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ABSTRACT 

We present a new concept for efficient second harmonic generation that is based upon the interference of counter-
propagating waves in multilayer structures. We show that phase matching and quasi phase matching are not always 
necessary conditions to provide optimized nonlinear frequency conversion efficiency  

Keywords: Non-Linear frequency conversion, multilayer stacks.

1. INTRODUCTION 

Phase-Matching (PM) or quasi phase-matching condition are usually required as specific starting point in any 
method for generating an efficient second harmonic (SH) [1]. Further studies showed that it is possible to achieve PM in 
infinite [2] and finite [3] multilayer stacks called One Dimensional Photonic Crystals (1D-PC). Recent experiments on 
these structures (i.e. PM AlGaAs/AlOx multilayers) confirmed that the conversion efficiency scales as L6 where L is the 
length of the 1D-PC [4]. Dumeige et al. predict that a 55 period, L= m, AlGaAs/AlOx structure will have a 10% 
conversion efficiency for a fundamental peak power of 1KW. The spectral bandwidth of the enhancement is 0.25 nm and 
comparable with pulse durations of 15 ps or longer. Cascading several 1D-PC in series can be used to expand 
bandwidths [5]. 

As shown in our earlier publication [3], PM conditions can be fulfilled in 1D-PC whose alternating layers are of 
optical thickness /2 and /4 with the nonlinearity in the high refractive index, half-wave layers. Optimum PM can be 
achieved both with a proper choice of the layer thickness and well juxtaposing the fundamental (FF) and second 
harmonic (SH) frequency in the linear spectrum. FF is tuned to the first transmission resonance near the lowest energy 
stop band and the SH field at the second transmission resonance next to the second order stop band (see Fig. 1 solid line 
arrows). The PM conditions for a 1D-PC force the SH to be at the 2nd transmission resonance where the mode density is 
not at its highest value in fact photon density of modes and the field enhancements are largest near the stop bands. 
Detuning from the PM condition degrades the conversion efficiency as predicted in reference [3]. Nevertheless, the aim 
of this work is to show that, under appropriate conditions, nonphase-matched 1D-PC designs can yield a further order of 
magnitude improvement in the conversion efficiency with respect to PM state of art designs. The enhancement in 
nonphase-matched SH generation is due to a combination of high photon mode density and a contribution to fast varying 
interference terms which average to near zero if the thickness of the nonlinear layer is half-wave or greater. This is 
unique to a finite size 1D-PC since neither bulk material nor the smallest cavity, ie. /2, will display this type of 
contribution to nonlinear dynamics from the interference of counter-propagating waves. 
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2. EFFECTIVE NONLINEAR COEFFICIENT 

An analytic expression for the conversion efficiency for a generic layered structure of finite length composed of 
non-absorbing media was derived by using a multiple scale approach [6]. Considering undepleted pump approximation 
the conversion efficiency in a finite structure of length L is proportional to the square modulus of an effective coupling 
coefficient, defined as: 

(2) 2 *
2

0

1 ( ) ( ) ( )
L

effd z z z dz
L

.          (1) 

Where (z) and (z) are the complex, linear field profiles normalized with respect to a unitary input field and the 
electric field inside the structure can be written as: 0( ) ( ) . .i i iE z E z c c , where (i=1,2), and 0

iE  is the 

amplitude of input field. Unlike the deff defined for studying nonlinear propagation in waveguides [7-8], the effd  in 
Eq.(1) is a complex quantity and it contains information regarding field distribution and localization, as well as 
contributions to the conversion efficiency coming from the PM conditions. 

In the specific case of an SH generation in a infinite periodic structure the expression of the coupling coefficient 
can be calculated using the Bloch theory, so that the complex, linear field profiles can be written: 

( )( ) ( ) ik j z
j jz f z e  where j=1,2,                              (2) 

here fj (z) is a periodic function whose period is the thickness of the unit cell i.e.:
( ) ( )j jf z f z                                                           (3) 
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Figure 1: Transmission spectrum and density of states (thick line) vs wavelength at normal incidence for a 20 period mixed half-
wave/quarter-wave stack. FF and SH tuning are indicated by the arrows.
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and k =k (2 k is the Bloch wave-vector mismatch. The expression of the coupling coefficient becomes: 

eff . .
2( )u c

m
d I k m ; (m=0,1,2,…),                     (4) 

Iu.c. is the overlap integral calculated over the unit cell containing all the information about the geometry (layer thickness, 
refractive index contrast), amount and position of the nonlinear material inside the unit cell and fields’ overlap. We can 
think of Iu.c as a form factor and it can be described by the formula: 

(2) 2 *
. . 2
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u cI z f z f z e dz   (5) 

