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ABSTRACT 
 

Title of dissertation:        IMPROVING AIR QUALITY FORECASTS OF OZONE AND        

                                         PARTICULATE MATTER: MODELING-OBSERVATION  

                                         INTEGRATED STUDY 

 

                                         Zhifeng Yang, Ph.D., 2021 

 

Dissertation directed by: Dr. Belay Demoz 

Professor in the Department of Physics 

Director of the Joint Center for Earth Systems Technology 

 

This study investigates the dynamical influence of CB on the local O3 pollution through 

weather modeling. WRF-Chem was employed to simulate the O3 production and transportation 

near CB. One baseline experiment and one sensitivity experiment were carried out by changing 

the surface types over CB from water to land (loam). Due to the presence of CB, the O3 mixing 

ratio increased during both day and night, resulting from bay breeze circulation. In addition, the 

bay breeze transported O3 from CB to the western shore and increased the O3 mixing ratio over 

the downwind regions of onshore winds. The modeled surface O3 concentration mean increased 

by up to 10 % at night and 5 % during the day because of the bay dynamics effect. O3 was 

produced, mixed and diluted up to 1.2 km over the northern CB in the day, while that height 

dropped to 0.4 km at night. 



   
 

 

The integration of observations and models can improve air quality forecasts (in 

particular O3 and particulate matter (PM)) for wildfires. This work is on a Canadian fire event on 

6-12 June 2015 that impacted the air quality in the Mid-Atlantic region in the U.S. We use the 

WRF-Chem model and various measurements from both ground-based and spaceborne 

observations, including the U.S. Environmental Protection Agency (EPA) AirNow data, the 

National Aeronautics and Space Administration (NASA) operated TROPospheric OZone lidar 

(TROPOZ), wind radar, ceilometer, Moderate Resolution Imaging Spectroradiometer (MODIS), 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The model captured the O3 

diurnal variation and PM spatial distribution when comparing with EPA AirNow and 

MODIS/CALIOP observations, respectively. Wildfire smoke was transported from central 

Canada through Lake Michigan, passing the Ohio River Valley and down to the Baltimore-

Washington D.C. metropolis.  

This study uses the WRF-Chem/DART chemical transport forecasting/data assimilation 

system, to assimilate EPA AirNow surface and ground-based lidar vertical profile O3 

observations over the eastern U.S. to study the impact of smoke intrusion from a Canadian 

wildfire event in June 2015. The positive systematic bias of the operational surface O3 forecasts 

motivated this work. To verify results, we use ozonesonde vertical profile observations. 
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Chapter 1  

Introduction, motivation, and objectives 

1.1 Introduction 

The air quality is both influenced by local and long-range transported pollutants. In the 

Mid-Atlantic region, the main air pollutants are ozone (O3) and particulate matter (PM). The 

local pollutant source is the Chesapeake Bay (hereafter referred to as CB). The pollutants 

transported from outside are from the Ohio River Valley and Canadian wildfires. This study is to 

quantify the contribution of these two air pollutant sources to the local air pollution. 

1.2 Local O3 pollution 

Tropospheric (ground-level or surface) O3, has significant environmental and human 

health impacts. Long-term exposure to the high O3 concentration air leads to serious health 

issues, such as irritating lungs, aggravating bronchitis, emphysema, and asthma (Lippmann 1991; 

Mudway and Kelly 2000; Forouzanfar et al., 2016). In order to mitigate surface pollution in the 

U.S., the Clean Air Act requires the Environmental Protection Agency (EPA) to set the National 

Ambient Air Quality Standards (NAAQS, Martineau and Novello 1997). The current NAAQS, 

in effect since 2015, sets an ambient 8-hour O3 mixing ratio criterion of 70 parts per billion by 

volume (ppbv, NAAQS for O3, 2015; Cooper et al., 2015). In particular, the ground-level O3 

mixing ratio over some coastal regions exceeds NAAQS relatively more frequently than other 

inland regions. Examples of such regions include CB (Loughner et al., 2014; Sullivan et al., 
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2019), the Galveston Bay (Daum et al., 2004), the Great Lakes (Lyons and Cole 1976; Dye et al., 

1995; Lyons et al., 1995; Brook et al., 2013), the Great Salt Lake (Blaylock et al., 2017). All 

these locations are in close proximity to water bodies surrounded by land, and related research is 

ongoing to investigate the causes for the exceedance of O3 concentration (Sullivan et al., 2019; 

LMOS 2017 Study Team 2019). As a secondary pollutant, ground-level O3 depends on its 

precursors, chemical reactions, and meteorological conditions (PROG 1997; Jenkin and 

Clemitshaw 2000; Karle et al., 2020). Understanding them helps to track O3 pollution sources 

and sinks and is critical for improving the accuracy of O3 pollution forecasting. 

Field campaigns provide insights to physical and chemical processes in the atmosphere 

under a diverse set of meteorological conditions over the aforementioned locations. A number of 

campaigns have been conducted to investigate bay/lake effects on the local meteorology and air 

quality, e.g. Deriving Information on Surface Conditions from Column and Vertically Resolved 

Observations Relevant to Air Quality from 27 June to 31 July 2011 (DISCOVER-AQ), 

(Crawford and Pickering 2014), The Border Air Quality and Meteorology Study from 20 June to 

10 July 2007 (BAQS-Met, Brook et al., 2013), the Ozone Water-Land Environmental Transition 

Study from 5 July to 3 August 2017 (OWLETS) and from 6 June to 6 July 2018 (OWLETS2, 

Sullivan et al., 2019), Lake Michigan Ozone Study (LMOS, Lyons and Cole 1976; Dye et al., 

1995; LMOS 2017 Study Team 2019). Findings on the impacts of CB on O3 from both dynamics 

and chemistry perspectives and a link to the bay/lake water body have also been suggested by 

these field campaign studies (Lyons and Cole 1976; Dye et al., 1995; Loughner et al., 2011; 

Foley et al., 2011; Brook et al., 2013; Blaylock et al., 2017; LMOS 2017 Study Team 2019). 

One of the most important contributions in the previous studies is the role of dynamics 

originating from the local bay/lake and coastal circulations. The bay/lake dynamical effects 
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contributing to the local meteorology and air quality are: (1) the developing land/bay breeze and 

resulting diurnal dynamics that alters the near-shore meteorology through small scale 

circulations, e.g. the bay breeze yields high pressure over CB and low pressure inland nearby CB 

(Goldberg et al., 2014); (2) associated changes in cloud formation which in turn modifies the 

radiation environment thereby causing shielding for O3 photolysis (Loughner et al., 2011), e.g. 

the presence of clear skies over CB and later development of cumulus clouds due to higher 

surface temperature and elevated boundary layer (Goldberg et al., 2014); (3) changes of vertical 

mixing of gases, associated with changes in plume updraft velocity over land compared to water, 

that impact O3 concentration, e.g. the bay breeze developed during the late morning and early 

afternoon along the western shore of CB converged the pollutants (Loughner et al., 2014); and 

(4) modification of the inversion layer (strong inversion over land at night as opposed to over the 

bay/lake) and its impact on the dilution and venting of gases. 

Most of these previous studies utilize observations from field campaigns to analyze the 

effects of the bay/lake and evaluate the model performance by comparing model results with 

observations (Goldberg et al., 2014; He et al., 2014; Loughner et al., 2011; 2014). To our 

knowledge, not many have taken advantage of recent model improvements, especially online 

coupling of meteorology and chemistry to specifically address the dynamical role of CB on the 

O3 concentration. 

Even though some previous reports have discussed the numerous possible dynamic and 

chemical processes that alter the near-shore pollution, they focus on the model resolution 

sensitivity and model performance evaluation (Anderson et al., 2014; Goldberg et al., 2014; He 

et al., 2014; Loughner et al., 2014; 2011; Flynn et al., 2016; Sullivan et al., 2019). Primary 

impacts among the dynamical processes are the development of breeze (bay and land) and the 
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differential sensible heating resulting in the land-bay horizontal temperature gradients. In 

shallow parts of the CB, the SST can change considerably even in the course of hours to days. 

Thus the modification of SST gradient over time can be relevant to this study. The modelled sea 

breeze depends on the land surface sensible heat flux, ambient geostrophic wind, atmospheric 

stability and moisture, water body dimensions, terrain height and slope, SST gradients, Coriolis 

parameter, surface roughness length, and shoreline curvature (Crosman and Horel, 2010). In 

order to capture these features in the model simulation, the spatial resolution is a key factor to 

determine the model performance on simulating different scales. Studies demonstrated that finer 

horizontal spatial resolution (0.5 km, Loughner et al., 2011; 1.33 km, He et al., 2014) model runs 

agreed better with the pollutant observation at the top of the boundary layer and resolved the 

structure of the bay breeze better, in contrast to the coarser model resolutions (13.5 km, 

Loughner et al., 2011; 12 km, He et al., 2014). Similar results were also reported by Jimenez et 

al. (2006) which concluded that O3 simulation during sea breeze from the fine model resolution 

is better than the coarse resolution. 

This study further investigates the influence of CB on the O3 mixing ratio distribution by 

employing a mesoscale model, the Weather Research and Forecasting model coupled with 

Chemistry (WRF-Chem; Grell et al., 2005). It aims to quantify the relative influence of the bay-

land dynamics on the O3 concentration nearby bay areas. One baseline experiment (“water”) and 

one sensitivity experiment (“nowater”) were performed with the normal configuration and by 

altering the model configuration of the underlying water over CB to land (loam), respectively. 

First, the baseline model simulation performance was evaluated by the surface O3 mixing ratio 

observations to make sure that model simulations were reliable. Then, both horizontal and 

vertical O3 distribution differences between “water” and “nowater” over CB, were analyzed to 
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study the resulting dynamics and its influence on the temporal-spatial O3 concentration 

distribution. 

1.3 Transported O3 and particle pollutions 

Wildfires influence O3 and PM, which play vital roles in air quality, climate change and 

human health (Intergovernmental Panel on Climate Change (IPCC), 2013). Wildfires burned 

from forest, savanna and grassland, caused by lightning and/or humans (prescribed burns or 

accidents), are sources of both primary and secondary pollutants (trace gases and aerosol 

particles), including CO, H2, CH4, N2O, NOx, O3, and fine particles (PM2.5) (Crutzen et al., 1979; 

Crutzen and Andreae, 1990; Andreae and Merlet, 2001). Long-term exposure to high 

concentrations of O3 leads to health issues, i.e., irritates lungs, aggravates bronchitis, 

emphysema, and asthma (Lippman, 1991; Gan et al., 2020). The subject of this study is 

becoming increasingly important for the reason that future trend of wildfire events, the frequency 

and averaged area burned each year is predicted to increase due to warmer, drier climate (Liu et 

al., 2010; Schoennagel et al., 2017). Climate change is expected to increase the wildfires 

occurrences over the regional and/or global scale. Thus, long-term smoke transport effects on 

human health increases are likely. Estimates are that global warming has already impacted the 

frequency and intensity of wildfires for Canadian and U.S. forests over the past century (Gillett 

et al., 2004; Westerling et al., 2006; Roberts et al., 2020). 

Model simulations of O3 and PM from across scales were performed in several previous 

studies. In the recent decade, the most common air quality models employed for air quality 

research are CMAQ (Community Multiscale Air Quality Modeling System, Loughner et al., 2011; 

Dreessen et al., 2016) and WRF-Chem (Weather Research and Forecast model coupled with 

Chemistry package, Hu et al., 2012, 2013; Yang et al., 2013; Su et al., 2017). In addition to air 
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quality models, atmospheric transport model, and back trajectories are often combined with WRF-

Chem simulations and utilized to track the regional transport of O3 (Su et al., 2017). Specifically, 

O3 pollution near CB and Baltimore-Washington area was investigated through field campaigns 

and model simulation experiments (Loughner et al., 2011; Hu et al., 2012, 2013). While a general 

agreement is reported between observations and modeling, in general, there are a number of issues 

that are actively being studied and need further investigation. The issues and discrepancy that arise 

are partially attributed to the underestimation of the Planetary Boundary Layer Height (PBLH) and 

dry deposition (Zhang et al., 2009) as well as the emissions data used. An important problem of 

forecasting air quality is transport and mixing of external O3 sources, as could occur because of 

fire smoke. Understanding how the smoke from fires transports, what is the chemical composition 

of the smoke plume, and how it mixes within the PBL is essential to improve air quality forecast. 

Not accounting for the smoke emission model simulation would result in an output that 

underestimates the O3 concentration compared with observations (Dreessen et al., 2016). On the 

other hand, inclusion of the smoke emission may overestimate the O3 concentration forecast. 

Understanding the physics and dynamics of meteorology as well as its associated phenomenon of 

long-range transport is an important scientific and operational forecasting problem. For the regions 

other than the U.S., most recently, Su et al. (2017) utilized both ground-based and airborne O3 

lidars to measure the O3 vertical profiles in early September, Hangzhou, China, and found that the 

O3 concentration reached a peak at the top of the boundary layer. Wang et al. (2013) and Yang et 

al. (2013) studied the wildfire smoke particle transport using the optical properties captured by 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP). 
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The long-range transport of smoke and its contribution to local air pollution is difficult to 

quantify and thus forecast (Kunzli et al., 2006; Wu et al., 2018). The physics of how the long-

range transported smoke mixes into the boundary layer from the upper atmosphere is not well 

understood. Satellite observations of such long-range transport smoke is readily available, which 

help the modeling of physical processes on how the long-range transported smoke mixes down to 

the surface (Campell et al., 2016). The synoptic steering flows, the physical development, and 

dynamics of wildfires from the local-to-regional scales govern how the smoke transport impacts 

downwind regions at the local pollution scale. 

Several previous studies have investigated the influence of Canadian boreal forest 

wildfires on trace gases and particles (Wotawa and Trainer, 2000; McKeen et al., 2002; Colarco 

et al., 2004; DeBell et al., 2004; Morris et al., 2006). An extensive wildfire event, which 

occurred over northwestern Canada in June 1995, resulted in the increase of CO and O3 

concentrations over the midwestern and eastern U.S. (Wotawa and Trainer, 2000; McKeen et al., 

2002). Both models and observations showed that O3 concentration increased by 15-18% over 

the eastern U.S., due to both photochemistry and transport (Wotawa and Trainer, 2000). Since O3 

is sensitive to the NOX/CO emission ratios as reported in Crutzen et al. (1979), the urban area 

which has high NOx concentrations, is more sensitive to the aged smoke compared to that in the 

rural area (McKeen et al., 2002). Another Canadian wildfire happened in Quebec, Canada early 

July 2002 (Colarco et al., 2004; DeBell et al., 2004; Morris et al., 2006). Smoke and other 

pollutants were transported to the U.S. at low altitudes behind advancing cold fronts (Colarco et 

al., 2004). The significant enhancements of CO, PM2.5, organic and black carbon (OC and BC), 

and the soluble aerosol species NO3+, Ca2+, and the biomass burning tracer K+ marked this 

wildfire event. The study reported that the smoke plumes were transported to New England, 
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which depended on a combination of factors, among which are the altitude of transport, the 

degree of enhancements and chemical composition of aerosols varied with sampling station 

elevation and latitude (DeBell et al., 2004). Overall, these studies utilized a variety of 

observations and models to explore the origin of Canadian wildfires and their impacts on the 

U.S. air quality. 

 An example of the effect of long-range transport Canadian wildfire smoke in June 2015 

and its effect on air quality was reported by Dreessen et al. (2016), which investigated its impact 

on BC, OC, O3 and PM concentrations in Maryland. Following this report, Sullivan et al. (2017) 

reported a focused study on the lesser-characterized night-time transport and vertical 

mixing/entrainment of O3 in the context of “next-day” O3 exceedances. Although these two 

studies described the pollution episode caused by the Canadian wildfires at the local region in 

Maryland, a coordinated mesoscale model-assisted study of this event had not been performed to 

date. In this work, we examine this impactful Canadian wildfire event by combining the 

advanced ground-based in-situ and remote sensing observations, together with the WRF-Chem 

model to explore the smoke transport path and validate its impact on the local-to-regional air 

pollution. These include details of the arrival of the transported smoke, the satellite-model 

comparisons, the regional surface, and remote sensed measurements and in particular the 

evolution of measurements and model simulations within the PBL. 

This chapter follows the structure below. First, we set up the study domain and model 

configuration, including the parameterization schemes and designed model experiments. Second, 

a description of the standard surface and upper-air O3 data, ground-based remote sensing data, 

and satellite data employed in the analysis, followed by the results and discussion section. The 
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result analysis includes smoke large-scale transport and local O3 and PM enhancement due to 

smoke. Finally, we complete this study with a conclusion. 

1.4 Data assimilation 

Data assimilation (DA) is the approximation of the true state of some physical system at a given 

time by combining time-distributed observations with a dynamic model in an optimal way (Asch 

et al., 2016). More specifically, it combines information from three different sources: the physical 

and chemical laws of evolution (encapsulated in the model), the reality (as captured by the 

observations), and the current best estimate of the distribution of pollutants in the atmosphere (all 

with associated errors) (Carmichael et al., 2008). The DA methods include variational methods, 

statistical methods, and hybrid methods which combine variational and statistical methods (Fig. 

1.1). Both variational and statistical methods seek an optimal solution, while variational methods 

seek a solution that minimizes a suitable cost (or error) function, and statistical methods seek a 

solution with minimum variance. In fact, in most cases these two methods provide exactly the 

same solution. 

 

Fig. 1.1 The big picture for DA methods and algorithms (Asch et al., 2016) 
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DA integrates both model forecasting and observations to better estimate the state of a 

physical system (Daley 1991; Kalnay 2003). The DA techniques are broadly used in different 

fields under different names. The output of the updated analysis data after combining observations 

and model forecasts acts as the initial conditions for the time step model forecast. After observing 

the true state of the atmosphere, DA can produce reanalysis, the best available estimate of the 

atmospheric state, by repeating the numerical weather prediction process. DA can act as a 

simulator to estimate the value of existing or historical observations, i.e., satellite simulator. In 

addition, the applications of DA include evaluating forecast models, identifying quantities that are 

poorly predicted and comparing models to assess relative strengths and weaknesses (Anderson et 

al., 2009). Finally, DA constrains the emission input data by solving the inverse problem (Xu et 

al., 2013). 

The DA method employed in this study is the Ensemble Adjustment Kalman Filter 

(EAKF), which computes a linear operator that is applied to the prior ensemble estimate of the 

state, resulting in an updated ensemble whose mean and covariance are consistent with the theory 

(Anderson, 2001; 2003). In this section, I will elaborate on its mathematical background and 

applications, with some general introduction to DA. 
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Fig. 1.2 Data assimilation flowchart 

DA procedure includes two steps: forecast/prediction step, analysis step. In the 

forecast/prediction step, models are initiated by the initial condition/boundary condition (IC/BC). 

For the regional models, i.e., WRF-Chem, the IC/BC is from the global models. The output of the 

forecast/prediction step is called background or prior. Then the data assimilation system will 

determine whether to continue to the next cycle. If this is the first cycle, next will be the 

assimilation/analysis step. If this is not the first cycle and the data assimilation objective has not 

been achieved, then it will carry out the assimilation/analysis step. Otherwise, it will stop 

assimilation. 

