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ABSTRACT
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Stochastic precipitation generators (SPGs) are a class of statistical models which

generate synthetic data that can simulate dry and wet rainfall stretches for long dura-

tions. Generated precipitation time series data are used in climate projections, impact

assessment of extreme weather events, and water resource and agricultural management.

In this thesis, we construct SPGs for daily precipitation data that is specified as a semi-

continuous distribution with a point mass at zero for no precipitation and a mixture of

Exponential or Gamma distributions for positive precipitation. Our generators are ob-

tained as hidden Markov models (HMMs) where the underlying climate conditions form

the states. Maximum likelihood estimation of an HMM’s parameters has historically re-

lied on the Baum-Welch algorithm, which is a modification of the Expectation Maximiza-

tion algorithm. We implement variational Bayes (VB) as an alternative estimation pro-

cedure for HMMs with semi-continuous emissions. Stochastic optimization in the form

of stochastic variational Bayes (SVB) has been employed for computational speedup in

practical cases.

A univariate state process is often unable to adequately capture the underlying

weather conditions over large watersheds, since different areas can have local weather



regimes. We extend the HMM to a linked HMM (LHMM) where locations are divided

into clusters. Each cluster’s emissions are assumed to arise from a cluster-specific state

process; the state processes are correlated and together form a multivariate Markov chain

(MMC). The MMC provides more flexibility to accommodate heterogeneity that might

be present in larger geographical areas. A Gaussian copula is constructed to capture the

correlation structure of the MMC. Finally, we also construct a Gaussian copula for the

emissions of the HMM to explicitly parameterize the pairwise correlations of observed

positive precipitation. Daily precipitation data over the Chesapeake Bay watershed in the

Eastern coast of the USA is used as a demonstrative case study. Remote sensing precip-

itation data is sourced from the GPM-IMERG dataset for the wet season between July

to September from 2000-2019. Synthetic data generated from the clustered LHMM can

reproduce the monthly precipitation statistics as well as the spatial correlations present in

the historical GPM-IMERG data.
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Chapter 1

Introduction

Weather stations have historically been one of the primary sources of meteorological data

globally, and remote sensing data from satellites have recently given researchers access to data

that is observed over dense spatial grids at frequent intervals. Meteorological data is distributed in

the form of a multivariate time series where each univariate component corresponds to a location.

However, modeling it directly using time series requires the estimation of a large number of pa-

rameters and high-dimensional autocoviariance matrices. The statistical analysis of such datasets

at scale calls for specialized methods that are computationally efficient while being able to rep-

resent the dynamics of the underlying processes to a satisfactory degree. Hidden Markov models

(HMM) are an attractive class of models used to model geostatistical data. HMMs assume that the

observed data, known as the emission process, is generated by a finite-valued latent variable. The

latent variable is assumed to follow a first order Markov process and is referred to as the state pro-

cess. The Markov property of the state process serves to capture the temporal dependency in the

data, and the emission process at each time point describes the spatial patterns in the data. HMMs

were initially introduced and have been studied since the late 1960s, and have found extensive

use in speech recognition [Rabiner, 1989], finance [Rydén et al., 1998], genomics [Boys and Hen-

derson, 2004], as well as in meteorology [Hughes and Guttorp, 1994]. In this thesis we will be

working with daily precipitation data over a watershed. Our interest lies in modeling the temporal

patterns in the data as well as capturing the spatial dependency in multi-site precipitation.

1



1.1. APPLICATION: MODELING MULTI-SITE DAILY PRECIPITATION
DATA

Figure 1.1: Land cover classes within the
Chesapeake Bay watershed in the East coast
of the USA.

Figure 1.2: Total precipitation for Jul–Sep
over the Chesapeake Bay watershed from
GPM-IMERG data for 2000–2019.

1.1 Application: Modeling Multi-Site Daily Precipitation

Data

Our motivating example pertains to the stochastic modeling of daily precipitation data over

large watersheds obtained from remote sensing sources. Precipitation is the major component of

the global water cycle and plays an important role in atmospheric and land surface processes in

the climate system. While numerical weather models study precipitation over large areas, ob-

served precipitation data are used to develop statistical models for precipitation over smaller areas

at higher temporal frequencies and higher spatial resolution. The measurement and modeling of

precipitation has historically relied on rain gauges whose presence is often sparse and spatially

irregular, with remote sensing data becoming common relatively recently. A common class of

statistical models which are of interest for analyzing remote sensing data are known as stochastic

weather generators (SWGs). SWGs can be used to generate long time series of synthetic data

to simulate weather patterns and are indispensable in weather and climate research. The partic-

ular type of SWG we focus on in this thesis is called a stochastic precipitation generator (SPG).

The modeling and forecasting of seasonal and inter-annual variations in precipitation is used to

2



1.1. APPLICATION: MODELING MULTI-SITE DAILY PRECIPITATION
DATA

Figure 1.3: Total Precipitation over the Chesapeake Bay watershed for the months of Jul (07)–
Sep (09) from 2000–2019

determine water allocation and resource management for regions dependent on precipitation as a

primary water source. To this end, SPGs are constructed to produce time series of synthetic data

representative of the general rainfall patterns within a region. In particular, they aim to replicate

key statistical properties of the historical data like dry and wet stretches, spatial correlations, and

extreme weather events. Our interest in SPGs arose from a hydrologic modeling problem [Ma-

jumder et al., 2019] where we were trying to assess the seasonal water budget for the Potomac river

basin using the VIC model [Hamman et al., 2018]. Calibrating hydrologic models requires pre-

cipitation ensembles, which can be provided through SPGs. SPGs are also used in downscaling

numerical weather models, and simulations from them are used for climate projections, impact

assessments of extreme weather events, water resources and agricultural management, and for

public and veterinary health. In general, SWGs complement numerical models which tend to be

extremely sensitive to starting values. While the output provided from these models are statistical

estimates and therefore have uncertainty built in, ensemble datasets generated from these models

can improve other climate and weather models. Breinl et al. [2017] provides a review of current

SPG approaches and applications. Our region of interest is the Chesapeake Bay watershed which

includes parts of six states and nine major river systems on the East Coast of the USA. Figure 1.1

shows the Chesapeake Bay watershed and the different land cover classes within it. The watershed

has a diverse, interconnected ecosystem which is affected by extreme weather potentially related

3



1.1. APPLICATION: MODELING MULTI-SITE DAILY PRECIPITATION
DATA

Figure 1.4: Distribution of proportion of dry days for each year’s wet season from 2000–2019
across grid points over the Chesapeake Bay watershed.

to climate change [Chesapeake Bay Program, 2012], and has been targeted for restoration as an

integrated watershed and ecosystem. Rainfall within the watershed and resulting runoff into the

rivers and the bay bring substantial amounts of sediments and nutrients to the bay and impact the

water quality of the bay. Therefore, understanding and forecasting rainfall patterns and temporal

variability, particularly extreme rainfall events in the Chesapeake Bay watershed, are crucial for

monitoring and managing water quality in the bay.

We use daily data from the GPM-IMERG dataset [Huffman et al., 2019] for the months

of July to September from 2000 – 2019. At a spatial resolution of 0.1◦ × 0.1◦, The IMERG

dataset covers the 64,000 square mile watershed with 1927 grid points. Figure 1.2 shows the

seasonal rainfall at each grid point of the basin. The values are obtained by computing the sum

total of daily rainfall between July 1 and September 30 for each year between 2000–2019, and

then averaging them over the 20 years. Our analysis focuses on July–September since they are the

wettest months of the year for this area. The figure shows high and low precipitation areas over

the watershed and is representative of the high degree of spatial correlation present in the data.

Figure 1.3 plots monthly precipitation for July–September over the watershed for each year from

2000–2019. The first coordinate of the x-axis in the bottom left corresponds to Jul 2000 (00-07)
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Figure 1.5: Distribution of total precipitation (mm) for each year’s wet season from 2000–2019
across grid points over the Chesapeake Bay watershed.

and the final coordinate in the bottom right corresponds to Sep 2019 (19-09). The data shows

high inter-annual variability and also a lot of variability from month to month. Figure 1.4 contains

boxplots representing the distribution of the proportion of dry days across the watershed over the

duration of the wet season months for each year from 2000–2019. Individual points represent the

proportion of dry days at a single grid point for a particular year’s wet season. The median for

most of the boxplots are below 0.4 which indicates precipitation occurs over the basin more than

half of all the wet season days. The maximum value in the entire plot is 0.68, which occurs in

2015. Further, most years’ boxplots are negatively skewed, indicating predominantly wet days

during the wet season over the watershed. Similarly, Figure 1.5 contains boxplots representing

the distribution of total precipitation during the wet season for each year at each grid point of the

watershed from 2000–2019. We see that the variability in the data changes from year to year, and

that precipitation for each year is highly skewed towards the right with long tails corresponding

to extreme weather events. These are some of the monthly and annual statistics we want the SPG

to be able to reproduce. We also want the SPG to be able to reproduce the Pearson correlations

between GPM-IMERG precipitation estimates at the different grid points of the watershed. Since

the GPM-IMERG dataset divides the watershed into 1927 grid points, there are 1.85×106 pairwise

5



1.1. APPLICATION: MODELING MULTI-SITE DAILY PRECIPITATION
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Figure 1.6: Distribution of the pairwise correlation of precipitation between different grid points
over the Chesapeake Bay watershed.

correlation values computed for the grid points. Figure 1.6 plots the distribution of these pairwise

correlations for each month of the wet season, as well as for the entirety of the wet season. We see

very high correlations for all the boxplots, with August having the highest correlations overall. We

also note the presence of correlation values less than 0 in the data. Around 2.9% of the 1.85× 106

Pearson correlation values are less than 0. However, the lowest value is only around −0.07. We

do not believe this to be indicative of negative association in the precipitation patterns in these

locations. Rather, since the IMERG data is in itself an estimate, we consider this as noise inherent

in the data. Finally, we fit a linear model to gauge the relationship between the spatial correlations

and distance, in this case measured as the Euclidean distance between two grid points’ latitude

and longitude coordinates. Unsurprisingly, the model estimated a negative slope that was highly

significant, indicating that the correlation in precipitation between two locations decreases as the

physical distance between them increases.
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1.2 Overview of Related Work

An overwhelming amount of HMM studies use the Baum-Welch algorithm [Baum and

Petrie, 1966] for parameter estimation. The algorithm is a variant of the expectation-maximization

(EM) algorithm for efficient parameter estimation in HMMs which takes into account the Markov

assumptions of the model. Bayesian alternatives which use Gibbs sampling have been outlined

in Scott [2002] and in Cappé et al. [2005] but tend to be computationally intensive. Parameter

estimation using variational Bayes has been developed more recently [Ji et al., 2006, McGrory

and Titterington, 2009] based around initial work by MacKay [1997], but has not been studied as

extensively as the Baum-Welch algorithm.

The majority of studies [Wilks, 1998, Hughes and Guttorp, 1994, Robertson et al., 2004]

specify the positive part of daily precipitation either as a single Gamma distribution or a mixture of

two Exponential distributions depending on the climatology of the area and the season for which

the study was conducted. Much of the groundwork for using HMMs for daily precipitation was

laid in Hughes and Guttorp [1994], with Bellone [2000], Bellone et al. [2000] proposing different

emission distributions for precipitation amounts and precipitation occurrence models. This was

extended to non-homogeneous hidden Markov models (NHMM) in [Robertson et al., 2004, 2006,

Kirshner, 2005, Kirshner et al., 2004]. NHMMs let the transition probability matrix of the HMM’s

Markov process depend on time. We restrict ourselves to homogeneous HMMs in this thesis, i.e.

the Markov chain’s parameters do not change over time. The Baum-Welch algorithm is used for

parameter estimation in all these studies. However, being a maximum likelihood based method, it

can run into problems when it comes to graphical models like HMMs [Attias, 1999]. In particular,

it can lead to model overfitting for graphs with complex structures. This is where variational

Bayes (VB) provides an attractive alternative. While MCMC methods use sampling to find the

posterior distribution, VB uses optimization to calculate an approximate posterior; the posteriors

are obtained by an iterative EM-like algorithm which always converges [Attias, 1999]. Instead

of yielding a single point estimate of the model parameters, it learns an ensemble of models,

and estimates posterior density functions for the model parameters given a training dataset. The

variational posteriors have an analytical form and can be used to perform Bayesian inference. A
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recent review of VB methods can be found in Blei et al. [2017], and there is ongoing research

into the theoretical properties of the variational approximation [Zhang and Zhou, 2017, Zhang and

Gao, 2020, Pati et al., 2018, Wang and Blei, 2019, Yang et al., 2020].

Our own previous work in this area has mostly used the Baum-Welch algorithm for param-

eter estimation. In Kroiz et al. [2020a], we worked with precipitation data for the Potomac river

basin in Eastern USA. We found that the classical HMM severely underestimates spatial corre-

lations, and constructed a Gaussian copula to explicitly model spatial correlations. This was an

early motivating example for the research presented in this thesis. We looked at model selection

for the Potomac dataset in Kroiz et al. [2020b], comparing BIC scores for a variety of Gamma

distribution and Exponential distribution configurations. In general, using mixtures of Gamma

distributions instead of mixtures of Exponential distributions tended to have provide Bayesian in-

formation criterion (BIC) scores, suggesting better model fit. For either case, using more than

2 mixture components for positive precipitation resulted in at best marginally better fit at added

computational cost. Finally, we also looked at fitting a Gaussian copula for the Chesapeake Bay

watershed data in Majumder et al. [2020] after using the Baum-Welch algorithm for marginal

parameter estimation.

1.3 Contributions

This thesis has two overarching goals:

1. Develop HMMs for modeling semi-continuous daily precipitation data which employ VB

for parameter estimation instead of the B-W algorithm and can capture the spatial correla-

tion in the data,

2. Develop a formulation for HMMs with a multivariate Markov chain (MMC) as the under-

lying state process which is appropriate for large spatial domains.

The novel contributions of this thesis are:

• Variational Bayes parameter estimation in HMMs with semi-continuous emissions; use of

mixtures of Gamma and Exponential distributions in a manner similar to existing maximum

8



1.4. OUTLINE OF THE THESIS

likelihood implementations (Sections 3.1 – 3.5),

• Developing the use of modified Gamma shape mixtures (GSM) for modeling positive pre-

cipitation and parameter estimation using VB; the modified GSM has fewer mixture com-

ponents than its original specification (Section 3.6),

• Developing a linked HMM with an MMC as the underlying state process, using a Gaussian

copula to capture the correlation structure of the MMC (Section 4.1),

• Constructing a Gaussian copula for the emission distribution of an HMM with semi-continuous

emissions to explicitly express the correlation structure in the observed data (Section 4.2),

• Proposing a modified minibatch sampling method for the stochastic implementation of vari-

ational Bayes parameter estimation (Section 3.8),

• Deriving empirical priors to use in the variational Bayes estimation process (Section 3.7).

1.4 Outline of the Thesis

The rest of this thesis is organized as follows: Chapter 2 provides concepts and background

for the models, estimation methods, and datasets used in this thesis. Chapter 3 covers the esti-

mation of HMM parameters using variational Bayes for single-site and multi-site precipitation.

Chapter 4 extends the HMM to have an MMC as the underlying state process using a Gaussian

copula and provides a learning algorithm for the copula parameters. It also introduces a copula for

the emission distribution to capture the pairwise correlations of observed precipitation at different

locations. Chapter 5 brings together all the components for a case study using daily precipitation

over the Chesapeake Bay watershed as a demonstrative example. Finally, Chapter 6 summarizes

our work and outlines remaining questions and possible future work.
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Chapter 2

Background

2.1 The Hidden Markov Model

Figure 2.1: A directed acyclic graph (DAG) specifying the conditional independence structure
for a hidden Markov model.

A hidden Markov model (HMM) is a pair of stochastic processes {St, Yt}t≥1 where {St}

is a Markov chain, and conditional on it, {Yt} is a sequence of independent random variables such

that the distribution of Yt depends only on St. {St} usually takes values in a finite set; t is often,

although not necessarily, an integer index. However, {St} is unobservable, and instead we observe

only {Yt}t≥0. {Yt} can be univariate or multivariate, and can follow a discrete, continuous, or

mixture distribution. {St} is known as the state process, while {Yt} is called the emission or

observation process. A hidden Markov model is characterized by the following:

1. K, the number of states in the model. While latent in nature, the states often have physical

interpretations in the context of the application. In the case of precipitation models, the

states correspond to underlying weather regimes dictating spatial and temporal patterns of

rainfall over a region. Usually, we assume that any state can be reached from any other

state, i.e. the Markov process is ergodic in nature.
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2. R, the number of distinct observation symbols if the observations are discrete. This is also

called the discrete alphabet size. If the emissions are continuous and are assumed to arise

from a mixture of distributions, R denotes the number of mixture components. A HMM

for daily precipitation occurrence, whose emissions are dry and wet days, corresponds to a

discrete emission process with R = 2. Similarly, an HMM for daily precipitation amounts

will have a semi-continuous mixture distribution with R ≥ 2, with a point mass at zero for

no rainfall and at least one wet mixture component corresponding to positive rainfall.

3. A, the state transition probability matrix. A = ((ajk)), where ajk = Pr[st+1 = k|st = j]

for j, k = 1, . . . ,K. For an ergodic process, we have ajk > 0 for all j, k.

4. π1, the initial state probability distribution. It is a K-vector with π1j = Pr[π1 = j] for

j = 1, . . . ,K.

5. B, the conditional distribution of emission probabilities for each state j. In the discrete

emission case, its components are B = ((bjr)), where bjr ≡ bjr(t) = Pr[yt = r|st = j]

for r = 1, . . . , R and j = 1, . . . ,K. For semi-continuous and continuous emissions, its

components would contain mixture probabilities and probability densities with their own

parameters.

The parameters of an HMM are therefore represented by Θ = (A,B, π1), where the initial prob-

ability distribution π1 and the transition matrix A parameterize the Markov process {St}, while B

consists of the parameters of the emission process {Yt}. Figure 2.1 depicts a graphical represen-

tation of a hidden Markov model. Given this specification, fitting an HMM to the data involves

solving three problems:

1. Model Selection - Given a sequence of observations y1:T = {y1, . . . , yt, . . . , yT } and a

model Θ = (A,B, π1), compute the likelihood of the observations arising from the model,

p(y1:T |Θ).

2. Optimal State Sequence - Given a sequence of observations y1:T and a model Θ =

(A,B, π1), choose the most likely sequence of states that explain the data.
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3. Parameter Estimation - Given a sequence of observations y1:T , find values of Θ =

(A,B, π1) that maximize p(y1:T |Θ).

2.2 Learning Procedures for Discrete HMMs

We now formalize the setup for HMMs with discrete observations and briefly review the

learning procedures for them. Let y1:T be a sequence of observations from a discrete random

variable taking values in the range {1, . . . , R} at each time point t. The distribution of yt is

generated by a latent state variable st which takes values in the range {1, . . . ,K}. The sequence

s1:T = {s1, . . . , st, . . . , sT } is generated by a stationary, first order Markov process. Stationary

Markov chains are processes where

Pr[st = jt, st−1 = jt−1, . . . , s1 = j1] = Pr[st+i = jt, st−1+i = jt−1, . . . , s1+i = j1],

for all t ≥ 1 and i ≥ 0. Additionally, a first order Markov chain is a process where

Pr[st+1 = jt+1|st = jt, . . . , s1 = j1] = Pr[st+1 = jt+1|st = jt],

which is the source of temporal dependency in the data. The complete data likelihood of a se-

quence of length T contains both the observed vector y1:T and the unobserved state s1:T , and is

given by the following expression:

p(y1:T , s1:T ) = p(s1)

[T−1∏
t=1

p(st+1|st)
][ T∏

t=1

p(yt|st)
]
, (2.1)

where p(s1) is the initial probability corresponding to the first hidden state, p(st+1|st) denotes

the transition probability from state st to state st+1, and the conditional probability p(yt|st)

denotes the emission probability at each time point. The parameters of the HMM are represented
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as Θ = (A,B, π1), where

A = ((ajk)) : ajk = Pr[st+1 = k|st = j], the K ×K transition probability matrix, (2.2)

B = ((bjr(t))) : bjr(t) = Pr[yt = r|st = j], the K ×R emission probability matrix, (2.3)

π1 = ((π1j)) : π1j = Pr[π1 = j], the K × 1 initial state vector. (2.4)

For all j and t,
∑K

k=1 ajk = 1 and
∑R

r=1 bjr(t) = 1. Similarly,
∑K

j=1 π1j = 1. The distributions

of the states and the emissions can be expressed as:

p(s1|π1) =

K∏
j=1

π
s1,j
1j , (2.5)

p(st+1|st, A) =
K∏
j=1

K∏
k=1

a
st,jst+1,k

jk , (2.6)

p(yt|st, B) =
K∏
j=1

R∏
r=1

b
st,jyt,r
jr , (2.7)

and the log-likelihood of the complete data becomes:

log p(y1:T , s1:T |Θ) =

K∑
j=1

s1,j log π1j +

T−1∑
t=1

K∑
j=1

K∑
k=1

st,jst+1,k log ajk

+
T∑
t=1

K∑
j=1

R∑
r=1

st,jyt,r log bjr, (2.8)

where st,j = I(st = j) and yt,r = I(yt = r). The expression on the right hand side of (2.8) can-

not be explicitly computed due to the log-likelihood containing latent variables. Since there are K

states and at each time point t, st can be in any of these states with non-zero probability, we would

be required to sum over over KT state sequences. This is an intractable problem, and there is no

direct way to estimate the parameters. We can, however, use an Expectation-Maximization (EM)

approach [Dempster et al., 1977] to choose Θ = (A,B, π1) such that the log-likelihood is locally

maximized. The theory for HMMs, developed by Baum and his colleagues and published in a se-

ries of papers [Baum and Petrie, 1966, Baum and Eagon, 1967, Baum and Sell, 1968, Baum et al.,
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1970, Baum, 1972], originally dealt primarily with parameter estimation for models where the

emission process is discrete. The parameter estimation procedure proposed is commonly known

as the Baum-Welch (B-W) algorithm and is a modification of the EM algorithm. Liporace [1982]

and Juang et al. [1986] extended it to multivariate, continuous distributions, as well as to their

mixtures. Rabiner [1989] contains a comprehensive review of the methods associated with all of

the 3 problems of HMMs discussed earlier.

2.2.1 The Baum-Welch Algorithm for parameter estimation

Like the EM algorithm, the B-W algorithm consists of an expectation (E) step and a max-

imization (M) step. It begins with an initial guess of the parameters, Θ(0). At the kth iteration

where k ≥ 1,

1. In the E-step, calculate

Q(Θ(k)|Θ(k−1)) = E
(
log p(y1:T , s1:T |Θ(k)) | y1:T ,Θ

(k−1)
)
,

where Θ(k) are the parameter values at the kth iteration.

2. In the M-step, maximize Q(Θ(k)|Θ(k−1)) with respect to Θ(k).

3. Stop iterations when the supremum norm ‖ Θ(k)−Θ(k−1) ‖∞< ε for some fixed tolerance

ε > 0.

To understand how the E-step in the B-W algorithm differs from its EM counterpart, we express

the objective function as

Q(Θ(k)|Θ(k−1)) = E
(
log p(y1:T , s1:T |Θ(k)) | y1:T ,Θ

(k−1)
)

=
K∑

s1=1

. . .
K∑

sT =1

log p(y1:T , s1:T |Θ(k))p(s1:T |y1:T ,Θ
(k−1)),
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Using the expression for the log-likelihood of the complete data in (2.8), we have:

Q(Θ(k)|Θ(k−1)) =
K∑

s1=1

. . .
K∑

sT =1

{ K∑
j=1

s1,jp(s1:T |y1:T ,Θ
(k−1)) log π1j

+

T−1∑
t=1

K∑
j=1

K∑
k=1

st,jst+1,kp(s1:T |y1:T ,Θ
(k−1)) log ajk

+
T∑
t=1

K∑
j=1

R∑
r=1

st,jyt,rp(s1:T |y1:T ,Θ
(k−1)) log bjr

}

=

K∑
j=1

p(s1 = j|y1:T ,Θ
(k−1)) +

T∑
t=1

K∑
j=1

K∑
k=1

p(st+1 = k, st = j|y1:T ,Θ
(k−1))

+
T∑
t=1

K∑
j=1

R∑
r=1

p(st = j|y1:T ,Θ
(k−1))

Note that in the previous expression everything inside the log() is a function of Θ(k), while every-

thing outside of it is a function of Θ(k−1). Following notation in Rabiner [1989], we denote

γt(j) = p(st = j|y1:T ,Θ
(k−1)) and

ξt(j, k) = p(st+1 = k, st = j|y1:T ,Θ
(k−1))

To maximize Q in the M-step, we need to calculate γt(j) and ξt(j, k) in the E-step. The Forward-

Backward recursion [Baum and Eagon, 1967, Baum and Sell, 1968] provides an efficient algo-

rithm to calculate these probabilities and is the main point of difference between the Baum-Welch

algorithm and the conventional EM algorithm.

E-step: The Forward-Backward recursion

The Forward Variable is defined as the joint probability of the partial observation sequence

up to a time t, and the state st at that time point:

Ft(j) = p(y1, . . . , yt, st = j|Θ).
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It is calculated for every time point using recursion. To prevent underflow errors, the Forward

Variable is scaled at every step, which is equivalent to scaling the entire sequence at the end.

1. Initialization: For all j = 1, . . . ,K, define

F1(j) = π1j · bjr(1) and

F̃1(j) = c1 · F1(j), where

c1 =
1∑K

j=1 F1(j)
.

Here, π1j is the initial distribution of the state process and bjr is the emission distribution,

as defined in (2.4) and (2.3) respectively.

2. Recursion: for t = 2, . . . , T and for each state k = 1, . . . ,K, use the recursion

Ft(k) =

[ K∑
j=1

F̃t−1(j) · ajk
]
bkr(t)

and F̃t(j) = ct · Ft(k), where

ct =
1∑K

j=1 Ft(j)
.

Here, ajk are the transition probabilities for the state process, as defined in (2.2).

3. Termination: Note that F̃t(j) = (
∏t
τ=1 cτ )Ft(j). Using the definitions provided, this

gives us

p(y1:T |Θ̃) =

K∑
j=1

FT (j) =
1∏T
t=1 ct

,

where p(y1:T |Θ̃) is the normalizing constant for the posterior.

The Backward Variable is defined as the probability of the last T-t observations given that the

system is in state j at time t, i.e.

Btj = p(yt+1, . . . , yT |st = j,Θ).
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The Backward Algorithm has similar steps but works its way back from the final time point. We

use the same scaling factors that we derived in the Forward Algorithm. We can also compute

scaling factors explicitly for the Backward Variable like we did for the Forward Variable.

