical bounds of the combinatorial variant of distributed

coding, when sources may differ by up to t bits, rather than exactly t bits as we have

explored. [11] follows it with a probabilistic protocol which is optimal. It is especially

nice because a variant of the protocol exists in which all parties may use their own

random number sources (rather than a shared source), albeit at significant compu-

tational expense. That said, remember that “optimal” just means as n approaches

infinity. This protocol converges very slowly, so as a practical matter, it isn’t very

practical.

[12] provides a protocol with communication complexity on the order of t(log2 t+

log n), which is not altogher impressive except that t is in fact edit distance, which

accounts for erasures in addition to synchronization errors, where the string Bob

receives may have bits inserted or deleted. Synchronization errors are studied in [13],

[14], and [15].

We have thus far assumed that both Alice and Bob are omnisciently aware of how

closely related their strings x and y are. That is, we assume Alice and Bob simply

know that y incurs t errors during transmission. [16], [17] and [18] discuss incremental

distributed coding, where no such assumption is made. These protocols are variable



2 BACKGROUND AND LITERATURE REVIEW 18

rate, meaning that their communication complexity adjusts to the actual number of

errors. However, they depend on back-and-forth communication between transmitter

and receiver, whereas the problem we are studying requires the only communication

be a single signal from Alice to Bob.

Ideally, we would like to apply the results of [8], [9], and [10] to the case when y

incurs erasures, rather than bit-flip errors, during transmission. It seems that this is

a simple matter of utilizing a t-erasure FEC code in the same way [9] utilized t-error

FEC codes.

There is not an extensive amount of literature dedicated to erasure codes, presum-

ably because, as stated in 2.1.6, any linear code can correct twice as many erasures

as errors. In 2001, [19] found that Low-Density Parity Check (LDPC) codes can

optimally correct erasures when they occur at a probability p (as opposed to a fixed

frequency t). More recently, [20] proved theoretically that Reed-Müller codes also

achieve capacity on erasure channels. In fact, the result of [20] is particularly excit-

ing because the proof is easily extended to any code, and to any channel, exhibiting

certain properties.

The work presented in this thesis, though completed independently, is not ground-

breaking in any way - the problem it studies is much simpler than many of those

considered in these works. We shall closely examine linear codes as explored by

[9], probabilistic codes as explored by [10], and Reed-Müller codes as explored by

[20]. However, we do so not to innovate new and practical methods of network com-

munication, but instead simply to explore communication theory, in as simple and

understandable a way as possible.
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3 Results

3.1 Overview

Our scenario is as follows: Alice has a string x, consisting of n m-bit symbols. Bob

has a string y, which is identical to x except that t symbols have been erased. We

must design a protocol for Alice to construct and transmit a redundancy s, which

Bob receives and uses to reconcile the erasures in y, producing x′. We consider the

protocol successful if x = x′.

We consider a protocol to be ideal if it is binary, linear, and deterministic. Binary

protocols are easier to understand than those existing in higher-order finite fields, and

are far easier to implement, since all operations can be treated as logical ones. Linear

protocols are those in which the most involved step is solving a system of equations

with linear algebraic techniques, which is easy to implement efficiently. Deterministic

protocols are preferred to probabilistic ones, simply because, if all else is equal, we’d

like to have the right answer.

Section 3.2 presents very simple, specific scenarios to illustrate how reconciliation

can be achieved. We then prove that those protocols are the only “ideal” optimal

solutions, and that they are only usable for a narrow class of parameters, when t ≤ 1

or n− t ≤ 1.

Section 3.3 presents a protocol which utilizes Reed-Solomon (RS) linear codes.

This solution foregoes a binary alphabet, but provides a linear and deterministic
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solution up to a certain word-size, based on the symbol-size: n ≤ 2m − 1.

Section 3.4 presents a protocol which utilizes theory from Reed-Müller (RM) codes,

which are based on high-order (ie. nonlinear) polynomials. It provides a binary and

deterministic solution, but we cannot use linear algebraic techniques to solve the

problem efficiently. It is therefore more difficult to implement, less efficient, and still

has some serious constraints on parameters, although less so than RS codes.

Section 3.5 presents a simple and easy-to-implement probabilistic protocol. This

solution, being probabilistic, will fail to produce the correct answer every time, but

it is binary and linear. The protocol assumes Alice and Bob have a source of shared

randomness, and in fact may even work better with certain pseudo-random generators.

We prove some theoretical constraints on its rate, and we also present computational

simulations verifying the theory.
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3.2 MDS Theory: an Ideal Solution

Throughout this section, all discussion is for F2. Assume m = 1.

3.2.1 Parity Bit: Solution for t=1

Before we get into any more theory, let’s see an example of a protocol that actually

solves the erasure reconciliation problem, albeit for a very simple case: t = 1. Bob’s

string y has exactly 1 erased symbol. With a single erasure, the optimal redundancy

Alice can pick should have a single bit. Which bit should it be?

Alice simply lets s be the parity of x, which is 1 if there are an even number of

1’s and 0 otherwise. For his part, Bob determines the parity of y. If it equals s, then

he knows his missing bit must not change the parity, and is therefore 0. If it doesn’t

equal s, it must be 1.

3.2.2 Linear Erasure Reconciliation

Now that we have the idea, let’s consider the general case: Bob’s string y has exactly

t erasures. Alice should pick a string s that has t bits. To work this out, we will

adapt Gehrig and Dragotti’s protocol in [9] for erasures.

Previously (Equation 16), we had the following equation (substituting s in that

section for the s we are using now):

He = Hy − s (17)

Bob had to rely on error decoding techniques to find the actual error locations in e.

But now he already knows the locations - they are wherever he has an X. Moreover,

he is already completely certain that every bit without an X is correct - each bit

serves as an additional constraint which limits the possible solutions to the system of
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equations.

In practice, Bob can apply those constraints by simply dropping all those columns

of H which correspond to bits he already knows, producing a reduced matrix H′ whose

rank is certainly not too high. As long as the remaining t columns are linearly inde-

pendent, we can solve for the missing bits e′ using standard linear algebra techniques.

The full error vector e is e′ padded with 0’s in all the previously known locations.