The assimilation/analysis step combines the observations and models. The DA methods 

are employed in this step to assimilate observations into models. The output of the analysis step is 

named analysis or posterior. After the assimilation/analysis step, the model will advance to the 

next step or assimilation window. 
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1.4.1 Sequential data assimilation methods 

1.4.1.1 Kalman Filter 

Kalman filter, also known as linear quadratic estimation, is a recursive approach to estimate 

the unknown variables, by estimating a joint probability distribution over the variables for each 

timeframe (Kalman, 1960; Kalman and Bucy,1961). It is a probabilistic-based method. Initially, it 

was developed to solve theoretical and practical problems in communication and control by using 

statistical methods. Such problems include (i) Prediction of random signals; (ii) Separations of 

random signals from random noise; (iii) Detection of signals of known form in the presence of 

random noise (Kalman, 1960). 

1.4.1.1.1 Kalman filter in scalar form 

(1) Calculation of Kalman gain 

Let K be the Kalman gain, εe be error in estimate, εm be error in measurement, Et be the 

current estimate, Et-1 be the previous estimate, and M be the measurement. The Kalman gain, K 

can be obtained from equation (1.1) (van Biezen, 2015). 

! =
!!

!""!!
                                                                (1.1) 

The Kalman gain provides the weight between estimate and measurement for updating the new 

estimate. Its value is between 0 and 1. When the Kalman gain approaches 1, the measurement 

becomes more accurate and the estimate is unstable (with high uncertainty). Otherwise, when the 

Kalman gain is closer to 0, the measurement gets inaccurate and the estimate is stable.  

(2) Update the new estimate error 

First, we need to update the new estimate using eq (1.2). 

## =	##$% + !(' − ##$%)                                                (1.2) 
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Then use eq (1.3) to update the new estimate error based on the measurement error and the previous 

estimate error. 

*&'## =	
!"!!$##%&
!""!!$##%&

= (1 − !)*&'##%&                                          (1.3) 

Then output the new estimated value. if the variation becomes small, then terminate the iteration. 

Otherwise, continue to the next iteration if the variation is still very large (Fig. 1.1). 

 

Fig. 1.1 General conceptual Kalman Filter flow chart. Blue ones are initial values; Red ones are 

errors; Pink ones are values. 

1.4.1.1.2 Mathematical form of Kalman Filter 

Let X0 be the initial state matrix and P0 be the initial process covariance matrix. For the 

first cycle, the initial state is treated as the previous state. Let Uk be the control variable matrix and 

Wk be the predicted state noise matrix, where k is the cycle number. A and B are transition matrices 

which are used to transform Xk-1 and Uk to be the same size of the predicted state matrix ,('. As 

a matter of fact, A is a unit upper tridiagonal matrix. Then, we can calculate the predicted state 
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matrix, ,(' based on the physical model and previous state from eq (1.4), and the predicted process 

covariance matrix, -(' from eq (1.5), where Qk is the process noise covariance matrix. 

,(' = .,($% + /0( +	1(                                              (1.4) 

-(' = .-($%.
) +	2(                                                   (1.5) 

Now calculate the Kalman gain K using eq (1.6), where H is the transition matrix and R is the 

measurement error matrix (or sensor noise covariance matrix).  

! =	
*('+

+*('+)",
                                                          (1.6) 

Now update the new measurement, and combine with predicted state matrix ,(' and the Kalman 

gain K. Then use eq (1.7) to calculate new state matrix Xk 

,( =	,(' + ![4( − 5,(']                                              (1.7) 

Here Yk the measurement of the state, which is computed using eq (1.8) 

4( = 	75(" +	8(                                                     (1.8) 

Where, 5("is the transformation matrix that maps the state vector parameters into the 

measurement domain. And Zk is the measurement noise (or uncertainty).  

After getting Xk, use eq (1.9) to compute the process covariance matrix Pk. 

-( = (9 − !5)-('                                                    (1.9) 

The last step for every cycle is to check the values of the state matrix and process covariance 

matrix. If they satisfy the stopping criterion, then cycle and output them. Otherwise continue to 

the next cycle. 
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Fig. 1.2 Mathematical Kalman Filter (in matrix form) flow chart 

1.4.1.2 Ensemble Kalman Filter 

Based on the Kalman filter (KF) and extended Kalman filter (EKF), which is used to solve 

linear and nonlinear systems, respectively, Evensen further developed the capability of Kalman 

filter for processing the nonlinear systems by unifying the data assimilation and ensemble 

generation problem (Evensen, 1992; 1994; 2003), which leads to the ensemble Kalman filter 

(EnKF). The EnKF is based on a statistical linearization or closure approximation that is too severe 

to be useful for some cases with strongly nonlinear dynamics (Evensen, 1992). The EnKF is a 

sequential data assimilation method using Monte Carlo or ensemble integrations (Burgers et al., 

1998). It uses the traditional update equation of the KF, except that the gain is calculated from the 

error covariances provided by the ensemble model states. There are several benefits of EnKF. For 

example, it is relatively computationally efficient, since the ensemble size does not require too big, 

which will be sufficient for reasonable statistical convergence. However, the observations must be 

treated as random variables. The EnKF generates a random sample of the observational 

distribution, called “perturbed observations” (Houtekamer and Mitchell, 1998). 
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1.4.1.3 Ensemble Adjustment Kalman Filter (EAKF) 

The ensemble adjustment Kalman filter (EAKF) is derived as Monte Carlo approximations 

to the nonlinear filter without perturbing observations, developed by Anderson (2001). It is a 

deterministic scheme of the EnKF and performs better than the classical (stochastic) EnKF in a 

general framework. It is assumed that the prior ensemble forecast distribution follows the Gaussian 

distribution.  

1.4.2 Inflation and variance divergence 

1.4.2.1 Errors 

1.4.2.1.1 Observational Error 

Observational error includes measurement error and representative error. The 

representative error is normally larger than the measurement error (Daley, 1991; Chai et al., 2007).  

1.4.2.1.1.1 Measurement error 

Measurement error is the difference between a measured value of a quantity and its true 

value. It can be divided into two components: random error and systematic error.  

1.4.2.1.1.2 Representative Error  

Representative error comes from the difference in resolutions between individual 

measurements and the model, which could degrade the data assimilation performance. The 

representative error includes deficiencies in the equations representing the processes of the system 

as well as the error introduced by representing a continuous system using a series of discrete points. 

In the same model grid, there are several measurements with different observation values. During 

the data assimilation, observations are trusted as ground-truth. If representative errors are random 
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and large numbers of observations are assimilated, their impact could be negligible (Koshin et al., 

2020). 

1.4.2.1.2 Random error 

Random error (or random variation, or stochastic error) is a measurement of inconsistent 

data (a constant attribute or quality) when repeatedly measured or taken. It is always present in a 

measurement and may vary from observation to observation. Random error can be caused by 

unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter's 

interpretation of the instrumental reading; these fluctuations may be in part due to interference of 

the environment with the measurement process. The concept of random error is closely related to 

the concept of precision. The higher the precision of a measurement instrument, the smaller the 

variability (standard deviation) of the fluctuations in its readings. 

1.4.2.1.3 systematic error (or statistical bias) 

For instrument observations, the systematic error is from the measuring instruments, due 

to the instrument or its data handling system or wrong operation. The systematic error is the error 

that is not determined by chance but is introduced by an inaccuracy inherent to the system. 

Systematic errors are caused by imperfect calibration of measurement instruments or imperfect 

methods of observation, or interference of the environment with the measurement process, and 

always affect the results of an experiment in a predictable direction. Systematic error refers to an 

error with a nonzero mean, the effect of which is not reduced when observations are averaged. It 

always occurs, with the same value, when we use the instrument in the same way and in the same 

case. The sources of systematic error are imperfect calibration of measurement instruments (zero 

error), quantity, and measurement drift.  
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1.4.2.1.4 Sampling Error: 

Sampling error is introduced by observing a sample instead of the entire population. It is 

the difference between a sample statistic used to estimate a population parameter and the actual 

but unknown value of the parameter, since the ensemble size is small. The limitation of sampling 

error is the supposedly representative sample population in reflecting the total population.  

Sampling bias is a possible source of sampling errors, wherein the sample is chosen in a 

way that makes some individuals less likely to be included in the sample than others. It leads to 

sampling errors which either have a prevalence to be positive or negative. Such errors can be 

considered to be systematic errors. It can also be quantified by the margin of error. The larger the 

margin of error, the larger the sampling error, which means that the less confidence one should 

have that a sample result would reflect the result of the whole population.  

1.4.2.1.5 Correlated observational error 

The uncorrelated observational error can be achieved when the observations are taken with 

separate immovable instruments such as those from the surface stations (Daley, 1991). The 

radiosonde usually has the vertical correlated observational errors, while satellite observations 

have both horizontal and vertical correlated observational errors.  

1.4.2.2 Inflation 

The above-mentioned errors influence the quality of data assimilation. In order to 

compensate for these errors (i.e., sampling errors), an inflation factor is often used to multiply to 

the background covariances and enlarge the background error. The inflation concept was first 

introduced by Anderson and Anderson (1999). Usually the inflation factor can be tuned for 

different models and observations. When properly tuned, the inflation factor can improve the 

convergence of the analysis during data assimilation. 
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1.4.3 localization 

Due to the computational cost, the ensemble size is set much smaller than the dimension 

of the model state. It leads to the correlations among spatially remote variables in the prior 

ensemble being regarded as spurious correlations in the ensemble methods. The limited 

ensemble size causes the sample estimated prior error covariance to be rank deficient, and results 

in the covariance between observation and model state to be contaminated with sampling noises 

when they are at a larger distance. To compensate for this under-sampling issue, localization is 

introduced to reduce the prior correlations based on the distance between the observed and 

modeled state variables (cutoff distance or radius of influence (ROI)) by localizing the impact 

from distant observations and rectifying the negative impact from sampling noises (Houtekamer 

and Mitchell, 2001). We apply a typical choice of localization function, Gaspari and Cohn 

(1991) fifth-order polynomial, to reduce the spurious impact of observations on spatially remote 

state variables. 

1.4.4 Observation forward operator 

The observation forward operator is a bridge linking the model state variable and 

observations in a data assimilation system. It interpolates the model state variables to the location 

of observation. Since the model data are gridded and the observations are data points, an 

interpolation of the model fields from the grid to the locations of the observations needs to be 

performed. If the observed variable is not the model state variable, the observation forward 

operator will perform transformations and convert the model state variable to the observed 

variable, which may be nonlinear. In this case, the observation forward operator allows the 

comparison between observations and model state variables (both background/prior and 
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analysis/posterior). For instance, satellites measure radiances/brightness 

temperatures/reflectivities, etc., not directly temperature, humidity, and ozone. 

1.1.3.7 Advantages and challenges of application of EnKF 

The advanced features of EnKF include that (1) it can propagate the probability density 

functions (PDFs) through highly nonlinear systems; (2) it does not require additional modeling 

efforts such as the construction of tangent linear model and its adjoint; and (3) the method is 

highly parallelizable (Carmichael et al., 2008). The challenges also exist while applied to solve 

the data assimilation problems. First, the rank of the estimated covariance matrix is smaller than 

its dimension. Second, the random errors in the statistically estimated covariance decrease only 

by the square-root of the ensemble size. Third, the subspace spanned by random vectors for 

explaining forecast error is not optimal. Fourth, the estimation and correct treatment of model 

errors is possible but difficult. Fifth, a careful implementation is required for efficiency 

(Carmichael et al., 2008).  

1.5 Motivation and Objectives 

The motivations of this study are the air quality sources tracking. The Maryland 

Department of Environment puts effort on understanding the O3 pollution contribution from CB. 

The O3 concentration in Maryland during Summer often exceeds the NAAQS. However, the 

sources of the pollutants are unknown. Two possibilities on tracking the sources. One is the local 

sources; the other is transported from outside of Maryland. In order to guide the local factories 

and manufacturers, it is very important to identify the pollutant sources.
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Chapter 2  

The influence of the Chesapeake Bay on the ozone pollution 
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This Chapter is organized as follows: a description of the model configuration and study 

domain is given in section 1, followed by a discussion of the background, case study, and data 

sets in section 2. Results and analysis are given in section 3 and concluding remarks are 

presented in section 4. 

2.1 Model Configuration and Study Domain 

WRF-Chem (version 3.7) integrates the air quality component consistent with the 

meteorological components (Grell et al., 2005). The gas-phase chemistry and aerosol module 

were based on the Carbon-Bond Mechanism Version Z (CBM-Z, Zaveri and Peters 1999) and 

the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC, Zaveri et al., 2008), 

respectively. The Yonsei University (YSU) planetary boundary layer scheme (Hong et al., 1996; 

2006) was used here based on the model performance evaluation and recommendation for such 

an area (Hu et al., 2010). Radiation treatment utilized the Rapid Radiative Transfer Model for 

General Circulation Model (RRTMG) short-wave and long-wave radiation schemes (Iacono et 

al., 2008). The radiation scheme was in line with what was recommended for the model 

simulations over the continental U.S. by the WRF developer team (Peckham et al., 2015). 
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Fig. 2.1 Terrain height of the area surrounding CB over the eastern U.S. The outer domain is 

denoted as d01 and the nest domain is encoded with the pink dashed rectangle (d02). The insert 

map on the top-right shows the location of the study region (red shade) over the Continental U.S. 

(NCAR Command Language) 

Figure 2.1 shows the model domain, with the outer study area set to include the eastern 

U.S. The outer domain was further resolved by one two-way nested grid region that 

progressively focuses and centers on the study region, CB. The outer domain (d01) was set at 9 

km × 9 km horizontal spatial resolution, while the nested inner domain (d02) had a higher 

horizontal spatial resolution (3 km × 3 km) because it exclusively focused on the detailed 

investigation of O3 concentration and its evolution. 35 vertical levels were used with about 15 

levels set below 800 hPa to resolve the PBL and the model top was at 100 hPa. 
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2.2 Background, Case Study, and Data Sets 

2.2.1 Topography of the CB Surrounding Region 

CB is located at the western coast of the Atlantic Ocean and surrounded by the states of 

Maryland, Virginia, and Delaware. It is approximately 320 km long from north to south, 4.5 km 

wide at its narrowest from west to east, and 48 km at its widest point. The average depth is 6.4 m 

with a maximum of 53 m (National Centers for Environmental Information, 2017). The terrain 

towards the east of CB is flat, and its terrain height is less than 50 m. Mountains are located 100 

km away west of CB, with the terrain height more than 1000 m (Fig. 2.1). CB alters moisture, 

wind speed and direction, and atmospheric stability. Due to the evaporation of the water body 

over CB, the air moisture level near it is higher than the surrounding area. It has relatively high 

temperature at night and makes the atmosphere unstable, while in the day, it has relatively low 

temperature and stabilizes the atmosphere. 

2.2.2 Case Study 

 

Fig. 2.2 (a) Surface weather map at 7:00 AM EST (11:00 UTC) on 3 June 2015, with low-

pressure systems and high-pressure systems indicated by L (red) and H (blue), respectively; (b) 
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24-hour precipitation at 7:00 AM EST on 4 June 2015 

(http://www.wpc.ncep.noaa.gov/dailywxmap/) 

This study focuses on the case of 3 June 2015, which was picked for the following 

reasons. First, since O3 is mostly a summertime problem, and early June is the beginning of 

summer. Second, a cold front from the northwest encountered a warm front from the southeast in 

the Mid-Atlantic region (Fig. 2.2a). There was a low-pressure system near North Carolina, which 

formed clouds and precipitation over the study region (Fig. 2.2b & 2.3). The cloud fraction was 

100 % from the MODIS cloud product (Fig. 2.3c, d). The 24-hour precipitation map shows that 

the rainfall was around 0.1 - 0.5 in (or 0.25 - 1.25 cm, Fig. 2.2b). This means that less solar 

radiation was expected over CB which would reduce the photochemical reactions of O3 and its 

precursors. So the chemistry influence on O3 generated was limited due to the absence of 

sunlight. Third, the prevailing winds on this day were northeast, rather than the typical 

northwest. This would avoid the influence of pollutants transported from the Ohio River Valley. 
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Fig. 2.3 MODIS three-band color overlay images (band 1—red, band 4—green, and band 3—

blue) from Terra (a) and Aqua (b) satellites on 3 June 2015. Red dots indicate the locations of 

daytime fires detected by MODIS. Note that the fire dot scale has been enlarged in order to 

portray the fires more clearly in the figure. Bottom images are MODIS cloud fraction from Terra 

(c) and Aqua (d). The orange dashed rectangle is the outer domain (d01) 

2.2.3 Data Sets 

Relevant information on data used in the simulation and sensitivity studies as well as model 

evaluation is presented in Table 2.1. 
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Table 2.1 Data used as inputs to WRF-Chem simulations and evaluations 

Data type Description 

Meteorology Northern American Regional Reanalysis (NARR) dataset, which is a high-

resolution model-assimilated observation dataset from National Centers for 

Environmental Prediction (NCEP). The NARR covers the time period from 

1979 to near present and provides 3-hourly and monthly data at a resolution 

of approximately 32 km with 29 pressure levels, from 1000 to 100 hPa. 

Anthropogenic emission National Emissions Inventory 2011 (NEI2011) from the U.S. EPA. The 

NEI2011 is a comprehensive and detailed estimate of the air emissions for 

criteria pollutants, precursors, and hazardous air pollutants. It includes point 

sources and area sources with resolution of 4 km by 4 km, covering all the 

48 contiguous states as well as selected regions of Canada and Mexico 

AirNow The EPA AirNow program provides forecasts and near real-time observed 

air quality information across the U. S., Canada, and Mexico 

(http://www.epa.gov/AirNow). It receives air quality observations from over 

1000 monitoring stations and collects forecasts for more than 300 cities. For 

this study, the O3 mixing ratio measured near the surface is used as 

evaluation data sets to estimate the model simulation performance. 

Soil type United States Geological Survey (USGS) soil types with 16 categories are 

used in the model. Further, in the model sensitivity analysis CB is replaced 

by the nearest and lowest altitude soil type (see detailed discussion below) 
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Both land use and water land mask data sets are used in this study. The land use (soil 

type) dataset from the United States Geological Survey (USGS) has 16 soil categories (Fig. 2.4). 

Since the spatial resolution of the land mask dataset is 30 arcsec, it can’t resolve the fine streams 

and branches feeding into CB. As a result, the shape of the water mask doesn’t exactly follow the 

CB outline which may lead to uncertainties to the size of CB. In the sensitivity experiment, the 

land mask was altered from water to land over CB (Fig. 2.4a, b). The land use index was 

modified to loam, since the land over the eastern shore of CB is loam (Fig. 2.4c, d). The CB 

surface temperature was from NARR reanalysis data. In the following comparison, we only 

considered the O3 mixing ratio difference between baseline and sensitivity experiments, except 

for the model performance evaluation where the O3 mixing ratio was used. 