1. Initialization: For each state j, set

BT (j) = 1

and B̃T (j) = cT ·BT (j).

2. Recursion: for t = T − 1, . . . , 1 and each state j, calculate

Bt(j) =

K∑
k=1

ajk · B̃t+1(k) · bkr(t+ 1),

B̃t(j) = ct ·Bt(j).

The Forward and Backward algorithms can be run in parallel if the Backward Algorithm calculates

its own normalizing constants instead of reusing the ones provided by the Forward Algorithm.

Once both Forward and Backward variables are calculated, we get

γt(j) =
F̃t(j) · B̃t(j)∑K
j=1 F̃t(j) · B̃t(j)

,

ξt(j, k) =
F̃t(j) · ajk · bkr(t+ 1) · B̃t+1(k)∑K

j=1

∑K
k=1 F̃t(j) · ajk · bkr(t+ 1) · B̃t+1(k)

.

The M-step: Maximizing Q

Note that γt(j) =
∑K

k=1 ξt(j, k). Furthermore, γt(j) and ξt(j, k) can be interpreted as:

T−1∑
t=1

γt(j) = expected number of state transitions from state j, and

T−1∑
t=1

ξt(j, k) = expected number of transitions from state j to state k.
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Q is then maximized using the following expressions, described as re-estimation expressions by

Rabiner [1989]:

π̄1j = γ1(j),

ājk =

∑T−1
t=1 ξt(j, k)∑T−1
t=1 γt(j)

,

b̄jr(t) =

∑T
t=1 γt(j) · yt,r∑T

t=1 γt(j)
,

where yt,r = I(yt = r). The algorithm iterates until ‖ Θ(k) −Θ(k−1) ‖∞< ε for some predefined

tolerance level ε.

2.2.2 Viterbi Decoding for the most likely sequence of states

Once the model parameters of an HMM have been estimated, the next topic of interest is

identifying the most likely sequence of states, given the model, that could have generated the ob-

served data. Being able to label each observation with a state allows for the exploration of the

statistical properties of data arising from a certain state, and in many cases aids in interpreting

the states. This process is often referred to as decoding. However, this problem does not have a

unique solution since it depends on the definition of an optimal sequence of states. One possible

optimality criteria is to choose the most likely state at each instant and form a sequence out of

them. This will maximize the expected number of correct states. However, such an approach does

not take into account sequences of states and the Markovian nature of the underlying process.

One could instead try to maximize the expected number of correct pairs of consecutive states, or

even longer chains. However, the most common optimality criterion considers the most likely

sequence, or path, of states. This maximizes p(s1:T |y1:T ,Θ), which is equivalent to maximizing

p(s1:T , y1:T |Θ) since y1:T is known. A dynamic programming method called the Viterbi Algo-

rithm or Viterbi decoding [Viterbi, 1967] is used to find this single best state sequence.
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The Viterbi Algorithm

Define the quantity δt(j) as:

δt(j) = max
s1:(t−1)

p(s1, s2, . . . , st = j, y1, y2, . . . , yt|Θ)

which has the highest probability (likelihood) at time t along a single path, that accounts for the

first t observations and ends in state j. By induction,

δt+1(k) =
[

max
1≤j≤K

δt(j)ajk
]
· bkr(t+ 1).

We also need to keep track of the arguments which correspond to the highest likelihood for each

combination of time point t and state j. This is stored in the variable ψt(j). Thus, decoding the

most likely path conditional on the model and data consists of the following steps:

1. Initialization:

δ1(j) = π1j · bjr(1), j = 1, . . . ,K,

ψ1(j) = 0.

2. Recursion: For j, k = 1, . . . ,K, t = 2, . . . , T ,

δt(k) = max
1≤j≤K

[
δt−1(j)ajk

]
· bkr(t),

ψt(k) = arg max
1≤j≤K

[
δt−1(j)ajk

]
.

3. Termination: For j = 1, . . . ,K,

P ∗ = max
1≤j≤K

δT (j),

q∗T = arg max
1≤j≤K

δT (j).
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4. Path backtracking: For t = T − 1, T − 2, . . . , 1,

q∗t = ψt+1(q∗t+1).

The first three steps of the Viterbi recursion are quite similar to the Forward Algorithm, with the

main difference being that we maximize over the previous states instead of summing over them.

The sequential maximization results in the path with the highest probability (likelihood), and the

last step identifies the states which are on that path.

2.3 The Hidden Markov Model for Precipitation

Our HMM for precipitation follows along the lines of Hughes and Guttorp [1994] and

Robertson et al. [2006]. Let y1:T = {y1, . . . , yt, . . . , yT }, where y′t = (yt1, . . . , ytL), be the

L × T matrix of precipitation amounts for a network of L grid points over T days. Let s1:T =

{s1, . . . , st, . . . , sT } be the set of hidden (unobserved) weather states, where st ∈ {1, . . . ,K}. At

each location,

p(ytl = y|st = j) =


cjl0 if y = 0∑M

m=1 cjlmf(y|ωjlm, λjlm) if y > 0

(2.9)

with cjlm ≥ 0 and
∑M

m=0 cjlm = 1 for all l = 1, . . . , L and j = 1, . . . ,K; f(·|ω, λ) is the density

function of a Gamma distribution with shape ω > 0 and rate λ > 0. Studies often simplify this

by setting ω = 1 and working with Exponential distributions. The states arise from a stationary,

first-order Markov process:

p(s1, . . . , sT ) = p(s1)

T−1∏
t=1

p(st+1|st), (2.10)

where p(st|st−1) form a K ×K matrix of state transition probabilities A = ((ajk)), 1 ≤ j ≤ K,

1 ≤ k ≤ K, and p(s1) = π1j is the initial distribution. Daily rainfall yt depends only on the state
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Figure 2.2: Variational inference represented as an optimization problem.

st on day t:

p(y1:T |s1:T ) =
T∏
t=1

p(yt|st), and (2.11)

p(y1:T , s1:T ) =

{
p(s1)

T−1∏
t=1

p(st+1|st)
}{ T∏

T=1

p(yt|st)
}
. (2.12)

Spatial dependence is assumed to be captured implicitly through the dependence of the emissions

on the state process {st}. The L location components of yt are independent of each other given

st, i.e.

p(yt|st) =

L∏
l=1

p(ytl|st). (2.13)

2.4 Variational Bayes for Posterior Approximation

Variational Bayesian methods (alternatively called variational inference, variational approx-

imation, or VB) aim to approximate the posterior distribution using optimization. In many real
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life applications where the data is high dimensional or there is a complex hierarchical structure

present in the model, Markov chain Monte Carlo (MCMC) methods are impractical or outright

infeasible. Variational Bayes first posits a family of approximate distributions Q over the latent

variables and parameters, which have its own variational parameters. It then optimizes within this

family to find a member, i.e. the parameter settings, such that the resulting variational distribution

is the closest approximation to the true posterior within the chosen variational family.

The computational efficiency and accuracy of the variational approximation depend on three

things. The first is the distance metric that assesses the quality of the approximation. The most

common approach is to minimize the Kullback-Leibler (KL) divergence [Kullback and Leibler,

1951]. Let KL divergence between two distributions p(x) and q(x) of a discrete random variable

x is defined as

DKL(p(x) ‖ q(x)) =
∑
x∈X

p(x) log
p(x)

q(x)
.

The continuous version of the KL divergence is

DKL(p(x) ‖ q(x)) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

for a continuous variable x. The optimal variational posterior satisfies

q̃(·) = arg min
q(·)∈Q

KL
(
q(z) ‖ p(z|y)

)
. (2.14)

The optimum values of the hyperparameters are found using a variational EM-like algorithm;

Figure 2.2 contains a visual representation of variational inference. Note that the true posterior is

typically not in the variational family Q.

The objective function in (2.14) involves the posterior p(z|y) which is often difficult to

compute in practice. However, the minimization in (2.14) is equivalent to the maximization of a

quantity known as the evidence lower bound (ELBO), defined as

ELBO(q) = E[log p(z,y)]− E[log q(z)]. (2.15)
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The equivalence follows from the identity

log p(y) = KL(q(z) ‖ p
(
z|y)

)
+ ELBO(q), (2.16)

and the fact that the evidence log-likelihood log p(y) (also known as the ensemble log-likelihood)

is a function of only the data and does not involve the parameters. All expectations in (2.16) are

taken with respect to the variational posterior distribution q(z). Since the KL divergence is non-

negative, it follows that the ELBO is indeed a lower bound; Jordan et al. [1999] obtained the bound

directly by applying Jensen’s inequality to log p(y). The methodology for using VB optimization

to estimate HMM parameters is outlined in MacKay [1997] for a discrete emission process, and

in Ghahramani and Beal [2000] for emissions arising from a conjugate exponential family.

While KL(q ‖ p) is the commonest distance metric used since it leads to analytically

tractable expectations for conjugate exponential families, it is not the only option. Naesseth et al.

[2020] have proposed usingKL(p ‖ q). In an extension of the same idea, Dieng et al. [2017] have

proposed minimizing the χ-divergence from the posterior to the variational family,

Dχ2(p ‖ q) = Eq(z;λ)

[(
p(z|y)

q(z;λ)

)2

− 1

]
.

α-divergence metrics have found traction in recent years, which minimize a divergence function

between the variational posterior and the joint α-fractional posterior distribution, for α ∈ (0, 1).

The corresponding method is known as α-VB [Li and Turner, 2016, Hernandez-Lobato et al.,

2016]. Yang et al. [2020] have shown that when operating in a frequentist setup, point estimates

derived from the α-VB procedure converge at an optimal rate to the true parameters in a wide

range of problems.

The second factor under consideration is the choice of the variational family. The goal is

to choose Q that is expressive enough to allow for a good approximation to the posterior, and is

simple enough to allow tractable optimization. A common choice is to restrict the analysis to a
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family of distributions where the latent variables and the parameters are all mutually independent:

q(z) =

m∏
j=1

qj(zj), (2.17)

and each latent component zj has its own variational marginal posterior. This is known as the

mean-field assumption, and the corresponding family of distributions is known as the mean-field

variational family.

An additional assumption that tends to be made is that all variables and their parameters

arise from the conjugate exponential family; i.e. the complete data likelihood is in the exponential

family and the parameters have conjugate priors. Under this assumption, the posterior distributions

are conjugate to the priors. Along with the mean field assumption, this simplifies the variational

Bayes EM (VBEM) algorithm significantly. An overview is provided below.

Mean Field Variational Bayes

Consider the case with observed data y = (y1, . . . , yn)T and latent variables x = (x1, . . . , xn)T

parameterized by a vector of parameters β. The parameter vector β follows a distribution with hy-

perparameters α. The joint distribution of the complete data and the prior thus takes the form

p(y, x, β|α) = p(β|α) ·
n∏
i=1

p(yi, xi|β).

The complete conditionals are assumed to be in the exponential family to take advantage of con-

jugacy which simplifies calculations. The complete data likelihood is also assumed to have a

conditional independence structure,

p(yi, xi|y−i, x−i, β) = p(yi, xi|β),

where y−i denotes all observations except yi.The conditional independence structure is required

for mean field variational Bayes to work. β is considered a global variable, i.e. it is the same

for all i. On the other hand xi’s are local variables, since they vary for each i. Further, xi is

J-dimensional, i.e. xi = xi,1:J . The complete conditionals of the global and local variables are in
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the exponential family and have the form:

p(β|y, x, α) = h(β) exp
{
ηg(y, x, α)T t(β)− ag

(
ηg(y, x, α)

)}
, (2.18)

p(xi,j |yi, xi,−j , β) = h(xi,j) exp
{
ηl(yi, xi,−j , β)T t(xi,j)− al

(
ηl(yi, xi,−j , β)

)}
, (2.19)

where h(·) is the base measure, a(·) is the log normalizer, η(·) is the natural parameter vector,

and t(·) is the vector of sufficient statistics. All throughout this discussion, the subscripts l and g

(for example in ηl(·), ηg(·)) refer to local and global parameters respectively. The complete data

likelihood thus has the form:

p(y, x|β) =

n∏
i=1

h(yi, xi) · exp
{
βT t(yi, xi)− al(β)

}
. (2.20)

Similarly, the prior takes the form

p(β|α) = h(β) · exp
{
αT t(β)− ag(α)

}
, (2.21)

where t(β) =
[
β,−al(β)

]
; α is similarly written as α =

[
α1, α2

]
. Comparing with (2.18), we

get an expression for ηg(y, x, α):

ηg(y, x, α) =
(
α1 +

n∑
i=1

t(yi, xi), α2 + n
)
. (2.22)

The mean field variational family has posteriors which are separable, that is

q(x, β) = q(β|λ)
n∏
i=1

J∏
j=1

q(xi,j |φi,j) (2.23)

for global variational parameters λ and local variational parameters φ. Since the prior and the

likelihood are in the exponential family, the variational posteriors are also in the exponential family
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with complete conditionals given by:

q(β|λ) = h(β) · exp
{
λT t(β)− ag(λ)

}
, (2.24)

q(xi,j |φi,j) = h(xi,j) · exp
{
φTi,jt(xi,j)− al(φi,j)

}
. (2.25)

Because of the mean field condition in (2.23), the ELBOL in (2.15) can be maximized component-

wise, and then added up afterwards. The ELBO for the global latent variables takes the form:

L(λ) = Eq log p(β|y, x)− Eq log q(β) + constant. (2.26)

Since the complete conditional of β is in the exponential family and of the form (2.18), Eqt(β) =

∇λag(λ). Here ∇λag(λ) is the gradient of the ELBO with respect to λ, i.e. ∇λag(λ) =
∂ag(λ)
∂λ .

This gives us

L(λ) = Eq[ηg(y, x, α)]T∇λag(λ)− λT∇λag(λ) + ag(λ) + constant. (2.27)

The first order condition on the ELBO simplifies to

∇λL(λ) = ∇2
λag(λ)

[
Eqηg(y, x, α)− λ

]
. (2.28)

The LHS of this equation is 0 when Eqηg(y, x, α) = λ. This provides us coordinate updates of

the form

λnew = λold + Eqηg(y, x, α), (2.29)

which optimizes the ELBO for each global variable. Similarly, for the local parameters φi,j , the

first-order condition on the ELBO simplifies to

∇φi,jL = ∇2
φi,j

al(φi,j)[Eqηl(yi, xi,−j , β)− φi,j ], (2.30)
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which is 0 when φi,j = Eqηl(yi, xi,−j , β). Note that the value of β in the local update depends

on the value of λ. Similarly, the global update depends on φi,j = Eq(xi,j). The global and local

updates therefore form a coupled system which is solved using a variational Bayes EM (VBEM)

algorithm [Ghahramani and Beal, 2000, Blei et al., 2017].

There is no unified approach for cases where the mean field assumption does not hold. It

is common practice to keep the mean-field assumption for the global variables. Mild relaxations

exist where instead of updating hyperparameters of a global variable independently, they are up-

dated sequentially. The assumption often proves too restrictive when the latent variables are not

independently distributed. Situations where the mean field assumption is not a plausible assump-

tion are usually referred to by the umbrella term of structured variational inference, referring to

the structure that needs to be enforced in the variational posterior.

A common example of models which require a structured variational approach are belief

networks and Markov graphs. These are models which can be represented as directed and undi-

rected graphs; HMMs are an example of directed acyclic graphs. For such models, Ghahramani

and Beal [2000] extended the results for mean field variational Bayes and provided a VBEM algo-

rithm for graphical models. The earliest treatment of HMMs in the variational literature as far as

we can tell, was by MacKay [1997]. He laid out the steps of the VBEM algorithm for parameter

estimation in HMMs with discrete emissions, similar to the one discussed in Section 2.2. Jordan

et al. [1999] also provides a comprehensive discussion on variational methods for graphical mod-

els. In general, however, the VBEM algorithm often needs to be adapted on a case-by-case basis

depending on the structure that is actually present in the model.

The final factor affecting the quality of the variational approximation is the choice of opti-

mization algorithm. A commonly chosen method for a mean-field variational family is coordinate

ascent or coordinate ascent variational inference (CAVI) [Ghahramani and Beal, 2000, Blei et al.,

2017], which updates each component of the variational posterior individually. Stochastic gradi-

ent optimization [Hoffman et al., 2013] can result in speedups, and is used for large datasets where

scalability becomes a requirement. Ranganath et al. [2014] proposed black box variational infer-

ence (BBVI) as a scalable, gradient based optimization procedure for the ELBO which is agnostic

to the distribution of the prior. BBVI seeks to generalize the optimization to arbitrary variational
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families of posterior; a similar approach is taken by Kucukelbir et al. [2017] for automatic differ-

entiation variational inference (ADVI). Most of the black box approaches come with assumptions

which are not easy to relax for structured models like HMMs. We conclude this section with an

overview of stochastic variational Bayes which we would be using for parameter estimation.

Stochastic Variational Bayes

The primary bottleneck of coordinate ascent algorithms for variational Bayes is that each

update requires a pass over all our observed and hidden data for every single variable. One way

to reduce this would be to replace the expensive, exact updates with noisy updates that are un-

biased and faster to compute. Vanilla stochastic optimization works very well for the mean field

variational family, and a brief discussion is provided.

We first make a note of the natural gradient and its use in optimizing probabilistic func-

tions. In gradient ascent optimization problems, the Euclidean gradient points in the direction

of the steepest ascent in Euclidean space. For example, if L(w) is our objective function under

consideration, with w = (w1, . . . , wn)T , the Euclidean gradient is given by the expression

∇L(w) =

(
∂

∂w1
L(w), . . . ,

∂

∂wn
L(w)

)T
.

However, probabilistic objective functions reside not in Euclidean space but in a curved manifold,

known as a Riemannian space. The Euclidean gradient is not ideal in such cases, and the natural

gradient is preferable since it points in the direction of the steepest ascent in Riemannian space

[Amari, 1998]. For the ELBO, which is a probabilistic objective function, Hoffman et al. [2013]

showed that the relationship between the natural gradient ∇̃λL(λ) and the Euclidean gradient

∇λL(λ) is

∇̃λL(λ) = G(λ)−1∇λL(λ), (2.31)

28



2.4. VARIATIONAL BAYES FOR POSTERIOR APPROXIMATION

where G(λ) is the Fisher Information matrix of q(λ), i.e.

G(λ) = Eλ
[(
∇λ log q(β|λ)

)(
∇λ log q(β|λ)

)T ]
= ∇2

λag(λ)

if q(β|λ) is in the exponential family. Using the expression for the gradient of the ELBO, we get

∇̃λL(λ) = Eqηg(y, x, α)− λ. (2.32)

Thus, the gradient ascent step for optimizing the ELBO for λ takes the form

λnew = λold + τ∇̃λL(λ), (2.33)

where τ is the step size. A similar update can be derived for φi,j , the latent variables. If we use the

natural gradient as the direction of ascent, our objective function will have the steepest ascent in the

space where the local distance is defined by the KL divergence and not the L2 norm. Note that the

natural gradient update is equivalent to the coordinate ascent update when τ = 1. However, this is

still slow as it requires going over the entire data at every iteration of the optimization. Stochastic

optimization addresses that by replacing the gradient by a noisy estimate of the gradient that is

cheaper to compute.

Consider for the objective function L(λ) a random function B(λ) which is an unbiased

estimator of the gradient ∇λL(λ), i.e. EqB(λ) = ∇λL(λ). For example, B(λ) could be the

gradient computed based on random samples, or minibatches, taken from the entire data. Then the

stochastic gradient ascent step for optimizing the ELBO for λ is

λk = λk−1 + τk · bk(λk−1),

where bk(·) is an independent draw from the noisy gradient B. If τk satisfies the Robbins-Monro
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conditions [Robbins and Monro, 1951], namely

∑
k

τk =∞

and
∑
k

τ2
k <∞,

then λk converges to a local optimum of f(·). If Gk is any positive definite matrix of appropriate

dimensions, a similar property holds [Hoffman et al., 2013]:

λk = λk−1 + τk ·G−1
k bk(λ

k−1). (2.34)

In particular, if we choose Gk = Gk, the Fisher information matrix, the natural gradient provides

the direction of the steepest ascent for the gradient optimization. In the mean field setup, we

choose a noisy gradient by randomly sampling a single data point and doing all computations

based on that single data point. In this case,

bk(·) = ∇̃Li = n · Eqηg(yi, xi, α)− λ. (2.35)

2.5 Variational Bayes for Hidden Markov Models

The methodology for using VB for parameter estimation in HMMs where the emissions

arise from a conjugate exponential family was outlined mainly in three papers. MacKay [1997]

did early work for HMMs with discrete emission distributions, and Ji et al. [2006] derived the

VB algorithm for HMMs where the emissions are continuous mixtures. Finally, McGrory and

Titterington [2009] have discussed model selection in variational HMMs using the Deviance In-

formation Criterion (DIC) [Spiegelhalter et al., 2002] when the size of the model is unknown.

Current work on HMMs with continuous emissions and its mixtures often assume the distributions

of the emissions to be Gaussian or Gaussian mixtures. Maximum likelihood parameter estimation

in HMMs also tend to deal with Gaussian mixtures, e.g, in Rabiner [1989]. In theory, Gaussian

mixtures can be replaced by any conjugate exponential family distribution or their mixtures and
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the same steps will apply. The primary challenge in modeling HMMs comes from the dependence

structure in the state process {St}. While the VBM step can employ the mean field assumption,

the VBE step is modified to accommodate the Forward-Backward algorithm, which calculates the

variational equivalent of γt(j) and ξt(j, k) defined in (2.2.1).

2.5.1 The variational Forward-Backward Algorithm

As before, the Forward Variable is defined as the joint probability of the partial observation

sequence up to a time t, and the state st at that time point

Ftj = p(y1, . . . , yt, st = j).

1. Initialization: For all j = 1, . . . ,K, define

F1j = π1 · p(y1|s1 = j),

c1 =
1∑K

j=1 F1j

and normalize

F̃1j = c1 · F1j .

2. Recursion: for t = 2, . . . , T and for each state k = 1, . . . ,K, use the recursion

Ftk =

[ K∑
j=1

F̃t−1,j · p(st = k|st−1 = j)

]
p(yt|st = k) and normalize

F̃tj = ct · Ftk where

ct =
1∑K

j=1 Ftj
.

Note that F̃tj = (
∏t
τ=1 cτ )Ftj . Using the definitions provided, this gives us

q(y|Θ) =
K∑
j=1

FTj =
1∏T
t=1 ct

, (2.36)

where q(y|Θ) is the normalizing constant for the variational posterior of the latent variables. Re-
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call that the Forward Algorithm is used as part of the E-step of the optimization process, with the

values of the parameters in Θ set to their means, i.e., Θ ≡ Θ̃. Thus q(y|Θ) can equivalently also

be expressed as p(y|Θ̃).

The Backward Variable is defined as the probability of generating the last T−t observations

given that the system is in state j at time t

Btj = p(yt+1, . . . , yT |st = j).

The Backward Algorithm has similar steps but works its way back from the final time point.

1. Initialization: For each state j, set

BTj = 1 , and

B̃Tj = cT ·BTj .

2. Recursion: for t = T − 1, . . . , 1 and each state j, calculate

Btj =
K∑
k=1

p(st+1 = k|st = j) · B̃t+1,k · p(yt+1|st+1 = k),

B̃tj = ct ·Btj .

The two algorithms can be run in parallel. Once both variables are calculated, we get

qs(st = j|y1, . . . , yT ) ∝ F̃tj · B̃tj , and

qs(st = j, st+1 = k) ∝ F̃tj · p(st+1 = k|st = j) · p(yt+1|st+1 = k) · B̃t+1,k.
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2.6 A Conjugate Prior for the Two-parameter Gamma

Distribution

The majority of the variational Bayes literature has relied on the conjugacy properties of

the exponential family of distributions to simplify computations. In the context of the HMM for

precipitation as described in Section 2.3, we noted that Gamma and Exponential distributions are

commonly used to model positive precipitation. Exponential distributions require fewer parame-

ters than the Gamma distribution, while Gamma distributions require fewer mixture components

and often outperform their Exponential distribution counterparts in terms of model fit. We have

also noted this in our previous research when estimating parameters using maximum likelihood

methods [Kroiz et al., 2020a,b]. In this section, we go over a conjugate prior for the two-parameter

Gamma distribution that can be used for variational Bayes parameter estimation in an HMM for

precipitation where positive precipitation is specified as a mixture of Gamma distributions.

Miller [1980] provides a conjugate prior for the two-parameter Gamma distribution to be

used for Bayesian analysis, based on the work of Damsleth [1975]. Let the population density

have the Gamma form with shape α and rate θ,

g(yi|α, θ) =
θα

Γ(α)
yα−1
i exp{−yθ}, (2.37)

with yi > 0, α > 0, θ > 0. Then for a sample of size n, the likelihood function is

p(y|α, θ) =
θnα

(Γ(α))n
(
n∏
i=1

yi)
α−1 exp{−θ

n∑
i=1

yi}. (2.38)

The conjugate prior when both parameters are unknown takes the form

π(α, θ|p, q, r, s) =
1

C

θαs−1

(Γ(α))r
pα−1 exp{−qθ}, (2.39)

where p > 0, q > 0, r > 0, s > 0 3
r
√
p

q/r
< 1,

and C =

∫ ∞
0

pα−1Γ(αs)

(Γ(α))rqαs
dα.
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The posterior joint density is then proportional to the product of Eqns. (2.37) and (2.39)

p(α, θ|y, p, q, r, s) ∝ θαs̃−1

(Γ(α))r̃
exp{−q̃θ}(p̃)α−1, (2.40)

where s̃ = s+ n, r̃ = r + n,

q̃ = q +
n∑
i=1

yi, p̃ = p
n∏
i=1

yi.

Thus the posterior conditional density of the rate follows a Gamma distribution

p(θ|α, s, q, y) = Gamma(θ|αs̃, q̃), (2.41)

and the marginal posterior density of the shape has the kernel

p(α) ∝ Γ(αs̃)

(Γ(α))r̃
[

s̃
√
p̃/q̃
]αs̃

, (2.42)

whose moments and functionals need to be computed through numerical integration.

Estimating the posterior of the shape parameter

Computing the density function and the moments of the posterior of α would require us to

evaluate integrals of the form
∫∞

0 aip(α)dα for i = 0, 1 etc. The right hand side of Equation 2.42

could be difficult to evaluate directly since all three terms tend to have large magnitudes due to

their dependence on the sample and the sample size. As with the original paper, we calculate the

log of the integrand as

log(αip(α)) = i logα+ log Γ(αs̃) + αs̃ log( s̃
√
p̃/q̃)− r̃ log Γ(α), (2.43)

and exponentiate afterwards.