Then, as before:

x = y − e (18)

There is a complication: the string y has erasures in it. How do we calculate its

syndrome Hy? The symbol X is not in F2; we cannot do arithmetic with it. The

solution is simple: guess its actual value. Really: just go through and replace each X

with either a 0 or a 1. If you happen to guess right, then when you solve for that bit

in e, it’ll be 0. If you guess wrong, it’ll be 1. Either way the problem gets sorted out

when you do that last step.

All we must do is find a matrix H with two properties:

1. H has t rows and n columns, so it produces a t-bit redundancy from the n-length

string x.

2. Any selection of t columns from H are linearly independent, so that the resulting

system of equations is never singular, no matter which bits of y are erased.

When t = 1 as in the simple case from Section 3.2.1, H is just the vector H =

[1 1 · · · 1]. The parity of a string x is in fact the dot product H · x in binary

arithmetic.

As another example, let t = n− 1. The matrix we use now should look something
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like:

H =



1 0 0 0 1

0 1 0 0 1

. . .
...

0 0 1 0 1

0 0 0 1 1


(19)

As a final example, let t = n: Bob has no information on x at all. Alice should

probably just send the entire string. Indeed, the identity matrix itself satisfies our

criteria.

3.2.3 Failed Alternative: The Hamming Code

To highlight the importance of the second property, let us consider the oft-lauded

Hamming [7, 4, 3]2 code. This code is often used as an example of how to correct

single bit-flip errors for n = 7. The parity-check matrix for this code is given by:

H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 (20)

This matrix has three rows, so the redundancy s will be three bits.

Let us say Bob has received y =X001X1X, and s =100. First, Bob arbitrarily

replaces all X’s in y with 0’s, producing y′ =0001010. Next, he calculates Hy′ − s,

resulting in the column vector z = [0 0 1]T . Next, he drops all redundant columns of

H, leaving:

H′ =


1 1 0

1 0 0

0 0 1


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Protocol 1: Ideal Protocol

Setup Alice has a string x, consisting of n bits. Bob has a string y, which is
identical to x except that t bits have been erased.

Parameters (agreed upon before communication)

H - a (t× n) matrix over F2, with the property that any selection of t columns
are linearly independent.

Steps

1. Alice calculates the redundancy s = Hx.

2. Alice transmits s to Bob.

3. Bob calculates the string y′ as y with each erasure replaced with a zero.

4. Bob calculates z = Hy′ − s.
5. Bob calculates the reduced matrix H′ by removing each column of H where
y did not have an erasure.

6. Bob solves the equation H′e′ = z for e, using linear algebraic techniques.

7. Bob calculates the error vector e by padding e′ with zeros wherever y did
not have an erasure.

8. Bob calculates Alice’s string x = y − e.
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Now he must solve H′e = z, which his handy linear algebraic calculator does easily:

e′ = [0 0 1]T , or e =0000001. Finally, he finds x = y − e =0001011.

No problem. But what if the sixth bit had been erased in place of the seventh?

Now y =X001XX1. Bob completes each step in the exact same way until he comes

to his reduced matrix:

H′ =


1 1 0

1 0 1

0 0 0


There is a row containing only 0, a dead giveaway that the system is singular: no

solution to e′ exists.

H was able to correct certain t = 3 erasure patterns, but not all. It is not difficult

to work out that it can correct all t = 2 erasure patterns, which is consistent with

our remark in Section 2.1.6 that any error-correcting code can correct twice as many

erasures. However, it is not optimal. Evidently even a perfect code like Hamming’s

fails to provide us with the matrix we need.

3.2.4 MDS: A Necessary Condition

In this section we prove the following theorem:

Theorem 1. If a (t × n) matrix H with elements in F2 has the property that any

selection of t columns are linearly independent, then it must span a space whose

minimum Hamming distance d = n− t+ 1.

Proof. A selection of t columns is not linearly independent if one of the rows can

be produced by a linear combination of the other rows. Since we are in F2, this is

equivalent to saying that one row is the sum of several others. Adding the duplicated

row to this sum produces a zero vector [0 0 . . . 0]. If the rows of H can be combined to
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produce a vector containing t zeros, or equivalently, if the span of H has any elements

which contain more than t zeros, there exists a selection of t columns which is not

linearly dependent. Thus, in order for H to have the desired property, the weight of

each vector in its span must be at least z ≥ n− t+ 1.

From coding theory (Section 2.1.6), we know that the least weight of an n-vector in

a set is equivalent to the minimum Hamming distance d of that set. Thus, d ≥ n−t+1.

But according to the Singleton bound (Equation 13), d ≤ n − t + 1. For these both

to be true, d = n− t+ 1.

Since the span of H has a minimum Hamming distance d = n − t + 1, the space

is an MDS linear code, and H is its generator matrix. Binary MDS codes for a given

n are well-known - only four sets of parameters for a given n exist: t = 0, t = 1,

t = n − 1, and t = n. We have already seen all but the first, where reconciliation is

not required. For any combination of n and t not in these four, we must forego at

least one of our ideals.
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3.3 RS Theory: a Nonbinary Solution

In this section, we use use theory from Reed-Solomon (RS) codes to perform

reconciliation. They happen to be MDS codes, which as shown in 3.2.4 is what we

need for a binary optimal linear solution. They are not, however, binary: in fact, a

Reed-Solomon code is one in which the string length n and symbol alphabet size q

are related by n = q− 1. In our examination, we require q = 2m for some symbol-size

m.

3.3.1 Theory

RS codes are a subclass of Bose-Chaudhuri-Hocquenghem (BCH) codes, which

are themselves a subclass of cyclic codes, which are themselves a subclass of linear

codes. We have already seen linear codes described in Section 2.1.6; we will describe

the rest in turn here. This information can be found in thorough coding theory

textbooks such as [6]. We also relied heavily on lecture notes from [21].

Cyclic Codes Cyclic codes are so named because every cyclic rotation of a code-

word is also a codeword. Though they are linear codes, they abandon the notation

of linear algebra in favor of high-order polynomials over a variable χ. Note that the

value of χ itself has no immediate meaning to the code: we are merely using it as a

tool to conveniently perform arithmetic which happens to result in a cyclic code.

Codewords are multiples of a generator polynomial g(χ), modulo χn − 1. That

is, γ(χ) = g(χ) · P (χ) mod χn − 1 for some message polynomial P (χ). The actual

n-length string is the sequence of coefficients in γ(χ), so that the ith symbol of γ is

the coefficient for χi in γ(χ).

