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In a recent paper the reflection and transmission matrices for a dielectric interface

based on Fresnel formulas are derived [Garcia RDM. Fresnel boundary and interface

conditions for polarized radiative transfer in a multilayer medium. J Quant Spectrosc

Radiat Transfer 2012;113:306–17]. Although the final formulas appear to be correct, we

found that there are some significant conceptual and logical flaws in the derivation.

Here we explain that the misunderstanding is due to the different physical significances

of the Stokes parameters for the coherent and diffuse radiation field and that the so-

called transmission factor directly originates from the physical definition of the Stokes

parameters. We also clarify a few incorrect interpretations in the aforementioned paper

about previously published works.

& 2012 Elsevier Ltd. All rights reserved.
1. Background

Garcia [1] derived the reflection and transmission
matrices for a dielectric interface using the Fresnel for-
mulas and energy conservation. In Ref. [1] the Stokes
(radiance) vector is defined as
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where El and Er are the complex amplitudes of the electric
field along the two vectors which are parallel and per-
pendicular to a reference plane; and n denotes the com-
plex conjugate. The transmission matrix is then defined
by (Eq. (11) in Ref. [1])

IT
¼ TabII , ð2Þ
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. Zhai).
where II and IT are the incident and transmitted radiance
vectors, respectively; Tab is the transmission matrix for
the radiance vector from medium a to b. The transmission
matrix is then given by (Eq. (12) in Ref. [1])
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where Tl and Tr are the amplitude transmission coeffi-
cients given by the Fresnel formulas; the superscript n

denotes complex conjugate; R and I denote the real and
imaginary parts of the enclosed complex number. The
factor fT is derived from energy conservation relations (Eq.
(16) in Ref. [1]):

II
xdOadA cos ya ¼ IR

x dOadA cos yaþ f T IT
x dOb dA cos yb, ð4Þ

for both x¼ l and x¼r, where the superscripts R and T

indicate ‘‘reflected’’ and ‘‘transmitted’’, respectively; IR
x ¼ Rx

Rn

x II
x and IT
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x. Finally the factor fT is (Eq.(21) in Ref. [1])
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where ya and yb are the incident and transmission angles,
respectively; nba ¼ nb=na, na and nb are the indices of refrac-
tion for media a and b.

In Ref. [1] it is emphasized that the transmission factor
of Eq. (5) should be used with the strict form of the Stokes
(radiance) vector as shown in Eq. (1). If the definition of
the Stokes vector depends on the medium properties, the
transmission factor fT should be changed accordingly. One
specific comment is made on the work by Tsang et al.
[2,3], in which they have an extra factor of 1=Z for the
Stokes (radiance) vector:

I0 ¼

I0

Q 0

U0

V 0

0
BBB@

1
CCCA¼

1

Z

ElE
n

l þErE
n

r

ElE
n

l �ErE
n

r

ElE
n

r þErE
n

l

iðElE
n

r�ErE
n

l Þ

0
BBBB@

1
CCCCA, ð6Þ

where Z¼ ðmm=EÞ
1=2; mm is the magnetic permeability and

E is the electric permittivity of the medium. In this
situation, Ref. [1] claims that the transmission matrix will
have a different multiplicative factor of n2=n1, a conse-
quence from Eq. (4).

2. The physical interpretation of Stokes parameters for a
coherent plane wave

It is important to recall the physical meaning of
radiance (the first element of the Stokes vector) at this
point, which is the monochromatic electromagnetic
power flow through a unit area element perpendicular
to its propagation direction per unit steradian of a solid
angle. Therefore radiance should be proportional to the
flow of electromagnetic energy, which is in turn propor-
tional to ðE=mmÞ

1=2 [4]. This directly contradicts Garcia’s
strict definition of Stokes vector of Eq. (1), which does not
include the factor of ðE=mmÞ

1=2. Note that the usual inter-
pretation of Eq. (1) is that ðE=mmÞ

1=2 is omitted because
normally only relative intensity is measured [5]. Besides,
if we simply take the exact definition form of Stokes
vector shown in Eq. (1), the transmission matrix for
Stokes (radiance) vector will be obtained immediately
from the Fresnel formulas, for example the transmitted
radiance IT

l ¼ TlT
n

l II
l would lead to Tab,l ¼ TlT

n

l , in which Tab,l

is the transmission matrix for the parallel component of
radiance. This makes his derivations and arguments not
self-consistent and leaves no room for the transmission
factor fT to be introduced.