 

Fig. 2.4 (a) WRF USGS land mask; (b) Same as (a), but modified water to land over CB; (c) 

WRF USGS 16 soil categories; (d) Same as (c), but modified water to loam over CB 
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2.3 Evaluation and Results of Model Simulations 

2.3.1 Evaluation of Model Performance 

In order to stabilize the meteorological and chemical fields, the baseline experiment was 

conducted from 1200 UTC, 1 June to 0000 UTC, 4 June 2015. The first 36 h simulations were 

treated as spin-up, and the remaining 24 h simulations (from 0000 UTC, 3 June to 0000 UTC, 4 

June) were selected for analysis. The sensitivity experiment was the same as the baseline 

experiment, except the surface land type over CB. The surface land type was changed from water 

to land (loam) on 0000 UTC, 2 June 2015. After the alternation, the sensitivity experiment 

continued to run until 0000 UTC, 4 June 2015. In the following comparison between the baseline 

and sensitivity experiments, we selected the simulations from 0000 UTC, 3 June to 0000 UTC, 4 

June 2015. 
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Fig. 2.5 WRF-Chem simulated surface O3 mixing ratio and EPA AirNow observed surface O3 

mixing ratio (color filled circle) at 1500 UTC on 3 June 2015. The streamline is the surface 

wind. The wind magnitude is indicated by the length of streamline shown in the top-right insert, 

with unit of m s-1 

The wind patterns influenced the instantaneous surface O3 mixing ratio horizontal spatial 

distribution. The prevailing winds were northeast in the northeastern domain, east over 

mountains, and north over Virginia state and south over the Atlantic Ocean in the southeastern 

domain. For example, the high O3 mixing ratio (around 35 ppbv) over east of Appalachian 

Mountains was primarily due to the accumulated O3 transported by the northeast winds from the 

polluted region nearby. When O3 reached the eastern side of the mountains, it was blocked, 

accumulated, and lofted, leading to the apparent increase of the O3 concentration (Fig. 2.5). On 

the other hand, the uniform northeast wind (5-15 m s-1) over the relatively flat coastal terrain of 

Delaware-Maryland-Virginia favored a uniform surface O3 mixing ratio spatial distribution. At 

the northern CB, the model simulated O3 mixing ratio agreed with the AirNow O3 observation 

well. The relatively high O3 concentration (> 25 ppbv) existed over the south of CB. The high 

wind speed transported O3 from CB, and local stagnant wind and weak convergence also 

contributed to the high O3 concentration. Even though the influence of prevailing winds on the 

O3 concentration distribution was important, the sensitivity experiment was able to capture the 

O3 concentration differences due to the dynamics of CB. This is different from the study 

conducted by Stauffer et al. (2015), in which conclusions are based on the condition that the 

mesoscale or synoptic-scale wind must be absent. In comparison to the AirNow surface O3 

concentration, model results overestimated the surface O3 mixing ratio over the middle and west 

of the study region, while underestimated O3 in Delaware and New Jersey regions, due to the 
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clean air from the Atlantic Ocean. Overall, the model simulation showed O3 mixing ratio surface 

spatial distribution patterns agree with observations (Fig. 2.5). 

 

Fig. 2.6 Hourly surface O3 mixing ratio diurnal variations from EPA AirNow observations (blue 

curves) and WRF-Chem simulations (red curves) at three AirNow sites. The light red shaded 

areas are standard deviations. Surface O3 mixing ratio daily averages are denoted as dashed lines 

for AirNow (blue) and WRF-Chem (red). R is the Pearson correlation coefficient and RMSE is 

the root mean square error. 

We investigated the hourly surface O3 mixing ratio diurnal evolution of model-

observation. In order to compare the model simulation with the observation, the simulated O3 

mixing ratio in nine 3 km × 3 km grids surrounding the AirNow station were aggregated to one 9 

km × 9 km grid region and their mean and standard deviation were calculated. Figure 2.6 shows 
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hourly surface O3 mixing ratio diurnal variations from three AirNow stations (Millington, Fair 

Hill, and Aldino) close to CB. As expected, the hourly surface O3 mixing ratio diurnal variation 

had the lower O3 mixing ratio at night (around 10 ppbv at 0600 UTC, sunrise was at 1030 UTC), 

and the higher O3 mixing ratio at daytime (around 30 ppbv at 2000 UTC, sunset was at 0000 

UTC). During the night, the absence of sunlight and less O3 precursors (NOX, etc) emissions 

prevented the required O3 forming chemical reactions from being initiated. The correlation 

coefficients (R) and root mean square errors (RMSE) are 0.77, 0.95, 0.93 and 6.38, 7.99, 9.31 for 

Milington, Fair Hill, and Aldino, respectively. In general, the WRF-Chem model captured the 

AirNow measured O3 mixing ratio diurnal variation trend pattern, but overestimated the O3 

concentration by 5-10 ppbv, or 20-30 %. 

2.3.2 Overview of the O3 Mixing Ratio Difference 

The observational and modeled O3 mixing ratio diurnal variation revealed the transition 

between the minimum and maximum of O3 mixing ratio (Fig. 2.6). By separating the night-time 

modeled O3 mixing ratio difference from daytime, the absolute and relative influences of CB can 

be analyzed explicitly. The relative difference is calculated using the equation  

:;<<-&. 	= 	
/*+#!,	$	/-.*+#!,

/-.*+#!,
× 100	%.                                                            (2.1) 
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Fig. 2.7 WRF-Chem modeled absolute and relative O3 mixing ratio difference between water and 

nowater for both night-time (a and c) and daytime (b and d). (a) absolute O3 mixing ratio 

difference at night; (b) same as (a) but at daytime; (c) relative O3 mixing ratio difference at night; 

(d) same as (c) but at daytime 

On 3 June, the averaged surface O3 mixing ratio over CB increased by 10 ppbv (30 %) at 

night and 5 ppbv (20 %) during the day (Fig. 2.7). The shallow stable nocturnal boundary layer 

“trapped” O3 from venting to higher altitudes at night, while the deep mixed layer lofted O3 to 

the free troposphere during daytime. At daytime, the O3 mixing ratio difference was distributed 

semi-homogeneously over CB with more O3 over the southern CB than the northern CB (Fig. 

2.7b, d). The higher O3 increase over the southern CB was due to the larger area of the water 
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body in the southern CB, which led to stronger bay breeze and photochemical reactions during 

the day. The O3 mixing ratio difference increased slightly from east to west across CB consistent 

with the direction of the prevailing winds. The wind difference over CB indicated the wind 

increase due to the less surface friction over the water surface than land and contribution from 

bay breeze. In addition, the westward pooling of pollution created an elevated O3 that extended 

into the Baltimore-Washington D.C. urban corridor (Loughner, et al., 2014). Figure 2.8 shows 

the O3 mixing ratio difference gradient whose direction is from west to east (Fig. 2.8). At night, 

the O3 mixing ratio difference gradient gradually decreased and approached the minimum at -

1×10-5 ppbv m-1 close to the eastern shore (Fig. 2.8a). At daytime, the O3 mixing ratio difference 

gradient had a pattern analogous to night-time, but had smaller magnitude (Fig. 2.8b).  
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Fig. 2.8 WRF-Chem simulated surface O3 mixing ratio difference gradient at both night-time (a) 

and daytime (b). The gradient direction is from west to east. The unit of O3 mixing ratio 

difference gradient is ppbv per meter (ppbv m-1) 

The surface O3 mixing ratio diurnal variations of both the baseline and sensitivity 

experiments and their differences above CB are shown in Fig. 2.9. It shows that the surface O3 

mixing ratio above CB from the baseline and sensitivity experiments had a similar diurnal 

variation trend. The surface O3 mixing ratio at night (about 20 ~ 25 ppbv) was lower than 

daytime (about 25 ~ 30 ppbv). The larger surface O3 mixing ratio difference occurred at night 

(about 5 ppbv or 25 %), rather than daytime (about 2 ppbv or 15 %), due to the longer residence 

time of O3 over CB at night. The wind speed over CB at night is lower than daytime, recorded 8 

m s-1 and 12 m s-1, respectively. At night, the residence of this higher O3 air over CB tended to be 

longer. In addition, O3 accumulated at the southern CB (and western shore of CB) where it was 

more impacted, and differences would add to the chance of exceeding O3 mixing ratio limits. In 

fact, Goldberg et al. (2014) indicated that the 8-hour O3 mixing ratio over CB exceeded the 

NAAQS at most twice during the DISCOVER-AQ-2011 project (27 June – 31 July 2011), while 

the surrounding land exceeded the NAAQS four (4) times, reinforcing the O3 increase effect due 

to CB, especially over the downwind region. 
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Fig. 2.9 WRF-Chem simulated surface O3 mixing ratio for water (green) and nowater (red), and 

surface O3 mixing ratio difference (water-nowater, blue) diurnal variation above CB on 3 June 

2015. The dashed lines are surface O3 mixing ratio means for water (green) and nowater (red). 

The grey shade in the top-right map indicates the location of CB 

2.3.3 Dynamical Influence on O3 Mixing Ratio 

2.3.3.1 Horizontal Dynamical Influence 

We analyzed the dynamic mechanism that increased the simulated O3 mixing ratio solely 

due to the change of the land surface type. First, the thermal properties of water and land (loam) 

are different. The volumetric heat capacity of land (loam) is around 2.0 ×106 J m-3 K-1, much 

smaller than water, 4.18 ×106 J m-3 K-1. This implies that the loam temperature 

increases/decreases about twice as water by absorbing/emitting the same amount of heat during 

the day/night. This fundamental physical property controls the model lower boundary surface 

temperature difference in our experiments. Due to the presence of water body over CB, the 

temperature increased by 2.0 - 3.0 K at night, while temperature decreased by 1.0 K in the day at 
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the northern CB (Fig. 2.10a, b). The night-time temperature increase over CB was distributed 

homogeneously across the northern and southern CB. However, the daytime temperature change 

showed a regional variation that temperature over the northern CB decreased by about 1 K 

compared to a decrease of only 0.1 K or even an increase of 0.1 K over the southern CB. The 

absolute value of temperature increase was larger than the temperature decrease. The obvious 

reason was that land (loam) emits longwave radiation and its temperature decreases fast, no 

matter of night or day. The absence of the shortwave radiation at night led to the temperature 

decrease over land relatively large. During the day, besides the longwave radiation emission, 

there was also shortwave radiation absorption. Land increased temperature faster than water 

while absorbing the same amount of heat. Thus, the water temperature was slightly lower during 

the day. The regional temperature variation also led to water vapor mixing ratio variability over 

CB. The resulting water vapor mixing ratio differences increased both at night (~ 2 g kg-1) and in 

the day (~ 0.5 g kg-1) (Fig. 10c, d). Similarly, the vertical velocity difference also changed from 

night to day (Fig. 10e, f). The vertical velocity changes were located at the western CB and also 

mostly at the northern CB. A velocity increase of about 0.005 m s-1 at the western shore of the 

northern CB at night and decreased by 0.002 m s-1 at the same location during the day, which 

was corresponding to the temperature difference shown in Fig. 10a, b. The positive water surface 

temperature change led to air ascending at night, while the negative water surface temperature 

change caused air to descend. The experiment showed that the water body modified the 

meteorology and dynamics of CB in a major way leading to the mixing and advection (via the 

prevailing winds). The higher surface temperature led to instability near the surface and more 

water vapor flux through the relatively higher vertical velocity, and hence flux that resulted. 
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Fig. 2.10 WRF-Chem simulated absolute difference of temperature (a, b), water vapor mixing 

ratio (c, d), and vertical velocity (e, f) between simulations of baseline (water) and sensitivity (no 

water) experiments over CB 

Pressure differences were observed from the baseline and sensitivity experiments. At 

night, the effect of CB increased the surface pressure over the western shore of northern CB, 

leading to the pressure gradient force pointing from west to east (Fig. 2.11a, c). This is consistent 

with Goldberg et al. (2014). The pressure gradient was a manifestation and contributed to the 

land breeze from the western offshore to CB. The resulting increased land breeze blew in 

opposition to the northeastern prevailing wind minimizing the wind difference over CB due to 
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the water body (Fig. 2.11a, c). During the daytime CB decreased pressure. The pressure gradient 

favored the prevailing wind and worked to reinforce the flow (Fig. 11b, d). 

 

Fig. 2.11 (a) Averaged absolute surface pressure difference at night; (b) Same as (a), but in the 

day; (c) Averaged relative surface pressure difference at night; (d) Same as (c), but in the day 

The differences of surface temperature, moisture, and vertical velocity have important 

influences on the stability and dynamics of the boundary layer. To investigate the stability 

consequences of these meteorological quantities, stability parameters were investigated. First, 

gradient Richardson number (Ri) defined as 
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The gradient Richardson number is a dynamical stability measure to determine if turbulence 

exists. g = 9.8 m s-2 is the gravitational acceleration. U and V are horizontal velocities. θv is the 

virtual potential temperature and can be calculated as  

A5 	= 	A(1 + 0.61D − D6)                                                                (2.3) 

r is the water vapor mixing ratio, and rL is the liquid water mixing ratio in the atmosphere. For 

the unsaturated atmosphere, rL = 0. And (78
79
): 	+ 	(

7;

79
):is the wind shear squared. 

The root of the numerator in the eq (1) is the Brunt-Väisälä frequency (N), a measure of 

buoyancy, is calculated by  

E	 = 	 (
<

=1
7=1
7>
)
&
6                                                                           (2.4) 
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Fig. 2.12 Difference of WRF-Chem simulated variables related to stability during both night-

time (1st row) and daytime (2nd row). (a) and (b) buoyancy; (c) and (d) Brunt-Väisälä 

(buoyancy) frequency; (e) and (f) wind shear squared; (g) and (h) gradient Richardson number 

Figure 2.12 shows buoyancy, Brunt-Väisälä (buoyancy) frequency, wind shear squared, 

and gradient Richardson number at the surface, with relative decrease in magnitude and no 

regional preference at night. However, during the day, positive values for all parameters were 

found located over the northern CB while negative values at the southern CB. 

At night, the buoyancy, Brunt-Väisälä (buoyancy) frequency, wind shear squared, and 

gradient Richardson number decreased due to the presence of CB (Fig. 2.12a, c, e, g). A 

relatively small water body surrounded by a large landmass over the northern CB led to a 

significant thermally induced perturbation in contrast to the southern CB. Relatively small 

surface wind differences were due to the water body and contributed to the atmospheric stability 

through wind shear. There was no regional preference of surface horizontal wind difference and 

thus its contribution to the instability was uniform over the entire CB (Fig. 2.12a, c, e, g). In 

addition to the surface temperature increase, the vertical velocity difference was positive over the 

northern and middle CB which contributes to the unstable condition (Fig. 2.10e). In the day, the 

surface wind differences at the northern CB were smaller than at night-time. The differences of 

buoyancy, Brunt-Väisälä (buoyancy) frequency, wind shear squared, and gradient Richardson 

number kept negative at the southern CB, and shifted to positive at the northern CB (Fig. 2.12b, 

d, f, h). 

2.3.3.2 Vertical dynamical influence 

Apart from the O3 mixing ratio horizontal distribution, its vertical distribution also helps 

to understand how CB influences the O3 three-dimensional distribution. The cross sections 
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should pass through the east-west, north-south, and center of CB. We selected six cross sections 

to visualize the vertical pictures around CB. The vertical cross sections of O3 mixing ratio and 

water vapor mixing ratio were selected to characterize the role of CB on impacting their vertical 

distributions. 

 

Fig. 2.13 WRF-Chem simulated O3 mixing ratio vertical cross section (from west to east) 

difference (night: a, b, c; day: d, e, f). The green curve is the PBLH of water, and the pink curve 

is the PBLH of nowater. CB is denoted as the yellow bar. The upright insert map shows the 

location of the vertical cross section (blue line). Note that vertical wind is magnified by 50 times 

for the illustration purpose 

Figure 2.13 shows the O3 mixing ratio vertical distribution difference through the 

northern, central, and southern CB to distinguish the possible dynamic variations due to different 

parts over CB. The PBLHs are shown for both the baseline and sensitivity experiments. At night, 

O3 was constrained within the shallow nocturnal boundary layer and the PBLH was less than 0.4 

km, which led to the O3 increase at night compared to daytime (Fig. 2.13a-c). The increased O3 

mixing ratio was found near the surface to increasingly intrude over the western shore via 
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transport by the night-time breeze and the northeast prevailing wind. The water body of CB 

increased the PBLH by about 0.1 km over the west shore of the northern CB. A subsidence of 

about 0.1 km in PBLH over the eastern CB was also evident due to, presumably, the resulting 

subsidence (Fig. 2.13a). Similar dynamics were observed at the cross sections over the middle 

and southern CB (Fig. 2.13b-c). After sunrise, resulting instability and convection increased the 

PBLH from 0.4 to 1.0 km. PBLHs were tilted from west to east of CB. The west is close to land 

terrain, which led to higher temperature during the day. While the east is near the Atlantic Ocean 

which had lower temperature during the day. All these factors diluted the O3 mixture and 

transported O3 to the free troposphere leading to surface O3 mixing ratio difference decrease. 

Another interesting point is the strength of the wind circulation in the vertical cross 

sections shown in Fig. 2.13. As the bay breeze moved from north to center to south, it became 

well defined and stronger (shown as circulations in Fig. 2.13e, f). At the northern CB transect, 

surrounded by land and far from the Atlantic Ocean, the simulated PBLH increased dramatically 

when the water body was replaced by land (loam), implying that the land surface contribution to 

the PBLH was large. This indicated the ability of absorbing large amounts of heat (shortwave 

radiation) with relatively little temperature change and resulting subsiding air over CB. The 

overall result was that the maximum O3 mixing ratio difference was localized over the western 

CB, due to the shallow PBL with relatively weak bay breeze to ventilate the O3 buildup. The 

change of PBLH was smaller in the central and southern transects where a much stronger breeze 

and shallower PBLH were observed. 
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Fig. 2.14 WRF-Chem simulated O3 mixing ratio vertical cross section (from north to south) 

difference (night: a, c, e; day: b, d, f). The green curve is the PBLH of water, and the pink curve 

is the PBLH of nowater. CB is denoted as the yellow bar. Note that vertical wind is magnified by 

50 times for illustration purposes 

Figure 2.14 shows O3 mixing ratio north-south transects at the east, over, and west of CB, 

which confirms the significant influence of the water surface and associated bay dynamics on the 

O3 mixing ratio and its distribution over and west of CB (Fig. 2.14c-f). While no influence is 

visible at the east of CB (Fig. 2.14a-b). The northeastern prevailing wind blew O3 to the west 

after its generation from CB. In addition, Figure 2.14 shows the shallow and flat nocturnal PBLH 

(~ 0.2 km) at night as compared to the tilted and large PBLH in the day. We did not find the 

significant PBLH difference between water and nowater simulations at night-time. Whereas a 

totally different scenario unfolded for daytime PBLH over CB (Fig. 2.14d). While the water-

influenced PBLH was similar to the sensitivity simulations on both west and east of CB, 

decreasing sharply from north to south, perhaps due to the water body area difference between 

northern and southern CB (Fig. 2.14b, f). The PBLH over CB from the baseline experiment was 
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much lower than the sensitivity experiment, approximately 0.8 km lower (Fig. 2.14d). This fact, 

as previously discussed, was the significant impact of the much smaller water body area over the 

northern CB. 

 

Fig. 2.15 Same as Fig. 14, but for water vapor mixing ratio 

The water body in CB influenced the water vapor mixing ratio vertical distribution (Fig. 