Miller provides an approximation to calculate the first four moments of the posterior distri-

bution of θ as functions of the cumulants of the posterior of α, and fitting a Pearson family curve
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to the data. However, if we are just interested in calculating the posterior mean of θ, this is even

simpler. Since we know the posterior conditional density of θ follows a Gamma distribution, we

can write the unconditional mean in terms of the moments of α

Eθ(θ) = EαEθ|α(θ|α) (2.44)

=
s̃

q̃
Eαα

2.6.1 The Deviance Information Criterion

Model comparison techniques are usually based on a trade-off between model fit and model

complexity. The Bayesian information criterion (BIC) is a common metric, but it does not always

perform well for model selection in HMMs [Bellone, 2000]. It fares especially poorly when

sample size is low or model complexity is high. The deviance information criterion (DIC) was

proposed as an alternative by Spiegelhalter et al. [2002], and is still based on the core premise of

trading-off Bayesian measures of model complexity and fit. The DIC initially focused on expo-

nential family models, but has been extended using variational approximations to mixture models

[McGrory and Titterington, 2007] and HMMs [McGrory and Titterington, 2009]. For HMMs,

McGrory and Titterington [2009] define the DIC as

DIC = D(θ) + pD,

whereD(θ) = −2 log p(y|θ), andD(θ) is its expectatation with respect to p(θ|y). D(θ) measures

model fit and pD measures model complexity. The latter is defined as

pD = D(θ)−D(θ̃)

= Eθ|y{−2 log p(y|θ)}+ 2 log p(y|θ̃),
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where θ̃ is the posterior mean or mode of the parameters of interest. Based on the expressions

above, the DIC is expressed as

DIC = −2 log p(y|θ̃) + 2pD, (2.45)

and pD ≈ −2

∫
qθ(θ) log

{
qθ(θ)

p(θ)

}
dθ + 2 log

{
qθ(θ̃)

p(θ̃)

}
(2.46)

where pD is approximated with the aid of the variational distribution q(·). p(y|θ̃) can be obtained

as part of the Forward Algorithm for HMMs. The DIC can be used to compare different models,

and is interpreted in a manner similar to the BIC.

2.7 Copula Distributions as a Measure of Dependence

A copula (Latin: link) is the joint distribution of random variables U1, . . . , Ud, where each

Ui is marginally distributed as Uniform(0,1). More formally, a d-copula C : [0, 1]d −→ [0, 1] is

the joint cumulative distribution function (CDF) of a d-dimensional random vector with Uniform

marginals. Sklar’s Theorem [Sklar, 1959, Durante et al., 2013] allows us to model the joint de-

pendency of random variables by using its univariate marginals and a copula which captures all

information about the dependence structure of the variable of interest.

For any CDF F (·), the generalized inverse of FX is defined as:

F−(x) = inf{u : F (u) ≥ x}.

Then, if U ∼ U [0, 1] is a uniform random variable, and FX is the CDF of a random variable X ,

Pr[F−(U) ≤ x] = FX(x).

In the opposite direction, if X has a continuous CDF FX , then

FX(X) ∼ U [0, 1].

36



2.7. COPULA DISTRIBUTIONS AS A MEASURE OF DEPENDENCE

With these fundamentals in place, we now formally state Sklar’s theorem.

Theorem 2.1 (Sklar, 1959). Let X1, . . . Xd be random variables with a joint CDF

F (x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd)

and marginal CDFs FXi(x) = Pr(Xi ≤ x) = ui, i = 1, . . . , d. Then there exists a copula

C : [0, 1]d −→ [0, 1] such that:

C(u1, . . . , ud) = F (x1, . . . , xd)

⇔ F (x1, . . . xd) = C[FX1(x1), . . . , FXd
(xd)], (2.47)

for all xi satisfying ui = FXi(xi). If FXi is continuous for all i = 1, . . . , d, then C is unique;

otherwise it is uniquely determined only onRange(FX1)×. . .×Range(FXd
), whereRange(FXi)

denotes the range of the CDF of FXi . In the opposite direction, consider a copula C and univariate

CDFs FX1 , . . . , FXd
. Then F as defined in (2.47) is a multivariate CDF with marginals given by

FX1 , . . . , FXd
.

Sklar’s theorem allows us to separate the modeling of the marginals from the modeling

of their dependence structure. For an absolutely continuous F with strictly increasing marginals

FX1 , . . . , FXd
, we can further use the chain rule to get

f(x1, . . . , xd) =

[ d∏
i=1

fXi(xi)

]
c
(
FX1(x1), . . . , FXd

(xd)
)
, (2.48)

that is,
f(x1, . . . , xd)∏d
i=1 fXi(xi)

= c
(
FX1(x1), . . . , FXd

(xd)
)
,

where c(·) is the probability density function (pdf) of the copula distribution:

c(u1, . . . , ud) =
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud).

The copula pdf is thus the ratio of the joint pdf of the random variables to what it would have

been under independence, and can be considered as an adjustment to convert a pdf under an
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independence assumption into a joint pdf.

A common class of copula distributions are elliptical copulas, formed using elliptical dis-

tributions. The Gaussian copula is an elliptical copula, as is the t-copula. Every d-dimensional

copula is parameterized by their marginal parameters (α1, . . . ,αd), and a copula parameter θ

which is often d-dimensional as well and captures the dependence among the margins. With that

in mind, we can rewrite (2.48) as:

f(x1, . . . , xd;α1, . . . , αd, θ) =

[ d∏
i=1

fXi(xi;αi)

]
c
(
FX1(x1;α1), . . . , FXd

(xd;αd);θ
)
.

(2.49)

The log-likelihood can be written as

l(α1, . . . , αd, θ) =
d∑
i=1

lMi (αi) + lC(θ,α1, . . . , αd), (2.50)

where lMi (αi) = log fi(xi;αi), and (2.51)

lC(θ,α1, . . . , αd) = log c
(
FX1(x1;α1), . . . , FXd

(xd;αd);θ
)
. (2.52)

Here, lMi (·) is the marginal log-likelihood for αi and lC(·) is the copula log-likelihood for the pa-

rameters (θ,α1, . . . , αd). The maximum likelihood estimate (MLE) (α̂1, . . . , α̂d, θ̂) is found

by solving

(∂l/∂α1, . . . , ∂l/∂αd, ∂l/∂θ) = 0. (2.53)

This can be difficult to solve, especially when d is even moderately large. A workaround is to use

the inference functions for margins (IFM) approach described by Joe and Xu [1996] which is a

two-step approach to estimating the parameters:

1. Maximize the log likelihoods of the d univariate marginals lMi (α), i = 1, . . . , d to get the

estimates α̃1, . . . , α̃d.

2. Maximize l(θ, α̃1, . . . , α̃d) over θ to get the estimate θ̃.
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The IFM estimate (α̃1, . . . , α̃d, θ̃) is therefore the solution to

(∂lM1 /∂α1, . . . , ∂l
M
d /∂αd, ∂l/∂θ) = 0. (2.54)

There exist other parametric, semi-parametric, and non-parametric alternatives to MLE and IFM.

There are also Bayesian alternatives to IFM; we refer to Grazian and Liseo [2017] for recent

Bayesian advances. All methods have their merits and demerits depending on the form of the

copula and the properties of the marginals. Assumptions are often made to simplify the likelihood

resulting in trade offs between computational simplicity and efficiency of the estimates. Pair cop-

ula constructions which simplify multivariate copulas by presenting them as products of pairwise

copulas have also become common recently for dealing with high dimensional copulas [Aas et al.,

2009, Brechmann et al., 2012]. In this thesis, we use the pair copula approximation to specify

correlation structures in our HMM. This is done both for the state distribution and the conditional

emission distribution.

2.8 Remote Sensing Data from GPM-IMERG

The Global Precipitation Measurement (GPM) mission1 is an international satellite mis-

sion co-led by the National Aeronautics and Space Administration (NASA) and the Japanese

Aerospace and Exploration Agency (JAXA). It aims to unify precipitation measurements from

multiple research and operational microwave sensors for delivering next-generation global pre-

cipitation products. The GPM ‘core’ satellite has been deployed by NASA and JAXA carrying

an advanced active/passive sensor package. The core satellite works alongside a constellation of

satellites provided by a consortium of international partners to compute consistent precipitation

estimates. Each constellation member has their own scientific and operational objectives, but also

provide the GPM mission with microwave measurements which allows for precipitation products

with global coverage and high precipitation frequency. GPM precipitation products also include

precipitation gauge information where possible to adjust satellite estimates to reduce biases in

1https://gpm.nasa.gov/missions/GPM/constellation

39

https://gpm.nasa.gov/missions/GPM/constellation


2.8. REMOTE SENSING DATA FROM GPM-IMERG

Figure 2.3: Diagram of the GPM satellite constellation as of early 2019. Credit: NASA GSFC.

monthly averages. Figure 2.3 shows the consortium partners and the satellites that are part of the

GPM mission as of 2019. The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm2

[Huffman et al., 2019] combines the information that is made available through the GPM satel-

lites to provide global precipitation estimates. The GPM-IMERG product is currently in Version 6

where it fuses precipitation estimates collected during the operation of the Tropical Rainfall Mea-

suring Mission (TRMM) research satellite3 (2000–2015) with more recent precipitation estimates

from GPM (2014–present). This provides a longer record of global precipitation that can be used

by researchers to formulate better climate and weather models and understand long-term global

mean and extreme precipitation patterns. IMERG provides multiple data products from Level 1

(unprocessed instrument data at full resolution) to Level 3 (research-quality gridded estimates with

time interpolation, gauge data, and climatological adjustment). Higher level products are better

calibrated and easier to use in research. However, the calibration and postprocessing leads to

higher latency, i.e., there is a longer time gap between data collection and the dataset being made

available. This thesis relies on daily IMERG Final Run data (V06B), which is a Level 3 product

available from June 2000 – present. IMERG V06B is calibrated using monthly gauge data, and is

2https://gpm.nasa.gov/data/imerg
3https://gpm.nasa.gov/missions/trmm
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Table 2.1: Details of the GPM-IMERG dataset used for this study

Version V06B
Availability 2000-present
Latency >3.5 months
Spatial Resolution 0.1◦ × 0.1◦

Temporal Resolution Daily

Spatial Coverage Full coverage for 60◦N – 60◦S
Partial coverage beyond 60◦ up to 90◦

available at different temporal frequencies, from half-hourly to daily. The GPM-IMERG dataset

covers the Chesapeake Bay watershed using 1927 grid points, as shown in Figure 1.2. Table 2.1

provides further details of the data that we use in this thesis.

2.9 Hardware and Software Used

The hardware used in the computational studies is part of the UMBC High Performance

Computing Facility (hpcf.umbc.edu). The study used CPU nodes with two 18-core Intel

Xeon Gold 6140 Skylake CPUs (2.3 GHz clock speed, 24.75 MB L3 cache, 6 memory channels)

and 384 GB memory. The nodes are connected by a network of four 36-port EDR (Enhanced Data

Rate) InfiniBand switches with 100 Gb/s bandwidth and 90 ns latency. All statistical computations

were done in R 3.6.x and R 4.0.x. Plots were generated using base R packages as well as

ggplot2 [Wickham, 2016].

R uses double precision arithmetic which supports absolute maximum and minimum val-

ues of the order of 10308 and 10−308 respectively. However, these values can and do get ex-

ceeded when computing likelihoods for even modest datasets. For case studies involving real

data, the R Multiple Precision Floating-Point Reliable (Rmpfr) package

[Maechler, 2021], which was built to work with data which require arbitrary floating point pre-

cision, was used. In practice, we found that converting a regular floating point variable into an

rmpfr object or vice versa were the only computational bottlenecks, and operations of rmpfr

objects did not take perceptibly longer than operations of floating point variables. Simulation

studies were run using the RMPI package [Yu, 2002], which is an R wrapper to the Message
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Passing Interface protocol for parallel computation. Several of our simulation studies

require running the same algorithm over multiple datasets generated from the same underlying

model. With RMPI, we were able to spread out 1000 simulation studies among 3 CPU nodes of

the HPCF which correspond to over 100 processes, each of which would only need to run 10 sim-

ulations. The processes work independently and communicate only once they have all run their

respective simulation studies to provide combined estimates and an array of all the data that has

been used for each of their studies. This significantly cuts down on computation time. The code

that is used for this thesis is being made available on GitHub4.

4https://github.com/reetamm
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Chapter 3

Variational Bayes Parameter Estimation in HMMs

for Semi-Continuous Daily Precipitation Data

In this chapter, we develop variational Bayes (VB) estimation for HMMs with semi-continuous

emission distributions. We will refer to these HMMs as VB-HMMs and will use it to model daily

precipitation data. We first cover univariate HMMs with a single observation sequence, where the

data is available for consecutive time steps with no breaks. The emission process which corre-

sponds to the observed precipitation has a semi-continuous distribution, with a point mass at 0 for

no rainfall, and a mixture of Exponential distributions for positive rainfall. Next, we discuss pa-

rameter estimation when there are multiple observation sequences, e.g., seasonal data for multiple

years where there is a break in between the end of the season for a year and the beginning of the

season for the next year. These cases all have natural extensions to multivariate emissions corre-

sponding to multi-site precipitation data. Mixtures of Exponential distributions are used to specify

the distribution of positive precipitation as previous studies have shown it to be a good choice for

daily precipitation amounts [Wilks, 1998, Robertson et al., 2006]. We also derive expressions for

the Evidence Lower Bound (ELBO) and the Deviance Information Criterion (DIC) which are used

to assess model convergence. A univariate state process corresponding to Figure 2.1 is assumed

for all models in this chapter, an assumption which will be relaxed in the following chapters.

Once we have looked at formulations involving a mixture of exponential distributions for

specifying positive precipitation, we turn our attention to some alternate emission distribution

specifications. The Gamma distribution is a common alternative for precipitation [Robertson et al.,

2006, Mhanna and Bauwens, 2012, Popuri, 2019]. We have previously used a mixture of Gamma

distributions to estimate HMM parameters using maximum likelihood for daily precipitation over
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the Potomac river basin [Kroiz et al., 2020a] and for the Chesapeake Bay watershed [Majumder

et al., 2020]. We derive expressions for a VB-HMM which uses Gamma distributions for its emis-

sions. We also derive expressions for a VB-HMM with Gamma shape mixtures (GSM) [Venturini

et al., 2008] for positive precipitation. The GSM distribution has fewer parameters than Exponen-

tial or Gamma mixtures and has not been applied to precipitation models in the past. Empirical

Bayes priors are derived for the GSM setup, which allows a relatively straightforward approach to

specifying informative priors. All these estimation approaches fall under the umbrella of coordi-

nate ascent variational Bayes (CAVI), where the entire data is used for the VBEM algorithm.

Finally, we discuss stochastic variational Bayes (SVB) as a practical parameter estimation

approach for real life applications, where the dimensionality of the emission process makes CAVI

infeasible. We derive expressions for parameter updates when positive precipitation is distributed

as a mixture of exponential distributions. We propose a modified minibatch sampling method for

stochastic optimization which adds more variability in the samples and improves the parameter

estimates of the emission distribution parameters. Simulation study results for both CAVI and

SVB are compared to gauge the trade-offs of using different prior specifications and for using

stochastic optimization.

3.1 VB-HMM with Univariate Emissions

Let y1:T = {y1, . . . , yT } be the precipitation time series of length T, with yt ≥ 0. The

data is generated by a set of underlying hidden states s1:T = {s1, . . . , st, . . . , sT }, where each

state st ∈ {1, . . . ,K}. Let stj denote an indicator variable for being in state j at time t, i.e.

stj = I(st = j). For each state j, we define an indicator variable rtjm to connect the underlying

state to the emission distribution, such that:

rtjmstj = I{yt comes from the mth mixture component and st = j}, m = 0, 1, . . . ,M,

where rtj = (rtj0, rtj1, . . . , rtjM ) is encoded as a standard unit vector, also known as a one-hot

vector; rtj0 indicates no-rainfall events. We assume that the number of states (K) and mixture
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components (M+1) in the HMM are known. Note that for j = 1, . . . ,K and m = 0, . . . ,M , we

have:

E[rtjmstj ] = Pr[yt comes from the mth mixture component and st = j]

= Pr[yt comes from the mth mixture component|st = j] · Pr[st = j]

= E[rtjm|stj ] · E[stj ].

For each state j, rtj follows a categorical distribution which corresponds to a single draw from a

multinomial distribution, given by

p(rtj |st = j) =
M∏
m=0

c
rtjm
jm , m = 0, 1, . . . ,M, (3.1)

where cj = (cj0, . . . , cjM ) is the vector of mixture probabilities parameterizing rtj , with cjm ≥ 0

for all m, and
∑M

m=0 cjm = 1. If we assume that positive rainfall for the mth mixture component

(where m > 0) from state j follows an Exponential distribution with rate λjm, the distribution of

an observation from state j is given by

p(yt, rtj |λj , cj , st = j) = p(rtj |cj , st = j) · p(yt|λj , rtj , st = j)

= c
rtj0
j0

M∏
m=1

[
cjmλjm exp{−λjmyt}

]rtjm . (3.2)

The complete data likelihood is given by

p(y, s, r|Θ) = p(y, r|s,Θ) · p(s|Θ)

=

T∏
t=1

K∏
j=1

{
p(yt, rtj |st = j,Θ)p(st|Θ)

}
= p(s1)

T∏
t=1

K∏
j=1

{
p(yt, rtj |st = j,Θ)

} T∏
t=1

K∏
j=1

{
p(st+1|st = j,Θ)

}
,

where p(s|Θ) is the distribution of the states which factorizes into the distribution of the initial

state π1 = p(s1) and the distribution of the state transitions p(st+1|st). For j, k = 1, . . . ,K,

π1j = Pr[s1 = j] are the initial state probabilities and ajk = P [st+1 = k|st = j] are the transi-
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tion probabilities, A = ((ajk)) is the K×K transition probability matrix, and C = ((cjm)) is the

K × (M + 1) matrix of mixture probabilities. Similarly, Λ = ((λjm)) is a K ×M matrix whose

elements are the rate parameters as described in (3.2). Taken together, Θ = (A,C,Λ, π1) param-

eterizes the HMM. We assign a prior on Θ which factorizes into a product over its components,

i.e.

p(Θ|ν(0)) = p(π1) · p(A) · p(C) · p(Λ),

where ν(0) are hyperparameters whose values are known. We assign independent Dirichlet pri-

ors to the rows of A, denoted by aj = (aj1, . . . , ajK), and to the initial distribution π1 =

(π11, . . . , π1K). Similarly, independent Dirichlet priors are assigned to the rows of C, denoted

by cj = (cj0, . . . , cjM ). Note that if the elements making up the parameter vector of a Dirichlet

distribution are equal, it constitutes a symmetric Dirichlet distribution. The sum of the elements

of the parameter vector is known as its concentration. A symmetric Dirichlet distribution indicates

no prior knowledge favoring one component over another. Finally, independent Gamma priors are

assigned to each element of Λ. Thus,

p(π1) = Dirichlet(π1|ξ(0)),

p(A) =

K∏
j=1

Dirichlet(aj |α(0)
j ),

p(C) =
K∏
j=1

Dirichlet(cj |ζ(0)
j ),

and p(Λ) =

K∏
j=1

M∏
m=1

Gamma(λjm|γ(0)
jm, δ

(0)
jm),

where ζ(0)
j = (ζ

(0)
j0 , . . . , ζ

(0)
jM ), α(0)

j = (α
(0)
j1 , . . . , α

(0)
jK), and ξ(0) = (ξ

(0)
1 , . . . ξ

(0
K ). γ(0)

jm and δ(0)
jm

are the shape and rate parameters of the Gamma distribution respectively. The complete data

46



3.1. VB-HMM WITH UNIVARIATE EMISSIONS

likelihood can be expressed as

p(y, s, r|Θ) =
K∏
j=1

{
π1j

}s1j T∏
t=1

K∏
j=1

{
pj(yt, rtj |Θ)

}stj T−1∏
t=1

K∏
j=1

K∏
k=1

{
ajk
}stjst+1,k

= exp

{ K∑
j=1

s1j log π1j +

T∑
t=1

K∑
j=1

[ M∑
m=1

stjrtjm(log cjm + log λjm − ytλjm)

+ stjrtj0 log cj0

]
+
T−1∑
t=1

K∑
j=1

K∑
k=1

stjst+1,k log ajk

}
,

(3.3)

where stj = I{st = j} denotes the daily state and the product stjst+1,k denotes a typical state

transition. For convenience, we have denoted p(·|st = j,Θ) as pj(·|Θ). We write the prior as

p(Θ|ν(0)) = p(π1) · p(λ) · p(C) · p(A)

= exp

{ K∑
j=1

{
(ξ

(0)
j − 1) log π1j +

M∑
m=1

[
−δ(0)

jmλjm + (γ
(0)
jm − 1) log λjm

]
+ (ζ

(0)
j0 − 1) log cj0 +

M∑
m=1

(ζ
(0)
jm − 1) log cjm +

K∑
k=1

(α
(0)
jk − 1) log ajk

}
− log h(0)

}
,

(3.4)

where h(0) = h(ν(0)) is the normalizing constant for the prior. Comparing this expression with

the canonical form for the conjugate exponential family, we arrive at the following expressions for

the natural parameters φ(Θ), their sufficient statistics u(s, y, r), and the hyperparameters ν(0):

φ(Θ) =



log π1j

log cj0

log cjm

log λjm

λjm

log ajk


, u(s, y, r) =



s1j

stjrtj0

stjrtjm

stjrtjm

ytstjrtjm

stjst+1,k


, ν(0) =



ξ
(0)
j − 1

ζ
(0)
j0 − 1

ζ
(0)
jm − 1

γ
(0)
jm − 1

δ
(0)
jm

α
(0)
jk − 1


, (3.5)
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for m = 1, . . . ,M, j = 1, . . . ,K, k = 1, . . . ,K. The variational family Q is constrained to

distributions which are separable in the following manner:

qz(z) = qΘ(Θ) · qs,r(s, r), (3.6)

where qΘ(Θ) = q(π1) · q(A) · q(C) · q(Λ). (3.7)

As discussed in Section 2.4, qΘ(Θ) and qs,r(s, r) are coupled in (3.6), and the optimization prob-

lem in (2.14) cannot be solved analytically. Instead, it is solved numerically by iteratively optimiz-

ing qΘ(Θ) and qs,r(s, r) using the VBEM algorithm, which is the variational Bayes generalization

for the EM algorithm. In the variational M-step (VBM step), qs,r(s, r) is fixed and qΘ(Θ) is up-

dated, with the posterior taking the same form as the conjugate prior. Since qΘ(Θ) factors as in

(3.7), each of its components can be updated individually while holding the others fixed. In the

variational E-step (VBE step), we seek to update qs,r(s, r) while holding qΘ(Θ) fixed. Since the

HMM’s states are first order Markov, we need to take the temporal dependency into considera-

tion if we want meaningful estimates for the latent variables. We accomplish this by adapting the

Forward-Backward algorithm, a central part of the Baum-Welch algorithm, into our VBEM.

VBM step: With the variational posterior qs,r(s, r) of the latent variables fixed at their expected

value, update qΘ(Θ), the variational posterior of the model parameters.

Since the variational posterior qΘ(Θ) is conjugate to the prior in (3.30), the posterior distri-

bution for each component of φ(Θ) in (3.31) is obtained by updating the coordinates of ν(0) with

the expected values of the corresponding sufficient statistics u(s, y, r). To this end, we denote the

expectations of the latent variables in (3.3) under qs,r(s, r) as

q1j = E(s1j),

qtj = E(stj),

qtjm = E(rtjm),

and qjk = E(stjst+1,k),

where j, k = 1, . . . ,K and m = 0, 1, . . . ,M . The variational updates at each iteration of the
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VBM step are then given by

ξj = ξ
(0)
j + q1j ,

ζj0 = ζ
(0)
j0 +

T∑
t=1

qtjqtj0,

ζjm = ζ
(0)
jm +

T∑
t=1

qtjqtjm,

γjm = γ
(0)
jm +

T∑
t=1

qtjqtjm,

δjm = δ
(0)
jm +

T∑
t=1

qtjqtjmyt,

αjk = α
(0)
jk +

T−1∑
t=1

qjk,

where j, k = 1, . . . ,K and m = 1, . . . ,M .

VBE step: With the variational posterior qΘ(Θ) of the model parameters fixed at their expected

values, update the variational posterior qs,r(s, r) of the latent variables.

The variational posterior qs,r(s, r) has a form similar to the complete data likelihood in

(3.3) with the natural parameters φ(Θ) replaced by their expectations under qΘ(Θ). Thus,

qs,r(s, r) ∝
K∏
j=1

{
a∗1j
}s1j T∏

t=1

K∏
j=1

M∏
m=0

{
b∗tjm

}stjrtjm T−1∏
t=1

K∏
j=1

K∏
k=1

{
a∗jk
}stjst+1,k , (3.8)

with a∗1j = exp
{
Eq log π1j

}
= exp

{
Ψ(ξj)−Ψ(ξ.)

}
,

and a∗jk = exp
{
Eq log ajk

}
= exp

{
Ψ(αjk)−Ψ(αj.)

}
,

where Ψ(·) is the digamma function and ξ· =
∑K

j=1 ξj , αj. =
∑K

k=1 αjk. Similarly,

b∗tjm =


exp
{
Eq log

[
cj0
]}

if m = 0,

exp
{
Eq log

[
cjmf(yt|λjm)

]}
if m > 0.
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The expectations of the individual terms in b∗tjm are:

c∗jm = exp
{
Eq log cjm

}
= exp

{
Ψ(ζjm)−Ψ(ζj.)

}
, where ζj. =

M∑
m=0

ζjm,

λ∗jm = exp
{
Eq log λjm

}
= exp

{
Ψ(γjm)− log δjm

}
,

λ̂jm = Eqλjm = γjm/δjm.

Therefore,

b∗tjm =


exp
{

Ψ(ζj0)−Ψ(ζj·)
}

if m = 0,

exp
{

Ψ(ζjm)−Ψ(ζj·) + Ψ(γjm)− log δjm − yt γjmδjm
}

if m > 0.