The generator polynomial g(χ) must be a factor of χn − 1. If the degree of g(χ)

is s, then the highest degree of a message polynomial is k = n − s. In general, the
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higher the degree of g(χ), the more errors it can correct but the fewer messages it

can encode. It is related to the parity-check polynomial h(χ) by g(χ) ·h(χ) = χn− 1.

The parity-check polynomial performs the same function a parity-check matrix does:

h(χ) · γ(χ) = 0 modulo χn − 1 if and only if γ(χ) is a codeword.

BCH Codes BCH codes use a generator polynomial formed using the primitive

nth root of 1, which we denote by α. It is a (potentially imaginary) number with

the following properties:

αi = 1 ⇐⇒ i mod n = 0

αi = αj ⇐⇒ i ≡ j mod n
(21)

This should look very familiar, since we used the same symbol for generators of a finite

field, which have very similar properties (Equation 1). In RS codes, they are one and

the same. For now, however, α, like χ, has no concrete representation. Indeed, it

may very well be an imaginary number.

Note that αi for any integer i is a solution to the equation χn − 1 = 0, ie. it is a

root of the polynomial χn−1. There are n unique roots, corresponding to 0 ≤ i < n.

By the definition of “root”:

χn − 1 =
n−1∏
i=0

(χ− αi) (22)

Any factor of χn − 1 with degree s is a product of s polynomials of the form χ− αi,

which is to say that each of those αi are a root of the factor. It can be shown (see [6])

that if the factor selected as a generator polynomial g(χ) has a run of δ consecutive

powers of α as roots, the resulting code has Hamming distance d ≥ δ + 1.

When designing a BCH code for a given n, one must first select a factor of χn− 1
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to use as g(χ). Then one must select an i for which αi is a root, so that g(αi) = 0.

From this, one can algebraically determine which other roots g(χ) has. The trick is

to pick g(χ) and the power i of its first root such that g(χ) has as few non-consecutive

powers of α as roots. These do nothing to increase δ (and therefore d, and the number

of errors that can be corrected), yet they still increase the degree of g(χ), taking away

from the number of messages that can be encoded.

BCH codes have a parity-check polynomial, but it is more common to use an

(δ × n) parity-check matrix of the form:

Hij = α(i+k−2)j (23)

The integer k identifies the first power of α in the longest run of consecutive roots of

g(χ), the length of which is δ.

RS Codes An RS code is defined to be a BCH code where all roots of g(χ) are

consecutive powers of α. That is, an RS code is one whose generating polynomial is

given by:

g(χ) =
d−1∏
i=1

(χ− αi) (24)

The degree of g(χ) is s = n− k = d− 1, so RS codes are MDS.

To guarantee this g(χ) is a factor of χn−1, the polynomial must be over elements

in a finite field Fq with order q = n+ 1. This can be seen intuitively3 by noting that

each coefficient is the sum of several powers of α. In a binary BCH code, each of

these coefficients would end up being either 1, as could be shown from αn = 1, or 0,

as could be shown from the assumption g(αi) = 0. Constructing RS codes does not

involve such an assumption. To allow for any d at all, Fq should contain α and all its

3the opposite of “rigorously”
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powers. There are n such powers, and we must also allow for a zero-element. Thus,

the order of Fq should be n + 1. Comparing Equations 21 and 1, we find α now has

a very concrete representation: it is a generator of Fq.

3.3.2 RS Erasure Reconciliation

RS codes are MDS, and therefore we could make use of their generator matrix, which

can be constructed from its generator polynomial g(χ) fairly easily, to solve our system

of equations.

However, it turns out that using the parity-check matrix H is even easier. Note

that the k we used in Equation 23 is now 1, and δ = d − 1, which we shall soon see

also happens to be t, the number of erasures we can correct. Thus, H is a (t × n)

matrix with the form:

H =



1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...

1 αt α2t · · · αt(n−1)


(25)

We will now show that this H can always be used to solve our reconciliation

problem with t erasures using the protocol described in Section 3.2.2. The proof

takes advantage of H’s similarity to a Vandermonde matrix, which is any matrix

of the form: 

1 a1 a21 . . . an−11

1 a2 a22 . . . an−12

...

1 an a2n . . . an−1n


(26)

Vandermonde matrices have the special property that, if all ai are distinct, its deter-
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minant is non-zero ([6]). (Equation 21).

Theorem 2. The reduced matrix H′ formed by selecting any t columns of the matrix

H defined in Equation 25 can be used to solve a system of equations with t unknown

symbols.

Proof. First, note that a selection of t columns of H produces a square matrix. If we

can show its determinant is non-zero, we have shown it can be used to solve a system

of equations with t unknowns (see Section 2.1.2).

Let the index of the kth column selection be represented by vk + 1, identify the

index of the kth column selection. Thus, each vk ∈ [0, n) and is unique. The reduced

matrix H′ has the form:

H′ =



αv1 αv2 αv3 · · · αvt

(αv1)2 (αv2)2 (αv3)2 · · · (αvt)2

...

(αv1)t (αv2)t (αv3)t · · · (αvt)t


(27)

We now take advantage of the fact that, if a matrix is transposed, its determinant

is unchanged, and that if a row of the matrix is multiplied by the scalar z, the

determinant changes by a factor of z [2]. We will transpose the matrix then multiply

each row k by the scalar α−vk , so that the total scaling factor of the determinant is

α−(v1+v2+v3+···+vt). The determinant |H′| is given by:

|H′| = α−(v1+v2+v3+...+vt)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 αv1 (αv1)2 · · · (αv1)t−1

1 αv2 (αv2)2 · · · (αv2)t−1

...

1 αvt (αvt)2 · · · (αvt)t−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(28)
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The scale factor α−(v1+v2+v3+...+vt) cannot be zero. The determinant in brackets is

equal to the determinant of a Vandermonde matrix, whose elements ak are given by

αvk . Each vk is unique and in the range [0, n) by definition; because α is a primitive

nth root, each αvk are unique also (Equation 21). Therefore, the determinant in

brackets is non-zero also. The product of two non-zero numbers is itself non-zero,

and thus |H′| 6= 0.