2.15). At night, the presence of CB increased the water vapor mixing ratio from north to south 

CB (Fig. 2.15a, c, e). The water vapor increased much less at the northern CB than the southern 

CB (Fig. 2.15a, e). While during the day, the water vapor mixing ratio increased less than night-

time (Fig. 2.15d, f), or even decreased over the northern CB (Fig. 2.15b). The possible reason is 

that the temperature decreased (Fig. 2.10b). 

2.4 Discussions and Conclusions 

This paper investigates the influence of CB on the local O3 pollution by employing the 

WRF-Chem model to simulate the O3 concentration on 3 June 2015. In order to ensure the model 

accuracy, we first validated the model performance on simulating O3 spatial distribution and time 
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evolution using AirNow surface O3 observations. Through the comparison between baseline and 

sensitivity experiments over CB by altering the surface type of CB from water to land (loam), 

dynamical differences due to CB are analyzed thoroughly from both horizontal and vertical 

directions. The findings show that CB elevates the O3 mixing ratio both at night-time and 

daytime, but with discrepant reasons. 

The model simulated O3 mixing ratio overall agreed with AirNow O3 observations, even 

though it overestimated near mountains and underestimated over New Jersey and Delaware. The 

higher O3 mixing ratio over CB had been decidedly confirmed from the perspective of model 

simulation, which was consistent with the previous studies over CB (Loughner et al., 2011; He et 

al., 2014; Goldberg et al., 2014). Shallower boundary layer decreased the surface O3 vertical 

dilution, especially at the northern CB, which led to relatively high O3 concentration close to the 

surface. Strong bay breeze caused O3 accumulating in the downwind region near CB. Taking the 

model uncertainty into account, the surface O3 mixing ratio increased by 10 % at night and 5 % 

in the day. The O3 mixing ratio difference gradient was negative over the eastern shore while 

positive over the western shore, which indicated the O3 mixing ratio difference increased from 

the eastern shore to the western shore due to the northeastern prevailing winds. From the O3 

mixing ratio diurnal variation difference between baseline and sensitivity experiments, water 

increased O3 by 5 ppbv (25 %) at night and 2 ppbv (15 %) during the day. The water body 

increased temperature by 2 ~ 3 K at night and decreased it by 1.0 K during the day, and increased 

water vapor mixing ratio by 2 g kg-1 at night and 0.5 K in the day, and increased vertical velocity 

by 0.005 m s-1 at night and decreased it by 0.002 m s-1. 

The vertical distributions of O3 mixing ratio and water vapor mixing ratio shows the 

vertical influence of CB. The west-east cross sections located at the northern, central, and 
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southern CB showed that O3 was confined within PBL, which reached 0.2 km at night and 

extended to 0.8-1.0 km in the day (tilted PBL). Due to mountains located over the west and north 

of CB and water (the Atlantic Ocean) over the east of CB, PBL was tilted with higher PBL over 

the west and north and lower PBL over the south in the day. The bay breeze was relatively 

stronger at the central and southern CB in the day than other locations and at night. 

Apart from field campaigns, this work shines a light on how to employ models to study 

the influence of CB on O3 mixing ratio thoroughly, since models provide us the flexibility to 

eliminate CB. This helps us to quantify the O3 concentration difference between with and 

without CB, even though the model error attributes some uncertainties to this estimation which is 

the limitation of this study. The merits are providing us a novel method to study the CB influence 

on O3 in three dimensions, which could not be deployed by field campaigns. As models are 

further developed, the model errors become smaller, analogous work in the future will be more 

reliable. 

In addition, due to the existence of CB, it is possible that cloud fraction increases or 

decreases. From the sensitivity experiment, CB increases the water vapor both night and day, 

which may increase the cloud fraction. In this case, cloud blocks sun light (solar radiation) 

during daytime, and less sun light arrives at the surface. It will reduce the photochemical 

reactions, which can be treated as the potential 2nd order effects beyond dynamics. On the other 

hand, the CB lowers the boundary layer, which may reduce the cloud coverage. To quantify the 

impacts of the CB on the cloud fraction, more experiments need to be done.  
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Chapter 3  

Long-range transported Canadian wildfire influence on ozone and particle pollution 
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This chapter is organized as follows: a description of the model configuration and study 

domain is given in section 3.2, followed by a discussion of the background, case study, and data 

sets in section 3.3. Results and analysis are given in section 3.4 and concluding remarks are 

presented in section 3.5. 

3.1 Study region, model configuration, and experiment design 

3.1.1 Study region 

The model study area includes southern Canada and the contiguous U.S. to cover the 

wildfire source region (Saskatchewan, Canada) and smoke transport paths (indicated by the 

yellow line in Fig. 1) and provide lateral boundary conditions for the nested domains. This outer 

domain is further resolved by two nested regions that progressively focus and center at the local 

study region, Baltimore-Washington, D.C. metropolis. Thus, three domains are established with 

the spatial resolution of 27 km (d01) and two nested domains at 9 km (d02) and 3 km (d03), 

respectively. The first nested domain (d02) is designed to capture the path of the smoke transport 

through the Great Lakes and the Ohio River Valley which borders the study region in the 

immediate Northeast and on the path of several space lidar data transect observations used for 

comparison. The second nested domain (d03) is selected to allow for focused and detailed 

comparisons with air quality investigation and observation over the Baltimore-Washington, D.C. 

metropolis. The model vertical grid uses 65 levels with a model top at 100 hPa and about 35 

levels were set below 700 hPa, in order to provide model output that would resolve the PBL. 
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Fig. 3.1 WRF-Chem study area with outer domain (southern Canada and the contiguous U.S.) 

two nested domains (white rectangle (d02) and red rectangle (d03)). The fire icons indicate the 

wildfire source locations and the yellow line indicates the approximate smoke transport path as 

can best be deduced from satellite observations. 

3.1.2 Model configuration and emissions 

3.1.2.1 Model configuration 

WRF-Chem version 3.9 has the air quality components consistent with the 

meteorological components (Grell et al., 2005; Fast et al., 2006). In this study, the gas-phase 

chemistry and aerosol module employs the Carbon Bond Mechanism-Version Z (CBM-Z, Zaveri 

and Peters, 1999) and Model for Simulating Aerosol Interactions and Chemistry (MOSAIC, 

Zaveri et al., 2008), respectively. The Yonsei University PBL scheme is selected (YSU, Hong et 

al., 1996; 2006). An extended discussion of the different model PBL parameterization schemes 

and their success in comparison with lidar observed PBL data in this study region is reported by 

Lopez et al. (2020). Model radiation treatment utilizes the Rapid Radiative Transfer Model for 

General Circulation Models short-wave and long-wave radiation schemes (RRTMG, Iacono et 

al., 2008), including the aerosol radiation feedback. 
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3.1.2.2 Emission data sets 

All the emission data sets used in this study are listed in Table 3.1. Wildfire emissions are 

the Fire INventory from NCAR (FINN). It is retrieved from satellite observations (MODIS) of 

active fires and land cover, together with emission factors and estimated fuel loadings to provide 

daily, 1-km resolution open burning emissions estimates (Wiedinmyer et al. 2006; 2011). 

Anthropogenic emissions are from the 2011 National Emission Inventory (NEI2011). The 

NEI2011 is a comprehensive and detailed estimate of the air emissions for criteria pollutants, 

precursors, and hazardous air pollutants. It includes point sources and area sources with 

resolution of 4 km, covering all the 48 contiguous states as well as selected regions of Canada 

and Mexico. Biogenic emissions are from the Model of Emissions of Gases and Aerosols from 

Nature (MEGAN), which is a modeling system for estimating the net emission of gases and 

aerosols from terrestrial ecosystems into the atmosphere (Guenther et al., 2006). It is driven by 

land cover, weather, and atmospheric chemical composition and has 1 km resolution globally. 

Dataset Full Name Resolution Parameters Availability 

FINN Fire Inventory from 

NCAR 

1×1km2 (H) 

hourly 

CO, CO2, NOx, SO2, VOC, 

PM, OC, BC, etc 

2002-2018 

NEI2011 National Emission 

Inventory (2011) 

4×4km2 (H) 

hourly 

CO, NOx, SO2, VOC, PM, 

OC, BC, etc 

2011 

Table 3.1. Emission data sets as inputs of WRF-Chem. 

H: Horizontal 

3.1.3 Experiment design 

Three numerical experiments were performed to investigate and quantify the impacts of 

different emissions (Table 3.2). The first numerical experiment (Ex1) is designed to quantify the 
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anthropogenic and biogenic emission influence on O3 and PM. This experiment helps us 

understand the O3 and PM pollution without the transported Canadian wildfire smoke. The second 

numerical experiment (Ex2) is conducted with only fire emissions to quantify the contribution of 

the Canadian wildfire smoke to the elevated O3 and PM pollution in the Mid-Atlantic region. The 

third numerical experiment (Ex3) includes anthropogenic, biogenic, and fire emissions, to evaluate 

the model performance with observations, since this is the closest situation to reality.  

Experiment Biogenic 

emission 

Anthropogenic 

emission 

Fire emission Purpose 

Ex1 MEGAN NEI2011 N/A anthropogenic and biogenic 

emission influences 

Ex2 N/A N/A FINN fire emission influences 

Ex3 MEGAN NEI2011 FINN anthropogenic, biogenic, and fire 

emission influences 

Table 3.2. Experiments designed to quantify the emission influences on the air quality. 

3.2 Data 

A summary of the observation data used in this study is given in Table 3.3 followed by a brief 

explanation of each data set. 

Dataset Full Name Spatial & 

Temporal 

Resolution 

Parameters Availability 

AirNow EPA AirNow hourly (H) O3, PM2.5, PM10, SO2, CO, 

NO2, VOC, NOx, NOy, lead, 

1980-2020 
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pressure, temperature, relative 

humidity, wind 

Ozonesonde   O3 mixing ratio, O3 partial 

pressure, altitude, water vapor 

mixing ratio, relative 

humidity, pressure, and 

temperature 

12 Jun 2015 

TROPOZ 

DIAL 

TROPospheric 

OZone 

DIfferential 

Absorption Lidar 

15m (V) 

6min 

O3 mixing ratio, pressure, 

temperature, etc 

10-12 Jun 2015 

Vaisala 

Ceilometer 

CL51 

 15m (V) 15s Attenuated backscatter, 

Cloud base height, 

Cloud depth 

10-12 Jun 2015 

MODIS Moderate 

Resolution 

Imaging 

Spectrora -

diometer 

1×1km2 (H) AOD Dec 

1999~Now 

 (Terra) 

May 

2002~Now 

 (Aqua) 

CALIOP Cloud-Aerosol 

Lidar with 

5km, 

40km/60m, 

120m (H/V) 

Extinction Coefficient, 

Vertical Feature Mask 

Apr 2006 
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Orthogonal 

Polarization 

Table 3.3. Observation data sets used in this study. 

H: Horizontal; V: Vertical 

3.2.1 Standard surface and upper air O3 data 

The U.S. Environmental Protection Agency (EPA) collects observation data from a 

network of surface O3 and PM monitoring and detection that covers a large spatial region within 

the U.S. in the last few decades (Dye et al., 2004). The EPA’s AirNow program provides real-

time forecast and observed surface air quality information across the U.S. over 1000 monitoring 

stations. AirNow data from surface stations in Maryland within the inner nested domain (d03) is 

used for the surface validation of the WRF-Chem model simulation.  

Ozonesonde relies on the oxidation reaction of O3 with potassium iodide in solution 

launched by the Howard University Beltsville Campus routinely (HUBC, 39.06°N, 76.87°W, 52 

meters above sea level, Komhyr et al., 1995). Ozonesonde observed O3 vertical profiles resolve 

the O3 vertical distribution and evaluate model simulated O3 vertical distribution. 

3.2.2 Ground-based remote sensing data 

This work uses data from a ground-based lidar and ceilometer: the NASA Goddard Space 

Flight Center TROPospheric OZone DIfferential Absorption Lidar (TROPOZ O3 lidar; Sullivan 

et al., 2014) and a Vaisala Ceilometer CL51. During the deployment, the TROPOZ and CL51 

were operated from HUBC. 

The TROPOZ O3 lidar has been developed in a transportable trailer to take routine 

measurements of tropospheric O3 (Sullivan et al., 2014). The laser wavelength is 289 nm, and the 

pulse frequency is 50 Hz to measure the differential absorption of atmospheric backscatter 
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profiles and retrieve the O3 number density (which can be converted to mixing ratio) vertical 

distribution whose native sampling resolution is 15 m with an effective vertical resolution 

between 100-500 m throughout the free troposphere and boundary layer. Its O3 vertical profile 

extends from 100 m above the surface to 12 km. But this study only employs TROPOZ O3 

profiles from 0.1025 km to 2.5 km, where its data are available. TROPOZ O3 lidar is a charter 

member of the ground-based Tropospheric Ozone Lidar NETwork (TOLNET) which is 

designated to improve the current number of tropospheric O3 profiles (Newchurch et al., 2016; 

https://www-air.larc.nasa.gov/missions/TOLNet/). In this study, TROPOZ O3 profiles are used to 

resolve the O3 profile temporal evolution and evaluate model simulated O3 vertical distribution.  

Vaisala Ceilometer CL51 is designed to measure the total backscatter profile from the 

atmosphere and reach up to cirrus cloud heights. The aerosol backscatter profile could be 

retrieved after applying the correction for the molecular atmosphere and filtering clouds out. It is 

a commercial lidar that uses a low power indium gallium arsenide laser diode (InGasAs) laser at 

the wavelength of 910 nm and is primarily used for cloud base reporting with its range reaching 

up to 13 km. It is one of the candidate instruments for mixed layer height detection and reporting 

over EPA’s Photochemical Assessment Monitoring Stations (PAMS, Caicedo et al., 2020). CL51 

backscatter profile observations have been used to study the evolution of the PBL and indicator 

for air mass change associated with atmospheric dynamics (Carroll et al. 2019). In this study, 

Ceilometer CL51 data is used to indicate the approximate range of the transported wildfire 

smoke and its mixing down into the surface as well as to visually indicate the PBL height 

(PBLH) evolution 
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3.2.3 Satellite-based data:  AOD and VFM profile  

The Moderate Resolution Imaging Spectro-radiometer (MODIS) instruments aboard 

Terra (launched in December 1999) and Aqua (launched in May 2002) satellites measure 

spectral radiance in 36 channels, with resolutions ranging from 250 m to 1 km at nadir. Three of 

these channels (470 nm, 660 nm, and 2130 nm) are used to retrieve standard AOD, which is 

interpolated in the mid-visible spectrum (550nm). MODIS AOD is reported to have an 

uncertainty of ± (0.05 + 0.15τ) over dark land and ± (0.04 + 0.10τ) over ocean, where τ is the 

MODIS retrieved AOD (Levy et al., 2015). In this work, MODIS aerosol Level 2 Collection 6.1 

products (MOD_04 and MYD_04 from Terra and Aqua, respectively) are used to track the large-

scale smoke transport and compare with model simulations. 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength 

polarization active lidar aboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observations, Winker et al., 2009). CALIOP performs global profiling of 

aerosols and clouds in the troposphere and lower stratosphere. CALIOP Level 2 processing 

involves separating the aerosol and cloud layers followed by determining the aerosol types 

(smoke, polluted dust, clean continental, polluted continental, dust, and clean marine) and cloud 

ice-water phase (Liu et al., 2004; 2009; Omar et al., 2009; Winker et al., 2009). The CALIOP 

Vertical Feature Mask (VFM) Level 2 products are selected to track the smoke vertical 

distribution and evaluate model vertical profile simulations of the aerosol mass concentration. 
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3.3 Results 

3.3.1 Case description: wildfire event of 6 June 2015 

 

Fig. 3.2 The PM2.5 mass flux rate of FINN fire emission at 2200 UTC on 6 June 2015. 

This case is a long-range transported smoke generated by wildfires over the western 

Canada. This Canadian wildfire event was ignited by lightning at the southwest of the Great 

Slave Lake and south of the Lake Athabasca in the Alberta and Saskatchewan Provinces on 6 

June 2015 (Canadian Interagency Forest Fire Centre [CIFFC], 2020). Abnormally warm and dry 

weather readily resulted in conditions that favor lightning-induced wildfire over the boreal forest 

in Canada (Dreessen et al., 2016). The fire source region was identified from the FINN fire 

emission PM2.5 mass flux rate, which was over 1.0 μg m-2 s-1 at 2200 UTC on 6 June 2015 (Fig. 

2).  
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3.3.2 Long-range transport of fire-induced smoke 

3.3.2.1 Smoke horizontal transport from the source to the study region 

A combination of MODIS AOD and CALIOP VFM profile imagery as well as model 

simulations are used to diagnose and reveal the three-dimensional (3D) long-range transport path 

of the smoke from the source region to the U.S. The shortcomings of the polar-orbiting satellite 

imagery that are limited to only twice daytime snapshots daily are augmented by the capability 

of model simulations with fine integral time intervals and output results from every hour to a few 

minutes. Careful analysis of these satellite images and model simulations revealed four key 

regions as the smoke was transported from Canada to the U.S. (not shown here): the source 

region, Lake Michigan, Ohio River Valley, and Mid-Atlantic and Northeast. 

After emitted from the wildfire, the smoke was lifted via positive buoyancy, driven by the 

fire radiative power as described in Peterson et al. (2013) and Freeborn et al. (2014). Associated 

physics, due to radiative cooling combined with efficient heat transport by convection, led to a 

rapid decay of temperature above the burning area. The WRF-Chem model simulates this 

process in which smoke emissions are lifted to a certain vertical model level due to heat flux 

(Grell et al., 2011). In the WRF-Chem plume rise module, land cover types include tropical 

forest, boreal forest, Cerrado (or woody savanna), and grassland (or cropland), each of which has 

its own minimum and maximum heat fluxes. For example, boreal forest has the minimum and 

maximum heat fluxes of 30.0 kW m-2 and 80.0 kW m-2, respectively. Thus, the plume injection 

height in the model is determined by a combination of factors including the land cover types, 

their fractions in each model mesh, and burned area. The spatial span of the wildfire source 

region was 105° W - 115° W and 55° N - 60° N, which included multiple fire events, leading to 

the tremendous amount of smoke emissions. At the time, the northwest prevailing winds and a 
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cold front impacted the fire source region from the northwest advecting the smoke further 

southeast as can be seen in the daily weather maps available from NOAA (available at  

https://www.wpc.ncep.noaa.gov/dailywxmap/index_20150606.html). 

 

Fig. 3.3 Panels (a-c): MODIS three-band color overlay images (band 1—red, band 4—green, and 

band 3—blue) from Terra on 8, 9, and 10 June 2015. Red and green dots indicate the locations of 

fires detected by MODIS at daytime and nighttime, respectively. Panels (d-f): MODIS AODs at 

550 nm. Panels (g-i): WRF-Chem simulated surface PM2.5 mass concentration (Ex2). The pink 

rectangles indicate where the smoke front is. Panels (j-l): CALIOP-derived vertical feature mask. 

Panels (m-o): WRF-Chem simulated PM2.5 mass concentration vertical cross section along the 

CALIPSO ground track. The inset on the upper right shows the CALIPSO ground track (red 

curve). 