Here a∗1j is the expected initial state probability, a∗jk are the expected transition probabilities from

state j to state k, and b∗tj =
∑M

m=0 b
∗
tjm is the expected emission probability distribution con-

ditional on the system being in state j at time t. As mentioned previously, the expectations are

computed with respect to the variational posterior distribution of the parameters at the current it-

eration of the VBEM. These can now be used in the Forward-Backward Algorithm described in

Section 2.5.1 to get the desired variational posterior estimates for the state probabilities as well as

the cluster assignment probabilities. The updates to the variational posterior on the latent variables

are:

qtj =
F̃tj · B̃tj∑K
k=1 F̃tk · B̃tk

,

qjk =
F̃tj · a∗jk · b∗t+1,k · B̃t+1,k∑K

j=1

∑K
k=1 F̃tj · a∗jk · b∗t+1,k · B̃t+1,k

.

where F̃tj and B̃tj are the scaled Forward and Backward variables respectively. The posterior
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update of q1j is the first entry of qtj . The posterior for the mixture assignments is given by

qtjm ∝



1 if m = 0, yt = 0

0 if m > 0, yt = 0 or m = 0, yt > 0

c∗jmf(yt|λ∗jm, λ̂jm) if m > 0, yt > 0

where c∗jmf(yt|λ∗jm, λ̂jm) = exp
{

Ψ(ζjm)−Ψ(ζj·)+Ψ(γjm)−log δjm−yt γjmδjm
}

. Note that when

there is exactly one mixture component for positive rainfall (M = 1), observations are assigned

to mixture components in a deterministic manner, fixing rtj .

Assessing convergence using the ELBO

Using Equations (3.3) – (3.8), we can rewrite the ELBO as

ELBO(q) = Eq(s,r) log p(y, s, r) + Eq(Θ) log p(Θ) +H
(
q(s, r)

)
− Eq(Θ) log q(Θ),

where H
(
q(s, r)

)
is the entropy of the variational posterior distribution over the latent variables.

Beal [2003] and Ji et al. [2006] have shown that this simplifies to

ELBO(q) = log q(y|Θ)−KL
(
q(π1) ‖ p(π1)

)
−KL

(
q(A) ‖ p(A)

)
−KL

(
q(C) ‖ p(C)

)
−KL

(
q(Λ) ‖ p(Λ)

)
,

(3.9)

where the first term on the right hand side is calculated as part of the Forward Algorithm in (2.36).

This relationship is used to compute the ELBO at each iteration, and we declare convergence once

the change in ELBO falls below a desired threshold.

3.2 VB-HMM with Multiple Observation Sequences

Multiple observation sequences can arise, for example, when we are collecting data for

only a certain number of days or months, but for multiple years. For precipitation, we are usually

interested in looking at a particular season at any point. Thus we end up with 3 months of data
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for consecutive years, with a 9 month gap between seasons from different years. Rabiner [1989]

modified the maximum likelihood estimation procedure by considering data like this as multi-

ple observation sequences from the underlying process. Let there be N independent sequences,

denoted by:

y ≡ y1:T =
[
y(1), y(2), . . . , y(N)

]
,

where y(i) = (y
(i)
1 , . . . , y

(i)
Ti

) is the ith observation sequence. In our example, Ti = 92 days (3

months) for each i. N correspondingly represents the number of years for which we have data.

As in Rabiner [1989], we make the assumption that each observation sequence is independent of

every other observation sequence, that is:

p(y1:T |Θ) =
N∏
i=1

p(y(i)|Θ).

We can then modify the VBEM algorithm as follows:

VBE step: Run the Forward-Backward algorithm independently for each observation sequence,

giving us the posterior estimates q(i)
1j , q

(i)
tj , q

(i)
tjm, q

(i)
jk for t = 1, . . . , Ti, i = 1, . . . , N , j, k =

1, . . . ,K, and m = 0, . . . ,M .

VBM step: Update each component of qΘ(Θ) by evaluating the expected values of the sufficient

statistics u(s, y, r). Since y =
[
y(1), y(2), . . . , y(N)

]
, u(s, y, r) =

∑N
i=1 u(s(i), r(i), r(i)), that is:

ξj = ξ
(0)
j +

N∑
i=1

q
(i)
1j ,

ζj0 = ζ
(0)
j0 +

N∑
i=1

Ti∑
t=1

q
(i)
tj q

(i)
tj0,

ζjm = ζ
(0)
jm +

N∑
i=1

Ti∑
t=1

q
(i)
tj q

(i)
tjm,

γjm = γ
(0)
jm +

N∑
i=1

Ti∑
t=1

Tq
(i)
tj q

(i)
tjm,

δjm = δ
(0)
jm +

N∑
i=1

Ti∑
t=1

q
(i)
tj q

(i)
tjmy

(i)
t ,
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αjk = α
(0)
jk +

N∑
i=1

Ti−1∑
t=1

q
(i)
jk ,

where j, k = 1, . . . ,K and m = 1, . . . ,M . A consequence of multiple observation sequences is

that the variational update for ξj is now based on N estimates of q1j instead of just 1.

3.3 VB-HMM with Multivariate Emissions

We now consider the case where our data is L-dimensional, corresponding to precipitation

at L locations. Let y1:T = {y1, . . . ,yT } be the precipitation time series of length T, with y′t =

(yt1, . . . , ytL) and ytl ≥ 0 for l = 1, . . . , L. The data is generated by a set of underlying hidden

states s1:T = {s1, . . . , st, . . . , sT }, where each state st ∈ {1, . . . ,K}. For each state j, we define

an indicator variable rtjlm to connect the underlying state j to the emission distribution such that:

rtjlmstj =I{ytl comes from the mth mixture component and st = j},

with m = 0, 1, . . . ,M , l = 1, . . . , L, and where stj = I(st = j) as before. The number of states

(K), the number of locations (L), and the number of mixture components (M+1) in the HMM are

assumed to be known. Note that for j = 1 . . . ,K, m = 0, . . . ,M and l = 1, . . . , L, we have:

E[rtjlmstj ] = E[rtjlm|stj ] · E[stj ].

We define rtjl = (rtjl0, . . . , rtjlm). For each state j and location l, rtjl follows a categorical

distribution which corresponds to a single draw from a multinomial distribution, given by

p(rtjl|cjl, st = j) =
M∏
m=0

c
rtjlm
jlm , (3.10)

and p(rtjl|cjl, st = j) ⊥⊥ p(rtjl′ |cjl′ , st = j) for l 6= l′, (3.11)

with m = 0, 1, . . . ,M and l = 1, . . . , L; cjl = (cjl0, . . . , cjlM ) are the mixture probabilities

parameterizing rtjl, with cjlm ≥ 0 for all m, and
∑M

m=0 cjlm = 1. A consequence of the condi-
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tional Independence assumption in (3.11) is that the correlation between precipitation at different

locations is induced by the common state variable for all locations. Unless the emissions follow a

multivariate distribution, e.g. a multivariate Normal distribution, this is the only source of corre-

lation between the different emission chains. If we assume that positive rainfall at the lth location

from the mth mixture component (where m > 0) arising from state j follows an Exponential dis-

tribution with rate λjlm with λjl = {λjl1, . . . , λjlm}, the distribution of an observation from state

j across all locations is given by

L∏
l=1

p(ytl, rtjl|λjl, cjl, st = j) =
L∏
l=1

p(rtjl|cjl, st = j) · p(ytl|λjl, rtjl, st = j)

=
L∏
l=1

{
c
rtjl0
jl0

M∏
m=1

[
cjlmλjlm exp{−λjlmytl}

]rtjlm}. (3.12)

As in the univariate case, the complete data likelihood is given by

p(y, s, r|Θ) = p(y, r|s,Θ) · p(s|Θ),

In this case, A = ((ajk)) is the K × K transition probability matrix, and Cl = ((cjlm)) is the

K × (M + 1) matrix of mixture probabilities for each location l. Similarly, Λl = ((λjlm)) is a

K ×M matrix whose elements are the independently distributed rate parameters of the Exponen-

tial distributions which are part of the semi-continuous emissions in each state. We also define the

tensors C = (C1, . . . , CL) and Λ = (Λ1, . . . ,ΛL). Taken together, Θ = (A,C,Λ, π1) parameter-

izes the HMM. We assign a prior on Θ which factorizes into a product over its components:

p(Θ|ν(0)) = p(π1) · p(A) · p(C) · p(Λ),

where ν(0) are known hyperparameters. The individual components of the prior are distributed as

p(π1) = Dirichlet(π1|ξ(0)),

p(A) =

K∏
j=1

Dirichlet(aj |α(0)
j ),
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p(C) =
K∏
j=1

L∏
l=1

Dirichlet(cjl|ζ
(0)
jl ),

and p(Λ) =
K∏
j=1

L∏
l=1

M∏
m=1

Gamma(λjlm|γ
(0)
jlm, δ

(0)
jlm),

where aj = (aj1, . . . , ajK), π1 = (π11, . . . , π1K), ζ(0)
jl = (ζ

(0)
jl0 , . . . , ζ

(0)
jlM ), α(0)

j = (α
(0)
j1 , . . . , α

(0)
jK),

and ξ(0) = (ξ
(0)
1 , . . . ξ

(0
K ). γ(0)

jlm and δ(0)
jlm are the shape and rate parameters of the Gamma distribu-

tion respectively.

The complete data likelihood can be expressed as

p(y, s, r|Θ) =
K∏
j=1

{
π1j

}s1j T∏
t=1

K∏
j=1

L∏
l=1

{
pj(ytl, rtjl|Θ)

}stj T−1∏
t=1

K∏
j=1

K∏
k=1

{
ajk
}stjst+1,k

= exp

{ K∑
j=1

s1j log π1j +

T∑
t=1

K∑
j=1

L∑
l=1

[ M∑
m=1

stjrtjlm(log cjlm + log λjlm − ytλjlm)

+ stjrtjl0 log cjl0

]
+
T−1∑
t=1

K∑
j=1

K∑
k=1

stjst+1,k log ajk

}
.

(3.13)

Similarly, we write the prior as

p(Θ|ν(0)) = p(π1) · p(λ) · p(C) · p(A)

= exp

{ K∑
j=1

{
(ξ

(0)
j − 1) log π1j +

L∑
l=1

M∑
m=1

[
−δ(0)

jlmλjlm + (γ
(0)
jlm − 1) log λjlm

]
+

L∑
l=1

(ζ
(0)
jl0 − 1) log cjl0 +

L∑
l=1

M∑
m=1

(ζ
(0)
jlm − 1) log cjlm

+

K∑
k=1

(α
(0)
jk − 1) log ajk

}
− log h(0)

}
,

(3.14)

where h(0) = h(ν(0)) is the normalizing constant for the prior. Comparing this expression with

the canonical form for the conjugate exponential family, we arrive at the following expressions for
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the natural parameters φ(Θ), their sufficient statistics u(s, y, r), and the hyperparameters ν(0):

φ(Θ) =



log π1j

log cjl0

log cjlm

log λjlm

λjlm

log ajk


, u(s, y, r) =



s1j

stjrtjl0

stjrtjlm

stjrtjlm

ytlstjrtjlm

stjst+1,k


, ν(0) =



ξ
(0)
j − 1

ζ
(0)
jl0 − 1

ζ
(0)
jlm − 1

γ
(0)
jlm − 1

δ
(0)
jlm

α
(0)
jk − 1


, (3.15)

for m = 1, . . . ,M, j = 1, . . . ,K, k = 1, . . . ,K. The variational family Q is constrained to

distributions which are separable in the following manner:

qz(z) = qΘ(Θ) · qs,r(s, r), (3.16)

where qΘ(Θ) = q(π1) · q(A) · q(C) · q(Λ). (3.17)

The VBEM algorithm for multivariate emissions follows the univariate case closely.

VBM step: With the variational posterior qs,r(s, r) of the latent variables fixed at their expected

values, update qΘ(Θ), the variational posterior of the model parameters.

Since qΘ(Θ) is conjugate to the prior, the posterior distribution for each component of

φ(Θ) in (3.15) is obtained by updating the coordinates of ν(0) with the expected values of the

corresponding sufficient statistics u(s, y, r). To this end, we denote the expectations of the latent

variables in (3.13) under qs,r(s, r) as

q1j = E(s1j),

qtj = E(stj),

qtjlm = E(rtjlm),

and qjk = E(stjst+1,k),

where j, k = 1, . . . ,K, l = 1, . . . , L, and m = 0, 1, . . . ,M . The variational updates at each
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iteration of the VBM step are then given by

ξj = ξ
(0)
j + q1j ,

ζjl0 = ζ
(0)
jl0 +

T∑
t=1

qtjqtjl0,

ζjlm = ζ
(0)
jlm +

T∑
t=1

qtjqtjlm,

γjlm = γ
(0)
jlm +

T∑
t=1

qtjqtjlm,

δjlm = δ
(0)
jlm +

T∑
t=1

qtjqtjlmytl,

αjk = α
(0)
jk +

T−1∑
t=1

qjk,

where j, k = 1, . . . ,K, l = 1, . . . , L, and m = 1, . . . ,M .

VBE step: With the variational posterior qΘ(Θ) of the model parameters fixed at their expected

values, update the variational posterior qs,r(s, r) of the latent variables.

The variational posterior qs,r(s, r) has a form similar to the complete data likelihood as in

the univariate case, i.e.

qs,r(s, r) ∝
K∏
j=1

{
a∗1j
}s1j T∏

t=1

K∏
j=1

L∏
l=1

M∏
m=0

{
b∗tjlm

}stjrtjlm T−1∏
t=1

K∏
j=1

K∏
k=1

{
a∗jk
}stjst+1,k , (3.18)

with the natural parameters φ(Θ) replaced by their expectations under qΘ(Θ). Comparing with

(3.13), we get

a∗1j = exp
{
Eq log π1j

}
= exp

{
Ψ(ξj)−Ψ(ξ.)

}
,

and a∗jk = exp
{
Eq log ajk

}
= exp

{
Ψ(αjk)−Ψ(αj.)

}
,
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where ξ· =
∑K

j=1 ξj , αj. =
∑K

k=1 αjk. Similarly,

b∗tjlm =


exp
{
Eq log

[
cjl0
]}

if m = 0,

exp
{
Eq log

[
cjlmf(ytl|λjlm)

]}
if m > 0.

The expectations of the individual terms in b∗tjlm are:

c∗jlm = exp
{
Eq log cjlm

}
= exp

{
Ψ(ζjlm)−Ψ(ζj.)

}
, where ζj. =

M∑
m=0

ζjlm,

λ∗jlm = exp
{
Eq log λjlm

}
= exp

{
Ψ(γjlm)− log δjlm

}
,

λ̂jlm = Eqλjlm = γjlm/δjlm.

Therefore, b∗tjlm =


exp
{

Ψ(ζjl0)−Ψ(ζjl·)
}

if m = 0,

exp
{

Ψ(ζjlm)−Ψ(ζjl·) + Ψ(γjlm)− log δjlm − ytl
γjlm
δjlm

}
if m > 0,

and b∗tj =

L∏
l=1

M∑
m=0

b∗tjlm.

The quantities a∗1j , a
∗
jk and b∗tj can be used as part of the Forward-Backward Algorithm to get our

desired variational posterior estimates for the state probabilities as well as the cluster assignment

probabilities. The updates to the variational posterior on the latent variables are q1j , qtj and qjk

are identical to the univariate case. The posterior for the mixture assignments for the lth location

is given by

qtjlm ∝



1 if m = 0, ytl = 0

0 if m > 0, ytl = 0 or m = 0, ytl > 0

c∗jlmf(ytl|λ∗jlm, λ̂jlm) if m > 0, ytl > 0

where c∗jlmf(ytl|λ∗jlm, λ̂jlm) = exp
{

Ψ(ζjlm) − Ψ(ζjl·) + Ψ(γjlm) − log δjlm − ytl
γjlm
δjlm

}
. Note

that the VBEM algorithm for multivariate data can be easily extended to accommodate multiple
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observation sequences similar to the univariate case.

3.4 Model Selection using the DIC

Let Θ be our parameter vector, and Θ̃ denote its posterior mean. The DIC for a VB-HMM

can be expressed as

DIC = −2 log p(y|Θ̃) + 2pD, (3.19)

where pD ≈ −2

∫
qΘ(Θ) log

{
qΘ(Θ)

p(Θ)

}
dΘ + 2 log

{
qΘ(Θ̃)

p(Θ̃)

}
(3.20)

is defined using a variational approximation. We present the DIC calculations for univariate emis-

sions. The terms required to calculate pD for our model are:

log qΘ(Θ) =
K∑
j=1

{ P∑
p=1

[
−δjmλjm + (γjm − 1) log λjm

]
+ (ζj0 − 1) log cj0

+
P∑
p=1

(ζjm − 1) log cjm +
K∑
l=1

(αjk − 1) log ajk

}
+ constant,

log p(Θ) =
K∑
j=1

{ P∑
p=1

[
−δ(0)

jmλjm + (γ
(0)
jm − 1) log λjm

]
+ (ζ

(0)
j0 − 1) log cj0

+

P∑
p=1

(ζ
(0)
jm − 1) log cjm +

K∑
l=1

(α
(0)
jk − 1) log ajk

}
+ constant,

log qΘ(Θ̃) =

K∑
j=1

{ P∑
p=1

[
−δjm

γjm
δjm

+ (γjm − 1) log
γjm
δjm

]
+ (ζj0 − 1) log

ζj0
ζj·

+
P∑
p=1

(ζjm − 1) log
ζjm
ζj·

+

K∑
l=1

(αjk − 1) log
αjk
αj·

}
+ constant,

log p(Θ̃) =

K∑
j=1

{ P∑
p=1

[
−δ(0)

jm

γjm
δjm

+ (γ
(0)
jm − 1) log

γjm
δjm

]
+ (ζ

(0)
j0 − 1) log

ζj0
ζj·

+
P∑
p=1

(ζ
(0)
jm − 1) log

ζjm
ζj·

+
K∑
l=1

(α
(0)
jk − 1) log

αjk
αj·

}
+ constant.

We note that the prior hyperparameters and the posterior hyperparameters are linearly related

through the variational updates; this can be used to simplify the expressions significantly. Also,

59



3.5. GAMMA DISTRIBUTION FOR POSITIVE PRECIPITATION

the constants all cancel out. Taking expectation of the first 2 terms under the variational posterior

distribution we get

pD =
K∑
j=1

T∑
t=1

{
qtjqtj0

[
log

ζj0
ζj·
−Ψ(ζj0) + Ψ(ζj·)

]
+

P∑
p=1

qtjqtjm
[
log

ζjm
ζj·
−Ψ(ζjm) + Ψ(ζj·) + log γjm −Ψ(γjm)

]
+

K∑
l=1

q(sj = j, st+1 = l)
[
log

αjk
αj·
−Ψ(αjk) + Ψ(αj·)

]
.

(3.21)

The density function p(y|Θ̃) can be obtained from (2.36) using the scaling constants from

the Forward recursion algorithm. We can then compute the DIC for the model.

3.5 Gamma Distribution for Positive Precipitation

Next, we consider a model identical to the previous section but replace the Exponential dis-

tribution for positive rainfall with a Gamma distribution. If the positive rainfall at the lth location

from the mth mixture component (where m > 0) arising from state j follows a Gamma distribu-

tion with shape ωjlm and rate λjlm, the density of an observation from state j across all locations

is given by

L∏
l=1

p(ytl, rtjl|ωjl, λjl, cjl, st = j) =
L∏
l=1

p(rtjl|cjl, st = j) · p(ytl|ωjl, λjl, rtjl, st = j)

=

L∏
l=1

{
c
rtjl0
jl0

M∏
m=1

[
cjlm

λ
ωjlm

jlm

Γ(ωjlm)
exp{−λjlmytl}y

ωjlm−1
tl

]rtjlm}.
(3.22)

The optimization for all parameters other than ωj and λj are identical to the previous section with

Exponential distribution emissions. We therefore focus only on the emission distribution. We use
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a modified Gamma conjugate prior of type II described in Section 2.6, denoted here by GC2:

p(Λ) =
K∏
j=1

L∏
l=1

M∏
m=1

GC2(ωjlm, λjlm|γ
(0)
jlm, δ

(0)
jlm, θ

(0)
jlm, β

(0)
jlm)

=

K∏
j=1

L∏
l=1

M∏
m=1

exp
{

(ωjlmγ
(0)
jlm − 1) log λjlm − δ

(0)
jlm log Γ(ωjlm)

+ (ωjlm − 1) log β
(0)
jlm − θ

(0)
jlmλjlm

}
,

(3.23)

where Λl is a K ×M × 2 array of (ωjlm, λjlm) pairs for all states and mixture components at the

lth location. The GC2 prior and its corresponding posterior is discussed briefly in Section 2.6, and

is based on Miller [1980]. The hyperparameters (γ
(0)
jlm, δ

(0)
jlm, θ

(0)
jlm, β

(0)
jlm) are known.

VBM step: The variational updates for the Gamma distribution parameters are given by:

γjlm = γ
(0)
jlm +

T∑
t=1

qtjqtjlm

δjlm = δ
(0)
jlm +

T∑
t=1

qtjqtjlm

θjlm = θ
(0)
jlm +

T∑
t=1

ytlqtjqtjlm

log βjlm = log β
(0)
jlm +

T∑
t=1

log ytlqtjqtjlm

where j, k = 1, . . . ,K, l = 1, . . . , L, and m = 1, . . . ,M . The remaining updates are identical to

the previous section.

VBE step: The variational posterior qs,r(s, r) has the same form as the known parameter posterior:

qs,r(s, r) ∝
K∏
j=1

{
a∗1j
}s1j T∏

t=1

K∏
j=1

L∏
l=1

M∏
m=0

{
b∗tjlm

}stjrtjlm T−1∏
t=1

K∏
j=1

K∏
k=1

{
a∗jk
}stjst+1,k , (3.24)

with the natural parameters φ(Θ) replaced by their expectations under qΘ(Θ). As before,

a∗1j = exp
{
Eq log π1j

}
= exp

{
Ψ(ξj)−Ψ(ξ.)

}
,

and a∗jk = exp
{
Eq log ajk

}
= exp

{
Ψ(αjk)−Ψ(αj.)

}
,
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where ξ· =
∑K

j=1 ξj , αj. =
∑K

k=1 αjk. Similarly,

b∗tjlm =


exp
{
Eq log

[
cjl0
]}

if m = 0,

exp
{
Eq log

[
cjlmf(ytl|ωjlm, λjlm)

]}
if m > 0.

The expectations of the individual terms in b∗tjlm are:

c∗jlm = exp
{
Eq log cjlm

}
= exp

{
Ψ(ζjlm)−Ψ(ζj.)

}
, where ζj. =

M∑
m=0

ζjlm,

Eq
[
ωjlm log λjlm

]
= Eωωjlm

[
Eλ|ω log λjlm

]
= Eω

[
ωjlmΨ(ωjlmγjlm)− ωjlm log θjlm

]
Eqλjlm = Eω

[ωjlmγjlm
θjlm

]
.

Functionals of the shape parameter ωjlm need to be computed numerically at every iteration, as

its normalizing constant does not have a closed form. This makes the VBE step computationally

expensive, especially considering that J ×L×M of these need to be evaluated at every iteration.

While there is no theoretical barrier to doing it, realistically, it makes more sense to assume the

shape parameters are known, or use exponential distributions as described in the previous section.

This also reiterates that conjugate priors are not always the best idea.

3.6 Gamma Shape Mixtures for Positive Precipitation

Venturini et al. [2008] proposed a Gamma shape mixture (GSM) for heavy tailed distribu-

tions in the context of medical expenditures which tend to have highly skewed distributions. For a

positive random variable y, the GSM has a density of the form

p(y|c1, . . . cM , λ) =
M∑
m=1

cm · p(y|λ,m), (3.25)

where p(y|λ,m) =
λm

Γ(m)
ym−1 exp{−λy}. (3.26)
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The GSM has several desirable properties. First, it addresses the identifiability issue of the individ-

ual components by assigning a natural ordering to the moments of the Gamma distributions. For

example, the mean of the mth mixture component is m/λ. Further, by assuming M to be known,

all mixture components have only a shared unknown parameter λ. It is quite straightforward to

assign a Gamma prior to λ, and thus the number of hyperparameters is significantly reduced. This

simplification also allows the estimation of priors using empirical Bayes.

The approach is not without its limitations, however. The primary concern is that the shape

components are too close to each other since they are just a sequence of natural numbers. Modeling

emissions with a large range requires a high value for M, especially when using empirical Bayes to

estimate priors. This is somewhat mitigated since it is possible for most of the mixture components

to get negligible weights and eventually drop out as Venturini et al. [2008] demonstrate with

examples. We propose a GSM which identifies the mixture components based on a more general

sequence of shape parameters.

Multivariate emissions, as in the previous subsections, are also considered here. Let positive

rainfall at the lth location from the mth mixture component (where m > 0) arising from state j

follow a Gamma distribution with shape fm = f(m), a known function of m, and rate λjl. fm is

chosen such that f1 < f2 < . . . < fM . The distribution of precipitation on day t at location l for

mixture component m is given by

p(ytl|λjl, rtjlm) =


1 if m = 0,

λfmjl
Γ(fm)y

fm−1
t exp{−λjlyt} if m > 0.

(3.27)

In Venturini et al. [2008], fm = m. In a more general setting, fm could be a polynomial or

exponential function. The distribution of an observation from state j across all locations is

p(yt, rtjl|λj , cjl, st = j) =
L∏
l=1

p(rtjl|cjl, st = j) · p(yt|λj , rtjl, st = j)

=

L∏
l=1

{
c
rtjl0
jl0

M∏
m=1

[
cjlm

λfmjl
Γ(fm)

yfm−1
t exp{−λjlytl}

]rtjlm}. (3.28)
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The complete data likelihood is given by

p(y, s, r|Θ) = p(y, r|s,Θ) · p(s|Θ),

We define the parameters of the HMM using notation introduced earlier. Let A = ((ajk)) be

the K × K transition probability matrix. Cl = ((cjlm)) is the K × (M + 1) matrix of mixture

probabilities for each location l, withC = (C1, . . . , CL). Similarly, Λ = ((λjl)) is aK×Lmatrix

whose elements are the independently distributed rate parameters of the Gamma distributions

which are part of the semi-continuous emissions in each state at every location. Finally, let π1 be

a K-vector of the initial distribution. Taken together, Θ = (A,C,Λ, π1) parameterizes the HMM.