For a finite structures, fj (z) are no longer periodic over the unit cell because of the break of the transnational 
symmetry. Indeed, the truncation of the periodicity is responsible of the appearance of sharp resonant peaks in the 
transmission band as well as field localization effects. In this case the expression of the effd reads:
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Thus, we can deduce that every unit cell gives a different contribution to the overlap integral. The value of the overall 
sum remains inscrutable and it can be read as the superposition of N sources having different amplitudes and phases. 
Nevertheless, Eq.(6) suggests that standard theories of quasi-phase matching based on Bloch’s quasi-momentum 
conservation may fail in a wide range of cases. In fact, conversion efficiency can be further enhanced by at least one 
order of magnitude compared to a phase matched case. 

3. NUMERICAL RESULTS 

We choose a structure with mixed quarter-wave/half-wave geometry and 20 periods. The nonlinear material 
( /4 optical thickness) has a refractive index n2( FF )=1.428 at the FF frequency. For simplicity, the linear material ( /2
optical thickness) is assumed to be air, with n1=1, with a reference wavelength used to calculate the optical paths of the 
layers is 1 m, corresponding to an angular frequency 0 =1.88*1015 s-1. This simple geometrical arrangement allows us 
to rather easily tune the FF and SH fields to the two resonance peaks each located near two consecutives band gaps of 
the transmission spectrum (assuming normal incidence), where field localization effects are maximized. The linear 
spectrum at normal incidence is shown in Fig.(1) and the FF is tuned  at the first order band edge resonance ( FF=1.69 

m which corresponds to FF=0.592 o, as labeled by the arrow). After fixing the layer thickness, dispersion by varying 
the index of refraction at the SH frequency ( SH =1.184 o ) may be added to tune the field to any desired frequency near 
the band edge (an increase of the value of n2( SH) redshifts the band structure). Varying the refractive index in this 
fashion can be thought as an artifice but it allows us to find the optimized parameters as a function of one degree of 
freedom and to distinguish the competing roles played by phase matching and by local field enhancement during the 
conversion process.  

In Fig.(2) we depict the polar plot containing modulus and angular phase of the N addends of Eq. (6) when the 
high index material is given suitable dispersion in two different situations. For the first one n2( SH)=1.676 and so the SH 
is tuned to the first band edge resonance (see Fig (1) dashed arrow). The corresponding curve is in Fig. (2a) labeled by 
asterisks. In the same figure we compare these results to the ones (circles) obtained when effective phase matching 
conditions are achieved by choosing n2( SH)=1.616 (SH is tuned at the second resonance peak as explained in Ref.[3]). 
We note that in the latter case (circles) the amplitude of the N addends is smaller because the density of modes for the 
SH field is smaller, i.e., fields localization is weaker. Moreover, they appear to be more out of phase, and the overall 
sum is not maximized. In other words, the phases of the addends are spread over a wider angular range. Indeed, the 
square modulus of the sum is one order of magnitude smaller than the one calculated for the previous case. Therefore, 
according to our model, the expected conversion efficiency is one order of magnitude lower compared to the non-phase 
matched case. 

For completeness, we consider a structure where phase matching conditions dominate. We, only, invert the 
geometry taking the nonlinear layer to have optical thickness /2 and the linear layer /4. We performed the same 
calculation for this structure. In this way, we could compare the behavior of two similar structures made with the same 
materials and having the same number of periods. The results are shown in fig. (2b). Once again the asterisks represent 
the case in which the second harmonic field is tuned at the first resonance and the circles represent the phase matched 
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case. As expected for this structure fulfillment of PM conditions leads to optimum conversion efficiency although it is 
one order of magnitude lower than the one obtained with the previous structure in the non phase matched regime. Thus, 
by simply changing the filling ratio of the nonlinear layer inside the unit cell we switched from a regime in which PM 
conditions rule the nonlinear dynamics to a regime where fields’overlap dominate. 

In Fig.(3a) we plotted the value of the square modulus of (2)/effd  as a function of the refractive index n2( SH)
when the pump field remains tuned at the band edge resonance (thick solid line). As previously outlined in the effective
index theory (Ref.[3]), maximum conversion efficiency is expected to be achieved when the second harmonic field is 
tuned at the second resonance and the ratio 2(2)/effd  is described by the function  |sinc( keffL/2)|^2 [2] (see Fig. (3a) 

(thin line)). 
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Figure 2: Polar plots of the N addends of Eq(6) when phase matching conditions are achieved (circles) and when both FF and SH 
fields are tuned at the band edge resonance(asterisks). The non linear material layers optical thickness is: (a) 0/4; (b) 0/2.
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By the comparison of the two curves we note that there is only a relative maximum of 
2(2)/effd  when effective PM is 

fulfilled, instead an absolute maximum is achieved when the second harmonic field is tuned to the first band edge 
resonance (note that the amount of dispersion introduced, i.e., n2( SH)- n2( FF) =0.248, is not atypical of common 
materials). In this case, the effective mismatch is neff=0.06 and the conversion efficiency will be one order of 
magnitude greater compared to the case of exact, effective PM. Finally we show the tuning curve (

2(2)/effd vs. FF 

wavelength) for our optimized structure (Fig 3b). At FF=1.69 m, the enhancement factor is more than 3 orders of 
magnitude larger compared to the out-of-resonance case, with a usable bandwidth of approximately 4nm. 