The model simulation (Ex2) revealed that the enhanced surface PM2.5 mass concentration 

contributed by smoke was about 15 μg m-3 in Minnesota on 8 June (Fig. 3.3a, d, g). 9 June, the 

fire-induced smoke arrived at the Ohio River Valley, located over Indiana and Ohio. The surface 

wind was west and wind speed was 10 m s-1 (Fig. 3.3b, e, h). Nevertheless, the wind direction 
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shifted towards south at midnight on 10 June and lasted for 12 h before shifting back to 

southwest at noon on 10 June. Because of the wind shift, the smoke was trapped over the Ohio 

River Valley for more than one day, leading to the stagnant smoke and mixing with the local air 

pollutants. Despite both wet and dry deposition, the PM concentration kept stable and did not 

decrease much. On 10 June, the transported smoke arrived at the Mid-Atlantic region (Fig. 3.3c, 

f, i). An opposing flow from the southeast over the region blocked the smoke-filled air mass and 

concentrated it along a relatively narrow band region as observed on 11 June. 

3.3.2.2 Evolution of the smoke-laden air vertical structure 

CALIOP data was used to track the smoke vertical distribution as it was transported to 

the Mid-Atlantic region. The CALIOP VFM product which classifies aerosol types, e.g., smoke, 

dust, polluted dust, clean continental, polluted continental, and clean marine is shown in Fig. 

3.3j-l. The black color indicates smoke. 

The CALIPSO ground track passed over the southeast of Wisconsin and CALIOP 

detected the smoke in the afternoon of 8 June, around 0830 UTC (1330 CDT1). The smoke 

transport path overlaid with the CALIPSO ground track is indicated with a pink line in Fig. 3.3g 

and as a pink bar in Fig. 3.3j & m. The smoke between 45° N and 50° N was about 5 km deep, 

similar to the simulation with FINN fire emissions (Ex2) results (Fig. 3m). In addition, the model 

simulation showed the continuous smoke vertical distribution along the CALIPSO ground track. 

As the smoke drifted further south into the U.S., with the bulk of it over the Mid-Atlantic, 

CALIOP showed very little smoke detected, primarily because clouds blocked detection of the 

smoke beneath (Fig. 3.3k). 

 
1 CDT: Central Daylight Time, CDT = UTC - 5:00 
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The CALIOP data intercepted the smoke layer as it passed Lake Michigan and arrived 

over the Mid-Atlantic showing a general “settling” of the smoke plume layer to about 3 km deep 

(pink bar, Fig. 3l). The model simulation captured the general vertical smoke transport compared 

with the CALIOP product, as well as the plume height (Fig. 3.3o). 

3.3.3 Local O3 and PM enhancement 

3.3.3.1 Local wind profile evolution 

 

Fig. 3.4 915 MHz wind radar and WRF-Chem simulated horizontal wind speed and direction 

vertical profiles at three sites on 8-12 June 2015. The top row is the wind radar observation. The 

bottom row is the WRF-Chem simulation. (a) and (e), Piney Run; (b) and (f), Beltsville; (c) and 

(g), Horn Point; (d), wind difference between Beltsville and Horn Point; (h), three site locations 

on the map. 

Transport of the smoke plume in any numerical weather model primarily depends on the 

quality of the 3D wind simulations, at least on the average large-scale character. Small scale 

perturbations are not easy to reproduce by a regional model. The simulated vertical wind profile 

is evaluated using 915 MHz wind radar profiler observations. Figure 3.4 shows the observed and 

simulated vertical wind profiles on 8-12 June at Piney Run, Beltsville, and Horn Point. Also, 
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shown is the observed vertical wind profile differences between Beltsville and Horn Point (Fig. 

3.4d). The radar profile data is missing at 0.6 km and 1.3 at Piney Run and Beltsville, and 1.6 km 

at Horn Point. The Piney Run station is located in the rural area over a mountain range in the 

Appalachian mountains. The Beltsville station is located in the suburban area between Baltimore 

and Washington D.C., and the western shore of the Chesapeake Bay. While the Horn Point 

station is in the coastal area at the eastern shore of the Chesapeake Bay (Fig. 3.4h). 

The wind speed at three stations appeared low near the surface and increased with 

altitude, from 10.0 m s-1 at 0.3 km to over 20.0 m s-1 at 2.0 km on 8-9 June. Starting late 9 June, 

the wind speed further decreased to 2.0-4.0 m s-1 from the surface to 2.0 km. This decrease was 

pronounced over Beltsville and Horn Point veering from south near the surface to west aloft.  

The wind speed followed significant diurnal variations, with low wind speed near 0000 UTC and 

high wind speed at 0600 UTC. The overall wind direction was west, shifted to south close to the 

surface on 8-12 June, and this is the reason that the fire smoke was advected from the Mid-

Atlantic region to the Northeast. 

The wind direction at Beltsville was south near the surface while shifted to west above 

0.6 km. Its wind speed was lower than Piney Run, while they had similar wind patterns (Fig. 

3.4b, f). The strongest wind happened on 8 June, with relatively low wind speed around 10.0 m s-

1 from surface to 0.3 km, and reached 20.0 m s-1 at higher levels. Other than that, the wind speed 

was around 10.0-12.0 m s-1 on 10-12 June. Its wind speed diurnal variation was similar to Piney 

Run. 

The wind direction at Horn Point was south near the surface and shifted slightly to west 

above 0.3 km (Fig. 3.4c, g). Its wind speed was lower than Piney Run and Beltsville on 8 June. 

While it had stronger wind afterwards, due to the contribution of the south wind over CB. It also 
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maintained the wind speed diurnal variation but with smaller wind speed contraction between 

daytime and nighttime. This was caused by the water body over CB. The high relative heat 

capacity of water kept the surface temperature change smaller than the land surface between 

daytime and nighttime. 

The vertical wind profile differences between Beltsville and Horn Point show north 

winds below 0.3 km, indicating stronger south wind over Horn Point while the differences were 

east during daytime and west or south at nighttime. This change was influenced by the 

occurrence of the bay breeze which frequently occurs (Loughner et al., 2011). The stronger and 

opposing winds at Horn Point compared to Beltsville acted in such a way to block the efficient 

air mass advection and transport from west-to-east and lead to stagnation of smoke. 

The WRF-Chem simulated winds at these three stations agree with the observed winds 

evolution (Fig 3.4e, f, g). The wind direction, strength, and character as well as the periodicity 

and strength of the lowest 2 km of the troposphere is simulated well and hints at a correct 

simulation of the smoke advection and timing. The model-observation comparison is a reason for 

strong confidence on the validity of the WRF-Chem smoke transport location and character used 

here for discussion of its impact on O3 and PM measurements at surface and profile over the 

Beltsville station. 

3.3.3.2 Surface O3 diurnal variation 

The observed and simulated surface O3 mixing ratios show significant diurnal variations. Ex1 

and Ex3 simulation results were employed to analyze the impacts of smoke on the O3 diurnal 

variation. The WRF-Chem model simulated surface O3 mixing ratio was generated by averaging 

three by three model meshes surrounding the selected station (nine meshes in total). The 

TROPOZ O3 lidar data is included for comparison purposes. This lidar profile starts at 102.5 m 
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above ground level and has uncertainty of about 10 % (Sullivan et al., 2014). What is plotted is 

an average of the first 10-levels of TROPOZ data (102.5-237.5 m). The larger TROPOZ data 

compared to AirNow surface measurements is expected as the TROPOZ O3 profile shows O3 

mixing ratio increased from the surface to 500 m in Fig. 3.7d, but is indicative of near-surface O3 

concentration. 

Fig. 3.5 Diurnal variations of the surface O3 mixing ratio of EPA AirNow, TROPOZ and WRF-

Chem simulation at sites: (a) Hagerstown (rural), (b) Edgewood (coastal), and (c) Beltsville 

(suburban) on 12 June, 2015. The red shaded areas indicate standard deviations of the WRF-

Chem simulation; and surface O3 concentration daily averages are denoted as dashed lines. The 

location of the station is indicated by a red dot on a map in the upper right corner. Pearson 

correlation coefficients and RMSEs between EPA AirNow and WRF-Chem simulation are 

provided. 

The surface O3 diurnal evolutions on 12 June at Hagerstown, Edgewood, and Beltsville 

are shown in Fig. 3.5. The diurnal variability shows generally a similar trend and the daily 

average values are very small. At Hagerstown, the magnitude and diurnal pattern of model 

simulated and AirNow observed O3 mixing ratio diurnal variations agree well, with slight and 

consistent model overestimation during daytime (Fig. 3.5a). The model-observation Pearson 

correlation coefficient and root mean square error (RMSE) was 0.99 and 3.02 ppbv, respectively. 

At Edgewood, a well-known and significant O3 pollution station (see Crawford and Pickering, 

2014), the model simulated surface O3 agreed well with the observed O3, although the model 
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simulated O3 diurnal variation was relatively smooth. The model-observation Pearson correlation 

coefficient was 0.96 and RMSE was 5.96 ppbv. The daily model averaged O3 mixing ratio was 

55 ppbv. The comparison between Hagerstown and Edgewood showed the similarities and 

differences between two stations. The similarity was the O3 mixing ratio diurnal variation, while 

the difference was the maximum O3 mixing ratio. The daytime maximum O3 mixing ratio was 70 

ppbv at Hagerstown, while 85 ppbv at Edgewood. Another difference is the time when the 

maximum O3 occurred and how long it lasted. At Hagerstown, the daytime O3 mixing ratio was 

very smooth after reaching maximum at 1600 UTC and lasted until the end of day (1200 EST, 

Fig. 5a). However, at Edgewood, the O3 mixing ratio reached the maximum at 1600 UTC (1200 

EST) and lasted until 1800 UTC (1400 EST), then decreased from the maximum of 85 ppbv to 

60 ppbv (Fig. 3.5b). 

The diurnal variation at Beltsville includes TROPOZ O3 lidar, EPA AirNow, and 

simulations of Ex1 and Ex3. Ex1 simulation underestimated the O3 mixing ratio significantly due 

to the lack of fire emissions. Its maximum O3 mixing ratio was only 25 ppbv at daytime, while 

the TROPOZ and AirNow maximum observed O3 mixing ratio was 120 ppbv, which is due to its 

suburban location. Previous studies reported that the O3 concentration in urban regions was 

elevated in the presence of the wildfire smoke (Brey et al., 2016). Dreessen et al. (2016) and 

Sullivan et al. (2017) reported that the O3 concentration increased after the arrival of the 

Canadian wildfire smoke over the Baltimore-Washington D.C. metropolis. Brey et al. 2016 

reported that the enhanced O3 was due to the mixture of smoke particles with local NOX 

emissions. After considering the FINN fire emissions, Ex3 matched the observed O3 mixing ratio 

much better, but still underestimated the O3 mixing ratio from 1500 to 1900 UTC. The Pearson 

correlation coefficient was 0.96, while the RMSE was 17.19 ppbv. 
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3.3.3.3 Vertical profile 

In this section, the evolutions of aerosol and O3 vertical profiles at Beltsville are 

discussed. We will focus on the model performance evaluation and its comparison with 

observations and the onset of the long-range transported smoke mixing-down into the PBL and 

influence on the local air quality. 

3.3.3.3.1 Smoke vertical profile evolution 

 

Fig. 3.6 Time series of ceilometer CL51 aerosol total attenuated backscatter at 910 nm (a-c) and 

WRF-Chem PM2.5 mass concentration (d-f) on 10-12 June 2015. The pink curve is denoted as 

the model simulated PBLH.  The upper right inserted map shows the location of the site (red 

dot). 
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The ceilometer CL51 aerosol backscatter profiles and the WRF-Chem simulated PM2.5 

mass concentrations of Ex1, Ex2, and Ex3 on 10-12 June are shown in Fig. 3.6. The plots clearly 

show smoke arrived on 10 June at 2-4 km and slowly descended and later mixed down into the 

PBL, meanwhile convective boundary layer grew, and wildfire smoke and precursors entrained 

into it (Fig. 3.6a and d). Eventually it was reported as increased BC concentration measurements 

reported by Dreessen et al. (2016). The elevated BC concentration was consistent with the 

growth of the PBL and merging with the smoke laden layer. The strength of the lidar backscatter 

was indicative of the increased particle concentration as it started to mix down to the PBL. 

The model simulations did capture the large-scale structure revealed by the ceilometer 

observations: the continued descent and intrusion into the PBL and down to the surface. The 

model shows air was clean at low levels prior to 1600 UTC then smoke concentration increased 

in the afternoon on 10 June. The simulated PBL reached 2 km, where the smoke layer was 

located, supporting the idea that the convective overturning was responsible. While the general 

large-scale trend of the smoke layer descent and PBL growth and decay was well simulated by 

the model. 

The descent in altitude of the smoke layer continued on 11 June (Fig. 3.6b), as would be 

expected following the shallow nocturnal PBL development. The smoke laden air mass remained 

below 1 km on 11 June. Starting 0000 UTC 12 June, a clear lifting and detachment from the 

surface of the smoke carrying air mass was noticed. This lifting continued through the night from 

1 km to 2 km by sunrise (1200 UTC) and was associated with the arrival of the air mass from the 

south due to increased wind speeds discussed above. The model captured the continued PBL 

collapse and PBL growth on 11 June and later the arrival of the air mass and associated PM2.5 

mass concentration. It did not capture the small-scale structures, like the high aerosol 
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concentration indicated by the ceilometer between 1-2 km altitude throughout the night of 12 

June. The simulated PBL development on 12 June did not perform well, collapsing earlier than 

the previous two days. 

Ex2 shows that the upper boundary of the smoke particles reached 3.5 km, consistent 

with the ceilometer backscattering observations (Fig. 3.6d). The arrival of the smoke laden air 

mass on 10 June, the continued descent of the layer, and the overall pattern agreed with the 

observations. The nocturnal and daytime PBL development on 11 June, and the pattern of the 

subsequent lifting of the smoke laden air mass on 12 June were indicated in the model 

simulations. However, while the ceilometer data indicated a similar smoke concentration within 

the daytime well mixed within the PBL on 10-11 June the model indicated a much lower 

concentration (5 μg m-3) on 11 June compared with 10 June. 

Similar trends in the general descent of the atmosphere early on 10 June followed by 

lifting associated with air mass flow over the measurement location were shown by the 

simulations of Ex1 and Ex3. Ex1 did not show the level of concentrations that would indicate 

smoke particles (Fig. 3.6g, h, i). However, the model captured the surface anthropogenic 

pollutants below 0.2 km with concentration around 10 μg m-3, much lower than the smoke 

particle concentration. On the other hand, Ex3 shows a much better performance in matching the 

ceilometer observations and overall particle vertical distribution, consistent with what is 

expected to be contributed from smoke particles added to local pollutants (Fig. 3.6j). 

3.3.3.3.2 O3 vertical profile evolution 

Along with WRF-Chem simulations, the O3 mixing ratio vertical profile analysis employs 

TROPOZ O3 lidar measurements at the Beltsville station on 12 June, which was six days later 

after the wildfire event in Canada on 6 June. Figure 3.7a shows TROPOZ O3 mixing ratio 
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measurements and the WRF-Chem simulated PBLH (pink curve in the Fig. 3.7a). No data was 

collected from 0900-1400 UTC and above cloud base. An enhanced O3 layer (~1.2 km) at and 

prior to sunrise was corresponding to the elevated smoke layer (Fig. 3.7a). The WRF-Chem 

simulated O3 mixing ratio vertical profiles at this time show an overall good agreement with the 

TROPOZ lidar measurement trends, including the elevated O3 signal at 1.2 km (Fig. 3.7b).

 

Fig. 3.7 O3 mixing ratio vertical profiles from TROPOZ and WRF-Chem model on 12 June. (a) 

TROPOZ O3 mixing ratio vertical profile time series and the WRF-Chem simulated PBLH (pink 

curve); (b) model O3 mixing ratio vertical profile time series from Ex3; (c) Overall TROPOZ 

(blue and gray) and WRF-Chem (pink, Ex1) O3 mixing ratio vertical profiles; (d) Overall 

TROPOZ (blue and gray) and WRF-Chem (pink, Ex3) O3 mixing ratio vertical profiles. The 

upper right inserted map shows the location of the site (red dot). 

The individual TROPOZ O3 mixing ratio profiles and mean together with WRF-Chem 

simulated O3 mixing ratio vertical profiles and mean are shown in Fig. 3.7c and d. The O3 

mixing ratio vertical profiles varied with time and altitude. The simulated O3 mixing ratio 

increased from 30-40 ppbv near the surface to 70-80 ppbv at 1 km, followed by a smooth 

decrease to 50 ppbv at 3 km. The standard deviations of the simulated O3 vertical profiles varied 

5-10 ppbv. Similarly, the ozonesonde O3 mixing ratio at 0800 UTC 12 June also increased 

gradually from 15 ppbv at the surface to 70 ppbv at 1.5 km, then decreased to 50 ppbv (Fig. 3.8). 

O3 mixing ratios generally increased with altitude near the surface, mainly because of the lack of 
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chemical loss in the upper troposphere (water vapor and hence low HOx concentrations). The 

model simulated PBLHs were 0.1-0.3 km (Fig. 3.8), which confined water vapor and HOx 

vertical mixing. The WRF-Chem simulation profiles, although revealed a similar trend, were 

about 10 ppbv or less over the ozonesonde data. The largest difference was centered around 1-

1.4 km, where the narrow wind sheared, aerosol/smoke enhanced, layer seen in the ceilometer 

data above (Fig 3.7c). The lidar data agreed with the ozonesonde values at about 0.3-0.5 km, the 

lowest available data points for lidar, and increased to 70 ppbv at 1 km, then decreased sharply to 

20 ppbv at 2 km followed by an increase to almost 50 ppbv at 2.5 km. However, the WRF-

Chem-TROPOZ agreement centered at 1-1.5 km was more than what the ozonesonde measured 

by about 15 ppbv. This difference could be caused by balloon drift out of the area due to the 

increased shear and wind speed present at the time. While the TROPOZ O3 mixing ratio sharply 

decreased at 1.4-2 km, which was primarily caused by inability of O3 lidar to probe in heavy 

aerosol and/or cloud layers because of the very low signal to noise ratio. Nevertheless, despite 

the elevated enhancement and the trend with altitude, the observed and simulated O3 mixing 

ratios are fairly in agreement. 
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Fig. 3.8 O3 mixing ratio vertical profiles of WRF-Chem (thin red curves, Ex3), ozonesonde 

(thick green curve), and TROPOZ O3 lidar (thin grey curves) at 0800 UTC 12 June 2015. The 

WRF-Chem simulated O3 mixing ratio profile mean and standard deviation are shown as a red 

thick curve and shade, respectively. The TROPOZ O3 mixing ratio profile mean and standard 

deviation are shown as a blue thick curve and shade, respectively. The orange stars denote the 

WRF-Chem simulated PBLH for the corresponding O3 mixing ratio profiles. The upper right 

inserted map shows the location of the Beltsville site (red dot). 

3.4 Concluding Summary 

This study focuses on the Canadian wildfire smoke event on 6 June 2015, and its 

transport pathway and influence on the local/regional air quality (O3 and PM) in the U.S. An 

integrated study using WRF-Chem model simulations, ground-based observations, and satellite 

data identifies the source of the wildfire in Alberta and Saskatchewan provinces of Canada, its 

transport path through the U.S.-Canada border, its stagnation over the Ohio River Valley, and 

final arrival and manner of mixing to the surface over the sampling site in Beltsville, Maryland. 