We assign a prior on Θ which factorizes into a product over its components:

p(Θ|ν(0)) = p(π1) · p(A) · p(C) · p(Λ),

where ν(0) are the hyperparameters. We assign independent Dirichlet priors to the rows of A, and

to the rows of Cl. Similarly, a Dirichlet prior is assigned to π1, and independent Gamma priors

are assigned to each element of Λl. That is,

p(π1) = Dirichlet(π1|ξ(0)),

p(A) =

K∏
j=1

Dirichlet(aj |α(0)
j ),

p(C) =
K∏
j=1

L∏
l=1

Dirichlet(cjl|ζ
(0)
jl ),

and p(Λ) =

K∏
j=1

L∏
l=1

Gamma(λjl|γ
(0)
jl , δ

(0)
jl ),

where aj = (aj1, . . . , ajK), π1 = (π11, . . . , π1K), ζ(0)
jl = (ζ

(0)
jl0 , . . . , ζ

(0)
jlM ), α(0)

j = (α
(0)
j1 , . . . , α

(0)
jK),

and ξ(0) = (ξ
(0)
1 , . . . ξ

(0
K ). γ(0)

jl and δ(0)
jl are the shape and rate parameters of the Gamma distribu-

tion respectively. The hyperparameters are known.
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The complete data likelihood can be expressed as

p(y, s, r|Θ) =
K∏
j=1

{
π1j

}s1j T∏
t=1

K∏
j=1

L∏
l=1

{
pj(ytl, rtjl|Θ)

}stj T−1∏
t=1

K∏
j=1

K∏
k=1

{
ajk
}stjst+1,k

= exp

{ K∑
j=1

s1j log π1j +

T∑
t=1

K∑
j=1

L∑
l=1

[ M∑
m=1

stjrtjlm(log cjlm + fm log λjl − log Γ(fm)

+ (fm − 1) log yt − ytλjl) + stjrtjl0 log cjl0

]
+
T−1∑
t=1

K∑
j=1

K∑
k=1

stjst+1,k log ajk

}
,

(3.29)

where stj = I{st = j} denotes the daily state and stjst+1,k denotes a typical state transition. The

prior is given by:

p(Θ|ν(0)) = p(π1) · p(λ) · p(C) · p(A)

= exp

{ K∑
j=1

{
(ξ

(0)
j − 1) log π1j +

L∑
l=1

[
−δ(0)

jl λjl + (γ
(0)
jl − 1) log λjl

]
+

L∑
l=1

(ζ
(0)
jl0 − 1) log cjl0 +

L∑
l=1

M∑
m=1

(ζ
(0)
jlm − 1) log cjlm

+
K∑
k=1

(α
(0)
jk − 1) log ajk

}
− log h(0)

}
,

(3.30)

where h(0) = h(ν(0)) is the normalizing constant for the prior. Comparing this expression with

the canonical form for the conjugate exponential family, we arrive at the following expressions for

the natural parameters φ(Θ), their sufficient statistics u(s, y, r), and the hyperparameters ν(0):

φ(Θ) =



log π1j

log cjl0

log cjlm

log λjl

λjl

log ajk


, u(s, y, r) =



s1j

stjrtjl0

stjrtjlm

stj
∑M

m=1 fmrtjlm

ytlstj
∑M

m=1 rtjlm

stjst+1,k


, ν(0) =



ξ
(0)
j − 1

ζ
(0)
jl0 − 1

ζ
(0)
jlm − 1

γ
(0)
jl − 1

δ
(0)
jl

α
(0)
jk − 1


, (3.31)

for m = 1, . . . ,M, j = 1, . . . ,K, k = 1, . . . ,K. The variational family Q is constrained to
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distributions which are separable in the following manner:

qz(z) = qΘ(Θ) · qs,r(s, r), (3.32)

where qΘ(Θ) = q(π1) · q(A) · q(C) · q(Λ). (3.33)

VBM step: With the variational posterior of the latent variables qs,r(s, r) fixed at their expected

value, update qΘ(Θ), the variational posterior of the model parameters.

The variational updates at each iteration of the VBM step are then given by:

ξj = ξ
(0)
j + q1j ,

ζjl0 = ζ
(0)
jl0 +

T∑
t=1

qtjqtjl0,

ζjlm = ζ
(0)
jlm +

T∑
t=1

qtjqtjlm,

γjl = γ
(0)
jl +

T∑
t=1

qtj(

M∑
m=1

fmqtjlm),

δjl = δ
(0)
jl +

T∑
t=1

qtjytl(

M∑
m=1

qtjlm),

αjk = α
(0)
jk +

T−1∑
t=1

qjk,

where j, k = 1, . . . ,K, l = 1, . . . , L, m = 1, . . . ,M .

VBE step: With the variational posterior on the model parameters qΘ(Θ) fixed, update the vari-

ational posterior qs,r(s, r) of the latent variables.

The variational posterior qs,r(s, r) has the form

qs,r(s, r) ∝
K∏
j=1

{
a∗1j
}s1j T∏

t=1

K∏
j=1

L∏
l=1

M∏
m=0

{
b∗tjlm

}stjrtjlm T−1∏
t=1

K∏
j=1

K∏
k=1

{
a∗jk
}stjst+1,k , (3.34)

with the natural parameters φ(Θ) replaced by their expectations under qΘ(Θ). Comparing with

(3.29), we get

a∗1j = exp
{
Eq log π1j

}
= exp

{
Ψ(ξj)−Ψ(ξ.)

}
,
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and a∗jk = exp
{
Eq log ajk

}
= exp

{
Ψ(αjk)−Ψ(αj.)

}
,

where ξ· =
∑K

j=1 ξj , αj. =
∑K

k=1 αjk. Similarly,

b∗tjlm =


exp
{
Eq log

[
cjl0
]}

if m = 0,

exp
{
Eq log

[
cjlmf(ytl|fm, λjl)

]}
if m > 0.

The expectations of the individual terms in b∗tjlm are:

c∗jlm = exp
{
Eq log cjlm

}
= exp

{
Ψ(ζjlm)−Ψ(ζj.)

}
, where ζj. =

M∑
m=0

ζjlm,

λ∗jl = exp
{
Eq log λjl

}
= exp

{
Ψ(γjl)− log δjl

}
,

λ̂jl = Eqλjl = γjl/δjl.

Therefore,

b∗tjlm =



exp
{

Ψ(ζjl0)−Ψ(ζjl·)
}

if m = 0,

exp
{

Ψ(ζjlm)−Ψ(ζjl·) + fm[Ψ(γjl)− log δjl]

− log Γ(fm) + (fm − 1) log ytl − ytl
γjl
δjl

}
if m > 0,

and b∗tj =
L∏
l=1

M∑
m=0

b∗tjlm.

As before, a∗1j , a
∗
jk, and b∗tj can be used as part of the Forward-Backward Algorithm to get our

desired variational posterior estimates for the state probabilities as well as the cluster assignment

probabilities. The posterior for the mixture assignments for the lth location is given by

qtjlm ∝



1 if m = 0, ytl = 0,

0 if m > 0, ytl = 0 or m = 0, ytl > 0,

c∗jlmf(ytl|λ∗jlm, λ̂jlm) if m > 0, ytl > 0,
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where

c∗jlmf(ytl|λ∗jlm, λ̂jlm) = exp
{

Ψ(ζjlm)−Ψ(ζjl·) + fm[Ψ(γjl)− log δjl]

− log Γ(fm) + (fm − 1) log ytl − ytl
γjl
δjl

}
.

3.7 Assigning Priors using Empirical Bayes

Rabiner [1989] notes that good initial estimates of the emission distribution parameters

are essential for rapid and proper convergence of the Baum-Welch algorithm. He suggests the

following procedure as a way to obtain good initial estimates:

Algorithm 1 Initial estimates for the Baum-Welch algorithm [Rabiner, 1989].
1: Subset a section of the data to use as a training dataset
2: Choose initial model estimates for Θ(0) = (A,B, π1) at random
3: Segment the training dataset using the Viterbi algorithm and assign a state to each

observation
4: Use k-means clustering to assign each state’s observations to mixture components
5: Update the estimates of the emission distribution parameters based on this assignment

for each state and each mixture component
6: Update estimates for the state distribution parameters based on the state segmentation

in Step 3

In our Bayesian context, three possible approaches for assigning priors are:

1. Use historical data if available. The historical data might not be on the same spatial grid as

our current data. In that case, one option is to use a nearest-neighbor approach to connect

the historical spatial grid to our current spatial grid.

2. Assign vague priors to all parameters. This means symmetric Dirichlet priors for the com-

ponents of A and C, and randomly chosen priors to elements of Λ, under some identifiability

constraints. This has the risk of running into the issues documented by Rabiner [1989].

3. Adapt the procedure described in Algorithm 1.

The final option, in particular, works well when we use a GSM for positive precipitation. This is

because Step 4 from Algorithm 1 is no longer necessary. The empirical Bayes procedure described
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in Venturini et al. [2008] can be modified for this purpose:

Algorithm 2 Empirical Bayes priors for positive precipitation.
1: Subset the first year’s data to use as training set
2: Assign states to each day’s emissions. This can be done using the Viterbi algorithm,

or by clustering the data
3: Choose λ̃jl, an estimate of λjl, in a manner such that the mixture distribution forms a

90% interval for positive precipitation.
4: Use λ̃jl to assign γ(0)

jl and δ(0)
jl using empirical Bayes

Estimating λjl: Resorting to a slight abuse in notation, we denote the GSM components

for each state and location combination as y(m)
jl such that E(y

(m)
jl ) = fm/λjl for m = 1, . . . ,M .

The 90% interval should satisfy:

Pr[y
(1)
jl < yjl(1)] < 0.05, (3.35)

and Pr[y
(M)
jl > yjl(n)] < 0.05, (3.36)

where yjl(1) and yjl(n) are the smallest and largest order statistics for observed positive precip-

itation arising from state j at the lth location. We consider these conditions sufficient to ensure

that the proposed emission distribution can model the observed data. Since fm are fixed for all

m and yjl(1) and yjl(n) are observed from the data, all quantities except λjl are known in (3.35)

and (3.36). Since the CDF of a Gamma distribution does not have a closed form, we can use a

root-finding algorithm to solve the 2 inequalities and get a range of estimates of λjl as a function

of f1 and fm. Let us denote this range as (λ̃minjl , λ̃maxjl ), and any value in this range can be used

as a point estimate for λjl. For simplicity, we choose

λ̃jl =
λ̃minjl + λ̃maxjl

2
. (3.37)

Note that we can pool over all locations to get a single estimate for each state should we want

to simplify things further. Venturini et al. [2008] derive a similar estimate but use the means

m/λjl instead of percentiles. We believe this to be too restrictive since a large number of mixture

components are needed to satisfy their criteria.

Assigning the prior hyperparameters (γ
(0)
jl , δ

(0)
jl ): The conditional distribution of positive
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precipitation has the form

p(ytl|λjl, rtjlm, st = j) =
λ
fmrtjlm
jl

Γ(fm)
yfm−1
tl exp{−λjlytl} when m > 0.

Using this expression and the prior for λjl, we get the complete conditional for λjl:

p(λjl|y, r, s) ∝ Gamma(

T∑
t=1

M∑
m=1

fmstjrtjlm + γ
(0)
jl ,

T∑
t=1

stjytl + δ
(0)
jl ).

This gives us

E(λjl|y, r, s) =

∑T
t=1

∑M
m=1 fmstjrtjlm + γ

(0)
jl∑T

t=1 stjytl + δ
(0)
jl

=
δ

(0)
jl∑T

t=1 stjytl + δ
(0)
jl

·
γ

(0)
jl

δ
(0)
jl

+

∑T
t=1 stjytl∑T

t=1 stjytl + δ
(0)
jl

·
∑T

t=1

∑M
m=1 fmstjrtjlm∑T
t=1 stjytl

= ω̃ ·
γ

(0)
jl

δ
(0)
jl

+ (1− ω̃) ·
∑T

t=1

∑M
m=1 fmstjrtjlm∑T
t=1 stjytl

where ω̃ =
δ

(0)
jl∑T

t=1 stjytl + δ
(0)
jl

.

The posterior expectation is thus a weighted average of the prior mean and the data. We assign

a weight to the prior information ω̃; Venturini et al. [2008] suggests values between 0.2–0.5 as

being reasonable. We can then solve for the hyperparameters, which gives us:

δ
(0)
jl =

ω̃

1− ω̃

T∑
t=1

stjytl, (3.38)

γ
(0)
jl = λ̃jl · δ

(0)
jl . (3.39)

Note that we use ω̃ and not ω̃jl since we assume the prior to have the same weight across all states

and locations. This assumption can be relaxed.
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3.8 Stochastic Variational Bayes for HMMs

As discussed in Chapter 2, most VB applications make the mean field assumption, which

specifies the approximate variational posterior of all parameters and latent variables as a prod-

uct of the distributions of its individual components. Parameters can then be estimated using a

VB version of the Expectation Maximization (VBEM) algorithm. However, each iteration of the

VBEM requires computing means over the complete data and results in a performance bottleneck

for large datasets. Stochastic optimization methods provide us a way around this, and stochastic

variational Bayes (SVB) [Hoffman et al., 2013] is one such approach which implements VBEM

as a stochastic gradient ascent algorithm for each parameter. Instead of computing gradients based

on the entire data, SVB uses an unbiased estimate of the gradient at each iteration. The SVB al-

gorithm converges to a local optimum as long as the step sizes for the gradient ascent satisfy the

Robbins-Monro conditions [Robbins and Monro, 1951].

Under the mean field assumption, an unbiased estimator of the gradient can be constructed

using a single observation. At each iteration, the updates take the form described in (2.34) –

(2.35). The mean field assumption does not hold for an HMM {St, Yt}t≥0, and a single sample

point (Si, Yi) cannot be used to estimate the transition probabilities of {St}. Consequently, a

sample consisting of a sequence of observations is required to estimate the variational posterior

of the parameters of {St} . We denote this sequential sample, or minibatch, as y∗. The nature

of the dataset dictates the procedure for selecting y∗. If the data consists of a single long chain,

Foti et al. [2014] proposed subsampling from the chain and buffering the beginning and end with

extra observations to preserve the Markov properties of the states. If, however, the data is seasonal

or cyclical in nature that can be represented as N blocks each of size D, then a minibatch is

constructed at each optimization iteration by randomly sampling blocks with replacement and

selecting all D time points within the block. This approach is discussed in Johnson and Willsky

[2014]. In both cases, the variational E-step employs the Forward-Backward algorithm [Rabiner,

1989], and the variational M-step often takes advantage of conjugate priors and provides parameter

updates through stochastic gradient ascent.

For the second case where the data admits a block structure, a concern arises from having
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to run a large number of optimization iterations using a relatively small number of blocks of data.

If we want to select a minibatch of D time points from N blocks of data at each iteration, this

is equivalent to sampling with replacement from 1, . . . , N . The value of N is often not large in

practice, and the approach in Johnson and Willsky [2014] is not ideal since there might not be a lot

of variability within the samples between different iterations. We propose an alternative method

which leverages the exchangeability inherent in HMMs.

For an HMM to model daily precipitation over the course of a season, we note a break in

the collection of data between the end of the season in a year and the beginning of the season the

next year. Each year’s data therefore constitutes blocks with exchangeable distributions [Rabiner,

1989]. Further, for N years’ data with D days in each year, data for the dth day of every year has

the same distribution. In particular, if we think of the D days as coming from C months, the cth

month has the same distribution for all years. With this exchangeability of days between years in

mind, we propose the following algorithm for constructing a minibatch y∗ from the data:

Algorithm 3 Minibatch sampling in Stochastic Variational Bayes for HMMs
1: Divide the D days in each year into C months
2: Draw a sample s1, . . . , sC of size C from {1, . . . , N} with replacement
3: If sc = i, the cth month of the ith year provides data for the cth month of the minibatch

Instead of N possible unique minibatches of size D, our approach allows for NC unique

minibatches of size D. An extreme extension of this would be sampling each of the D days from

the N different years with replacement; however, we found that to be detrimental in estimating

the transition probability parameters. The minibatch y∗ can now be used for SVB. When positive

precipitation follows a mixture of Exponential distributions, the hyperparameter updates in the

VBM step for the ith iteration is a natural gradient step of size ρi:

ξ
(i)
j =

(
1− ρi

)
ξ

(i−1)
j + ρi

(
ξ

(0)
j + q1j

)
,

ζ
(i)
jl0 =

(
1− ρi

)
ζ

(i−1)
jl0 + ρi

(
ζ

(0)
jl0 +N ·

D∑
t=1

qtjqtjl0
)
,

ζ
(i)
jlm =

(
1− ρi

)
ζ

(i−1)
jlm + ρi

(
ζ

(0)
jlm +N ·

D∑
t=1

qtjqtjlm
)
,
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γ
(i)
jlm =

(
1− ρi

)
γ

(i−1)
jlm + ρi

(
γ

(0)
jlm +N ·

D∑
t=1

qtjqtjlm
)
,

δ
(i)
jlm =

(
1− ρi

)
δ

(i−1)
jlm + ρi

(
δ

(0)
jlm +N ·

D∑
t=1

qtjqtjlmytl
)
,

α
(i)
jk =

(
1− ρi

)
α

(i−1)
jk + ρi

(
α

(0)
jk +N ·

D−1∑
t=1

qjk
)
,

where j, k = 1, . . . ,K, l = 1, . . . , L, and m = 1, . . . ,M . When the emissions follow a GSM,

(γjlm, δjlm) is replaced by (γjl, δjl) whose updates are:

γ
(i)
jl =

(
1− ρi

)
γ

(i−1)
jl + ρi

(
γ

(0)
jl +N ·

D∑
t=1

qtjqtjl·
)
,

δ
(i)
jl =

(
1− ρi

)
δ

(i−1)
jl + ρi

(
δ

(0)
jl +N ·

D∑
t=1

qtjqtjl·ytl
)
,

where j, k = 1, . . . ,K, l = 1, . . . , L, m = 1, . . . ,M , and qtjl· = 1− qtjl0 =
∑M

m=1 qtjlm.

3.9 Simulation Studies

We present 4 simulation studies testing variational Bayes estimation under different scenar-

ios. This includes coordinate ascent variational Bayes (CAVI) which uses the entire data for the

estimation process, as well as stochastic variational Bayes (SVB) which uses stochastic optimiza-

tion for speedup. The first study corresponds to the model presented in Section 3.1, corresponding

to precipitation at a single location with a mixture of Exponential distributions used to specify

positive precipitation. Next, we present a study with Exponential distribution mixtures replaced

by Gamma shape mixtures (GSM) coinciding with the model in Section 3.6. For the GSM case,

we use empirical Bayes to obtain priors for the emission distribution parameters. We then expand

our scope to a model which consists of precipitation at 3 locations and uses Exponential mixtures,

coinciding with the model in Section 3.4. These 3 studies use CAVI for parameter estimation.

The final simulation study uses SVB as in Section 3.8 for precipitation at a single location with

Exponential mixtures for positive precipitation.

Along with comparing parameter estimates from these studies, we also look at two precipi-
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tation statistics that we want to replicate using synthetic data - the proportion of dry days, and the

mean positive precipitation corresponding to the days when it rains. To construct the distributions

of these 2 statistics, we run 1000 simulation studies. In each study, we first generate a dataset

from the data generation process. We call this the original data, and estimate the parameters using

variational Bayes. We then generate a fresh dataset using these estimated parameters, which we

consider as synthetic data. The proportion of dry days as well as the mean positive precipitation

are estimated from this second dataset. The 1000 simulation studies provide 1000 estimates, which

are used to construct distributions of these two statistics. For comparison, the true proportion of

dry days and the true mean positive precipitation are computed from the original datasets.

3.9.1 CAVI for single-site precipitation with Exponential mixtures

We simulated 1800 time steps from an HMM with 3 states (K=3), each with a dry compo-

nent and 2 wet components (M=2), corresponding to 1800 days of daily precipitation data. For

the simulation, we consider the initial probability vector to be π1 = (0.7, 0.2, 0.1) and

A =


0.45 0.35 0.20

0.30 0.40 0.30

0.30 0.30 0.40

 , C =


0.3 0.5 0.2

0.3 0.3 0.4

0.5 0.2 0.3

 , Λ =


0.08 1

0.60 5

1.00 8

 ,

where A, C, and Λ are the matrices of transition probabilities, mixture assignment probabilities,

and exponential rate parameters for precipitation respectively. The rows of C and Λ correspond to

parameter values for each state.

We keep our prior specifications as broad as possible, and assign symmetric Dirichlet priors

for π1 and A. A symmetric Dirichlet distribution is one where all the parameters are set to the

same value; the sum total of the parameters is known as the concentration of the distribution. In

our setup, p(π1) has a concentration of 1, and each row of p(A) has a concentration of 10. Low

concentration values are preferred since we do not want the prior to dominate the data. Without

loss of generality, we order the states to correspond to heavy, medium, and low rainfall respec-

tively. We denote the priors for the mixture assignment probabilities as ζ(0). The elements of Λ
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have Gamma distribution priors, and the shape and rate parameters of the Gamma distributions

are given by γ(0) and δ(0) respectively. These are set to the following values:

ζ(0) =


3.0 4.0 3.0

3.0 3.5 3.5

4.0 3.0 3.0

 , γ(0) =


0.5 2

1.5 9

2.0 16

 , δ(0) =


2 2

2 2

2 2

 .

The components are ordered to ensure that wetter states will have lower exponential rates and

higher mixture probabilities for the exponential components, while drier states will have higher

rates and more weight placed on the dry component corresponding to m = 0. This makes the

model identifiable.

We perform 1000 simulation studies based on this setup, estimating the parameters using

CAVI for each simulation. Note that the only thing that varies across the 1000 studies is the dataset

used; CAVI is deterministic once we fix the dataset and the priors. We average the posterior

means obtained across all the simulations. The posterior for the initial state probability is π̃1 =

(0.38, 0.27, 0.35). Similarly,

Ã =


0.43 0.30 0.27

0.31 0.33 0.36

0.30 0.33 0.37

 , C̃ =


0.29 0.50 0.21

0.32 0.29 0.39

0.47 0.21 0.32

 , Λ̃ =


0.08 0.92

0.60 4.62

1.00 8.09

 .

We see that for the mixture probabilities in C̃ and the Exponential rate parameters in Λ̃ where

we weigh our prior concentrations based on how weather states tend to be, the posteriors are

quite close to the true values. But for the initial probability and the state transitions which have

symmetric priors, the posteriors are not as close to the true values. In general, we found that while

we can make the Dirichlet prior for the mixture probabilities symmetric without significant loss of

accuracy in the posterior, the model is sensitive to the Gamma prior’s hyperparameters. Details of

studies using other priors are omitted.

For each of the 1000 simulations, we also generated 1800 days of data based on that it-

eration’s estimated parameters to verify whether some of the key statistical characteristics of the
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Figure 3.1: Proportion of dry days in 1800
days of data simulated using estimated param-
eters from 1000 simulation studies.

Figure 3.2: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

HMM are captured. We compute the proportion of dry days and mean rainfall for wet days from

each of these 1000 datasets. They are compared with Monte Carlo estimates derived from the true

parameters. Figure 3.1 shows a histogram of the monthly proportion of dry days based on 1000

estimates. The red line at 0.358 is the mean of the data presented in the histogram, and the blue

line is an estimate of the true proportion 0.359. The 1000 estimates have a root mean square error

(RMSE) of 0.01. Similarly, Figure 3.2 plots a histogram of mean rainfall for wet days. The red

line at 3.97 mm is the mean of the histogram data, and the blue line at 3.99 mm is an estimate of

the true mean. The 1000 estimates have an RMSE of 0.26 mm. We do not notice any significant

bias in our estimates for precipitation at a single location. As long as the model is well specified

and the priors are reasonable, we are able to get good posterior estimates, as well as able to capture

key statistics of daily precipitation of interest.

3.9.2 CAVI for single-site precipitation with Gamma shape mixtures

We simulated 1800 time steps from an HMM with 3 states (K=3), each with a dry compo-

nent and 3 wet components (M=3), corresponding to 1800 days of daily precipitation data. For
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the simulation, we consider the initial probability vector to be π1 = (0.7, 0.2, 0.1) and

A =


0.45 0.45 0.10

0.40 0.20 0.40

0.20 0.30 0.50

 , C =


0.1 0.2 0.3 0.4

0.2 0.2 0.4 0.2

0.5 0.2 0.2 0.1

 , Λ =


0.10

0.50

1.00

 ,

where A and C are the matrices of transition probabilities and mixture assignment probabilities

respectively. Positive precipitation is assumed to follow a GSM distribution. As discussed in

Section 3.6, GSM distributions will have a single rate parameter for each state. The elements of

Λ are thus the three rate parameters for the 3 states. The vector of shape parameters is given by

fm = (0.5, 3.5, 8.5) and is shared between the states. fm is assumed to be known.

We assign symmetric Dirichlet priors for π1 and A. p(π1) has a concentration of 1, and each

row of p(A) has a concentration of 10. C is also assumed to have Dirichlet priors. The parameters

associated with the emission process are assigned empirical Bayes (EB) priors as discussed in

Section 3.7. For this, we first need to know the state each data point comes from, since the emission

distribution parameters are state specific. For real datasets, crude estimates can be obtained by

clustering the data directly. Alternatively, we can fit an initial model under general priors and run

the Viterbi Algorithm on the fitted model to obtain the most likely sequence of states. However,

for the simulation study, we assume the true sequence of states to be known. The first 90 days of

data is used to estimate the EB priors. Once we segment the data based on their states, we first

obtain prior estimates for the mixture component assignments. Since it is a Dirichlet distribution

with 4 components, the prior for the first component is assigned a weight proportionate to the

number of dry days in the state, and the remaining weight is divided up among the three other

components corresponding to positive precipitation. The weights sum up to a concentration of 10.

We use (3.35) and (3.36) to obtain prior estimates of λjl, the Gamma distribution rates for each

state. Algorithm 2 then provides us with EB estimates of γ(0)
jl and δ(0)

jl .

Like in the previous study, 1000 datasets are generated from the true model and parameter

estimation is carried out for each of them. Afterwards, we average the estimates obtained from
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Figure 3.3: Proportion of dry days in 1800
days of data simulated using estimated param-
eters from 1000 simulation studies.

Figure 3.4: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

each of them. The posterior for the initial state probability is π̃1 = (0.38, 0.32, 0.30). Similarly,

Ã =


0.41 0.37 0.22

0.34 0.27 0.39

0.23 0.28 0.49

 , C̃ =


0.07 0.22 0.42 0.29

0.17 0.22 0.39 0.22

0.51 0.17 0.20 0.12

 , Λ̃ =


0.18

0.55

1.07

 .

We see that the estimates for state 1, the wettest state, have the most errors, whereas the parameters

associated with states 2 and 3 are much better estimated. We believe this to be an effect of the

way we set the EB priors for state 1. State 1 has the widest range in precipitation values as it is

the wettest, and our criteria based around (3.35)–(3.36) might not be enough to accurately set the

priors for it. This is backed by the the pattern of errors we see in the first row of C̃, where the last

two components have weights quite different from their true values.

For each of the 1000 simulations, we generated 1800 days of data based on that iteration’s

estimated parameters to verify whether the key statistical characteristics of daily precipitation

arising from this model are captured. Figure 3.3 shows a histogram of the monthly proportion of

dry days based on 1000 estimates. The red line at 0.263 is the mean of the data presented in the

histogram, and the blue line is an estimate of the true proportion 0.263. While the proportions
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are very close to each other, the 1000 estimates have a root mean square error (RMSE) of 0.02.

Similarly, Figure 3.4 plots a histogram of mean rainfall for wet days. The red line at 25.21 mm is

the mean of the histogram data, and the blue line at 25.215 mm is an estimate of the true mean.