3.3.3 Drawbacks to RS Solution

RS code parity-check matrices are easy to construct for any given finite field Fq, and

for any number of erasures t. However, word-size n is constrained by q − 1, or in

terms of symbol-size m:

n ≤ 2m − 1 (29)

We can undercut word-size simply by having Alice and Bob ignore columns of H, but

if we try to tack on additional columns, each αvk in the above proof are no longer

necessarily unique, revoking our guarantee that the reduced matrix H′ is nonsingular.

The other major problem is that erasures must occur on the symbol level, while in

most practical communication scenarios, they are expected to occur on the bit level.

Selecting m = 1 forces n to be 1, which is not a very interesting scenario.

We can salvage the protocol by letting m be whatever it must to allow the desired

word-size n, and treating a single-bit erasure as an erasure of the entire m-bit symbol.

This means rate suffers significantly: Alice must assume each erasure can occur in a

different m-bit block, so she must prepare her redundancy s with c = mt bits, where

theoretically only t bits are necessary.

Furthermore, a great deal of information (the rest of a partially erased symbol) is
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Protocol 2: Nonbinary Protocol

Setup Alice has a string x, consisting of n m-bit symbols. Bob has a string y,
which is identical to x except that t symbols have been erased.

Parameters (agreed upon before communication)

α - a generator of Fq, where q = 2m.

Steps

1. Both Alice and Bob calculate the (t× n) matrix H such that Hij = α(i−1)j

2. Alice calculates the redundancy s = Hx.

3. Alice transmits s to Bob.

4. Bob calculates the string y′ as y with each erasure replaced with a zero.

5. Bob calculates z = Hy′ − s.
6. Bob calculates the reduced matrix H′ by removing each column of H where
y did not have an erasure.

7. Bob solves the equation H′e′ = z for e, using linear algebraic techniques.

8. Bob calculates the error vector e by padding e′ with zeros wherever y did
not have an erasure.

9. Bob calculates Alice’s string x = y − e.
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ignored. Perhaps a more sophisticated protocol can make use of this extra information

and recover some of the loss, but it is necessarily more complicated than we are willing

to explore.

3.3.4 Failed Alternative: Binary BCH Codes

You may note that the unique properties of the RS parity-check matrix apply just

as well to those of any BCH code. Can we, therefore, get away with using a binary

BCH code, and avoid the drawbacks we saw in Section 3.3.3?

The answer is no. First of all, the constraint given by Equation 29 still exists for

binary BCH codes: n must be of the form 2m − 1 so that the polynomial arithmetic

works out. This alone is not a problem: we need not work in m-bit blocks, and we

can always undercut word-size by ignoring columns of H, so we may always increase

m without expense.

The problem is that the t elements of the syndrome of an n-vector will usually

contain α, which again doesn’t really exist for a generic BCH code. Alice will have

trouble transmitting the syndrome.

Although it isn’t easy, it turns out that every BCH syndrome actually can be

reduced to a single power of α, or 0 if the argument is a codeword, so our protocol

could have Alice transmit the power (or a zero). There are therefore n + 1 possible

symbols for each element of the syndrome, which require log2n+ 1 = m bits to

represent. Thus, the total number of bits Alice must send is still c = mt. The

expense from having Alice reduce syndrome elements to a single power of α gains her

nothing in her transmission efficiency.
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3.4 RM Theory: a Nonlinear Solution

In this section, we use use theory from Reed-Müller (RS) codes to perform recon-

ciliation. Standard literature such as that in [6] cleverly uses the symbols r and m to

parameterize RM codes, but since m is already a reserved symbol, we shall instead

use ρ and µ. [22], in addition to [6], provides a helpful overview of RM coding.

3.4.1 Polynomials: a Different Perspective

In order to appreciate how our RM solution fits in to what we have done so far, let

us first reexamine what we have done so far from a slightly different perspective. As

usual, let x be Alice’s string, m be its symbol-size, and s be her redundancy. Let

alphabet size q = 2m, so that each symbol of x is an element of Fq. H is an agreed

upon matrix used to calculate s.

Consider the binary linear reconciliation scenario as follows: think of the bits of

x as coefficients c1, c2 . . . cn to a first-order (ie. linear) n-variate polynomial over F2:

P (χ) = c1χ1 + c2χ2 + . . .+ cnχn (30)

The argument χ is a point in Fn
2 . Think of each row of H as a coordinate, itself a

point in Fn
2 . Then s contains P (χ) evaluated at each of those points. If the distance

between each point in H is at least d ≥ t + 1, then Bob can solve the system for his

missing values of x.

Consider the RS reconciliation scenario differently: think of the symbols of x as

coefficients to a univariate polynomial over Fq, with degree n− 1:

P (χ) = c1 + c2χ+ c3χ
2 + . . .+ cnχ

n−1 (31)
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Due to the strict structure of H, each element sk of s is P (αk), where αk is a unique

point in Fq. Since the argument to the polynomial is just one symbol, and each of

the arguments for sk are unique, Bob can solve the system (which is linear over ck)

for his missing values of x.

Now let us imagine a more complicated polynomial P (χ), which is neither linear

nor univariate. Let ρ be the degree of P (χ) and µ be the number of variables. For

the sake of sanity, let’s keep to F2, so that χ ∈ Fm
2 . This means any value raised to a

power k > 1 is χk = χ; the non-linearity comes only from terms with more than one

variable. Note that this means ρ > µ never adds any terms. As an example, here is

a polynomial with ρ = 2, µ = 2:

P (χ) = c1 + c2χ1 + c3χ2 + c4 χ1χ2 (32)

Following the same procedure, think of the bits of x as the coefficients to a ρ-

degree, µ-variate polynomial P (χ) over F2 such that:

n(ρ, µ) =
r∑

k=1

(
m

k

)
+ 1 (33)

Given an H whose rows are points in Fm
2 , Alice will calculate s to be P (χ) evaluated

at each of those points. The questions we must ask are these:

1. What distance must the points of H have to guarantee Bob can solve the system

for his missing values of x?

2. For what n and t does such a matrix H exist, and how can we construct it?

To answer these questions, we will turn to the theory of RM codes.
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3.4.2 RM Codes

Each codeword γ in a (ρ,µ) RM code is associated with a unique n-length string x,

whose bits, as in Section 3.4.1, should be thought of as the coefficients to a ρ-degree,

µ-variate polynomial P (χ) over F2. There are 2n unique x, so there are 2n unique

codewords. Each bit in γ is the solution to P (χ) at a different point in Fm
2 , so γ

has 2m bits. We order these solutions such that γi is P (χi−1) where χk is the binary

representation of k.