 The key findings include characterization of the large-scale long-term smoke transport 

and the local air pollution impacts. 

The FINN fire emission revealed significant wildfire emission was ejected into the 

atmosphere at 2200 UTC 6 June near south of Lake Athabasca in Saskatchewan Province, 

Canada. The smoke was transported and detected over North Dakota and Minnesota on 7 June 

and drifted further south arriving over the Ohio River Valley by 9 June. The smoke transport 

path changed from south heading to east and stagnated, owing to the wind direction zonal change 

before it crossed the Appalachian Mountain region and started to mix-down to the surface over 

Beltsville late on 10 June and transported out further east on 11-12 June. According to the smoke 
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vertical structure, the simulated smoke vertical profiles agreed well with the CALIOP VFM 

measurements, both of which showed the smoke plume height around 3 km at the Mid-Atlantic. 

Due to the block of clouds, the CALIOP did not detect the smoke continuously on 9 June. 

Fortunately, the model simulation reproduced the smoke vertical profile along the CALIPSO 

ground track. 

Ground-based profile measurements of wind and O3 were used to interrogate the model 

results. The wind radar profile evolution observed at Piney Run, Beltsville, and Horn Point 

showed the temporal wind velocity vertical variation and associated diurnal cycle. On 8-12 June, 

the wind direction was west above 0.5 km and wind speed reduced gradually from 20 m s-1 to 10 

m s-1. The model simulated wind direction and speed profiles generally agreed well with the 

wind radar observations, as well as diurnal cycle, which led to strong confidence on the validity 

of the WRF-Chem model simulated smoke transport. At Piney Run, the west wind speed was 10-

20 m s-1, due to its location over mountains. At Beltsville, the wind speed was 10-12 m s-1 on 10-

12 June when smoke was transported to this region. The wind direction shifted from west to 

south and favored the smoke further transported to the Northeast. Surface measured O3 diurnal 

variation showed that the general tendency of the WRF-Chem model simulated O3 agreed with 

the EPA AirNow surface O3. Three surface stations were selected for quantification and 

comparison of the modeled and measured impact by the aged smoke on the O3 concentration, 

i.e., Hagerstown, Edgewood, and Beltsville. Hagerstown, as a rural station, was less impacted by 

the smoke on its O3 concentration. Its daytime maximum was 70 ppbv which was slightly higher 

than the day without smoke. Edgewood, close to the Chesapeake Bay, reached the maximum O3 

mixing ratio of 85 ppbv in the day, exceeding the NAAQS O3 standard. Beltsville had the highest 

O3 peak among three stations, which reached 120 ppbv due to the aged transported smoke mixed 
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with the local urban pollutants. Overall, the model simulated surface O3 diurnal variation 

maintained the high correlation with EPA AirNow surface O3 observations over three stations. 

Their Pearson correlation coefficients were over 0.95 and RMSEs were as low as 5.0 ppbv. 

These results demonstrate the WRF-Chem model simulation skill and show great performance in 

capturing the O3 mixing ratio diurnal variation. 

Aerosol backscatter data from ceilometers revealed that transported Canadian wildfire 

smoke intruded into the Baltimore-Washington D.C. area from 3.5 km at 0000 UTC on 10 June. 

Smoke entrained to the PBL and mixed with the anthropogenic pollutants and the model 

experiments (Ex1 and Ex2) indicated that the smoke particle contributes about 60 % to the total 

particle pollution. The contribution was slightly reduced the next night (~50 %) attributed to the 

decreasing vigor in mixing and development of the shallow stable boundary layer. The role of 

the mixing and subsequent cleansing associated with a cold frontal passage was well captured 

and adequately simulated including the formation of an elevated shear-generated smoke layer.   

The TROPOZ O3 lidar observed O3 vertical profiles at Beltsville from 1400 – 2400 UTC 

on 12 June matched the WRF-Chem simulated O3 mixing ratio above 2 km well while the model 

underestimated the lidar data below 2 km. On the other hand, inclusion of anthropogenic, 

biogenic, and fire emissions (Ex3) in the simulation captured the O3 mixing vertical profiles 

below 1.5 km well, compared with both TROPOZ O3 lidar and ozonesonde observations. 

Based on the previous study by Loughner et al., (2011), the model simulations with 

resolution of 1.5 km and 0.5 km resolve the boundary layer and the structure of the bay breeze 

better than coarser resolutions, i.e., 4.5 km and 13.5 km. The model resolution of 3 km in this 

study well resolved boundary layer, as well as bay breeze. Finer resolution should be better to 

resolve fine structures. 
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Finally, this study employed the state-of-the-art lidar observed O3 vertical profiles to 

evaluate the mesoscale modeling simulations of an important long-range transported smoke 

event. Such interrogation of model and performance in the PBL is important because of its 

impact on air pollution and human health. It also utilized the FINN fire emission, coupled with 

the anthropogenic emissions and biogenic emissions, to track and reproduce the smoke transport 

pathway leading to altered surface measurements. Further, by conducting three different 

numerical experiments, the study quantified the smoke influence on local air pollution in both O3 

and PM. However, the model simulated O3 vertical profile did not match the O3 lidar perfectly. 

In order to improve model performance on simulating the O3 vertical profile, assimilating O3 

lidar observation into the WRF-Chem model is the future study. 
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Chapter 4  

Assimilating Ozone Lidar Profile and AirNow Surface Ozone Observations over the eastern US 

during a Canadian Wildfire Smoke Intrusion Event using WRF-Chem/DART  

  



 

 
 

76 

4.1 introduction 

The air quality forecast is one application of the chemical weather forecasts, which rely 

on coupled forecast model-data assimilation systems that ingest a combination of remotely 

sensed and in situ atmospheric composition observations together with conventional 

meteorological observations (Mizzi et al., 2016). The application of data assimilation to 

atmospheric chemistry is more recent because numerical deterministic models of atmospheric 

chemistry have been used routinely for air quality forecasting only since the mid 1990s 

(Carmichael et al., 2008; Bocquet et al., 2015). The chemical data assimilation involves 

reanalysis to produce air pollutant concentration maps, inverse modeling to improve (or identify 

errors in) emission rates, boundary conditions, and model parameters. Even built on the 

meteorological data assimilation, the chemical data assimilation can be still challenging due to 

the interactions among meteorological and chemical variables (Bocquet et al., 2015). A large 

range of state space variables, such as O3 (Elbern and Schmidt, 2001; Chai et al., 2007), nitrogen 

dioxide (NO2, Liu et al., 2017), carbon monoxide (CO, Mizzi et al., 2016), aerosols (particulate 

matter, PM), and aerosol optical thickness (AOT) had been assimilated into models (Bocquet et 

al., 2015).  

The chemical transport models (CTM) use meteorological fields as inputs and coupled 

chemistry meteorology models simulate meteorology and atmospheric chemistry jointly (i.e., 

WRF-Chem). The AOT retrieval products from satellites and ground-based instruments are 

assimilated into the WRF-Chem model from the previous studies. Since AOT is not a 

state/analysis variable in models, the observation forward operator links AOT with the model 

state variables (i.e., aerosol mass concentration). A new one-step algorithm was developed to 

assimilate MODIS AOT by analyzing the 3-D mass concentration of 14 aerosol variables from 
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the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model within the National 

Centers for Environmental Prediction (NCEP) operational Gridpoint Statistical Interpolation 

(GSI) 3DVAR meteorological DA system coupled to the WRF-Chem model. Both the AOT 

forward model and corresponding Jacobian model were developed within the Community 

Radiative Transfer Model (CRTM). The results of the analysis were cross validated with 

CALIOP and AERONET measurements (Liu et al., 2011). Similarly, the same GSI 3D-VAR 

with WRF-Chem system was employed to assimilate the surface PM10 observations (Jiang et al., 

2013). In addition to the variational methods (3D-VAR, 4D-VAR), the sequential methods and 

hybrid methods were also employed to assimilate AOT and surface PM concentrations (Schwartz 

et al., 2014).  

Apart from the particle and AOT chemical data assimilation, the gas phase chemical data 

assimilation is also one big aspect, i.e., O3, NO2. Messina et al. (2011) assimilated both O3 and 

NO2 using the Optimal Interpolation method. They employed an Observing System Simulation 

Experiment (OSSE) approach and showed that NO2 data assimilation was successful in 

correcting errors because of NOX emission biases. However, the NO2 assimilation increased the 

O3 bias at night due to the nocturnal O3 and NO2 chemical reactions.  

The traditional Ensemble Kalman Filter (EnKF) assumes the error distributions of both 

the source prior estimates and observations are Gaussian. While chemical species values are 

bounded, which are equal to or greater than zero. Its error distributions may display non-

Gaussian distributions. In terms of solving the non-Gaussian distributions, the following data 

assimilation techniques exist but still need to put more effort into their further developments. The 

particle filter allows no assumptions regarding error distribution for the prior model state. The 

particle filter provides weights to ensemble members (denoted particles), which reflect the 
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likelihood of observations given each member (van Leeuwen, 2009). The marginal adjustment 

rank histogram filter is introduced by Anderson (2020) for non-Gaussian prior distributions, non-

Gaussian likelihoods, and bounded state variables. 

The nonlinearities of the atmospheric chemistry data assimilation problem related to both 

the nonlinear reaction equations and the uncertainties in transport of the different species make 

the implementation more complex and the computational cost of the data assimilation more 

expensive (Carmichael et al., 2008). Some of the important challenges in chemical data 

assimilation include: 

(1) memory shortage (~ 100 concentrations of various species at each grid points, check-pointing 

required). 

(2) stiff differential equations (> 200 various chemical reactions coupled together, lifetimes of 

different species vary from seconds to months). 

(3) chemical observations are limited, compared to meteorological data. 

(4) emission inventories are often outdated, and uncertainties are not well-quantified. 

(5) uncertainties resulted from the tracer transport. 

4.2 Motivation  

We investigated the local and remote air pollutants to the D.C.-Maryland-Virginia region. 

The WRF-Chem model simulations were evaluated using satellite observations (i.e., MODIS, 

CALIOP) and ground-based observations (i.e., AirNow, wind radar, radiosonde, ozonesonde, O3 

lidar). The model performance evaluation showed some agreement with observations (i.e., wind, 

surface O3), but as well some disagreement with O3 lidar. The disagreement is located above 1.5 

km. This disagreement between model and O3 lidar motivated us to assimilate the O3 lidar 

observations into models to improve model forecast (Chapter 3). This disagreement leads us to 
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employ the data assimilation technique, specifically the EnKF method, to assimilate both 

meteorological observations and O3 observations. To the best of our knowledge, this will be the 

first assimilation attempt of both meteorology and lidar O3 data coupled together. 

4.3 Model configuration, study domain, assimilation method, and datasets 

4.3.1 Model configuration 

The model employed in this study is WRF-Chem version 3.6, and the data assimilation 

method is the Ensemble Adjustment Kalman Filter (EAKF), developed by Anderson (2001, 2003). 

4.3.2 Study domain 

 

Fig. 4.1 WRF-Chem model domain setup. The mother domain includes most of Canada and 

continental US, in order to cover both the wildfire source region and our study region. The nested 

domain includes the eastern US. The fire icons indicate the wildfire source region in Canada.  

Two domains are involved in the data assimilation (Fig. 4.1). The outer domain (d01) 

covers the wildfire source region in Canada, our study region in Continental US with coarse grid 

spacing, and the wildfire smoke transport path from Canada to US. The nested domain contains 

the smoke transport path in the US and our study region with fine grid spacing. The reason to set 
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the mother domain so large is because we need to include the fire emission in the simulation. In 

addition, the wildfire ignited by lightning on June 6, 2015 and the smoke from this wildfire event 

arrived at the D.C.-Maryland-Virginia area on June 10, 2020, and the O3 pollution peak appeared 

on June 12, 2020 in the Washington-Baltimore metropolitan area. Furthermore, the model requires 

extra time to spin up. The spin-up time for one-week simulation should be beyond 24 hours. Here 

the spin-up time was set to initiate at 00:00 UTC June 3, 2015.  

4.3.3 Data Assimilation method 

4.3.3.1 Meteorological DA 

The WRF Data Assimilation system (WRFDA) is a community data assimilation for WRF 

with the hybrid variational-ensemble algorithm (Barker et al., 2012, Fig. 4.2). The WRFDA system 

can ingest a wide variety of observation types, i.e., radar radial velocity and reflectivity, satellite 

radiance data, as well as the standard conventional observation types (surface, rawinsonde, aircraft, 

wind profiler, and atmospheric motion vectors).  

In addition to the hybrid variational-ensemble algorithm that combines the benefits of the 

physically based variational approach with the statistical, flow-dependent error information 

provided by ensemble forecasts, a variety of alternative variational data assimilation techniques 

are available in WRFDA: 3DVAR and 4DVAR. The core of WRFDA is a variational minimization 

of a cost function designed to optimally blend observations and prior NWP forecasts (Barker et 

al., 2012).  

Data assimilation requires accurate estimation of observation and forecast error to optimize 

the use of input observational and prior forecast data. The WRFDA system has a table of 

observation errors for each major observation type. The forecast error statistics calculated for the 

specific domain of interest is significant to enhance forecast performance (Barker et al., 2012).  
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Fig 4.2 WRFDA in the WRF modeling system 

xb      first guess, either from a previous WRF forecast or from WPS/real.exe output. 

xlbc    lateral boundary from WPS/real.exe output. 

xa      analysis from the WRFDA data assimilation system. 

xf      WRF forecast output. 

yo      observations processed by OBSPROC.  (note: PREPBUFR input, radar, radiance, and 

rainfall data do not go through OBSPROC) 

B0     background error statistics from generic BE data (CV3) or gen_be. 

R      observational and representative error statistics. 
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4.3.3.2 DART and WRF-Chem/DART 

4.3.3.2.1 DART 

DART is an open-source community facility, developed and maintained at the National 

Center for Atmospheric Research (NCAR), which provides well-documented software tools for 

data assimilation education, research, and development (Anderson et al., 2009, available at 

https://dart.ucar.edu/). DART includes interfaces to a number of regional and global atmospheric 

and oceanic models (i.e., Community Earth System Model (CESM), Community Atmosphere 

Model (CAM), WRF), and many low-order models (i.e., Lorenz 63 and Lorenz 96). Basic 

ensemble filters require only a prediction model and a forward operator to compute the expected 

value of an observation given a model state. DART is easy to use while importing a new model 

or assimilating a new observation type. DART provides the following data assimilation 

algorithms:  

1 = EAKF (Ensemble Adjustment Kalman Filter, see Anderson, 2001) 

2 = ENKF (Ensemble Kalman Filter) 

3 = Kernel filter 

4 = Observation Space Particle filter 

5 = Random draw from posterior  

6 = Deterministic draw from posterior with fixed kurtosis (ditto) 

7 = Boxcar kernel filter 

8 = Rank Histogram filter (see Anderson, 2010) 

9 = Particle filter (see Poterjoy, 2016) 
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4.3.3.2.2 WRF-Chem/DART 

The forecast-data assimilation system used in this study is the Weather Research and 

Forecasting model coupled with Chemistry package/Data Assimilation Research Testbed (WRF-

Chem/DART, Mizzi et a., 2016), which consists of the following elements: the forecast model, 

the assimilation engine, and observations of meteorological and chemical states to be assimilated 

(Liu et al., 2017). The WRF-Chem model has been described in the Chapter 3, along with model 

configurations. 

WRF-Chem/DART is the application of DART to the WRF-Chem model to assimilate 

chemical observations as well as meteorological observations simultaneously. The data 

assimilation algorithm selected in this study is the EAKF (Anderson 2001; 2003). This study 

implements the TROPOZ lidar O3 vertical profile observations into the WRF-Chem/DART 

system. Incorporating TROPOZ lidar observations into WRF-Chem/DART only requires creating 

a forward operator that computes the expected value of O3, a model state variable.   

4.3.3.2.3 Inflation 

 DART has two choices of the basic types of inflation: observation-space and state-space. 

The state-space inflation changes the spread of an ensemble without changing the ensemble mean. 

Both the ensemble mean and standard deviation are calculated for each variable in the state vector. 

Then the member’s values are moved away from the mean in such a way that the mean remains 

unchanged. The resulting standard deviation is larger than before. It can be applied to the prior 

state, before observations are assimilated, or it can be applied to the posterior state, after 

assimilation (Anderson 2007; 2009). Recent study suggests that prior and posterior inflation can 

be used to address different issues in the filtering problem (El Gharamti et al., 2019). Prior inflation 
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is able to address issues in the forecast step, such as model errors, while posterior inflation can 

help mitigate sampling errors in the analysis step.  

4.3.3.2.4 localization 

DART provides three different localization functions, i.e., Gaspasi-Cohn, Boxcar, and 

Ramped Boxcar (Fig. 4.3). These functions control the shape of the multiplier function applied to 

the computed increment as the distance increases between the observation and the state vector 

item. The Gaspari-Cohn function has a value of 0 at twice the cutoff and 1 at 0 distance and 

decreases in an approximation of a Gaussian function in between. The Boxcar is 1 from 0 to 

twice of the cutoff and then 0 beyond the cutoff. The Ramped Boxcar is 1 at the cutoff and then 

ramps linearly down to zero at the twice of the cutoff. 

 

Fig. 4.3 Localization types in DART, Gaspasi-Cohn (red solid line), boxcar-ramp (green dashed 

line), and boxcar (blue dashed line). 

In the chemical data assimilation, another localization is called variable localization, 

introduced by Arellano Jr. et al., (2007). It reduces spurious correlations among observations and 

different types of state variables. For instance, the O3 influences other chemical species and also 
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meteorological state variables i.e., surface pressure, temperature, horizontal velocity, specific 

humidity, cloud. However, in this work, these influences are ignored.  

4.3.3.2.5 TROPOZ O3 lidar observation forward operator 

TROPOZ O3 lidar retrieved products include O3 mixing ratio, which is a model state 

variable. It means that the observed variable and the model state variable are the same. Its 

observation forward operator is designed only to interpolate the horizontal and vertical location 

of the model state variable to the horizontal and vertical location of the observed variable (O3 

mixing ratio). The horizontal interpolation is relatively easy to achieve. The modeled O3 mixing 

ratio at the model horizontal grid is interpolated to the observation location. While the vertical 

interpolation is complicated, since TROPOZ vertical coordinate is in height while the WRF-

Chem model vertical coordinate is in eta level. It is necessary to transform eta level to height. 

Geopotential is included at each level, which can be used to calculate the relation between eta 

levels and height by using the equation below (Hobbs and Wallace, 2006).  

5 =	
?,!

<,!$?
−	5#&--@AB                                                           (4.1) 

H is the height above ground level. Φ is the geopotential. g is the gravitational constant. Re is 

average Earth radius. Hterrain is the terrain height. The TROPOZ O3 lidar observation forward 

operator also takes the observation errors into account. TROPOZ O3 lidar products provide O3 

mixing ratio uncertainty, which sets the initial criteria to accept or reject observations for data 

assimilation. 