In order to resolve this apparent contradiction, it is
necessary to reiterate that Eq. (6) is the correct physical
definition of the Stokes vector and Eq. (4) is not applicable
for incident plane waves. The reason is that the coherent
and diffuse Stokes vectors have different physical mean-
ings. Mishchenko has recently developed the phenomen-
ological radiative transfer equation from Maxwell’s
equations [6] in which it has been made clear that the
coherent Stokes vector defined by Eq. (6) for a plane wave
has the dimensions of monochromatic electromagnetic
power per unit area of a small surface element perpendi-
cular to the incidence direction, while the Stokes vector
for diffuse light in the radiative transfer equation has the
dimensions of radiance, which is the monochromatic
electromagnetic power per unit area per unit steradian
of a small solid angle. Therefore, energy conservation
across the Fresnel interface should be written as
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where x denotes the parallel or perpendicular component.
The use of Fresnel formulas leads to

1¼ RxRn

xþ
nb

na

cos yb

cos ya
TxTn

x , ð8Þ

where nb=na ¼ ðEb=EaÞ
1=2 is used.

The physical interpretation of Eq. (8) is that the reflectivity
and transmissivity are RxRn

x and ðnb cos ybÞ=ðna cos yaÞ

TxTn

x ¼ 1�RxRn

x , respectively, for a Fresnel surface. In other
words, if the incident plane wave has the first Stokes
parameter of Ix, the incident irradiance is then Ix cos ya. The
reflected and transmitted irradiances are IR

x cos ya ¼

RxRn

x Ix cos ya and IT
x cos yb ¼ ðnb cos ybÞ=ðna cos yaÞTxTn

xIx

cos ya, respectively. It is observed that the factor of
ðnb cos ybÞ=ðna cos yaÞ is the direct consequence of the factor
1=Z in Eq. (6). One can further check that Eq. (8) holds for any
angle of incidence, another hint that Eq. (6) is the true correct
definition of the Stokes parameters. By definition,
IT
x ¼ nb=naTxTn

xIx, which means that nb=naTxTn

x has to be
the transformation factor to relate the incident and trans-
mitted Stokes parameters. However, the factor of
ðnb cos ybÞ=ðna cos yaÞTxTn

x is kept in the following, keeping
in mind that this is the transmissivity which relates the
incident and transmitted irradiance. The reason is that the
transmissivity is more convenient in the use of boundary
conditions for radiative transfer in coupled atmosphere and
ocean systems.

Similar to the scalar case of Eq. (8), the transmissivity
matrix for the Stokes vector for a plane wave should
include ðnb cos ybÞ=ðna cos yaÞ as well
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which has been shown previously in different notations in
[3,7,8], though Ref. [7] names it as ‘‘transmission matrix’’
which is not appropriate strictly speaking.

3. The n2 law for radiance

Eq. (9) shows the transmissivity matrix for the coherent
Stokes vector for a plane wave. In practical application a
more important problem is to find the transmission matrix
for the diffuse Stokes vector. It differs from the coherent
Stokes vector because the diffuse Stokes vector is a contin-
uous function of the viewing angle and has the dimensions of
radiance. Assuming a beam of light with solid angle of dOa is
incident at a dielectric interface, then the beam of light is
reflected by and transmitted through the interface. Eq. (9)
provides the relationship between the electromagnetic power
of transmission FT and incidence FI . Energy conservation is
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now in the form of

FT ¼ tabFI , ð10aÞ

FT ¼ IT
d dOb dA cos yb, ð10bÞ

FI ¼ II
d dOa dA cos ya, ð10cÞ

where the symbols are the same as Eq. (4) except that a
subscript d is used to denote the diffuse light. Note that
dOa ¼ sin ya dya df, dOb ¼ sin yb dyb df, where f is the
azimuth angle of the beam of light, one can find that

IT
d ¼

n2
b

n2
a

tabII
d, ð11Þ

where na sin ya ¼ nb sin yb and na cos yadya ¼ nb cos ybdyb

have been used. Eq. (11) is the vector form of the n2 law, a
familiar phenomenon in ocean optics [9,10]. It is also well
known that Id=n2 is a fundamental invariant of radiation
transfer. It is worthy to emphasize that the factor of n2

b=n2
a in

combination with ðnb cos ybÞ=ðna cos yaÞ yields the identical
factor of fT as derived in Ref. [1]. However, the correct
apparent form of the factor fT is obtained based on improper
physics and assumptions, which leads to the incorrect con-
clusion that Tab should be dependent on the exact form of
Eq. (1), which is unphysical since electromagnetic energy
flow always depends on ðE=mmÞ

1=2.