The redundancy s that Alice would like to send is therefore a selection of t bits

from the RM codeword γ associated with her string x. For his part, Bob lists all

the possible γ that could correspond to his y, assuming each X is 0 and then 1. He

then selects from this list using the bits Alice sends. The question is this: which bits

should those be?

Consider an example using the (1,3) RM code: from Eqaution 33, we see n = 4.

Let’s say x =0101, and y =0X01. The codeword γ associated with x is:

γ = 01011010

As far as Bob is aware, there are two codewords he must select from:

γ =

 00001111 if X= 0

01011010 if X= 1

Say Alice decides to send the first bit from γ. That doesn’t tell Bob anything: he

already knew the first bit of γ from his unerased bits in y. She needs to send an even-

numbered bit to be useful. But wait! What if the erasure were in a different spot?
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Say instead y =010X. Bob would need to select from the following two codewords:

γ =

 01010101 if X= 0

01011010 if X= 1

Now Alice needs to send any bit from the latter half of γ. Which bits Bob knows

depends on the erasure pattern. Alice needs to pick a bit that Bob could have no

information on, no matter where the erasure occurred. For this selection of parame-

ters, the last bit is the only such bit: the polynomial produced is essentially the same

as the one we could make from Section 3.2.1. Given γm = 0, Bob knows that his X is

a 1.

In general, each different (ρ, µ) will have a different set of t bits for which Bob

cannot have any information. Furthermore, not all t necessarily have such a selection

of bits. Thus, this protocol is useful only for specific parameters.

3.4.3 Failed Alternative: First Many Bits

It would make for an especially simple protocol if Alice could simply send the first c

bits of γ as s. We can ask for what values of c would such an s allow Bob to select

from an arbitrary set of (ρ,µ) RM codewords.

The minimum Hamming distance of the code is d = 2µ−ρ [6]: There can only be

at most 2µ − d bits which are identical between two arbitrarily selected codewords.

Therefore, if s is any c ≥ 2m − d + 1 bits of the correct γ, then Bob will be able to

use it to select from any two (or more) possible γ. But we also require c < n, since

if we are sending n bits they might as well just be x. We are left with the following

inequality:

2µ − 2µ−ρ + 1 ≤ c ≤
r∑

k=1

(
m

k

)
(34)
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Protocol 3: Nonbinary Protocol

Setup Alice has a string x, consisting of n m bits. Bob has a string y, which is
identical to x except that t bits have been erased.

Parameters (agreed upon before communication)

µ - designates a parameter of an RM code.

ρ - designates the other parameter of an RM code. Must be between 1 and µ.

Steps

1. Both Alice and Bob calculate which set of t bits of a codeword in a (ρ,µ) RM
code will be sufficient to select from a set of codewords whose associated
coefficient strings are separated by at most t bits.

2. Alice calculates the codeword γ associated with her coefficient string x.

3. Alice calculates the redundancy s as the t bits of γ decided upon in Step 1.

4. Alice transmits s to Bob.

5. Bob calculates the set of codewords corresponding to y, with each X replaced
with a 0 or a 1.

6. Bob identifies the codeword γ whose t bits decided upon in Step 1 match s.

7. Bob calculates Alice’s string x as the coefficient string associated with γ.
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This is obviously4 never true: the n-length coefficient vectors x have a one-to-one

mapping with codewords γ. We can not possibly select from any possible set of γ with

fewer than n bits. Just as Bob could not simply solve for x in Section 2.2 without

first accounting for his constraints from y, so too can he not simply solve for x here.

4...in retrospect...
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3.5 Random Matrices: a Probabilistic Solution

In this section, we follow the same linear binary reconciliation protocol followed in

Section 3.2.2, but we relax the condition that H must produce a nonsingular system

for every erasure pattern. That is, the protocol described in this section won’t work

at a failure rate ε.

Note that almost any (t× n) matrix con correct some t = 3 erasure patterns and

not others. The Hamming code parity-check matrix from Section 3.2.3, for instance,

has fails for 7 out of 35 possible erasure patterns and thus has ε = .2. This is a far

better ε than comparable matrices we will use in this section. However, it is deeply

unsatisfactory because those 7 erasure patterns for which Hamming’s matrix fails can

never be corrected.

The premise of the protocol is to construct the matrix H randomly, and then use

it exactly as prescribed in Section 3.2.2. In order for Bob to solve a system with the

same H Alice used to calculate s, they will clearly need to have a source of shared

randomness. This will take the form of a pseudorandom generator seeded with the

same value. The nature of this pseudorandom generator is discussed in more detail

in Section 3.5.3.

Since effective rate (Equation 11) is already suffering from non-zero ε, we shall

also consider how increasing the rows of H, and therefore the redundancy length c,

beyond the theoretically minimum value t affects the effective rate. Increasing c will

of course cause communication complexity to suffer, but it will also decrease ε and

may yield a better effective rate. We are particularly interested in the effective excess

communication complexity ∆:

0 ≤ ∆ = c(1− ε)−1 − t (35)
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We would like to find the optimal parameter c for any given (n, t), such that ∆ is

closest to its theoretical minimum of 0. Section 3.5.1 discusses numerical methods

we have used to explore this question, while Section 3.5.2 relates analytically-derived

proofs.

3.5.1 Numerical Simulation

To study how effective excess communication complexity ∆ depends on n, t, and c,

we conducted a numerical simulation with the following procedure:

1. Experiment on n, t, and c:

(a) Generate (c× n) matrix H from random source R

(b) Randomly select t columns of H to form H′

(c) If rk(H′) < t, count as a failure

2. Calculate ε for (n, t, c):

(a) Perform experiment in Step 1 N times

(b) Count failures as z

(c) Calculate ε = z/N

All results reported used trial number N = 1000. We will explore each of the following

curves analytically in Section 3.5.2. For now, note only that, theoretically, n should

not have any impact on ε. If each row of H is truly random, any submatrix H′ is just

as random: the properties of the smaller matrix should have nothing to do with the

larger one. In practice, this may or may not be true, depending on how random R

truly is.
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Protocol 4: Probabilistic Protocol

Setup Alice has a string x, consisting of n bits. Bob has a string y, which is
identical to x except that t bits have been erased.