4.3.4 Datasets 

4.3.4.1 Model input datasets 
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Dataset Name Note 

Meteorological ICs/BCs GFS Global Forecast System 

Chemical ICs/BCs MOZART-4 Model for OZone And Related chemical Tracers 

Anthropogenic Emission NEI 2011 National Emission Inventory 2011 
(Point, area, mobile) 

Biogenic Emission MEGAN Model of Emissions of Gases and Aerosols from 
Nature 

Smoke Emission FINN Fire INventory from NCAR 
(Open biomass burning, daily, 1 km resolution, global, 

trace gases and particle) 

Table 4.1 Meteorological and chemical emission data sets. ICs: Initial Conditions, BCs: Boundary 

Conditions. 

The model meteorological initial condition (ICs) and boundary condition (BCs), chemical 

ICs/BCs, and emission date sets are shown in Table 4.1. The Global Forecast System (GFS) 

provides meteorological ICs/BCs for WRF, with resolution of 0.25-degree grids which include 

analysis and forecast time steps at a 3-hourly interval from 00Z to 24Z. The GFS model forecast 

runs occur at 00Z, 06Z, 12Z, and 18Z daily. The GFS data is available at 

https://rda.ucar.edu/datasets/ds084.1/. In fact, the NCEP North American Regional Reanalysis 

(NARR) dataset was also employed as IC and BC to test the difference between NARR and GFS 

(not shown here). The NARR products are on the Eta 221 grid at 29 pressure levels. They were 

produced using the Eta 32 km model with 45 vertical layers. The input data includes all 

observations used in NCEP/NCAR Global Reanalysis project, and additional precipitation data, 

TOVS 1B radiances, profiler data, land surface and moisture data, etc. The output analyses are 3-

hourly with additional 9 variables in the 3-hour forecasts to reflect accumulations or averages. The 

NARR data is available at https://rda.ucar.edu/datasets/ds608.0/index.html. The chemical ICs/BCs 
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are from the Model for OZone And Related chemical Tracers version 4 (MOZART-4), which is 

driven by meteorological fields from the NASA GEOS-5 model. It uses anthropogenic emissions 

based on Arctic Research of the Composition of the Troposphere from Aircraft and Satellites 

(ARCTAS) and fire emissions from FINN-v1 (Wiedinmyer et al., 2011). Its spatial resolution is 

1.9 deg (latitude) by 2.5 deg (longitude) and temporal resolution is 00Z, 06Z, 12Z, and 18Z. The 

MOZART-4 chemical data is available at https://www.acom.ucar.edu/wrf-chem/mozart.shtml. 

The anthropogenic emission is from National Emission Inventory 2011, which includes point, area, 

and mobile emissions. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is 

employed as the biogenic emission (Guenther et al., 2006). The fire emission is the Fire INventory 

from NCAR (FINN). It includes trace gases and particle emissions from open biomass burning 

globally. And its spatial and temporal resolution are 1 km and hourly, respectively (Wiedinmyer 

et al., 2011). 

4.3.4.2 Assimilated observations 

Observations platform measured 
parameters 

Resolution 
(temporal) 

Time available 

NCEP ADP 
Global Upper Air 

and Surface 
Weather 

Observations 

aircraft horizontal wind, 
temperature 

hourly to 12 
hours 

1997-2021 

radiosonde horizontal wind, 
specific humidity, 

temperature 

satellite 
(GOES) 

horizontal wind 

AirNow ground surface O3 hourly 1980-2021 

TROPOZ ground O3 profile 6 min June 10-12, 2015 

Table 4.2 The assimilated observations into WRF-Chem/DART. 
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In the data assimilation framework, it is necessary to account for the observational errors, 

including both measurement errors and representative errors. For simplicity, DART has combined 

measurement errors and representative errors and specifies as an observational error. 

4.3.4.2.1 Meteorological observations 

The PREPBUFR dataset has not been completely assimilated into the DART. The current 

assimilated observations from various platforms are radiosonde (horizontal wind, temperature, 

specific humidity, altimeter), aircraft (horizontal wind, temperature), marine surface (horizontal 

wind, temperature, specific humidity, altimeter), and land surface (horizontal wind, temperature, 

specific humidity, altimeter), satellite (horizontal wind) (Table 4.2). The PREPBUFR observations 

also provide errors or uncertainties in the dataset, which were used in the DART during the data 

assimilation. For example, the radiosonde temperature errors are 1.2 K at 1000 hPa, 0.8 K at 

100 hPa, and 1.5 K at 10 hPa. The PREPBUFR dataset is available at 

https://rda.ucar.edu/datasets/ds337.0/index.html. 

4.3.4.2.2 EPA AirNow 

The AirNow program provides the observations of criteria gases (O3, SO2, CO, and NO2), 

particulates (PM10, PM2.5), meteorological (winds, temperature, barometric pressure, relative 

humidity, and dew point), toxics, ozone precursors, lead, and blanks (blanks are empty cannisters 

that are measured for speciation quality assurance reasons). The following seven types of files are 

available: site descriptions, monitor descriptions, annual summary data, daily and daily summary 

data, hourly data, 8-hour average data, and blanks data (Table 4.2). These data sets are available 

for downloading at https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw. In this study, 

we employed the hourly O3 data to be assimilated into WRF-Chem/DART. The observational 
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errors of AirNow surface O3 are made an educated guess as 20 % of its measurement, neglecting 

the diurnal variations.  

4.3.4.2.3 TROPOZ O3 

Details of TROPOZ O3 lidar are seen in the section 3.2.2. The retrieval yields an 

uncertainty of 16–19 % from 0 to 1.5 km, 10–18 % from 1.5 to 3 km, and 11–25 % from 3 to 12 

km according to the relevant aerosol concentration aloft (Sullivan et al., 2014). The specific 

uncertainties are included in the TROPOZ O3 vertical profile products. The time interval of the 

vertical profiles every six min. The assimilation window is hourly. In the WRF-Chem/DART 

assimilation, all the profiles within the assimilation window are included.  

4.3.4.3 Experiment design 

Experiment Met/Chem DA Purpose 

Spin-up: 
June/03-05 

Fire: June/06-07 
MD: June/10-12 

Domain 01 
(d01, 27 km) 

Domain 02 
(d02, 9 km) 

d01: fire emission source. 
d02: smoke influence (Great Lakes, OH, MD) 

Baseline Y/N N/N Performance only with Meteorological DA 
i)Surface met (U-wind) 

Control 1 Y/Y(A*) N/N Performance with AirNow DA 
i)Surface Distribution (O3) 

ii)Evolution (O3) 

Control 2 Y/Y(T**) N/N Performance with TROPOZ DA 
i)Profile (O3) 

Control 3 Y/Y(AT) N/N Performance with both AirNow & TROPOZ 
DA 

Table 4.3 WRF-Chem/DART designed experiments. N: without DA; Y: with DA, *: AirNow; T: 

TROPOZ. 
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In order to test the DA performance on assimilating different meteorological and chemical 

observations, four experiments were conducted with different observations assimilated (Table 

4.3). First is the baseline to only assimilate meteorological observations, which is designed to test 

the how well the model improves after assimilating meteorological observations. Second is the 

control 1 experiment to assimilate meteorological observations and AirNow O3, to see the 

assimilation performance while assimilating both meteorological data and surface O3 observations. 

Third is the control 2 experiment to assimilate meteorological observations and TROPOZ O3, to 

track the influence of assimilating both meteorological data and TROPOZ O3 vertical profile.  And 

the last is the control 4 experiment to assimilate meteorological observations, AirNow O3 and 

TROPOZ O3, to evaluate the performance of the best assimilation we could conduct. 

4.4 Data assimilation results diagnosis 

4.4.1 Diagnostic methods 

4.4.1.1 Qualitative diagnostic methods 

The observation data quality is significant for the assimilation performance. Each 

observation has a prior quality control value. In addition, a DART quality control value is added 

when observation sequences are generated by DART programs. One criterion to control whether 

the DART filter assimilates an observation is the outlier threshold which is designed to discard 

observations that are inconsistent with prior. It is defined as the N times of total spread (standard 

deviations from the square root of the sum of the prior ensemble and observation error variance) 

and can be specified in the DART namelist. If the difference between the observation and the 

prior ensemble mean is more than N times of total spread, the observation will be rejected. 

Outlier threshold can be used to avoid bad observations (ones where the value was recorded in 

error, or the processing has an error and a non-physical value was generated). It also avoids 
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observations which have accurate values, but the mean of the ensemble members is so far from 

the observation value that assimilating it would result in unacceptably large increments that 

might destabilize the model run.  

Reject if (prior mean - observation) > N times total spread 

Another qualitative diagnostic method is the DART quality control table, which is an 

important piece of information. Nine quality control values are defined in DART to distinguish 

whether observations are assimilated and why their assimilations fail. 

0 and 1 indicate both Prior and Posterior are good.  

0 Assimilated O.K. 

1 Evaluated O.K., not assimilated because namelist specified evaluate only. 

2 and 3 show Prior is ok, but Posterior failed. 

2 Assimilated O.K. BUT posterior forward operator failed. 

3 Evaluated O.K. BUT posterior forward operator failed. 

0 and 2 mean that observation is assimilated. 1 and 3 mean Prior observation ensemble is 

computed, but not assimilated. This is withholding an observation to be used for validation. 2 and 

3 mean that one or more posterior forward operators failed. DART cannot use this observation for 

posterior diagnostics, but it can be used for prior diagnostics.  

4 or higher mean that both Prior and Posterior have failed 

4 Prior forward operator failed. 

5 Not used because of namelist control. 

6 Rejected because of incoming data QC higher than namelist control. 

7 Rejected because of the outlier threshold test. 

8 and above reserved for future use. 
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5 indicates observation is not used at all, either prior or posterior diagnostics.  

4.4.1.2 Quantitative diagnostic methods 

The following quantities are normally diagnosed quantitatively, i.e., the number of total 

observations and the number of observations successfully assimilated for each assimilation 

window and whole assimilation period, the root mean square error of the ensemble (RMSE), the 

bias of the ensemble (forecast-observation), the spread of ensemble members, the pooled spread 

of the observation (knowing its observational error), the total spread of ensemble members and 

observations, the bias between ensemble and observations. 

RMSE is the standard deviation of the residuals (prediction errors) between model and 

observations, which measures the difference between model prediction and observations. The 

RMSE mean is the average of RMSE of different ensemble members and observations. The RMSE 

is calculated by the following equation. 

@'F#	 = 	G
∑ 	8
9	;	& 	(D9$E9)6

F
                                                         (4.2) 

Here xi is the model state variable. yi is the observation corresponding to the model state variables. 

N is the number of observations. 

Bias is the difference between the expected value and observation. It is defined as 

/;HI = 	
∑ 	8
9;& 	(D9$E9)

F
                                                               (4.3) 

Model spread is the standard deviation of the ensemble members. It is defined as 

FJDKHL = 	
G∑ 	<

=;& 	(D=$H)6

I
                                                       (4.4) 

Here μ is the ensemble mean of the model state variable xi. M is the number of the model state 

variables.  
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Total spread is the standard deviations from the square root of the sum of the prior 

ensemble and observation error variance.  

MNOHP	IJDKHL = 	GQJ-AK-
: + QKL'

:                                                (4.5) 

The diagnostic techniques employed to evaluate the data assimilation performance are 

temporal evolution and vertical profile of these quantities, and rank histogram. 

 

4.4.1.2.1 Time evolution 

The evolution contains the temporal evolution of the above-mentioned diagnostic 

quantities for any specified model levels, along with the number of observations possible and 

assimilated. The evolution of these diagnostic quantities tracks the assimilation performance 

from the beginning (first assimilation window) of the first observation assimilated to the end of 

the assimilation after all the observations are assimilated. For instance, it can show the time 

evolution of prior and posterior ensemble means, spread, and total spread at every assimilation 

window, along with the number of assimilated observations and possible observations. It also has 

the statistics of prior and posterior means through the whole assimilation.  

4.4.1.2.2 Vertical profile 

The vertical profile shows the diagnostic variables as functions of height (pressure), 

along with the number of observations possible and assimilated. It includes the vertical profiles 

of the prior and posterior diagnostic quantities, by comparing them to evaluate the assimilation 

performance and its variation along the vertical levels.   

4.4.1.2.3 Rank histogram 

Rank histogram, also called Talagrand diagram, tests the ensemble quality. It shows the 

rank (ordered ensemble members) as a function of the analyzed values occurrence (Fig. 4.4). 
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Rank histograms are repeatedly tallying the rank of the observation relative to values from an 

ensemble sorted from lowest to highest (Hamill, 2001). The different shapes of rank histograms 

distinguish the qualities of the ensemble. Interpretation of different shapes of rank histograms. 

(a) Flat: Observation is indistinguishable from any other member of the ensemble. Ensemble is 

“reliable”. Ensemble spread is about right to represent forecast uncertainty; (b) U-shaped: The 

ensemble spread is too small. Many observations fall outside the extremes of the ensemble. Or 

the analyzed value falls outside the range of value sampled by the ensemble. The first and the 

last bin will be overpopulated; (c) Dome-shaped: The ensemble spread is too large. Most 

observations fall near the center of the ensemble. The analyzed value never falls outside the 

range of the sampled values. The first and the last bin will contain very few analyzed values; (d) 

Asymmetric: ensemble contains bias, which fall to one side (Hamill, 2001).  

 

Fig. 4.4 Different shapes of rank histogram. The x axis is the rank (ordered ensemble members), 

and the y axis is the analyzed values occurrence fraction. (a). Flat. (b). U-shaped. (c). Dome-

shaped. (d). Asymmetric. 
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4.4.2 Meteorological data assimilation 

The meteorological observation data used for assimilation include operationally available 

PrepBUFR global observations from the NCEP Atmospheric Data Project (ADP) archives.  

The NCEP ADP Global Upper Air and Surface Weather Observations comprise different types of 

quality-screened data (filtering of observations based on the error limit as well as background and 

duplication), i.e., surface, ship, buoys, upper air, Atmospheric Motion Vectors (AMV), 

scatterometer winds, etc.  It contains land surface (SYNOP, METAR), marine surface (buoy, 

ships), radiosonde, pilot-balloon, and aircraft reports from the Global Telecommunications System 

(GTS), AMV from geostationary satellites, profiler- and radar-derived winds, Special Sensor 

Microwave Imager (SSM/I) oceanic winds and satellite wind data from National Environmental 

Satellite, Data, and Information Service (NESDIS) which are operationally collected by the NCEP 

(Greeshma et al., 2015). The temporal resolution of PrepBUFR is 6 hours, with time windows of 

00Z, 06Z, 12Z, and 18Z of each day. Details about the data are available at the University 

Corporation for Atmospheric Research (UCAR) data server for registered users 

(http://rda.ucar.edu/datasets/ds337.0). In the WRF-Chem/DART, the PrepBUFR data is processed 

to output surface pressure, dry temperature, specific humidity, and wind components (U/V) of 

conventional radiosonde, aircraft reports, and satellite cloud motion derived wind. BUFR quality 

control values larger than 3 means observation is suspect. Most people assimilating observations 

from BUFR use an outlier threshold of 3. 
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4.4.2.1 Radiosonde 

 

Fig. 4.5 Time series of radiosonde horizontal wind RMSE and model spread at three model levels 

(1000 hPa, 850 hPa, and 700 hPa) assimilated from WRF-Chem/DART. The left y axis is RMSE 

(black line) and model spread (red line), and the right y axis is the number of observations 
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including the total number of observations (denoted as “o”) and the number of assimilated 

observations (denoted as “*”). 

The number of possible radiosonde horizontal wind observations is around 150 at 1000 

hPa (Fig. 4.5). However, only 50-60 (50 %) observations are assimilated due to large radiosonde 

observation errors near the surface. The number of possible observations increases to 300-400 at 

850 hPa and 400-600 at 700 hPa. Meanwhile, the assimilated observations increase to 90 %, 

because radiosonde data becomes more reliable.  

Fig. 4.5 shows the time evolution of radiosonde horizontal wind RMSE and model spread 

for both prior (pr) and posterior (po) of radiosonde horizontal wind assimilation at three model 

levels 1000 hPa, 850 hPa, and 700 hPa. The assimilation time is from 0000 UTC June 3, 2015 to 

0000 UTC, June 12, 2015. The black upper and lower crosses are the prior and posterior RMSEs, 

respectively. The red upper and lower circles are the prior and posterior model spread, respectively.  

The prior and posterior RMSE means at 1000 hPa are 3.88 m s-1 and 2.12 m s-1, 

respectively. The smaller posterior RMSE mean indicates that WRF-Chem/DART reduces the 

difference between model simulation and observations, which means that model simulation agrees 

more and more with observations. The prior and posterior model spread means are 3.32 m s-1 and 

1.0 m s-1, respectively. It shows more agreement among ensemble members after WRF-

Chem/DART assimilation. After assimilating the radiosonde horizontal wind, the ensemble 

member forecasts have smaller standard deviation. Similarly, the prior and posterior RMSE means 

at 850 hPa are 4.13 m s-1 and 2.11 m s-1, respectively. The prior and posterior RMSE means at 700 

hPa are 3.8 m s-1 and 2.1 m s-1, respectively. The posterior RMSE means at these three model 

levels have reduced by 40 -50 %, relative to the prior RMSE means.  
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Fig. 4.6 3D color-coded scatter plot of radiosonde temperature vertical profile located in the mid-

western U.S. and within assimilation window 0600-0700 UTC, June 03, 2015. Temperature unit 

is K. The red dot is selected to diagnose its assimilation performance, corresponding to the red 

dots in the Fig. 4.8 and Fig. 4.9 below. 

Figure 4.6 shows the radiosonde temperature vertical profile located in the mid-western 

U.S. The temperature decreases from the surface to high levels. One observation value is selected 

to diagnose the assimilation performance at this point (the red dot). The red dots in figures 4.6, 

4.7, and 4.8 are connected. If one red dot is selected in Fig. 4.6, Figures 4.7 and 4.8 will also 

display the selected observation in all the panels (also indicated by red dots). 
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Fig. 4.7 (a) Radiosonde temperature DART quality control at 0630 and 0700 UTC. (b). The 

observation count at 0630 and 0700 UTC. (c). The key (sequence number) of radiosonde 

temperature as a function of observation count. The red dots are the observation corresponding to 

the red dots in the Fig. 4.6 (above) and Fig. 4.8 (below). 

Fig. 4.7a shows the radiosonde temperature DART quality control flags, as shown in 

section 4.4.1.1. The radiosonde temperature at 0630 has three DART quality control flags, 0 

(Assimilated O.K.), 4 (Prior forward operator failed), and 7 (Rejected because of outlier threshold 

test). The selected observation has the DART quality control flag 7, which means this observation 

was rejected because it’s far away from the ensemble mean. The outlier threshold is set to three 

times of the ensemble mean in this experiment, which is a typical setting. Fig. 4.7b shows the 

observation counts at 0630 and 0700, which show the number of observations. The observation 
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count is counted continuously from the previous observation. So the observation count at 0700 

starts from 29. Fig. 4.7c shows similar observation sequence count. 

 

Fig. 4.8 (a) The DART quality control flags of NCEP BUFR observation. (b) The correlation of 

radiosonde temperature from NCEP BUFR observation and prior ensemble mean.  