The 1000 estimates have an RMSE of 1.46 mm. We point out that this model has a much higher

range of values compared to using exponential mixtures. While the data simulated using fitted

parameters accurately replicates the statistics from the true data, care needs to be taken when

setting the EB priors since they depend only on the smallest and largest GSM components.

3.9.3 CAVI for multi-site precipitation with Exponential mixtures

We consider precipitation at 3 locations, and the simulation setup is otherwise very similar

to its single-site counterpart. The HMM has 3 states (K = 3). Precipitation at the 3 locations

is considered distributed independently of each other conditional on the state. At every location,

positive precipitation is distributed as a mixture of two exponential distributions, i.e. M = 2. We

simulated 1800 time steps from this HMM. For the simulation, we consider the initial probability

vector to be π1 = (0.38, 0.34, 0.28) and transition matrix

A =


0.60 0.30 0.10

0.20 0.50 0.30

0.30 0.20 0.50

 .

Each location would have a matrix for mixture component assignments, which we denote as

C1, C2, and C3. Similarly, the matrices for the Exponential distribution rates are denoted by
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Λ1,Λ2, and Λ3. They are set to the following values:

C1 =


0.10 0.60 0.30

0.20 0.40 0.40

0.30 0.40 0.30

 , C2 =


0.20 0.70 0.10

0.40 0.20 0.40

0.50 0.20 0.30

 , C3 =


0.20 0.60 0.20

0.50 0.30 0.20

0.60 0.20 0.20

 ,

Λ1 =


0.08 1

0.60 5

1.00 8

 , Λ2 =


0.05 1

0.50 4

1.00 10

 , Λ3 =


0.10 1

0.10 5

0.90 6

 .

The values of the mixture component assignments and the exponential rates are ordered such that

state 1 corresponds to the wettest rainfall regime, and state 3 corresponds to the driest rainfall

regime. For l = 1, 2, and 3, the rows of Cl and Λl correspond to the parameter values for each

state. We keep our prior specifications as broad as possible, and assign symmetric Dirichlet priors

for π1 and A. p(π1) has a concentration of 1, and each row of p(A) has a concentration of 10. For

each location l, the rows of Cl have Dirichlet priors, and elements of Λl have Gamma priors. The

parameters for each location are assigned identical priors. We denote the prior for Cl using ζ(0)
l .

Similarly, the Gamma priors of the elements of Λl have shape parameters γ(0) and rate parameters

δ(0). They are assigned the following values:

ζ
(0)
l =


3.0 4.0 3.0

3.0 3.5 3.5

4.0 3.0 3.0

 γ
(0)
l =


0.5 2

1.5 9

2.0 16

 δ
(0)
l =


2 2

2 2

2 2


These assignments follow the reasoning that wetter states will have lower exponential rates and

higher mixture probabilities for exponential components, while drier states will have higher rates

and more weight placed on the dry component corresponding to m = 0.

We average the posterior estimates obtained from the 1000 simulations of the VB-HMM.

The posterior for the initial state probability is π̃1 = (0.32, 0.24, 0.4). The posterior for the
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transition probability matrix is

Ã =


0.59 0.28 0.13

0.21 0.41 0.38

0.29 0.28 0.43

 ,

and the posterior distributions of the mixture components and exponential rates are

C̃1 =


0.10 0.59 0.31

0.20 0.38 0.42

0.30 0.40 0.30

 C̃2 =


0.20 0.68 0.12

0.39 0.23 0.38

0.49 0.20 0.31

 C̃3 =


0.20 0.60 0.20

0.48 0.32 0.20

0.60 0.21 0.19

 ,

Λ̃1 =


0.08 0.99

0.65 4.92

0.91 7.63

 Λ̃2 =


0.05 0.91

0.63 4.35

0.99 9.02

 Λ̃3 =


0.10 1.07

0.10 4.76

1.02 7.32


We see that while the elements of the transition probability matrix are well estimated, the posterior

of the initial distribution is quite far from the true parameters. Furthermore, the emission distribu-

tion parameters in C̃l and Λ̃l are well estimated for the most part. The largest errors are seen in the

two extreme weather regimes - the first row of Λ̃1 which corresponds to the highest rainfall among

all states and locations, and the last row of Λ̃3 which corresponds to the the lowest rainfall across

all the states and locations. These are also the two cases where the prior means are farthest from

the true parameter values, and demonstrate that the model can still estimate reasonable posteriors

in such cases.

For each of the 1000 simulations, we generated 1800 days of data based on that iteration’s

estimated parameters. We compute the proportion of dry days and mean rainfall for wet days

from each of these 1000 datasets. They are compared with Monte Carlo estimates derived from

the true parameters. Figures 3.5, 3.7, and 3.9 show histograms of the monthly proportion of dry

days based on the 1000 estimates for each of the 3 locations. The red lines are the means of the

data presented in the histogram, and the blue lines are estimates of the true proportion of dry days

at those locations. Similarly, Figures 3.6, 3.8, and 3.10 plot histograms of mean rainfall for wet

81



3.9. SIMULATION STUDIES

Figure 3.5: The proportion of dry days in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

Figure 3.6: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

Figure 3.7: The proportion of dry days in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

Figure 3.8: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

Figure 3.9: The proportion of dry days in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

Figure 3.10: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.
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Table 3.1: Proportion of dry days and mean positive rainfall at three locations estimated from
data generated from the true and fitted models, along with the root mean square error (RMSE)
between the two estimates.

Statistic Parameters Used
and RMSE

Locations
Loc. 1 Loc. 2 Loc. 3

Proportion of
dry days

True Parameters 0.19 0.35 0.41
Estimated Parameters 0.19 0.35 0.41
Root Mean Square Error 0.01 0.01 0.01

Mean positive
precipitation
in mm

True Parameters 4.12 8.62 5.87
Estimated Parameters 4.12 8.67 5.92
Root Mean Square Error 0.25 0.49 0.34

days. The red lines correspond to the mean of the histogram data, and the blue lines are estimates

of the true means. Table 3.1 lists the mean values from Figures 3.5 – 3.10 corresponding to the

blue and red lines, as well as the RMSE based on the 1000 sets of estimates. We see that the

monthly precipitation statistics from the true and the fitted models at each location are very close

to each other. The RMSE values are also within 6% of the estimates based on the true model in all

cases. We conclude that the model can replicate the marginal distributions of precipitation at least

in cases where the number of locations is not too high.

3.9.4 SVB for single-site precipitation with Exponential mixtures

Our simulation study has the same setup as Section 3.9.2, including model parameters and

prior specifications. The parameter space is given by Θ = (α, ζ,Λ) corresponding to the 3 vari-

ables, where α, ζ and Λ are matrices. We first compare the computational cost and accuracy of

the old and our new approach for minibatch selection. Our data comprises 90 days of data for

20 years. The D = 90 days are divided into C = 3 months with each month being 30 days.

We constructed minibatches as described in Algorithm 3 using samples of size 3. The difference

in computational time between the new and old methods was below the measurement threshold,

pointing to no additional computational cost.

Like in the previous study, 1000 datasets are generated from the true model and parameter

estimation is carried out for each of them. Afterwards, we average the estimates obtained from

each of them. The estimates from SVB are denoted by Θ̃ = (α̃, ζ̃, Λ̃). The posterior for the initial
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Figure 3.11: Proportion of dry days in 1800
days of data simulated using estimated param-
eters from 1000 simulation studies.

Figure 3.12: Mean positive rainfall (mm) in
1800 days of data simulated using estimated
parameters from 1000 simulation studies.

state probability is π̂1 = (0.34, 0.33, 0.33). Similarly,

Â =


0.40 0.30 0.30

0.32 0.33 0.35

0.32 0.33 0.35

 , Ĉ =


0.29 0.50 0.21

0.32 0.28 0.40

0.46 0.22 0.32

 , Λ̂ =


0.08 0.93

0.57 4.68

0.95 7.98

 .

We see that the state parameters are not estimated well; Â and π̂1 are actually very close to their

prior values. In general, we found that using minibatches were detrimental to the accuracy of the

parameter estimates for the state process. despite this, due to the structured mean field assumption,

Ĉ and Λ̂ are well estimated. They are at least as good as C̃ and Λ̃, their counterparts estimated by

CAVI. In many cases, the SVB estimates for the emission distribution are better than the estimates

from CAVI. Since different minibatches are chosen for every iteration of the SVB optimization,

it is likely that the effect of extreme values and outliers in the observed data stay under control

compared to CAVI which uses all data at every step.

For each of the 1000 simulations, we generated 1800 days of data based on that iteration’s

estimated parameters to verify whether the key statistical characteristics of daily precipitation

arising from this model are captured. Figure 3.11 shows a histogram of the monthly proportion
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Figure 3.13: Distribution of
relative supremum error norms
when estimating A based on
the old and new method.

Figure 3.14: Distribution of
relative supremum error norms
when estimating C based on
the old and new method.

Figure 3.15: Distribution of
relative supremum error norms
when estimating Λ based on
the old and new method.

of dry days based on 1000 estimates. The red line at 0.358 is the mean of the data presented in

the histogram, and the blue line is an estimate of the true proportion 0.359. While the proportions

are very close to each other, the 1000 estimates have a root mean square error (RMSE) of 0.01.

Similarly, Figure 3.12 plots a histogram of mean rainfall for wet days. The red line at 3.97 mm

is the mean of the histogram data, and the blue line at 3.99 mm is an estimate of the true mean.

The 1000 estimates have an RMSE of 0.25 mm. These numbers are consistent with those obtained

using Θ̃, the CAVI estimate.

We also quantify the effect of using our modified minibatch sampling algorithm over regular

minibatches without any subsampling in terms of the the errors in the estimates. For each of

the 1000 studies, we compute 2 sets of Θ̂ estimates - one using the original minibatch sampling

method, and one using our modified minibatch sampling procedure. For the matrices Â, Ĉ, and Λ̂,

we define the relative supremum error norms as the metric for estimation error:

Aerr =
‖ Â−A ‖∞
‖ A ‖∞

Cerr =
‖ Ĉ − C ‖∞
‖ C ‖∞

Λerr =
‖ Λ̂− Λ ‖∞
‖ Λ ‖∞

Figures 3.13–3.15 show the distribution of the relative supremum error norms for the 1000

estimates, with the old minibatch algorithm represented in red and the new one in blue. While there

is more error in Â if we use our modified minibatch sampling procedure, we get better estimates for
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the emission distribution parameters compared to the regular minibatch sampling approach. Our

work seems to indicate that there is merit in devising a customized minibatch sampling method

that takes advantage of the data structure to strike a balance between greater variability in our

samples for SVB and the need to reproduce the estimates obtained from the entire data. SVB

in general seems to result in sub-optimal estimates of the state process parameters. In real data

problems, we recommend augmenting SVB with a few iterations of CAVI at the end to get better

overall estimates at a reasonable computational cost.

3.10 Conclusions

The primary focus of this chapter has been to lay out a variational Bayesian approach to

daily precipitation modeling that is flexible, scalable, and easy to implement. Historically, the

statistical modeling of daily precipitation has relied on the Wilks method [Wilks, 1998] or on

HMMs [Hughes and Guttorp, 1994], and made use of weather station data which is often avail-

able for long durations but for irregular locations. Our interest is in HMMs since they provide a

rich model specification. We develop parameter estimation using variational Bayes for daily pre-

cipitation distributed as a semi-continuous distribution. Most literature on variational Bayes and

HMMs tends to focus on Normal distribution emissions due to their simplicity. But the work by

Rabiner [1989] for maximum likelihood estimation in HMMs provides an outline which we use

to implement the VB-HMM for semi-continuous emissions.

A second focus in this chapter has been to develop and compare methods for different emis-

sion distributions. Gamma distributions or mixtures of Exponential distributions are the two most

common emission distributions used for positive precipitation. We have also employed a mixture

of two Gamma distributions in our previous work [Kroiz et al., 2020a,b, Majumder et al., 2020].

We consider VB-HMMs for both mixtures of Exponential and Gamma distributions. Gamma dis-

tributions prove challenging to work with due to the VB-HMMs’ reliance on conjugacy. While the

Gamma distribution does have a conjugate prior, the prior for the shape parameter does not have a

closed form. If we have multi-site data, a total of K × L×M numerical integrations are needed

at each iteration of the VBEM algorithm to compute posterior estimates of the shape parameter,
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where K is the number of states, L is the number of locations, and M is the number of Gamma

mixture components for positive precipitation at each location. This adds a large computational

burden, which is not feasible in practical cases. This is one of the weaknesses of the VB-HMM,

since Gamma mixtures provides better model fit for remote sensing precipitation data in our ex-

perience [Kroiz et al., 2020a]. We also develop Gamma shape mixtures (GSM) as a candidate

distribution for positive precipitation. As far as we can tell, the use of the GSM distribution for

a VB-HMM is novel, as is its usage for precipitation modeling. We modify the original GSM

specification of Venturini et al. [2008] which now requires fewer components to capture the range

of positive precipitation. The GSM distribution has a richer specification than using exponential

mixtures while having fewer parameters. We also develop empirical Bayes priors for the modified

GSM distribution. Empirical Bayes priors are not common in variational literature, and would be

especially helpful for studies over large areas where setting broad priors might not result in the

best posterior estimates. However, they require further investigation beyond what is presented in

this thesis to get estimates that are better than when we use a mixture of Exponential distributions.

In simulation studies, the VB-HMM for precipitation can estimate the true parameters using

CAVI under general prior specifications. In particular, we found that as long as we establish an

order in the amount of rainfall each state will receive and set reasonable priors for the mixture

components and exponential rates, our corresponding posteriors are quite close to the true values.

The posterior is farthest from the true values for the initial probability distribution and some entries

of the transition probability matrix. For the initial distribution, the variational update depends only

on one data point, and unless the Dirichlet prior has a very low concentration or is asymmetric, it

will dominate in the posterior. Previous studies often assumed the initial distribution to be known

when using variational Bayes, and that might be a practical solution for this case as well.

The real strength of the VB-HMM is in its stochastic implementation. SVB becomes criti-

cal for remote sensing data which is available on a much denser grid compared to weather station

data. SVB uses only a subset of the data known as a minibatch at each iteration of the VBEM,

which speeds up both the VBE and VBM steps. While both CAVI and the Baum-Welch algorithm

can be parallelized for computational efficiency, the Baum-Welch algorithm does not have an ob-

vious counterpart to SVB. We employ a modified minibatch sampling algorithm for SVB, which
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adds more variability to the minibatches and could prove valuable if the SVB is run for a large

number of iterations for large datasets. In simulation studies, the modified minibatch sampling

algorithm provides slight improvements in the emission distribution parameter estimates. How-

ever, we observe that the parameter estimates from SVB are not as good as those coming from

CAVI, especially the parameters for the state process. We recommend running a few iterations of

CAVI at the end of the SVB to balance the computational efficiency with the quality of parameter

estimates.
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Chapter 4

Parameterizing Correlation in HMMs using Gaus-

sian Copulas

Hidden Markov models were originally developed for univariate discrete data and then

extended to accommodate multivariate data which could be discrete, continuous, or a mixture. All

HMMs considered in this thesis so far have had a univariate state process in the form of a single

Markov chain. Under this setup, both the current state and information regarding the previous

states are propagated through this Markov chain even when we have multiple data streams. While

this assumption is convenient for parameter estimation and therefore fairly ubiquitous, it is not a

necessary assumption. For many examples of interest, it is reasonable to consider that multiple

streams of data are generated by not one, but multiple interacting state processes. For example,

large geographical domains where different areas can have local weather patterns, or the financial

market where a single process for the ‘state’ of the market is not enough to capture the dynamics

of hundreds of stocks. In such cases, an HMM with a multivariate state process can be considered

as a natural extension of a univariate state process HMM. The individual component Markov

chains of the multivariate state process are not independent of each other and admit a correlation

structure. Similarly, the components of the emission process are also correlated with each other.

In this chapter, we employ copulas to develop explicit correlation parameterizations for both a

multivariate state process and a multivariate emission process.
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Figure 4.1: Graphical representation of 3 time slices of the different ways to specify an HMM
with 2 state processes. The circles denote state nodes; emission nodes at each time point is as-
sumed to depend on all state nodes at that time point, and are omitted for clarity.

4.1 A Multivariate State Process for HMMs

HMMs with multiple state processes can be specified in a few different ways depending

on how the state processes evolve, and how each state process acts upon the emission processes.

These two things taken together decide how the state processes share and propagate information

about the system. The first question about how the state processes evolve relative to each other

has been widely studied in the literature, and Figure 4.1 contains graphical representations of four

ways HMMs with multiple state processes can evolve over time. They are all represented using 3

time slices for an HMM with 2 state processes. We have omitted the emission process nodes for

ease of representation, and it is assumed that the emission at each time point depends on all state

processes at that time point. Directed edges between nodes are denoted by arrows and represent

a conditional distribution, e.g., p(s21|s11) in 4.1(b). On the other hand, undirected edges between

nodes are denoted by lines and represent a joint distribution between variables, e.g., p(s11, s12) in

4.1(b). The simplest form is a factorial HMM (FHMM) shown in Figure 4.1(a), where the state

processes are independent and are coupled only through the emission process. FHMMs with C
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chains, each of which have K states, describe a state process with CK states. This formulation is

tractable in space, but the CK possible combinations of states are not guaranteed to occur in the

observed data. This leads to the lack of sufficient data even for relatively modest state spaces, and

exact solutions tend to be infeasible. Ghahramani and Jordan [1996] have developed a structured

mean field approximation for FHMMs with exact solutions that can be tractably estimated. In

their approach, the entire graph is partitioned up into independent sub-graphs using a mean field

assumption. Parameters for each subgraph are estimated individually in a way that minimizes an

energy function defined over the entire graph. However, the mean field approximation proves to

be poor if there are strong and varied interactions across the subgraphs. Figure 4.1(b) depicts state

processes that evolve in lockstep and do not have temporal influences on each other. In graphical

model terminology, this implies that nodes of different state processes are connected by an edge if

and only if the nodes are at the same time point. The resulting HMM is known as a linked HMM

(LHMM). When multiple state processes influence each other over time, Brand [1997] proposed

the coupled HMM (CHMM) which considers pairwise cross-transition probabilities between state

processes. This is depicted in Figure 4.1(c). As with the other methods discussed here, exact

algorithms for parameter estimation are not feasible, and all methods rely on approximations of

some form or the other. Finally, Ching et al. [2013] proposed a multivariate Markov chain HMM

(MMC-HMM), depicted in Figure 4.1(d). They incorporated cross-transition probabilities and

the result is a combination of LHMMs and CHMMs that has the highest complexity among the

four approaches described here. Parameter estimation for their model involves solving systems of

linear equations and tends to be computationally challenging. For meteorological processes like

precipitation, an LHMM structure is a reasonable assumption and is what we base our own model

on going forward.

A common feature of HMMs with multiple state processes is that each state process affects

the entire L dimensional emission process. This has remained an underlying assumption in all lit-

erature we have come across; irrespective of the dependence structure between the state processes,

they affect each coordinate of the emission process. Figure 4.2 is a graphical representation of an

LHMM with 2 state processes, with each state process affecting the entire emission process. In

this thesis, we propose a dependence structure for LHMMs which takes advantage of the geo-
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Figure 4.2: Graphical representation of 3 time
slices of an LHMM with 2 state processes,
where each Markov chain affects the entire
emission process.

Figure 4.3: Graphical representation of 3 time
slices of an LHMM with 2 state processes,
where each Markov chain affects only a par-
tition of the emission process.

statistical context of remote sensing data for meteorological processes. Since the L-dimensional

emission process is on a gridded spatial map, we partition it into C clusters, each representing a

local weather regime. In such a scenario, each cluster’s precipitation will be driven by a different

univariate state process. This is shown in Figure 4.3, where each state process affects only a subset

of the coordinates of the emission process. The subsets form partitions of the emission process

and can be identified in practice using a clustering algorithm. Under these assumptions, we define

a clustered LHMM corresponding to the graphical structure of Figure 4.3, where a C-dimensional

multivariate state process has a correlation structure specified through a copula.

4.1.1 Gaussian copulas for the state process of a clustered LHMM

Let y1:T = {y1, . . . ,yT } be the precipitation time series of length T as before. Let the

L locations be partitioned into D clusters with their own local weather patterns. Each cluster d

consists of ld locations with d = 1, . . . , D, and
∑D

d=1 ld = L. The precipitation at time point t,

yt, can thus be expressed as yt = (ytl1 , . . . ,ytlD). The data is generated by a set of underlying

hidden states s1:T = {s1, . . . , st, . . . , sT }, with s′t = (s
(1)
t , . . . , s

(D)
t ) where each state s(d)

t ∈

K = {1, . . . ,K}. rtjldm is similarly defined for m = 0, . . . ,M . The complete data likelihood is

written as

p(y, s, r|Θ) = p(s|Θ) ·
D∏
d=1

p(yld , rld |s
(d),Θd). (4.1)
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The likelihood of this clustered LHMM for L locations can thus be factorized into D independent

HMM likelihoods parameterized by Θd, the parameter set for cluster d ∈ D = {1, . . . , D}. Let F

be the D-dimensional joint CDF of s = (s(1), . . . , s(D)). Let F1, . . . , FD be the marginal CDFs

of s(1), . . . , s(D) respectively. We define a Gaussian copula for the state processes as:

F (s(1), . . . , s(d)) = C
(
F1(s(1); Θ1), . . . , FD(s(D); ΘD)

)
= ΦD

(
Φ−1(u(1)), . . . ,Φ−1(u(D)); Σ

)
= ΦD

(
z(1), . . . , z(D); Σ

)
, (4.2)

where u(1), . . . , u(D) are Uniform(0, 1) variates, and z(1), . . . , z(D) are standard Normal vari-

ates. ΦD is a D-dimensional multivariate Normal CDF, while Φ−1 is the inverse CDF of a

univariate standard Normal distribution. The copula augmented model has a clustered LHMM

structure similar to Figure 4.3. We choose a Gaussian copula due to its simplicity of formulation.

The copula is parameterized only by a correlation matrix Σ, and its individual components follow

standard Normal distributions.

The elements of Σ are Pearson correlation coefficients, and Pearson correlation is not pre-

served under monotone transforms. Further, since s(d) is a discrete variable and z(d) is a contin-

uous variable for all d = 1, . . . , D, the Pearson correlation between two state processes is not

the same as the corresponding element of Σ. Further, since the state processes are ordinal data as

per our definition, Pearson correlation is not the best measure of association between two Markov

chains anyway. Spearman’s ρ and Kendall’s τ are both better options for ordinal data, and are

invariant under monotone transformations. Kruskal [1958] provided a relationship between the

Pearson correlation ρ and the Spearman correlation ρ∗ for bivariate Normal variables (X1, X2):

ρ = 2 sin

[
π
ρ∗

6

]
. (4.3)

For two state processes s(d1) and s(d2), (4.3) gives us a way to connect their Spearman correlation

ρ∗(s(d1), s(d2)) to the corresponding Pearson correlation for the Gaussian copula, ρ(z(d1), z(d2)),

by way of ρ∗(z(d1), z(d2)). Once all marginal parameters associated with the likelihood in (4.1) are
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estimated, the Viterbi algorithm provides us the most likely sequence of states for each of the D

components of the clustered LHMM. These state sequences are used to construct the copula. Note

that marginal parameter estimation can be carried out either using variational Bayes or the Baum-

Welch algorithm. The steps for constructing the Gaussian copula afterwards remain unchanged.

A final assumption is required as a consequence of using pairwise Spearman correlations

as the measure of association between Markov chains. While Σ in (4.2) is a D × D matrix of

Pearson correlations whose elements can be obtained by transforming Spearman correlations, a

D × D matrix of Spearman correlations cannot be interpreted in a manner congruent with Σ.

Furthermore, element-wise transformations do not take into account any higher order correlations

except pairwise correlations. With that in mind, we simplify the form of the Gaussian copula and

rewrite (4.2) as:

ΦD

(
z(1), . . . , z(D); Σ

)
≈

D∏
d1=1

D∏
d2=1

Φ2(z(d1), z(d2); ρd1d2) (4.4)

where ρd1d2 = ρ(z(d1), z(d2)) are the Pearson correlations which can be computed for each

(d1, d2) ∈ D2 pair using (4.3). This formulation can be interpreted in a manner similar to a

pairwise simplified regular vine (R-vine) copula [Brechmann et al., 2012], with all pair-copula

terms involving a conditioning set replaced by bivariate Gaussian copulas. We refer to this as the

pair-copula approximation. The copula density associated with (4.4) can also be interpreted as a

composite likelihood [Varin et al., 2011]. In practice, this will allow us to estimate the ρd1d2 using

the right hand side of (4.4), but simulate from the copula using the left hand side of (4.4), as long

as we can ensure that Σ is a positive-definite matrix.

4.1.2 Estimation of the copula parameters

The construction of the copula for state processes is preceded by the estimation of the

marginal distribution parameters of each state process. The marginal distributions and the copula

together describe a multivariate Markov chain (MMC) which generates correlated states for the

clustered LHMM. For a D-dimensional MMC, each chain provides the daily states for a partition

of the emission process, with s(d) = (s
(d)
1 , . . . , s

(d)
T ). The state space can thus be written as a
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D×T matrix. The inherent challenge of estimating ΦD and F using F1, . . . , and FD arises from

the discrete-to-continuous transformation that is required in the process. Since each element of

s = (s(1), . . . , s(D)) has a finite state space by definition, F1, . . . , FD are all step functions with

a small number of steps. Both the inversion method [Nelsen, 2010] and the inference functions

for margins method [Joe and Xu, 1996] for estimating Σ require evaluating the terms Fd(s(d); Θd)

in (4.2) for all d ∈ D. However, evaluating the CDF of Markov chains is not straightforward.

We propose an alternate approach by modifying and extending the Wilks method [Wilks, 1998],

originally used to model multi-site daily precipitation occurrence using a 2-state Markov chain

of dry and wet days. Note that the Wilks method was developed specifically for fully-observed

2-state Markov chains whose states are assumed to follow Binomial distributions. An expres-

sion for the correlation between a pair of Markov chains can be derived under this assumption,

denoted by ξ(k, l) for two arbitrary Markov chains sk and sl. Further, for (Xk, Xl) which fol-

low a bivariate normal distribution with Pearson correlation ω(k, l), Wilks transformed Xk → sk

and Xl → sl and found empirically that there is a monotonic relationship between ω(k, l) and

ξ(k, l), and that ξ(k, l) < ω(k, l). This empirical relationship has been confirmed for 2-state

Markov chains under the aforementioned assumptions with a variety of different parameter values

by several authors; see Mhanna and Bauwens [2012] for a review. Note that the relationship be-

tween ξ(k, l) and ω(k, l) does not have a closed form expression. This, combined with the fact that

ξ(k, l) < ω(k, l), means that a line search is needed to find the value of ω(k, l) which can generate

ξ∗(k, l), the observed value of ξ(k, l) from the available data. The relationship ξ(k, l) < ω(k, l)

means that ξ(k, l) is not guaranteed to reach±1. The maximum values that can be attained depend

on the discretizing function, i.e., on the parameters of the Markov process. It can be intuitively

interpreted as the association between two continuous variables being captured better than their

association after they have both been discretized and transformed into Markov chains.