Parameters (agreed upon before communication)
c - communication complexity. Must be greater than or equal to t.

R - shared random source which produces elements of Fn
2 pseudorandomly.

Steps

1. Both Alice and Bob construct a (c × n) matrix H, by stacking c n-bit
sequences drawn from R.

2. Alice calculates the redundancy s = Hx.

3. Alice transmits s to Bob.

4. Bob calculates the string y′ as y with each erasure replaced with a zero.

5. Bob calculates z = Hy′ − s.

6. Bob calculates the reduced matrix H′ by removing each column of H where
y did not have an erasure.

7. Bob solves the equation H′e′ = z for e, using linear algebraic techniques. If
H′ is nonsingular, the protocol fails.

8. Bob calculates the error vector e by padding e′ with zeros wherever y did
not have an erasure.

9. Bob calculates Alice’s string x = y − e.
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Figure 1 studies how failure-rate ε varies with t when we choose c = t. That is, if

Alice sends as few bits as theoretically possible with this protocol, what is the worst

failure-rate we can expect for any given t? Results are shown for n ∈ {5, 15, 127}.

The analytical curve will be derived in Section 3.5.2. Notice that for every n, the

failure-rate starts close to ε = 0.5, but grows rapidly. Although there is high variance,

it then seems to plateau somewhere close to ε = 0.7.

Figure 2 studies how failure-rate ε varies as we permit Alice to transmit extra

bits. The horizontal axis represents δ = c − t, the number of extra bits Alice is

sending. Results are shown for n = 127 and t ∈ {10, 55, 127}. The analytical curve

will be derived in Section 3.5.2. Although the failure-rate starts high (close to ε = 0.7

as observed in Figure 1), it quickly decays to nearly 0. In fact, for N = 1000, we

found consistently that by δ > 15, no experiments reported any failures, suggesting

ε < .001.

Figure 3 studies how effective excess communication complexity ∆ varies as we

permit Alice to transmit extra bits. The plot is essentially the same as in Figure 2,

but the vertical axis is transformed by ∆ = c(1− ε)−1− t. Note that while ε seems to

depend only on δ, the curve for ∆ changes with t. The minima of the curves select

the c for a set of parameters (n,t) for which effective rate is a minimum.

Figure 4 plots these minima explicitly, for n ∈ {5, 15, 127}. Again note that the

overall curve does not appear to depend on n. The results are highly heteroscedastic

(higher variance at larger t), but are consistent with the theoretical result. Inter-

estingly, the data appear to loosely fit the curve 1 + log t. Even in Section 3.5.2,

there is no easily apparent reason for this to be true, but it provides a very helpful

approximation.

Finally, Figure 5 plots these same minima over word-size n, where x and y are

related by different erasure channels, producing t = f(n) erasures, where f(n) is some
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function of n. The functions shown in this figure are for f(n) = {d n
10
e, dn

4
e, dlog2 ne}.

Note that for f(n) = log2 n, Figure 4 (plotting ∆ over t) is exactly equivalent to

Figure 5 (plotting ∆ over n) had we chosen to plot the horizontal axis on a log scale.



3 RESULTS 46

Figure 1: Failure-rate when c = t
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Figure 2: Failure-rate as extra bits are added: n = 127

Figure 3: Effective excess communication complexity: n = 127
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Figure 4: Lowest achievable effective excess communication complexity

Figure 5: Lowest achievable effective excess communication complexity (word-size)
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3.5.2 Theoretical Analysis

In this section, we calculate theoretical expressions to describe the data collected in

Section 3.5.1. The introduction of [23] provides an excellent primer in the properties of

random binary matrices. Although we were able to produce all results independently,

we would have been lost without its guidance.

As noted at the start of Section 3.5.1, the theoretical treatment is entirely inde-

pendent of n. We are interested in four quantities:

1. ε(t, δ) - the probability that a matrix with t columns and c = t + δ rows does

not have full rank

2. ∆(t, δ) - the effective excess communication complexity resulting from the pa-

rameters t and c = t+ δ

3. δmin (t) - the choice of δ which minimizes ∆(t, δ) for a given t

4. ∆min (t) - the lowest achievable effective excess communication complexity for

a given t

The first quantity ε is given by:

ε(t, δ) = 1−
t−1∏
k=0

[
1− 2−(t+δ)+k

]
(36)

Given ε, ∆ comes easily:

∆(t, δ) =
δ + tε

1− ε
(37)

However, it is not obvious how find δmin . Ideally, we would like to have a closed form

expression for ε, so that we can take5 ∂
∂δ

∆ = 0 and optimize δ. Before we explore

that, however, let us first explain where Equation 36 even comes from.

5...the most confusing differential I have ever seen. Who picked these symbols?!
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Setup In order for a (c× t) matrix to have full rank, no column can be represented

as a linear combination of the other columns. This is equivalent to saying that no

column may be in the span of the remaining columns. Let’s say you have k < c

linearly independent columns already: what are the chances that a random c-vector

is not in their span?

The span of k < c independent columns is 2k. There are 2c possible c-vectors. If

the matrix is truly and uniformly random, then the chance of selecting a redundant

column is 2−(c−k). The chance that you don’t do this is 1− 2−(c−k). The chance that

you don’t do this t times in a row is:

P (t, c) =
t−1∏
k=0

[
1− 2−(c−k)

]
(38)

Substituting δ = c− t and taking the negation produces ε(t, c).

First Order Approximation The probability P (t, c) can take on a closed form

if we are willing to approximate. Imagine the product in Equation 38 expanded out

into each of its terms. On the far left is the product of all the ones, which is of

course 1. This is the “zeroth-order” approximation, since it has no factors of the

form 2−(c−k). The first-order approximation takes into account for the next group of

terms, comprised of the 2−(c−k) term in each individual binomial multiplied by only

ones.

P (t, c) ≈ 1−
t−1∑
k=0

2−(c−k) (39)

Let us consider how good an approximation this is by determining the largest

possible contribution from a second order term of the form 2−(c−k1)2−(c−k2). This is

when c = t and k is as close to t as it can be, for both factors of the form 2−(c−k).
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Thus, this second order term amounts to:

2−[t−(t−1)]−[t−(t−2)] =
1

8
= .125 (40)

This is not negligible for a probability: the approximation is not good for very small

δ = c− t. However, as δ increases, the magnitude of this largest term falls drastically.