4. Discussion

Nevertheless, Eqs. (3) and (5) form the correct trans-
mission matrix for diffuse light, although the Stokes
vector should be defined by Eq. (6). A comparison is then
made in Ref. [1] between Eq. (3) and Eq. (48) in Zhai et al.
[7] and claimed that ‘‘we have found that the transmis-
sion matrix used by Zhai et al. [40] needs to be multiplied
by an ðnt=niÞ

2 factor to agree with our result. In the
notation of these authors, ni denotes the refractive index
of the medium of incidence and nt that of the medium to
where radiation is transmitted y’’ (see page 311, the
paragraph below Eq. (25b) in Ref. [1]). Indeed, the
transmission matrix Tab defined in Ref. [1] has a different
physical explanation from the matrix t in Ref. [7]. The
matrix t defined by Eq. (48) in Ref. [7] is equivalent to
Eq. (9) in this paper, which is part of the bidirectional
transmission matrix for a rough dielectric surface and the
factor of ðnt=niÞ

2 is already considered outside of t (see
Eq. (34) of Ref. [7]). To make the comparison clearer, we
refer readers to Ref. [11] in which the same topic of the
radiance vector boundary conditions for a flat interface is
considered. Note that in the boundary conditions (Eqs.
(8c) and (8e), Ref. [11]) for diffuse radiance vector across a
flat dielectric surface the matrix t is always accompanied
by a factor of n2

w or 1=n2
w, depending on whether the

incident light is on the air or water side, where nw is the
refractive index of water. This factor of n2

w or 1=n2
w is

exactly the factor of ðnt=niÞ
2 difference mentioned in Ref.

[1] and the discrepancy pointed out in Ref. [1] is merely
an equation rearrangement. We also found that Ref. [15]
also used a similar logical separation of ðnb=naÞ

2 from
ðnb cos ybÞ=ðna cos yaÞ. Based on the same reason, Garcia’s
misinterpretation of Ref. [15] in terms of the transmission
factor ft is also incorrect.

It is also stated in Ref. [1] that Refs. [12,13] did not
mention the factor of fT to ensure energy conservation.
Note that Kattawar and Adams [12] use the Monte Carlo
method to simulate radiation propagation in the medium.
When a radiation packet, often termed ‘‘photon’’ in the
Monte Carlo method for convenience, encounters the
atmosphere–ocean interface, a random number is gener-
ated to be compared with the reflectivity, which is the
ð1;1Þ element of reflection matrix r11 ¼ 0:5ðRlR

n

l þRrR
n

r Þ. If
the random number is smaller than r11, the radiation
packet is reflected. Otherwise, the radiation packet is
transmitted. Then the normalized or reduced Mueller
matrix (Mueller matrix divided by the ð1;1Þ element) is
applied to the Stokes parameters to include the polariza-
tion. This way energy conservation is automatically
ensured because the transmissivity t11 ¼ 1�r11 as sug-
gested in Eq. (8). The n2 law is also considered when the
radiation packet goes directly from the interface to the
detector. The readers are referred to the paragraph just
below Fig. 11 in Page 1465 of Kattawar and Adams [12]
for original descriptions. A more recent work [14] also
uses the reduced form of the transmission matrix and
employs t11 ¼ 1�r11 to ensure energy conservation. The
n2 law is also taken into account. The procedure is
emphasized in the paragraph which encloses Eq. (13) of
Ref. [14] and the paragraph next to it. Ref. [13] employs
the same technique to deal with the atmosphere–ocean
interface, though it is not stressed. It is very important to
emphasize that the Monte Carlo computer code in Ref.
[13] is well validated and all the published the numerical
results are correct.

5. Conclusion

In this note we show that a recent derivation of the
transmission matrix for the Stokes vector across a dielectric
interface in Ref. [1] is physically incorrect which has led to an
imprecise claim that Eq. (1) has to be assumed for Eq. (3) to
be valid. We reiterate that Eq. (6) is the only correct definition
of the Stokes vector and the subtle difference between the
coherent and diffuse Stokes parameters has to be recognized
to obtain the transmission matrix correctly. The coherent
Stokes vector is defined in terms of a transverse plane wave,
which is the electromagnetic power per unit area perpendi-
cular to the propagation direction. The diffuse Stokes vector is
interpreted as the electromagnetic power per unit area
perpendicular to the propagation direction per unit solid
angle around it. One does not need to use energy conserva-
tion to ‘‘find’’ the transmission factor. On the contrary, energy
conservation is automatically satisfied using the correct
definition of the Stokes vector. The n2 law is then a
consequence of the projected area and solid angle change
across the dielectric interface for diffuse light. We also clarify
that the use of the transmission matrix in our Monte Carlo
and successive order of scattering codes for the atmosphere
and ocean system, energy conservation, and the n2 law are in
full compliance. The numerical results published in Refs.
[7,11,13] are physically correct and numerically accurate to
the limit of the methodologies.
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