Fig. 4.8a shows the DART quality control for all the observations at 0630 and 0700. Most 

observations have the DART quality control flag of 0, which means most observations are accepted 

by WRF-Chem/DART and assimilated successfully. However, the radiosonde temperature 

observations also have the DART quality control flags of 4 (three observations) and 7 (one 

observation), which are rejected by WRF-Chem/DART. The correlation between radiosonde 

temperature observation and prior ensemble mean is good (Fig. 4.8b), which indicates that the 

prior ensemble mean agrees with the observation very well.  
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4.4.2.3 Aircraft  

 

Fig. 4.9 Time series of radiosonde horizontal wind RMSE and model spread at 250 hPa assimilated 

from WRF-Chem/DART. The left y axis is RMSE (black) and model spread (red), and the right y 

axis is the number of observations including the total number of observations (denoted as “o”) and 

the number of assimilated observations (denoted as “*”). 

The time series of radiosonde horizontal wind RMSE and model spread at 250 hPa are 

shown in Fig. 4.9. Since aircrafts measure high level wind and temperature, its data is used to 

assimilate upper-level atmosphere. The prior RMSE mean is 5.77 m s-1. After assimilation, the 

posterior RMSE mean reduces to 4.44 m s-1, decreases by 30 %. The prior model spread is 3.04 m 

s-1, and posterior model spread reduces to 2.37 m s-1, decreases by 22 %. Through the whole 

assimilation process, the number of assimilated observations is almost the same as possible 

observations, which means most observations are assimilated. 
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Fig. 4.10 Time series of radiosonde horizontal wind RMSE and bias at 250 hPa assimilated from 

WRF-Chem/DART. The left y axis is RMSE (black) and bias (red), and the right y axis is the 

number of observations including the total number of observations (denoted as “o”) and the 

number of assimilated observations (denoted as “*”). 

Like Fig. 4.9, instead of the model spread, Fig. 4.10 shows that the prior bias is -1.89 m s-

1, and the posterior bias is -1.38 m s-1, reduces by 32 %.  
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Fig. 4.11 RMSE and model spread vertical profiles of aircraft horizontal wind, and the number of 

possible and assimilated observations at vertical levels. The prior RMSE is the black solid line and 

the posterior RMSE is the black dashed line. The prior model spread is the red solid line and the 

posterior model spread is the red dashed line. The total number of observations is denoted as “o” 

and the number of assimilated observations is denoted as “*”. 

The vertical profiles of RMSE and model spread of aircraft horizontal wind are shown in 

Fig. 4.11. The posterior RMSE and model spread decrease, comparing with the prior. The RMSE 

and model spread show the largest reduction at 400 hPa, even though only few observations were 

successfully assimilated. The prior RMSE mean is 6.8 m s-1 and posterior RMSE mean reduces 

to 5.03 m s-1, decreases by 26 %. Meanwhile, the prior model spread is 3.63 m s-1, and posterior 

model spread mean is 2.69 m s-1, reduced by 26 % as well.  
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Fig. 4.12 RMSE and model spread vertical profile of aircraft temperature, and number of 

possible observations and assimilated observations at vertical levels. The prior RMSE is the 

black solid line and the posterior RMSE is the black dashed line. The prior model spread is the 

red solid line, and the posterior model spread is the red dashed line. The total number of 

observations is denoted as “o” and the number of assimilated observations is denoted as “*”. 

Fig. 4.12 shows the RMSE and model spread vertical profile of aircraft temperature, and 

the number of possible and assimilated observations. The largest number of possible 

observations reaches 1200 at 250 hPa. So the most effective assimilation of aircraft temperature 



 

 
 

105 

appears at this level since a lot of observations are assimilated. The prior and posterior RMSEs 

are 1.72 K and 1.37 K, respectively. The prior and posterior model spreads are 0.85 K and 0.56 

K, respectively.  

4.4.3 AirNow surface O3 assimilation 

 

Fig. 4.13 Location of EPA AirNow stations over the Contiguous U.S.  

Both observation locations and data quality influence the data assimilation performance. Fig. 4.13 

shows the EPA AirNow station locations over the Contiguous U.S. There are over 1000 AirNow 

stations which are not uniformly distributed. More stations are located over the eastern and western 

U.S., while the midwestern states have less stations. The nonuniform spatial distribution of 

AirNow stations and availability of surface O3 observations contributes to the quality of surface 

O3 data assimilation. If more observations are available, it is possible to assimilate more 

observations into the model. The number of assimilated observations is larger. In this case, the 

performance of data assimilation is much better. Otherwise, if less observations are available, the 

number of assimilated observations is also smaller. The data assimilation performance is not good, 

i.e., the Midwest, since the AirNow monitoring stations are sparse over the Midwest (Fig. 4.13). 

Another influence on data assimilation performance is the data quality flag or uncertainty. The 
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data quality of surface O3 observations at different stations is different. For example, certain 

stations have continuous and high-quality data, while others have very sparse observations. The 

AirNow does not have observation error/uncertainty available in the data set. Based on the 

previous studies, the reasonable observation error for AirNow surface O3 measurements is about 

25 % of the measured value. 

The increment is defined as the difference between after (posterior) and before (prior) assimilation. 

Fig. 4.14 shows the increment of surface O3 mixing ratio between prior and posterior at 0000 UTC, 

June 3 2015. It shows the influence of AirNow surface O3 observations after being assimilated into 

the model. The positive O3 mixing ratio increment means the observed surface O3 mixing ratio is 

higher than the simulated one. The simulation overestimates the surface O3 mixing ratio compared 

with AirNow surface O3 observations. On the contrary, the negative O3 mixing ratio increment 

means observation decreases the prior after assimilation. In Fig. 4.14, positive O3 mixing ratio 

increments are located north of Lake Ontario, east of Mid-Atlantic, Virginia, North Carolina, South 

Carolina, Washington. The prior O3 mixing ratio is underestimated over these regions. After 

assimilation of the AirNow surface O3 mixing ratio, the posterior O3 mixing ratio increased. While 

negative O3 mixing ratio increments appear at Pennsylvania, Texas, Colorado, California, and 

northwest of Washington. Over these regions, the prior O3 mixing ratio is overestimated. After 

assimilating the AirNow surface O3 mixing ratio, the posterior O3 mixing ratio decreased. Overall, 

regions with negative O3 mixing ratio increments are larger than the positive O3 mixing ratio 

regions, which indicates the overall overestimation of surface O3 mixing ratio. 
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Fig. 4.14 The increment of surface O3 mixing ratio after assimilating AirNow surface O3 

observations at 0000 UTC, June 3 2015. 

The increment of the model spread is the difference of model spread between after 

(posterior) and before (prior) assimilation. If the increment of the model spread decreases, it means 

model ensemble members agree more with each other after assimilation. Fig. 4.15 shows the 

increment of surface O3 mixing ratio model spread mean after assimilating AirNow surface O3 

mixing ratio observations at 0000 UTC, June 3 2015. The increment of the surface O3 mixing ratio 

model spread mean decreases over the eastern, southeastern, and northwestern U.S., which means 

that after assimilating AirNow surface O3 mixing ratio observations, the model ensemble members 

agree more with each other over these regions. Since more AirNow monitoring stations are located 

in these regions, more observations are assimilated into the model to improve model forecasts. 

However, the model spread over the Midwestern U.S. does not change much. The increment of 

the surface O3 mixing ratio spread mean is around 0.0 ppmv, which means that the assimilated 

AirNow surface O3 mixing ratio does not improve model forecasts. The possible reasons are: (1) 
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The prior surface O3 mixing ratio agrees well with the AirNow surface O3 mixing ratio; (2) Not 

enough AirNow surface O3 mixing ratio data is assimilated into model due to limited observations,  

or observations have bad data quality and the observation errors are very large. When WRF-

Chem/DART assimilates them, most observations are rejected. So only a few observations are 

assimilated into the model. 

 

Fig. 4.15 The increment of surface O3 mixing ratio model spread mean after assimilating AirNow 

surface O3 mixing ratio observations at 0000 UTC, June 3 2015. 

The time series of AirNow surface O3 mixing ratio RMSE and model spread at the first 

model level shows how the assimilation performance evolves as time goes (Fig. 4.16). The 

posterior RMSE mean is 0.00885 ppmv, which is 0.00145 ppmv (14 %) lower than the prior RMSE 

mean which is 0.0103 ppmv. This means that the difference between posterior and observation is 

becoming smaller. In addition, the posterior model spread, which is 0.00233 ppmv, is 0.00183 

ppmv (44 %) lower than the prior model spread which is 0.00416 ppmv. 

Time evolutions of the number of possible and assimilated observations are also shown in 

Fig. 4.16. Their time evolutions follow a diurnal variation pattern which show less observations at 

night and more observations in the day. Similar pattern exists to the assimilated observations. The 
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assimilation of the AirNow surface O3 mixing ratio started at 0000 UTC June 3 2015. During the 

model spin-up, the large difference between prior and observations prevents observations 

assimilated into the model. The number of assimilated observations is very low at the beginning 

of the assimilation. The observation rejection rate is very high due to the disagreement between 

prior and observations. As time goes, prior gradually agrees with observations thus more 

observations are assimilated into the model. At the end of the assimilation, almost all the possible 

observations are assimilated into the model (around 1200, Fig. 4.16). 

The time evolution of RMSE shows RMSE decreases as time goes (Fig. 4.16). The large 

RMSE is observed at the beginning of the model spin-up, which reaches at 0.02 ppmv. As time 

goes, the RMSE decreases to 0.006 at the end of the assimilation and decreases by 70 %. 

The posterior model spread mean is 0.00233 ppmv, 50 % lower than the prior model spread 

mean which is 0.00416 ppmv. From the time evolution of model spread, the model spread has an 

evident diurnal variation pattern, with high model spread during daytime and low model spread at 

night. The model spread diurnal pattern is opposite to the RMSE diurnal pattern, due to the high 

O3 mixing ratio at daytime and low O3 mixing ratio at night. 
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Fig. 4.16 Time series of AirNow surface O3 mixing ratio RMSE and model spread at the first 

model level assimilated from WRF-Chem/DART. The left y axis is RMSE (red) and model spread 

(black), and the right y axis is the number of observations including the total number of 

observations (denoted as “o”) and the number of assimilated observations (denoted as “*”). 

Similarly, the time evolution of the total spread decreases (Fig. 4.17). The prior total spread 

mean is 0.0105 ppmv, and the posterior total spread mean is 0.00987 ppmv, decreasing by 6 %. 
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Fig. 4.17 Time series of AirNow surface O3 mixing ratio RMSE and model spread at the first 

model level assimilated from WRF-Chem/DART. The left y axis is RMSE (red) and total spread 

(black), and the right y axis is the number of observations including the total number of 

observations (denoted as “o”) and the number of assimilated observations (denoted as “*”). 

 

Fig. 4.18 2D color-coded scatter plot of AirNow surface O3 mixing ratio in the U.S. at the 

assimilation window 0600-0700 UTC, June 03, 2015. The O3 mixing ratio unit is ppmv. The red 

dots are selected observations corresponding to the red dots in Fig. 4.19 and Fig. 4.20 below. 
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Fig. 4.18 shows the spatial distribution of the AirNow observed surface O3 mixing ratio, 

which is above 0.05 ppmv over the Mid-western U.S and around 0.01 ppmv over the eastern U.S. 

The selected red dots on the map are rejected observations with DART quality control flag of 7 

(Rejected because of outlier threshold test). To track the rejected observations, Fig. 4.18, Fig. 4.19, 

and Fig. 4.20 are combined to show the locations of rejected observations, their DART quality 

control values, their sequence numbers, and the correlation between prior ensemble mean and 

AirNow observations. 

 

Fig. 4.19 (a) AirNow O3 DART quality control values at the assimilation window 0600-0700 UTC, 

June 03, 2015. (b). The observation counts. (c). The key (sequence number) of AirNow O3 as a 
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function of observation count. The red dots are the observations linked to the red dots in the Fig. 

4.18 (above) and Fig. 4.19 (below). 

The DART quality control values of the selected observations are 7 (red dots, Fig. 4.19a). 

It means that these observations were rejected because of the outlier threshold test. Fig. 4.19b and 

Fig. 4.19c show the positions of the selected observations in the observation sequence. It is easier 

to find where the observations are in the observation sequence file. 

 

Fig. 4.20 (a) DART quality control flags of AirNow O3 observation at the assimilation window 

0600-0700 UTC, June 03, 2015. (b) The scatter plot of surface O3 from AirNow observation and 

prior ensemble mean. 

Fig. 4.20a shows the DART quality control as a function of the AirNow O3 observation. 

The selected red dots are corresponding to the red dots in Fig. 4.18 and Fig. 4.19. Their DART 
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quality control values are 7. Fig. 4.20b shows the scatter plot of the prior ensemble mean and 

AirNow O3 observation. The red dots indicate that their prior ensemble means are very small and 

their AirNow O3 observations are large. The prior ensemble means underestimate AirNow O3 

observations. They were rejected because they are out of the outlier threshold, since observations 

are too larger than prior ensemble means. 

4.4.4 TROPOZ lidar O3 profile assimilation 

 

Fig. 4.21 Assimilated TROPOZ O3 RMSE and model spread vertical profiles. The black solid 

profile is the prior RMSE, and the black dashed profile is the posterior RMSE. The red solid profile 

is the prior model spread, and the red dashed profile is the posterior model spread. The upper x 
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axis is the number of observations including the number of possible observations (denoted as “o”) 

and the number of assimilated observations (denoted as “*”). 

The number of possible observations at the height from 250 m to 1750 m is around 1000 

(Fig. 4.21). While the number of assimilated observations at 250 m is only about 100, which means 

only 10 % of observations were accepted and 90 % of observations were rejected by WRF-

Chem/DART due to the high uncertainty of TROPOZ O3 lidar near the surface. As the height 

increases, the number of assimilated observations increases to 700-800, which means about 70-

80 % of observations were assimilated. The number of possible observations decreases from 1000 

at 1750 m to around 300 from 2000 m to 2500 m, due to the cloud block/contamination. 

The RMSE decreases after assimilating TROPOZ O3 lidar vertical profiles. The prior 

RMSE mean is 0.041 ppmv, and the posterior RMSE mean decreases to 0.022 ppmv, reduced by 

46 %. Model spread also decreases from the prior spread mean of 0.069 ppmv to the posterior 

spread mean of 0.0021, reduced by 97 %.  
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Fig. 4.22 Assimilated TROPOZ lidar O3 RMSE and bias vertical profiles. The black solid profile 

is the prior RMSE, and the black dashed profile is the posterior RMSE. The red solid profile is the 

prior bias, and the red dashed profile is the posterior bias. The upper x axis is the number of 

observations including the number of possible observations (denoted as “o”) and the number of 

assimilated observations (denoted as “*”). The vertical green line represents the zero RMSE and 

bias. 

Aside from RMSE profiles, Fig. 4.22 shows the prior and posterior O3 bias profile. The 

posterior bias is smaller than the prior bias below 1500 m, which means the model forecast is 

closer to the observation after assimilating TROPOZ O3 profiles. The prior bias mean is 0.008 

ppmv and the posterior bias mean is 0.0005 ppmv, reduced by 93 %. 

In summary, the posterior RMSE, spread, and bias show that TROPOZ O3 profiles were 

successfully assimilated into the WRF-Chem/DART. After assimilation, the analysis agrees with 

the observations. After assimilating TROPOZ O3 vertical profiles, the WRF-Chem O3 mixing ratio 

analysis is close to the observations (Fig. 4.23), as shown by the posterior RMSE. The WRF-Chem 

O3 mixing ratio analysis has decreased significantly, comparing with the one without assimilating 

TROPOZ O3 vertical profiles (Fig. 3.7). The WRF-Chem O3 mixing ratio analysis is also compared 

with the independent observations from ozonesonde (Fig. 4.24). The O3 mixing ratios agree well 

between analysis and ozonesonde. 
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Fig. 4.23 O3 mixing ratio vertical profile time series on 12 June 2015. (a) TROPOZ O3 lidar; (b) 

WRF-Chem after assimilating TROPOZ O3 vertical profiles. 

 

Fig. 4.24 O3 mixing ratio vertical profiles of WRF-Chem analysis, ozonesonde (thick green 

curve) at 0800 UTC 12 June 2015. The WRF-Chem O3 mixing ratio analysis profile mean and 

standard deviation are shown as a red thick curve and shade, respectively. The upper right 

inserted map shows the location of the Beltsville site (red dot). 
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4.5 Conclusions and summaries 

In this study, we assimilate EPA AirNow surface O3 observations and TROPOZ ground-

based lidar O3 vertical profile into the WRF-Chem/DART data assimilation system. We focus on 

a Canadian wildfire event in June 2015 to study the smoke impact on the local air quality over the 

Baltimore-Washington D.C. metropolitan region. This is the first attempt to assimilate TROPOZ 

O3 lidar measurements into the WRF-Chem/DART. To better assimilate O3 observations, the 

meteorological observations from aircraft, radiosonde, and satellites are also assimilated 

simultaneously. The meteorological initial conditions are from GFS and chemical initial conditions 

are from CAM-Chem. The emission datasets include anthropogenic emissions from NEI2011, 

biogenic emissions from MEGAN, and fire emissions from FINN.  

The assimilated meteorological fields include horizontal wind and temperature from 

aircraft observations, horizontal wind, specific humidity, and temperature from radiosonde, 

horizontal wind from GOES satellite. Both RMSE and model spread decrease after assimilating 

these meteorological fields. For instance, the time evolution of horizontal wind RMSE shows that 

the prior RMSE is 3.22 ms-1 and the posterior RMSE decreases to 1.63 ms-1 after assimilating 

radiosonde horizontal wind. 

The AirNow surface O3 observations and TROPOZ O3 lidar vertical profiles are 

successfully assimilated into WRF-Chem/DART. The AirNow stations map shows the 

inhomogeneous distribution over the U.S. More AirNow stations are located over the eastern U.S. 

while less stations at Midwest and west. This inhomogeneous hirontal distribution determines the 

assimilation performance of AirNow surface O3 observations. The increments from both ensemble 

mean and inflation mean show the assimilation of AirNow surface O3 observations has more 

impacts over the eastern U.S. The time evolution of surface O3 RMSE indicates that the surface 
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O3 RMSE decreases from 0.0103 ppmv of the prior to 0.00885 ppmv of the posterior. The RMSE 

reduction is about 20 %. Meanwhile, the prior model spread is 0.00416 ppmv and the posterior 

model spread decreases to 0.00233 ppmv. The model spread decreases by 50 % after assimilation. 

Similarly, the total spread decreases from 0.0105 ppmv to 0.00987 ppmv, reducing 6 %. 

The assimilation of TROPOZ O3 lidar vertical profiles also reduces the vertical profiles of 

O3 RMSE, model spread, and bias. The prior RMSE is 0.041 ppmv and posterior RMSE decreases 

to 0.022 ppmv, about 48 % reduction. The model spread decreases from 0.007 ppmv of the prior 

to 0.002 ppmv of the posterior. Similarly, the bias decreases from 0.008 ppmv to 0.0005 ppmv. 

In summary, both meteorological and chemical observations are successfully assimilated 

into the WRF-Chem/DART model. The statistical parameters show that the impact of assimilation 

is significant. Unfortunately, no ozonesonde observation is available on June 13 & 14, which could 

be used to verify the O3 forecast after assimilating AirNow surface O3 and TROPOZ O3 vertical 

profiles. 
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