And while there are a lot of second-order terms that could add up, each one is at least

a magnitude smaller than this one. In short, after about δ > 3, we’ll hardly notice

the difference. Needless to say, the same goes for all higher-order terms as well.

After a bit of algebra, and substituting c for δ, the first-order approximation in

Equation 41 simplifies to the closed form expression:

P (t, δ) ≈ 1− 2−δ(1− 2−t) (41)

Since P is just the negation of ε, we can see the first-order approximation of ε is:

ε(t, δ) ≈ 2−δ(1− 2−t) (42)

Abbreviating 1 − 2−t as z, we can produce the first-order approximation of ∆ from

Equation 37:

∆(t, δ) ≈ δ + 2−δtz

1− 2−δz
(43)

Transcendental Equation Setting ∂
∂δ

∆ = 0 produces the following equation:

2−δmin z(1 + t ln 2 + δmin ) = 1 (44)
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This equation, though it has a solution, cannot be solved analytically to the best of our

knowledge. We can still supplement our empirical results with theory by solving for

δmin numerically. The lowest achievable effective excess communication complexity

∆min is then given by:

∆min(t) = ∆(t, δmin ) (45)

Square Matrices The first-order approximation is not a good one when δ is very

small. Consider the case δ = 0, a square matrix. Our empirical results from Figure 1

indicate that the resulting expression for εn = ε(n, 0) converges to a value close to .7.

In this section, we prove it.

Consider an alternate form of ε: g(n) = ln (1− εn), which is more conducive to

clever manipulation.6

g(n) = ln (1− εn)

=
n−1∑
k=0

ln
[
1− 2−(n−k)

]
Note the product has become a sum.

=
n∑
k=1

ln (1− 2−k) Note the more manageable indices.

= −
n∑
k=1

∞∑
l=1

2−lk

l
Maclaurin expansion of ln (1− x)

= −
∞∑
l=1

n∑
k=1

1

l
(2−l)k Now in the form ark

= −
∞∑
l=1

(
2−l

l

)
1− 2−nl

1− 2−l
Geometric progression

The remaining sum is a relic from our Maclaurin expansion. Our x was not terribly

close to 0, so we will need to take several terms to have a decent approximation.

6Please note that the calculus gets heavy here and I can’t afford to explain everything in full
detail. See [2] for an excellent overview of most important math.
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Since we are interested in seeing what value ε converges to, we should take the limit

as n→∞:

lim
n→∞

g(n) = −
∞∑
l=1

(
2−l

l

)
1

1− 2−l

= −
∞∑
l=1

[
l(2l − 1)

]−1
≈ −1.2420

(46)

This limit corresponds to a value of ε ≈ .7112, exactly as we expect.

3.5.3 Random Number Generation

The random source R that Alice and Bob agree on should be a pseudorandom gen-

erator, but this can take several forms. For the results presented in Figures 1-4, we

used the random number generator native to the numpy package in Python, which

is based on the Mersenne Twister algorithm. However, we will first explain its

simpler alternative, the Linear Feedback Shift Register (LFSR).

LFSR The Linear Feedback Shift Register is a linear pseudorandom bit generator,

which calculates each bit based on the parity of the previous n bits it has generated.

Which bits it takes is based on an n-length coefficient string x, similar to what we saw

in Section 3.4.1. The bit xi determines whether or not the bit generated i iterations

ago is used in the parity check. In essence, if z is an n-vector of the last n bits

generated, such that z1 was the last bit generated, then the next bit z0 is given by

the dot product z0 = x · z.

It can be shown [1] that if x is the coefficient vector of a primitive polynomial

P (χ) of degree n (see Equation 47), then 2n−1 bits are generated before the sequence

repeats.

P (χ) = χn − xnχn−1 − . . .− x1 (47)
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Primitive polynomials of varying degree can be found from a table such as that in

[24].

Our implementation of a linear feedback shift register produces a new n-vector in

Fn
2 by calculating z0 of the last n-vector, rotating that last n-vector by 1 space, and

replacing the last bit with z0. Each n-vector is very clearly related to the one before

it: it is a “random” source in a very loose sense of the word. However, it serves our

purposes.

NUMPY The Mersenne Twister algorithm is at its heart an LFSR generator with

several additional complicated steps that make the results appear more random. The

random source we utilize, from the numpy package, is based on this algorithm, but

actually hashes each number from the Mersenne Twister down to a single bit, rather

than using the number to represent n bits. This means that to generate a single

n-vector, we require n times as many numbers from the Mersenne Twister, but it also

means that the parameters used to construct the Mersenne Twister are independent

of the n we require, making it a much more flexible algorithm.

Failed Alternative: RC4 Another class of pseudorandom generators is one based

on a stream cipher, used in cryptographyq to encrypt messages in real time. The

encryption algorithm is easily adapted to produce a stream of bits, which we can take

n at a time. One such stream cipher is RC4 [25], which involves repeated bit-wise

XOR and permutation operations based on the bits themselves. We implemented a

random source utilizing this strategy as well, but preliminary results indicated that

it was several orders of magnitude slower than either of the others. Since there was

no reason to expect RC4 to perform significantly differently, we chose to omit this

source from the results presented below.
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Comparison The LFSR method is particularly suited to our problem of generating

a matrix H, because it will never produce a zero-vector, and it will only produce

duplicate vectors after it has run the course of its period, which for a suitable selection

of P (χ) is far greater than the number of vectors we need c. While not having

duplicate rows does nothing to guarantee our protocol will be successful, a duplicate

row will never contribute to a system of equations, making it that much less likely

the reduced matrix H′ has rank t. Thus, we can expect a random source based on

LFSR will perform slightly better than a source which is more truly random.

We test this expectation by studying how failure-rate ε varies with t when we

choose c = t, as we did before in Figure 1, but this time we perform the experiment

using R as LFSR and as NUMPY. The results are shown in Figure 6 (n = 15) and

Figure 7 (n = 127).

As expected, LFSR clearly performs slightly better. However, when n is large and

t is small, the differences between the two are negligible. We found that, when n is

large, our LFSR source is still preferable because it is somewhat faster. That said, it

requires knowing a primitive polynomial of degree n, which is not generally easy to

construct manually.