For our clustered LHMM, let {rd1d2} denote the observed Spearman correlations between

the states of each (d1, d2) ∈ D2 pair of the D component HMMs. The states for each HMM are

obtained using the Viterbi algorithm once Θd has been estimated. Given the D × T matrix of

states, the initial distributions πd1, and the transition matrix Ad for s(d), we want to construct a

Gaussian copula that can generate an MMC whose pairwise Spearman correlations r∗d1d2 coincide
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with the observed Spearman correlations {rd1d2}. Let ρ̂∗d1d2 be the estimate of the population

Spearman correlation between (s(d1), s(d2)), and let ρ̂d1d2 be the corresponding estimate of the

Pearson correlation using (4.3); ρ̂d1d2 is used in the Gaussian copula to generate correlated states.

If all distributions were continuous, we could expect rd1d2 to coincide with ρ̂∗d1d2 . However, the

attenuation that happens when we transform the continuous z(d) into the discrete s(d) means that

in practice, rd1d2 is less than both ρ̂d1d2 and ρ̂∗d1d2 . Since the relationship between ρ̂∗d1d2 and rd1d2

cannot be expressed in closed form, we resort to a simulation approach to compute our estimate

ρ̂∗d1d2 . We initialize ρ̂∗d1d2 with rd1d2 for each pair of Markov chains (s(d1), s(d2)) and simulate an

MMC from the Gaussian copula. We compute the pairwise Spearman correlations between the

Markov chains in the MMC and denote it by r∗d1d2 . If r∗d1d2 < rd1d2 , we increment ρ̂∗d1d2 by a step

size τ and repeat the process. We stop when 0 < r∗d1d2 − rd1d2 ≤ ε, for some predefined tolerance

ε. The entire procedure is formalized in the algorithm below.

Algorithm 4 Algorithm to construct a Gaussian copula for a clustered LHMM.
Cluster y1:L into D clusters corresponding to local weather regimes
Estimate marginal HMM parameters π1d and Ad for clusters d = 1, . . . , D

Estimate s(d)
1 , . . . s

(d)
T using the Viterbi algorithm for clusters d = 1, . . . , D

Set step size τ and tolerance ε
for clusters (d1, d2) ∈ D2 do

Compute the observed Spearman correlation rd1d2
Initialize ρ̂∗d1d2 = rd1d2
Initialize r∗d1d2 = 0
while |rd1d2 − r∗d1d2| > ε, do

Increment ρ̂∗d1d2 by τ
Compute Pearson correlation ρ̂d1d2 from ρ̂∗d1d2 using (4.3)

Generate correlated bivariate sequence from N2

((
0
0

)
,

(
1 ρ̂d1d2

ρ̂d1d2 1

))
Use π1d1 , π1d2 , Ad1 , Ad2 and the correlated sequences to generate synthetic states
Calculate r∗d1d2 as the Spearman correlation of the synthetic state sample

end
end
Construct correlation matrix Σ̂ whose diagonals are 1 and off-diagonals are ρ̂d1d2
if Σ̂ is not positive definite then

Eigendecompose Σ̂ as Σ̂ = V RV T

Replace negative and zero eigenvalues in R with 10−6; call the new matrix R∗

Recalculate Σ̂ = V R∗V T

end
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Since the entries of Σ̂ are constructed independently, the resultant matrix is not guaranteed

to be positive definite. The final steps of our algorithm ensures the positive-definiteness of Σ̂ .

Simulating a D-dimensional MMC from the Gaussian copula requires us to transform a D-

dimensional Normal dataset into an MMC. We follow the algorithm described in Serfozo [2009]

for constructing a univariate Markov chain whose parameters are known using a sequence of

Uniform(0, 1) observations. Ji [2019] expanded on this for multivariate Markov chains. Let

x1, . . . xT be T independent observations generated from the left hand side expression of (4.4),

where xt = (x
(1)
t , . . . , x

(D)
t )T . Let

u
(d)
t = Φ(x

(d)
t ),

for t = 1, . . . , T and d = 1, . . . , D. Since (x
(1)
t , . . . , x

(D)
t )T are correlated, (u

(1)
t , . . . , u

(D)
t )T

are also correlated. Consider a Markov chain with initial distribution π1 = (π11, . . . , π1K) and

a K × K transition matrix A = ((ajk)). We can transform a sequence of independent uniform

random variables u1, . . . , uT into a Markov chain using its marginal parameters. Let h(u) and

f(j, u) be functions transforming continuous values into K = {1, . . . ,K}, given by

h(u) = j if u ∈ Ij for some j ∈ K (4.5)

where I1 = [0, π11) and Ij =
[∑j−1

l=1 π1l,
∑j

l=1 π1l

)
for 1 < j ≤ K, and

f(i, u) = j if u ∈ Iij for some j ∈ K (4.6)

where Ii1 = [0, ai1), and Iij =
[∑j−1

l=1 ail,
∑j

l=1 ail
)

for 1 < j ≤ K. Let ut = u
(d)
t for

t = 1, . . . , T . Similarly, let A = Ad and π1 = π1d be the marginal parameters of the dth Markov

chain. Using these in (4.5)–(4.6), we denote h(u
(d)
1 ) as s(d)

1 and f(s
(d)
t−1, u

(d)
t ) as s(d)

t for t > 1.

Then {s(d)
1 , . . . , s

(d)
T } is a Markov chain with initial distribution π1d and transition matrix Ad.

This transformation can be applied to u(1), . . . , u(D), and the resulting D × T matrix would be

our desired MMC that can now be used to generate a linked HMM.
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4.2 A Gaussian Copula for Semi-Continuous Emissions

In regard to a multivariate emission process, most studies concern themselves with a multi-

variate Normal distribution, or similar distributions which have multivariate specifications. How-

ever, most univariate exponential family distributions either do not have a corresponding multivari-

ate specification, or have multivariate forms which are challenging to work with from a practical

perspective. This is also true for our own motivating example of semi-continuous mixtures with

Exponential distributions which do not admit a natural multivariate extension. For low dimen-

sional emission processes which share a common state process, specifying a univariate distribution

for each coordinate of the emission process can be sufficient to capture the dependencies between

them. From the graphical depictions of HMMs in Figures 2.1 and 4.3, we see that even if two

univariate chains are conditionally independent conditioned on the state, unconditionally they are

dependent through the state process. Most studies in the precipitation literature that we have come

across [Hughes and Guttorp, 1994, Robertson et al., 2006, Greene et al., 2008] use data observed

by a small number of irregularly located weather stations. The largest study we encountered

consists of data from 52 stations [Holsclaw et al., 2016]. HMMs adequately capture spatial corre-

lations in these situations through the shared daily state, but that is not necessarily the case with

gridded remote sensing data over large areas. For example, Robertson et al. [2004] considered

daily precipitation from a network of 10 weather stations in NE Brazil from the February–April

wet season between 1975–2002 for their study, and reported the mean of observed Pearson cor-

relation coefficients between stations as 0.248. However, IMERG data for the Potomac basin in

Eastern USA comprises 387 grid points at 0.1◦×0.1◦ resolution. If we use the same model for the

2001–2018 IMERG data from July to September for the Potomac river basin, the mean and max-

imum of observed Pearson correlation between grid points are 0.642 and 0.986 respectively, far

higher than most weather station based studies [Kroiz et al., 2020a]. The Chesapeake Bay water-

shed is even larger with 1927 IMERG grid points. To employ HMMs for these high dimensional

problems, there is a need to explicitly specify a correlation structure. One way to achieve this is

by constructing Gaussian copulas for each state’s emission distribution. We develop a Gaussian

copula for the precipitation model in Section 3.3, where the joint distribution for the emissions
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conditional on the state is a product of their marginals.

4.2.1 Parameter estimation for the Gaussian copula

The HMM described in Section 3.3 is assumed to have a univariate state process and a

multivariate emission process, corresponding to multi-site daily precipitation data. We have used

variational Bayes to estimate the model parameters. We want to construct a copula for the emission

process y1:T , where y
′
t = (yt1, . . . , ytL). It is obvious that we would need to construct a separate

copula corresponding to each state, since the emission distribution parameters are state specific.

The Viterbi Algorithm can be used to obtain the most likely sequence of states to have generated

the observations, which identifies the observations corresponding to each of the states. Since the

interpretations for the states do not differ beyond the rainfall intensity they are associated with,

the construction of the copula is carried out identically for each state. The marginal parameters

of the HMM are assumed to be known, and we plug their estimates into the likelihood. Then the

distribution of an observation from state j for location l is given by

p(ytl|λjl, cjl, st = j) = cjl0 +

M∑
m=1

cjlmλjlm exp{−λjlmytl}.

Its CDF is denoted by Fjl(y) and has the form

Fjl(y) = cjl0 +
M∑
m=1

I{y > 0}cjlm(1− exp{λjlmy}).

Further, we denote by F (j) theL-dimensional joint CDF of y1:T for state j. Then, we can represent

the joint distribution by a Gaussian copula as follows:

F (j)(y1, . . . , yL|Θj) = C
(
Fj1(y1; Θj1), . . . , FjL(yL; ΘjL)

)
= ΦL

(
Φ−1(u(1)), . . . ,Φ−1(u(L)); Σj

)
= ΦL

(
z(1), . . . , z(L); Σj

)
, (4.7)
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where u(1), . . . , u(L) are Uniform(0, 1) variates and z(1), . . . , z(L) areN (0, 1) variates. For each

state j = 1, . . . ,K, Σj is an L× L correlation matrix whose off-diagonals represent the Pearson

correlation coefficients of the copula for positive precipitation at 2 different locations when the

data arises from the jth state. Φ−1 is the inverse CDF of a univariate N (0, 1) variable, and ΦL is

the CDF of an L-variate Normal distribution with a mean vector 0 and correlation matrix Σj . Let

(y1, . . . , yL) represent the L chains of the emission process, with yl = (y1l, . . . , yT l).

Since the univariate CDFs can be evaluated for the emissions at every value of ytl where

ytl > 0, we can directly estimate Σj using (4.7). It can be shown that this is equivalent to the

inference functions for margins (IFM) estimate of Joe and Xu [1996]. We can also use the pair

copula approximation as stated in (4.4). For the pair-copula approximation, we resort to the re-

lation between the Spearman correlation and Pearson correlation from (4.3), which bypasses the

need to evaluate the CDF of the mixture marginals. This is formalized in the algorithm below.

Algorithm 5 Gaussian copula for positive emissions
for state j in 1:K do

Use the Viterbi Algorithm to subset the days corresponding to state j
for locations l1 and l2 in 1, . . . , L, l1 6= l2 do

Classify observations into mixture components they arise from
Subset the observations for days where it rains at both locations and the data arises
from the same mixture component; denote them as yl1 and yl2
Compute estimates of the Spearman correlations, ρ̂∗j(yl1 , yl2)
Estimate Pearson correlations for the copula, ρ̂j(yl1 , yl2), using (4.3)

end
Set diagonal elements of Σ̂j to 1
if Σ̂j is not positive definite then

Eigendecompose Σ̂j as Σ̂j = V RV T

Replace negative and zero eigenvalues in R with 10−6; call the new matrix R∗

Recalculate Σ̂j = V R∗V T

end
end

The correlation matrix Σ̂j estimated in Algorithm 5 is not guaranteed to be positive definite;

the final steps ensure positive-definiteness. The pair-copula approximation in this case does not

suffer from the attenuation issues as the copula for the states of a clustered LHMM. Data can be

generated from this model using the following steps:
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Algorithm 6 Generating multi-site daily precipitation using a Gaussian copula
Generate daily states s1:T either from an HMM or from an LHMM
for day t in 1:T do

if st = j then
Generate rtjl ∼ Cat(cjl) independently for each location l = 1, . . . , L

Generate (z(1), . . . , z(L)) ∼ NL(0, Σ̂j)
for location l in 1:L do

if rtjlm = 1 for m > 0 then
ytl ∼ Exp(λjlm)

else
if rtjl0 = 1 then

ytl ← 0
end

end
end

end
end

Note that the correlation structure does not take into account which mixture distribution the

data comes from. When simulating data using Algorithm 6, the mixture component assignments

rtjl at each location l are generated from independent Categorical distributions parameterized by

cjl. Only the positive precipitation amounts are correlated. In principle, we can construct another

Gaussian copula for correlated mixture component assignments. However, it will inflate the pa-

rameter space and add a significant computational burden. We also make a final note regarding

extending this copula for the emissions of a clustered LHMM. In practice, the Gaussian copula for

the emissions will get simplified if the underlying state process is a clustered LHMM. For each

cluster, we can estimate the correlations of locations belonging to the cluster either by the IFM or

pair-copula approximation approach as described in this section. Locations belonging to differ-

ent clusters can be assumed to have 0 correlation in the emission copula, which would still make

them correlated through their respective state processes. We can also set it to a constant value

representative of the correlation between their respective clusters instead of being the correlation

between the individual locations. A clustered LHMM with a Gaussian copula for both states and

the emissions can thus be described using fewer copula parameters compared to an HMM with a

univariate state process.
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4.2.2 Case study: the Potomac river basin

We present here part of a case study involving Gaussian copulas for remote sensing precip-

itation data over the Potomac river basin in Eastern USA. This study is originally a part of Kroiz

et al. [2020a], and serves to answer 2 important questions:

1. Why a Gaussian copula for emissions is necessary for gridded remote sensing data,

2. Why we choose to subset data by the mixture components they arise from.

We fitted a 4-state HMM with 2 gamma distributions to daily IMERG data over the Potomac

river basin for the wet season months of July to September, 2001–2018. The HMM is considered

to have a univariate state process. The data over the basin is distributed as 387 IMERG grids.

One of the goals of this study was to ascertain how well the HMM replicates spatial associa-

tions, and if adding a Gaussian copula (HMM-GC) to the emission process would provide better

performance. Marginal parameter estimation was carried out using the Baum-Welch algorithm.

The software used for the majority of the hidden Markov model computations is the MVNHMM

toolbox [Kirshner, 2005] developed by Sergey Kirshner and Padhraic Smyth and available at

http://www.sergeykirshner.com/software/mvnhmm. We then fit a Gaussian cop-

ula for each state’s data. This model with Gaussian copulas is referred to in this section as an

HMM-GC, whereas the marginal model is referred to as an HMM. A crucial difference in the

copula construction for this study from Algorithm 5 lies in the treatment of the mixture compo-

nents. In Kroiz et al. [2020b], we considered data from all days when it rained at both locations

for computing the pairwise Spearman correlations for a particular state. However, in Algorithm

5, we assign an additional filter and only consider data points which arise from the same mixture

components.

Figure 4.4 shows box plots of the daily average precipitation amount for the HMM, HMM-

GC, and the IMERG data. The low median and interquartile range of HMM and HMM-GC com-

pared to IMERG suggest that both models struggle with capturing spatial correlation to different

degrees. We see that the classical HMM for precipitation tends to severely underestimate the cor-

relations between precipitation amounts since it does not have an explicit parameterization for the
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Figure 4.4: Pairwise spatial correlation between grid points for historical IMERG data (2001–
2018) compared with synthetic data from HMM and HMM-GC models based on 18 years of data

Figure 4.5: Spatial patterns in the total rainfall over the basin from July to September
averaged over 18 years of data

correlations. The HMM-GC performs better but due to computing unconditional correlations in-

stead of conditioning them on the mixture component assignments, they are also fairly low. There

are also negative values which are artifacts of trying to estimate zero correlation in the simulated

data. The HMM-GC does a significantly better job of estimating the spatial correlations.

Figure 4.5 shows the total basin rainfall for the wet season averaged over 18 years of data at

the 387 grid points. A visual inspection suggests that the HMM-GC does a better job of simulating

spatial patterns within the basin than the classical HMM. However, it is nowhere as smooth as the

historical data. We found another issue regarding extreme values in the regular HMM; 5 of the

simulated values were greater than 500 mm, with the largest being over 1500 mm. They have

been left out of the plot in the interest of legibility, and are denoted by 5 white grid points within

103



4.3. NUMERICAL STUDIES ON SIMULATED DATA

the plot. These values are far higher than the historical data, and probably caused due to the

underestimated correlation of the HMM. The HMM-GC is not affected by this problem.

Figures 4.6 and 4.7 plot the distributions of daily maximum and mean basin precipitation

for IMERG, HMM and HMM-GC data. We notice in Figure 4.6 that the classical HMM tends

to overestimate the daily maximum precipitation, as shown through the long upper tail. However,

the short upper tail for the HMM in Figure 4.7 shows that the HMM also underestimates the daily

mean precipitation. This can be attributed to the lack of spatial correlation, where some loca-

tions simulated very high values, but since they were being generated independently of the other

locations, there was no way to simulate basin-wide consistent behaviour. This has largely been

mitigated by the HMM-GC approach based on the relative similarities between the HMM-GC and

IMERG plots in both Figures 4.6 and 4.7. The daily mean is, however, still slightly underesti-

mated, suggesting the presence of local extreme weather events within the basin influenced by

factors not currently captured by our states.

4.3 Numerical Studies on Simulated Data

Our simulation studies in this chapter are based around a data generating process (DGP)

which consists of 3 state processes distributed as first order Markov processes, and 4 emission

processes distributed as semi-continuous Exponential distribution mixtures. We note here again an

assumption that has been made throughout the course of this chapter - the marginal parameters of

the HMM are assumed to be known. To that end, the studies in this section focus on estimating the

correlation structure in HMMs given data from the HMM, its states, and the marginal parameters.

4.3.1 Estimating copula parameters of a multivariate state process

Consider the 3-dimensional state processes corresponding to a clustered LHMM, denoted

by s = (s(1), s(2), s(3)). For d = 1, 2, 3, the state process s(d) is parameterized by an initial

distribution π
(d)
1 and a transition matrix A(d). Furthermore, they are also parameterized by a

Gaussian copula with a mean vector 0 and a correlation matrix Σ. We set the parameters to the
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Figure 4.6: Distribution of the maximum daily basin precipitation for historical data from 2001–
2018 compared against 18 years of HMM and HMM-GC simulated data

Figure 4.7: Distribution of the average daily basin precipitation for historical data from 2001–
2018 compared against 18 years of HMM and HMM-GC simulated data

105



4.3. NUMERICAL STUDIES ON SIMULATED DATA

following values:

A(1) =


0.60 0.30 0.10

0.20 0.50 0.30

0.30 0.20 0.50

 , A(2) =


0.40 0.40 0.20

0.30 0.40 0.30

0.40 0.20 0.40

 , A(3) =


0.20 0.30 0.50

0.20 0.60 0.20

0.20 0.40 0.40

 ,
π

(1)
1 = (0.38, 0.34, 0.28), π

(2)
1 = (0.36, 0.34, 0.30), π

(3)
1 = (0.20, 0.54, 0.26),

where the initial distributions are obtained as the steady states for the transition probability ma-

trices. Our first order of business is to verify whether the value of the copula correlation has a

monotone relationship with the Spearman correlation of states generated from this DGP. To that

end, we take each pair of Markov chains, vary their copula correlation from -1 to 1 in increments

of 0.001, and generate 90000 state pairs from the model. Figure 4.8 plots the copula correlations

on the x-axis and the observed Spearman correlation rd1d2 on the y-axis for each pair (d1, d2) of

state processes. We notice a monotone relationship for each pair of state processes, with corre-

lations for the pairs (1,2), (1,3), and (2,3) represented using red, green and blue lines. Based on

the y = x line in black running through the middle of the graph, we see that the absolute value

of rd1d2 is less than the copula correlation, confirming the compression in the range of observed

correlation we expect due to the discretization that happens as part of the data generation pro-

cess. The range of rd1d2 depends on the marginal parameters of the two state processes. Unless

the two state processes are identical, this value will not reach -1 or 1. In Figure 4.9, the Pearson

copula correlations in the x-axis are transformed to Spearman correlations using (4.3), and plotted

against the observed rd1d2 of the generated states. We see the same behaviour which is expected

since (4.3) is a deterministic function. The only changes we observe are in the slopes of the curves,

especially around the extremes.

We now consider estimating the correlation matrix of the Gaussian copula. We fix Σ at:

Σ =


1.00 0.80 0.20

0.80 1.00 0.70

0.20 0.70 1.00

 .
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Figure 4.8: Relationship between the copula correlation (Pearson) between pairs of state pro-
cesses and the Spearman correlation from 90000 states generated from the models.

Figure 4.9: Relationship between the copula correlation (Spearman) between pairs of state pro-
cesses and the Spearman correlation from 90000 states generated from the models.
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with the remaining marginal parameters as defined previously. We generate 90000 states from this

3-dimensional Markov process using Serfozo’s algorithm, corresponding to 3 months’ daily states

for 1000 years. The Spearman correlations between each pair of states are:

r12 = 0.6095, r13 = 0.1403, r23 = 0.5538.

We then run Algorithm 5 to try and recover Σ, assuming the marginal parameters and states are

known. The tolerance ε is set to be 0.001 and the step size τ is set to be 0.01. The estimated copula

correlation matrix is:

Σ̂ =


1.00 0.79 0.21

0.79 1.00 0.71

0.21 0.71 1.00

 .

Σ̂ is also found to be positive definite. The number of iterations required for the line search for

each pair are:

ρ̂12 : 25 iterations, ρ̂13 : 13 iterations, ρ̂23 : 37 iterations.

4.3.2 Gaussian copula for emissions of an HMM

In this study, we consider a data generating process consisting of a 3-state HMM with a

univariate state process and a three-dimensional emission process. Let s = s(1) with the transition

probability matrix

A =


0.60 0.30 0.10

0.20 0.50 0.30

0.30 0.20 0.50

 ,

with the initial distribution π1 = (0.38, 0.34, 0.28). Let the matrix of mixture distribution prob-

abilities be denoted by C1, C2, and C3, and the corresponding matrix of Exponential distribution
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rates for positive precipitation be denoted by Λ1,Λ2, and Λ3. They are set to the following values:

C1 =


0.10 0.60 0.30

0.20 0.40 0.40

0.30 0.40 0.30

 , C2 =


0.20 0.60 0.20

0.40 0.20 0.40

0.50 0.20 0.30

 , C3 =


0.20 0.60 0.20

0.50 0.30 0.20

0.60 0.20 0.20

 ,

Λ1 =


0.08 1.00

0.20 5.00

0.50 8.00

 , Λ2 =


0.02 1.00

0.30 6.00

0.50 10.0

 , Λ3 =


0.05 1.00

0.10 5.00

0.50 8.00

 .

Now, we add Gaussian copulas for each state’s data. The correlation matrices for the Gaussian

copulas are denoted by Σ1,Σ2, and Σ3 corresponding to the 3 states, and set to be:

Σ1 =


1.00 0.30 0.60

0.30 1.00 0.90

0.60 0.90 1.00

 , Σ2 =


1.00 0.20 0.50

0.20 1.00 0.80

0.50 0.80 1.00

 , Σ3 =


1.00 0.10 0.40

0.10 1.00 0.70

0.40 0.70 1.00

 .

We first generate 1000 independent datasets from this model using Algorithm 6; each dataset is of

1800 days and can thus be represented as 1800 × 3 matrices. Assuming all marginal parameters,

i.e., all parameters except Σ1,Σ2,Σ3 to be known, we use the pair-copula approximation of Al-

gorithm 5 to estimate the parameters of the Gaussian copulas for each dataset. Averaging over the

1000 estimates, we get:

Σ̃1 =


1.00 0.29 0.58

0.29 1.00 0.89

0.58 0.89 1.00

 , Σ̃2 =


1.00 0.19 0.48

0.19 1.00 0.78

0.48 0.78 1.00

 , Σ̃3 =


1.00 0.09 0.38

0.09 1.00 0.67

0.38 0.67 1.00

 .

We notice that the estimates are very close to their true values, but are slightly lower than the true

values. This is expected due to the way we are generating data from the copula for this simulation

study. On every day that it rains, correlated uniform variates are used to generate Exponential

observations to ensure correlated precipitation amounts. This is the case even when different

mixture components are selected at different locations. However, when we are estimating the
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parameters, we only consider the days when it rains at both locations and furthermore the rainfall

is generated from the same mixture component. Thus, we are inherently leaving some information

on the table when estimating the copula correlations. As seen in Section 4.2.2, this is necessary

since using all days’ of data actually confounds the correlation.

In practice, the mixture component assignments will not be known. There are two ways to

estimate them from the data. If we use variational Bayes for parameter estimation, the quantity

qtjlm corresponds to the posterior probabilities of the data arising from a particular mixture com-

ponent, conditional on the most likely state for the day. This information can be used to assign

mixture components to each day’s data. Alternatively, we can resort to a maximum likelihood

approach, where we plug in the precipitation values into the complete data likelihood with the

parameters replaced by their estimates. Since rtjlm, the variable for mixture component assign-

ments, is encoded as a one-hot vector, this will give us a crude estimate of the likelihood of the

observation arising from a particular mixture component. This is the approach we now use to pair

the observed precipitation with mixture components. Using that as the information to subset and

compute the Spearman correlations from data for days with matching mixture components, we get

the following estimates of copula correlation:

Σ̂1 =


1.00 0.27 0.56

0.27 1.00 0.87

0.56 0.87 1.00

 , Σ̂2 =


1.00 0.22 0.45

0.22 1.00 0.76

0.45 0.76 1.00

 , Σ̂3 =


1.00 0.14 0.39

0.14 1.00 0.66

0.39 0.66 1.00

 .

The copula correlations when use use estimated mixture component assignments are similar

to the ones obtained when we use the true mixture component assignments. However, there is

one important difference that we would like to point out. We notice that low correlation values

are sometimes overestimated, whereas high correlation values tend to be slightly underestimated.

Similarly, the correlation from the dry states with fewer wet days tends to be higher than that from

the wet states. We believe this to be an artifact of computing rank correlations from limited data.

Figures 4.10-4.12 consist of histograms depicting the distribution of the copula correlation

estimates, corresponding to data from states 1, 2, and 3. For each state, we plot the distributions of

the 3 pairwise correlations over the course of 1000 simulations, with the mixture assignments be-
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Figure 4.10: Estimated copula correlations for the emission process between pairs of locations
for data arising from State 1 of the HMM.

Figure 4.11: Estimated copula correlations for the emission process between pairs of locations
for data arising from State 2 of the HMM.