4. ANALITICAL INTERPRETATION 

To provide a qualitative interpretation of this phenomenon we decompose the complex linear field profiles as a 
superposition of forward and backward waves in each layer: 

0 , 0 ,( )( ) ( )( ),
, ,( ) m j m m j mik n z z ik n z zj m

j m j mz A e B e ;    (7a) 

0 , 0 ,2 (2 )( ) 2 (2 )( ),
2 , ,( ) m j m m j mi k n z z i k n z zj m

j m j mz C e D e ;   (7b) 
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Figure.3: a) (thick solid line): Enhancement factor 
2(2)/effd vs. n2( SH); (thin solid line): Phase matching contribution given by 

the expression: |sinc( keffL/2)|^2 vs. n2( SH). (right y axis); (dashed line): SH transmission as a function of n2( SH). (left y axis). 
b)

2(2)/effd  vs. FF wavelength for the optimized 20 period structure, h=0.175 m and l=0.5 m. The parameters used are n1=1, 

n2( )=1.333 +0.28/ 2 – 0.025/ 4 with  expressed in m.
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where j=1:N, m=1,2 , A, B, C,and D, are constants that can be calculated by imposing boundary conditions at every 
interface.Substituting Eqs.(7) into the expression for the coupling coefficient, taking z)=0 everywhere except within 
the nonlinear layers, and performing the integral in each layer we obtain: 

2 2

2 2

2 2
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2 * 2 *

2 ,2 ,2 ,2 ,2
0

(2 ) (2 )* *
2 ,2 ,2 ,2 ,2

0

2 ( (2 ) / 2)2 *
2 2 ,2 ,2

 2 (2 )

 ( (2 ) / 2)

o o

o o

o

N
ik n dh ik n dh

eff 0 j j j j
j

N
ik n dh ik n dh

0 j j j j
j

i k n n dh
0 j j j

dhd sinc k n dh A C e B D e
L

sinc k n dh A B C e D e

sinc 2k n n dh A D e B 2 22 ( (2 ) / 2)2 *
,2 ,2

0

o

N
i k n n dh

j
j

C e

 (8) 

where 2 2 2(2 ) ( )n n n . We note that the relevance of the three terms on right hand side (RHS) of Eq.(8) 
depends on the nonlinear layer thickness dh because of the sinc functions. This is due to the fact that there is no local 
phase matching due to the natural material dispersion of the high index material. As a result, field overlap cannot be 
maximized over an arbitrary nonlinear layer of length dh. In particular, the first term is related to the material index 
mismatch while the second and third terms give an almost zero contributions if the optical thickness of the nonlinear 
layer is longer than approx /2 and /4 respectively. Those fast varying terms arise from interference of counter-
propagating waves inside the structure generated by multiple reflections at the interfaces, and are generally neglected in 
bulk or microcavity theories. Nevertheless, in the case we showed, terms in Eq. 8 can not generally be neglected. As a 
concrete example, an arrangement of 18.5 periods of Al0.86Ga0.14N (172nm)/GaN(78nm) tunes the FF at 1064nm and the 
SH at 532nm with an incidence angle for the FF at 39° as indicated in Fig. 4. 

Figure 4: Trasmission spectrum vs wavelenght for the  18,5 period Al0.86Ga0.14N (172nm)/GaN(78nm) structure at 39° incidence 
angle. Both the FF (1064 nm) and SH (532 nm) are tuned to the band edge resonances as labeled by arrows. 
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5. CONCLUSIONS 

In conclusion, it is possible to take full advantage of field localization effects in such a way to weaken the role 
played by effective PM conditions in the nonlinear dynamics. We showed that higher SH generation conversion 
efficiency is achieved when the fast varying terms in the nonlinear polarization related to the presence of counter-
propagating waves are not negligible, and by properly tailoring the size and distribution of the nonlinear layers in spite of 
fulfilling PM conditions.  
Two of us (M.C. and G.D.) wish to acknowledge the U.S. Army European Research Office for partial financial support.
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