Note that when t is very large with respect to n, LFSR suddenly performs much

better, and when t = n, ε = 0. This apparently indicates that an (n×n) matrix with

rows generated by LFSR is necessarily non-singular. Exploring why this happens is

beyond the scope of this thesis. However, we suspect that there may be other un-

expected - and undesirable - side effects of using LFSR, such that a given seed may

intrinsically guarantee certain erasure patterns cannot be corrected. If the advanta-

geous behavior at high t is truly needed, it may be better to instead use a method

like the one proposed in [26], which algorithmically constructs a nonsingular square

matrix from any random bit generator R.
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Figure 6: Comparing Random Sources: n = 15

Figure 7: Comparing Random Sources: n = 127
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4 Conclusions

In this thesis, we have seen four protocols to perform erasure reconciliation. Each has

its advantages and limitations; we review them here:

The ideal protocol presented in Protocol 1 requires an MDS [n, t, n− t+ 1]2 linear

code. Such codes only exist for t ∈ {0, 1, n− 1, n}.

The nonbinary protocol presented in Protocol 2 requires that erasures occur in

m-bit blocks, and constrains n ≤ 2m − 1. It is also somewhat harder to implement,

since it requires arithmetic in finite fields higher than F2.

The nonlinear protocol presented in Protocol 3 requires that a pair of parameters

ρ and µ must be selected such that n ≤
∑r

k=1

(
m
k

)
+ 1. Though ρ and µ may be

as large as necessary, a set of t indices must be known such that, in a (ρ,µ) RM

codeword, knowing those t bits is sufficient to select from a set of codewords whose

associated coefficient strings are separated by at most t bits.

The probabilistic protocol presented in Protocol 4 has no parameter constraints,

but will have suboptimal communication complexity based on the additional param-

eter c, and of course it is probabilistic: it will fail at rate ε(n, t, c). It also requires

that Alice and Bob have a source of shared randomness.

Communication Complexity In all three deterministic protocols, communication

complexity is exactly c = t bits, which is the best we could hope for in erasure

reconciliation. In the probabilistic protocol (Protocol 4), the exact communication
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complexity is the parameter c, but increasing c will tend to lower failure-rate ε. The

optimal choice of c results in an effective communication complexity near t+log2 t+1.

Naturally, one should only resort to the probabilistic protocol when none of the other

protocols are usable for a given n and t.

Protocol 2 has a binary adaptation discussed in Section 3.3.3 which is adaptable

to any n and t, but in which communication complexity is mt, where m is the smallest

integer such that n ≤ 2m−1. This adaptation performs better than Protocol 4 when:

mt < t+ log2 t+ 1 (48)

To explore this further, suppose t = βn, where β may be consdered the probability

that any given bit is erased. Also let n be as large as possible for a given m, such

that m = log2 (n+ 1) ≈ log2 n. In terms of β and n, Equation 48 is equivalent to:

βn <
log2 n+ 1

log2 n− 1
(49)

The left-hand side is simply the expected number of erasures t. If t = 1, we should

simply use the parity-bit case from Protocol 1. If βn = t ≥ 2, Equation 49 reduces

further to:

n < 8 (50)

That is, the binary adaptation outperforms Protocol 4 when there is only one erasure

and we should simply use a parity bit, or when the word-size is very small.

Runtime Analysis In all three linear protocols, each step is quite simple to perform

in a computer except solving a linear algebraic system of equations with t unknown

variables. Actually, this can be done in O(t3), which is quite efficient. For “sparse
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erasure” scenarios where n� t, the limiting steps are actually performing the matrix

multiplications Hx and Hy, each of which are O(nt) (or O(nc) for the probabilistic

protocol). Between the three, one would expect Protocol 2 to take the longest, since

it requires arithmetic in higher-order finite fields.

Figure 8 compares Protocol 2 (labelled “RS” and marked with circles) to Pro-

tocol 4 (labelled “RN” and marked with squares). To fairly compare the protocols,

we use the binary adaptation of Protocol 2, and input the exact same strings x and

y for each protocol. The paramter c for Protocol 4 is selected to produce the theo-

retically minimal effective communication complexity. Each point is the time to run

the respective protocol, averaged over 10 trials. As expected, Protocol 4 consistently

outperforms Protocol 2, by several orders of magnitude.

The blue points (labelled “10%”) are when y contains t = d n
10
e erasures; the green

points (labelled “25%”) are when y contains t = dn
4
e erasures. When t ≈ n/10 (blue

points), the limiting steps should have an efficiency on the order of O(nt) = O(n2).

The close relation to the curve7 an2 illustrates this. As t increases, the curve steepens,

ultimately being approximately bounded by the curve an3. Note that the standard

curves an2 and an3 are for illustrative purposes only; they are not meant to match

the data precisely.

Protocol 3 requires generating and selecting from a list of possible RM codewords.

This also is not terribly inefficient, but the list length is O(2t), and so the protocol

does not scale as well for many erasures.

7a is simply a small constant, roughly 2−19, translating the standard curve down on the log plot.
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Figure 8: Average time to implement protocols
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Further Work Consider the binary adaptation of Protocol 2 considered above.

What if we allowed it to be probabilistic? The low-ish odds that t erasures all occur

in different m-bit blocks may be enough to make the protocol more worthwhile. If we

allow redundancy size c to vary, how does effective excess communciation complexity

∆ compare to that of Protocol 4?

Much more theory can be explored with RM codes, to determine exactly for what

parameters n and t there exist t bits from γ that Bob has no information on, and on

which bits those are. A cursory examination suggests that for ρ = 1, selecting γi where

i = 2µ, then 2µ−1, then 2µ−2 and so on is promising, allowing for an optimal protocol

whenever t ≤ µ. However, this is inconsistent with our findings from Section 3.2: the

ρ = 1 case is equivalent to a linear system, for which there were no solutions but

t ∈ {0, 1, n− 1, n}.

Finally, the transcendental equation for δmin in Section 3.5.2 is deeply unsatisfying.

Is there a way to analytically approximate a value for δmin ? Perhaps we could even

simply find a lower bound? With it, we could have a closed form approximaate

expression for ∆(t) and perhaps see why it looks so similar, and potentially even

bounds 1 + log2 t.
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Appendix

The computer code used in this project can be found on GitHub:

https://github.com/ksherb1/information-reconciliation-Towson-thesis
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