Figure 4.12: Estimated copula correlations for the emission process between pairs of locations
for data arising from State 3 of the HMM.
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ing estimated using their likelihoods. The red lines are the means of the histograms corresponding

to elements of Σ̂j for each state j, and the blue lines are the values obtained when we use the true

mixture component assignments, i.e. the values in Σ̃j . We find our estimates of copula correlation

to be reasonable for the different weather regimes and correlation values.

4.4 Conclusions

As the case study in Section 4.2.2 demonstrates, the correlations between the emission

distributions in a classical HMM that implicitly arise through the state process are not enough

to describe highly correlated geostatistical data. HMM literature tends to work with multivari-

ate Normal emissions as a way around this, since the multivariate Normal distribution has an

explicit correlation structure. However, no explicit multivariate parameterizations exist for semi-

continuous emission distributions. The Gaussian copula approach allows us to parameterize the

pairwise correlations between locations explicitly and provides a way to generate synthetic data

from it as well. Copulas constructed using Algorithm 5 are able to replicate a wide variety of pair-

wise correlation values with acceptable error margins. This would allow simulation of basin-wide

weather patterns in a manner consistent with historical data.

While the aim of the copula for emissions is to explicitly specify a correlation structure

for observed precipitation, the aim of a clustered LHMM is not to imbue the HMM with a more

complex correlation structure. As a matter of fact, the implicit correlation transmitted to the emis-

sions via a clustered LHMM’s state processes is bound to be less than if it were an HMM with a

single state process. However, a clustered LHMM allows more variety in how the latent processes

evolve. A single state process forces the entire basin to have a uniform weather regime; while

increasing the number of states mitigates this to an extent, this is still an unrealistic assumption.

Local weather regimes are a far more realistic setup for large watersheds. Some HMM formu-

lations quantify this using hierarchical state processes - a univariate global state process and a

multivariate local state process which depends on the global state process. Our clustered LHMM

follows this same idea, and it will allow different sections of the emission process to evolve more

freely and thus describes a richer, more flexible model. A copula for discrete distributions is chal-
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lenging to begin with, and things are made more complicated by the Markov property of the state

processes. However, Algorithm 4 works around many of these problems by using Spearman corre-

lation, which takes advantage of the ordinal nature of the states and sidesteps the need to evaluate

the marginal CDFs of each Markov process.
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Chapter 5

Application to Daily Precipitation Data over the

Chesapeake Bay Watershed

5.1 An HMM without Clusters

Figure 5.1: Historical precipitation for Jul–
Sep over the Chesapeake Bay watershed from
GPM-IMERG data.

Figure 5.2: Synthetic precipitation for Jul–
Sep over the Chesapeake Bay watershed from
a base HMM.

We return now to our application introduced in Section 1.1 - modeling daily precipitation

data from GPM-IMERG over the Chesapeake Bay watershed in Eastern USA. Figure 5.1 shows

a spatial map of total rainfall from July–September at each IMERG grid point of the watershed,

averaged over 20 years of data. We want to be able to replicate not only this spatial map using

synthetic data, but also the monthly and seasonal statistics of precipitation at each grid point. To
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demonstrate why modifications such as an LHMM for the state process or a Gaussian copula for

the emission process are necessary, we first fit a 3-state base HMM to the data corresponding to

the model presented in 3.3. Our priors for the model are very similar to what we have used in

simulation studies so far. We assign symmetric Dirichlet priors for π1 and A. The prior p(π1) has

a concentration of 1, and each row of the prior p(A) has a concentration of 10. Without loss of

generality, we order the states to correspond to heavy, medium, and low rainfall respectively. For

each location l = 1, . . . , 1927, precipitation is specified as a mixture with a point mass at zero

and two Exponential distributions for positive precipitation. We denote the priors for the mixture

assignment probabilities as ζ(0)
l . The elements of the matrix Λl correspond to the rate parameters

of the Exponential distributions for positive precipitation. They are assigned Gamma distribution

priors, and the shape and rate parameters of the Gamma distributions are given by the matrices

γ
(0)
l and δ(0)

l respectively. These are set to the following values:

ζ
(0)
l =


3.0 4.0 3.0

3.0 3.5 3.5

4.0 3.0 3.0

 , γ
(0)
l =


0.5 2

1.5 5

2.0 10

 , δ
(0)
l =


2 2

2 2

2 2

 .

The components are ordered to ensure that wetter states will have lower exponential rates and

higher mixture probabilities for the exponential components, while drier states will have higher

rates and more weight placed on the dry component corresponding to m = 0. This makes the

model identifiable.

For fitting the model, we ran SVB for 300 iterations with step sizes τi = (1 + i)−0.9.

This was followed by 30 iterations of CAVI since we noticed in the simulations that the state

distribution parameters did not converge very well under SVB. The fitted model has a posterior

initial probability π̃1 = c(0.20, .35, 0.45) and the transition probability matrix

Ã =


0.41 0.34 0.25

0.34 0.37 0.29

0.13 0.31 0.56

 .

We note that the two lowest probabilities in the transition matrix occur when the driest state tran-
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Figure 5.3: Historical and synthetic propor-
tion of dry days at each location of the water-
shed based on base HMM.

Figure 5.4: Historical and synthetic daily
mean precipitation (mm) at each location of the
watershed based on base HMM.

sitions to the wettest state (0.13), and vice versa (0.25). States 1 and 3 tend to transition between

each other through state 2 most of the time.

We generated 1840 days of synthetic data from this 3-state model that we refer to as the

base HMM in this chapter. Figure 5.2 shows a plot of total precipitation at each grid point over

the 3 months of Jul–Sep averaged over 20 years, based on the synthetic data simulated from the

model. We note that while the plot is much noisier compared to the corresponding plot of the

historical data in Figure 5.1, it recreates seasonal precipitation at individual locations to a certain

degree. Figure 5.3 plots the proportion of dry days averaged over 20 years at each location based

on historical IMERG data on the x-axis and synthetic data from the base HMM on the y-axis.

Similarly, Figure 5.4 plots the mean daily precipitation averaged over 20 years at each location

based on historical IMERG data on the x-axis and synthetic data from the base HMM on the y-

axis. In both cases, the line through the middle of the plot corresponds to y = x. We see that even

the base HMM with VB parameter estimation is good at reproducing seasonal characteristics of

precipitation. In both plots, the points show a linear pattern and their spread along the y = x line

points to a lack of any bias in seasonal data. However, this model does not represent the spatial

characteristics of the data very well. Figure 5.5 shows boxplots of the pairwise correlations in daily

precipitation between grid points for the historical IMERG data and synthetic data generated by

the base HMM. The distribution of the correlations in the synthetic data has both a smaller spread
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Figure 5.5: Spatial correlation in daily precipitation between pairs of grid points for historical
IMERG data and synthetic data from base HMM.

and lower quantiles compared to the distribution based on the historical data. This necessitates the

requirement of our copula approach.

We first fit a Gaussian copula to the emission distribution using Algorithm 5, reusing the

marginal parameter estimates we obtained earlier. The most likely sequence of states are found

using the Viterbi algorithm, and the mixture component assignment at each time point is done us-

ing the the posterior distribution qtjlm as obtained at the final iteration of our optimization process.

For 1927 grid points, the copula correlation matrix consists of 1.86 × 106 pairwise correlations

for each state’s data. Figure 5.6 shows the total precipitation at each grid point based on the syn-

thetic data from this model with a Gaussian copula for emissions. We immediately notice that

this model overestimates precipitation, as the entire range of precipitation in the image is around

100mm higher than the corresponding historical range in Figure 5.1. Figure 5.7 shows the dis-

tribution of the pairwise spatial correlations when correlated emissions are generated based on a

Gaussian copula. We notice two differences from Figure 5.5. The first is that adding the copula

has increased the range as well as the quantile values of the distribution. Further, the distribution

is now positively skewed. However, the values are still quite low compared to correlations in his-

torical data, in part due to the uncertainty added to our copula distribution from using marginal

estimates to obtain copula parameters.
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Figure 5.6: Synthetic precipitation for Jul–
Sep over the Chesapeake Bay from a base
HMM with a Gaussian copula for emissions.

Figure 5.7: Spatial correlation in daily precip-
itation for historical IMERG data and synthetic
data from an HMM with a Gaussian copula for
emissions.

5.2 Constructing a Cluster LHMM for the Chesapeake

Bay Dataset

5.2.1 Clustering the region by local weather regime

Next, we split the 1927 grid points into clusters based on their precipitation patterns, to fit

an LHMM to this data. We use the data at hand to find the optimum number of clusters; for each

location, the following variables are considered:

1. Latitude and Longitude

2. Proportion of dry days in a season

3. Total seasonal precipitation

4. Maximum seasonal precipitation.

Ideally, we want to use more information to inform the selection of clusters. Meteorological data

like temperature or wind speed can be used, as well as terrain information. However, each of
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Figure 5.8: Scree plot of within group sum of squares for 1–20 cluster solutions for the 1927
IMERG grid points.

these extraneous variables would be at different spatial resolutions and will need to be aligned to

IMERG’s spatial grid.

Based on the variables listed above, we compute the within groups sum of squares (WSS)

for a range of k-means clustering solutions to find the optimum number of clusters in the data.

Figure 5.8 plots the WSS values for 1–20 cluster solutions. The optimum number of clusters is

usually chosen around the elbow of the graph - where the reduction in WSS when the number of

clusters are increased starts to flatten out. In this case, it coincides with a 3 or a 4 cluster solution.

Figure 5.9: Grid points of the Chesapeake
Bay watershed divided into 3 clusters using k-
means clustering.

Figure 5.10: Grid points of the Chesapeake
Bay watershed divided into 4 clusters using k-
means clustering.
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Figure 5.11: Proportion of dry days during the wet season for each cluster based on historical
IMERG data.

Figure 5.12: Mean daily precipitation during the wet season for each cluster based on historical
IMERG data.

Figures 5.9 and 5.10 plot the k-means clustering solutions for 3 and 4 clusters respectively.

We note that the main difference going from 3 to 4 clusters is that cluster 2 in the northern part of

the watershed splits into 2 clusters. Since that area’s features are captured well in our base model

so far, we decide to go with a 3 cluster solution to develop the cluster LHMM.

Under this segmentation, cluster 1 contains 512 grid points, cluster 2 contains 286 grid

points, and cluster 3 contains 1927 grid points. Figure 5.11 shows the proportion of dry days each

wet season from 2000–2019 for each of the 3 clusters’ data. We see that cluster 2 has the lowest
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proportion of dry days up until 2014, beyond which the 3 clusters’ statistics seem to intersect.

Similarly, Figure 5.12 plots the mean daily precipitation each wet season from 2000–2019 for

each of the clusters’ data. Cluster 2 has the highest precipitation until 2014, and cluster 3 has

the lowest. These 2 plots show clear differences between the 3 clusters’ precipitation patterns

across the 20 years of data that we have. Cluster 2 in the northern half of the bay is the wettest,

while cluster 3 in the west and southern areas of the bay is the driest cluster. More importantly,

the clusters’ precipitation patterns are much closer to each other since 2014, suggesting that the

distribution of precipitation has become more spatially uniform in recent years.

5.2.2 Estimating marginal HMM parameters using VB

We fit a 3-state HMM to each cluster’s data. Every cluster is assigned the same priors as

the base HMM in Section 5.1. Since the marginal parameter estimation is independent for each

cluster, it is done in parallel. 300 SVB iterations are run with step sizes τi = (1 + i)−0.9 followed

by 30 iterations of CAVI. Note that the 30 iterations of CAVI take longer to execute than the 300

iterations of SVB in all these cases, confirming the necessity of stochastic optimization for large

datasets. We obtain the following estimates of the state processes for each cluster of the LHMM:

Ã(1) =


0.44 0.38 0.18

0.34 0.45 0.31

0.13 0.30 0.57

 , Ã(2) =


0.46 0.35 0.19

0.35 0.36 0.29

0.12 0.27 0.61

 , Ã(3) =


0.42 0.35 0.23

0.32 0.35 0.33

0.18 0.29 0.53

 ,
π̃

(1)
1 = (0.30, 0.44, 0.25), π̃

(2)
1 = (0.35, 0.30, 0.35), π̃

(3)
1 = (0.06, 0.49, 0.45),

where Ã(d) and π̃(d)
1 are estimates of the transition matrix and initial distribution for cluster d,

d = 1, 2, and 3.

5.2.3 Constructing a Gaussian copula for the LHMM

The Viterbi Algorithm identifies the most likely sequence of states that generated each

cluster’s rainfall. Like the estimation of the marginal parameters, we ran the Viterbi Algorithm in

121



5.2. CONSTRUCTING A CLUSTER LHMM FOR THE CHESAPEAKE BAY
DATASET

parallel for computational efficiency. The matrix of pairwise Spearman correlations between the

states obtained from the Viterbi algorithm was

R =


1.00 0.66 0.68

0.66 1.00 0.31

0.68 0.31 1.00

 .

We see that cluster 1 and cluster 3 have high correlations in their state processes, but clusters 2 and

3 do not. Looking at the cluster positions in Figure 5.9, we can see that this is possibly because

cluster 1 neighbors both clusters 2 and 3, and thus its states are correlated with the states from

both clusters. Using Algorithm 4, we estimate a Gaussian copula for the joint distribution of the

states parameterized by the 3× 3 correlation matrix Σ̃, given by:

Σ̃ =


1.00 0.80 0.81

0.80 1.00 0.41

0.81 0.41 1.00

 .

Based on this Gaussian copula, we generated synthetic states for the LHMM, in the form of an

1840× 3 matrix. The Spearman correlations of the synthetic chains was

R∗ =


1.00 0.69 0.68

0.69 1.00 0.33

0.68 0.33 1.00

 ,

whose elements are fairly close to the values in R.

5.2.4 Constructing a Gaussian copula for emissions

When constructing the Gaussian copula for emissions, we need to take into account two

sets of dependencies: the correlation between locations belonging to the same cluster and the

correlation between locations belonging to different clusters. We already assume that the state

processes of 2 different clusters are correlated. Therefore, it is reasonable to further assume that
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Figure 5.13: Historical and synthetic propor-
tion of dry days for every month at each loca-
tion of the watershed based on LHMM.

Figure 5.14: Historical and synthetic daily
mean precipitation (mm) for every month
at each location of the watershed based on
LHMM.

the correlation between locations belonging to 2 different clusters is 0. An immediate benefit of

this assumption is that it cuts down the number of pairwise correlations that need to be estimated

for each state from 1.86 × 106 to 8.08 × 105. Copula matrices for each cluster were constructed

in parallel. A total number of 9 matrices are estimated, one for each cluster and state.

With the estimation of the Gaussian copulas complete, the fitted 3-cluster LHMM was used

to generate 20 years of daily precipitation data for the wet season over the entire watershed. In the

next section, we compare the distribution of the synthetic data with the historical data.

5.3 Performance for Synthetic Data

We begin by comparing the monthly statistics for each grid point. Figure 5.13 shows the

proportion of dry days for each of the 3 months at every grid point of the watershed. The root mean

square error (RMSE) between the historical and the synthetic data is 0.02. Comparing with the

y = x line through the middle, we see that the proportion is slightly overestimated in the synthetic

data for August. Similarly, Figure 5.14 shows the total monthly precipitation at each grid point

for each month. The synthetic data in this plot has an RMSE of 14.84 mm. Comparing with the

y = x line through the middle, we see that the mean precipitation is slightly overestimated across

the board. However, in both cases, there exists a linear relationship between the historical statistics
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Figure 5.15: Historical and synthetic propor-
tion of dry days for the wet season at each lo-
cation of the watershed based on LHMM.

Figure 5.16: Historical and synthetic daily
mean precipitation (mm) for the wet season
at each location of the watershed based on
LHMM.

and those derived from synthetic data.

A similar pattern is seen in Figures 5.15 and 5.16, which has seasonal proportions of dry

days and total precipitation respectively for historical and synthetic data. In these plots, the in-

formation is grouped by the cluster the data arises from. Looking at Figure 5.16 in particular,

we notice that cluster 3 has some of the lowest precipitation values and yet overestimates daily

mean precipitation values the most. For the other two clusters, however, the synthetic data is well

representative of the historical data in the context of mean precipitation values. This implies that

the emission distribution parameters for this cluster are not well estimated. This could be due to

the dry nature of cluster 3 which might need more informative priors.

Figure 5.17 depicts the spatial map of seasonal precipitation over the watershed averaged

over 20 years of synthetic data. The data is smoother compared to Figure 5.2, and the range of

values is better aligned with the historical data than, say, Figure 5.6. Looking at the distribution of

spatial correlations for each cluster in Figure 5.18, we see that the synthetic data from the LHMM

has higher correlations that the HMM without any clusters, as depicted in Figure 5.7. However,

the correlation in the synthetic data is still low compared to the historical data.

To compare how the states differ for each cluster, Tables 5.1, 5.2, and 5.3 present key

statistics of interest for locations belonging to clusters 1, 2, and 3 respectively. Within each table,

the information is divided by the states. Since there are 3 clusters and 3 states for each cluster of
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Figure 5.17: Synthetic precipitation for Jul–
Sep over the Chesapeake Bay watershed from
a 3-cluster LHMM with a Gaussian copula for
emissions.

Figure 5.18: Pairwise Spatial correlation in
daily precipitation for historical IMERG data
and synthetic data from a 3-cluster LHMM
with a Gaussian copula for emissions.

the LHMM, we have a total of 9 subgroups to compare. The state assignment for the historical data

is done on the basis of the most likely sequence of states obtained using the Viterbi Algorithm.

Looking within each cluster, we see that the states maintain the ordering established in our prior;

the first state is the wettest with high rainfall and a low proportion of dry days, and the last state

is the wettest with the lowest rainfall and the highest proportion of dry days. Comparing how the

states differ from cluster to cluster, we note that the states are not equivalent for the three clusters.

While the states divide the precipitation in each cluster into three regimes, or bins, the precipitation

statistics of those regimes are cluster specific.

Looking at the final 2 columns in each of the tables, we see that the synthetic data provides

Table 5.1: Cluster 1 statistics for historical IMERG and synthetic data for each state of the LHMM
averaged across all locations within the cluster.

State
Mean Daily Positive
Precipitation (mm)

Median Daily
Precipitation (mm)

Maximum Daily
Precipitation (mm)

Proportion
of Dry Days

Hist. Synth. Hist. Synth. Hist. Synth. Hist. Synth.

1 11.15 11.87 6.25 5.71 103.33 126.80 0.03 0.03
2 2.46 2.60 0.29 0.25 36.01 33.78 0.21 0.21
3 0.51 0.56 0.0006 0.0009 12.15 9.46 0.74 0.73
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Table 5.2: Cluster 2 statistics for historical IMERG and synthetic data for each state of the LHMM
averaged across all locations within the cluster.

State
Mean Daily Positive
Precipitation (mm)

Median Daily
Precipitation (mm)

Maximum Daily
Precipitation (mm)

Proportion
of Dry Days

Hist. Synth. Hist. Synth. Hist. Synth. Hist. Synth.

1 15.11 15.71 9.73 9.48 153.40 128.46 0.01 0.02
2 2.14 2.33 0.34 0.33 39.85 28.56 0.12 0.12
3 0.27 0.31 0 0 9.14 5.89 0.70 0.70

Table 5.3: Cluster 3 statistics for historical IMERG and synthetic data for each state of the LHMM
averaged across all locations within the cluster.

State
Mean Daily Positive
Precipitation (mm)

Median Daily
Precipitation (mm)

Maximum Daily
Precipitation (mm)

Proportion
of Dry Days

Hist. Synth. Hist. Synth. Hist. Synth. Hist. Synth.

1 10.34 11.65 5.97 5.73 89.64 127.78 0.02 0.03
2 2.27 2.57 0.32 0.28 33.84 34.06 0.20 0.21
3 0.50 0.57 0 0 12.39 9.62 0.73 0.73

good estimates of the proportion of dry days for all clusters and states. This implies that the

marginal mixture component assignment parameters are well estimated. However, the synthetic

data consistently overestimates the mean of positive precipitation amounts, as visible in the first

2 columns for each cluster. This is potentially a side effect of the Gaussian copula for emissions.

Some interesting patterns also show up in the median and maximum precipitation as a consequence

of the number of dry and wet days being better estimated than the amount of precipitation. We

see that the median is slightly underestimated in all the subgroups, while maximum precipitation

values are generally not well estimated in any of the subgroups. All these together point to the

need for improving upon the Gaussian copula for emissions.

5.4 Discussion

We fit a 3-cluster LHMM, each with 3 states, to the Chesapeake Bay watershed data.

Marginal parameter estimation is carried out using variational Bayes, and Gaussian copulas are

constructed both for the state processes of each cluster as well as the emission processes within

each cluster. Synthetic data generated from the model has monthly statistics comparable to the
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historical data. Furthermore, it can partially replicate spatial correlations present in the data. How-

ever, the model tends to overestimate the statistics associated with positive precipitation. While

these are the statistics that we have chosen to focus on, there are a variety of other measures that

can be used to compare the synthetic data with the historical data depending on the needs of the

study. For example, we can look at run lengths of dry and wet days and similar temporal charac-

teristics at each location, as well as the capability of the model to simulate extreme weather events

simultaneously for large stretches of the watershed.

This case study presented validates our approach to parameter estimation in HMMs for geo-

statistical data, while pointing out areas of potential improvement. One of our basic assumptions

made for the simulation studies carries over to the case study - general priors. We assign near

identical priors from our simulation studies to this case study. The priors for the transition matrix

are symmetric in nature, and the priors for the emission distribution parameters only seeks to order

the components and ensure identifiability. To that end, three conditions are enforced on the priors:

1. The first state has the lowest mixture assignment probability for the dry component, and the

last state has the highest mixture assignment probability for the dry component.

2. For each state, there is one Exponential distribution with rate < 1 and one with rate ≥ 1.

3. The first state has the lowest rates of precipitation, and the final state has the highest.

Conditions 1 and 3 ensure that the first state is the wettest, with the lowest probability of being

a dry day, and highest rainfall. Similarly, the third state ends up the driest, with the highest

probability of being a dry day and low rainfall amounts. Condition 2 ensures that a wide range

of precipitation values can be captured by each state. In particular, the component with rate < 1

allows the modeling of high values of precipitation, and the component with rate ≥ 1 allows the

modeling of low positive values. This is especially relevant for our IMERG data - since the grids

are fairly large, we observe a large range of positive daily precipitation values, from sub 1mm

to well over 100mm. If our dataset has a smaller range, the emission distribution priors can be

modified accordingly.

We note the necessity of augmenting the SVB optimization with a few CAVI iterations at

the end. This might not be necessary if we have better prior information about the state process
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priors, since those are the ones that have the most trouble converging under SVB. Despite the

expense of CAVI iterations, it helps with algorithm convergence and we deem it necessary for

HMMs.

The simplest model fitted in the beginning of the chapter contains no copulas, and it does

quite well in replicating marginal statistics without any noticeable bias. However, it fares very

poorly when it comes to replicating the spatial correlation present in the historical data. This

might not be a problem if the data came from a small number of locations spaced far apart. The

base HMM will prove adequate for such cases. However, working with densely gridded remote

sensing data requires us to consider correlation structures in the data. This leads to some bias in

the estimates. In particular, since the point of the copula for emissions is to generate correlated

positive precipitation values, it reinforces high precipitation regimes by design. Further, it still

cannot capture the correlations between locations adequately as the construction of the copula

relies on marginal parameter estimates. However, we consider the emissions copula a critical part

of the model in generating spatially consistent precipitation.

One way to address the overestimation of positive precipitation is by allowing for a larger

number of weather regimes in the model. This way, there is more granularity available when

switching weather regimes. We could increase the number of states in the data, but it has a few

practical downsides. Increasing the state space requires a proportionate increase in the number of

emission distribution parameters. It also increases the computational cost of parameter estimation.

Clustering our data into an LHMM is an alternative approach which has a similar effect at a lower

computational cost. The LHMM has the same number of emission distribution parameters as the

base HMM, since the partitioning is not done to the temporal component of the data, but along the

spatial dimension. The increase in the number of state process parameters is negligible compared

to the number of emission process parameters. Since the intermediate weather regime for the

wettest cluster has similar properties as the wettest weather state for a drier cluster, it allows for a

similar granularity in the weather regimes.

A question also remains on how the clusters should be defined. If we use only precipitation

statistics to cluster the data, then we are double dipping in the data to an extent as we are using

the same information to divide the data into clusters as would later be used to divide it into states.
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Ideally, we would want the clusters to be defined based on at least some additional data which is

independent of precipitation. In our case, the only extra information we use are the latitude and

longitude values of each grid point, which the HMM otherwise does not have access to. We could

also be using information like terrain or other meteorological data.

This brings us back to the copula for emissions. Using an LHMM allows us an intuitive

way to reduce the parameter space for the emission copula. In our case study, we have assumed

zero copula correlation for emissions from points belonging to different clusters. This can also be

set a fixed positive value for all cases. We believe this to be key to simulating more realistic basin-

wide precipitation values. An alternative approach is to have emission copulas only for some of

the states. For example, drier states which have a lot of days without precipitation could just be

assigned an independence copula. This would have the added benefit of preventing the estimation

of spurious correlation values based on a very small number of points. This approach can also be

applied in conjunction with the LHMM.
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Chapter 6

Summary and Future Work

The thesis introduces methods to model geostatistical data using hidden Markov models

with an emphasis on variational Bayesian estimation. Our motivating and demonstrative exam-

ple pertains to daily precipitation data observed over the Chesapeake Bay watershed in Eastern

USA. The data is obtained from GPM-IMERG, which is on a 0.1◦ × 0.1◦ grid with high spatial

correlations present in the data. Furthermore, the precipitation at each location is described as

a semi-continuous distribution with a point mass at zero for zero precipitation and a mixture of

Exponential distributions for positive precipitation. The GPM-IMERG data covers the watershed

using 1927 grid points - the densely gridded structure makes it important for the spatial charac-

teristics of the data to be captured. The large spatial stretch of the basin also requires efficient

computational algorithms that scale well and can be parallelized. In this concluding chapter, we

summarize our contributions towards each facet of this modeling problem, and then outline future

research directions.

6.1 List of Contributions

We present our contributions in the context of three broad questions pertaining to modeling

geostatistical data using HMMs.

How to estimate the marginal parameters using Bayesian methods?

Our choice of a Bayesian approach instead of a maximum likelihood one is largely mo-

tivated by data size and model complexity. Since the data contains multiple latent variables, a
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spatiotemporal structure, and a large dimension, a Bayesian framework where we can use prior

knowledge to direct our model is an attractive proposition. However, regular MCMC approaches

are usually too computationally intensive for an HMM. We instead resort of variational Bayes

(VB) which is computationally more efficient. While previous literature on VB for HMMs has

focused primarily on multivariate Normal emission distributions, we extend that in the following

ways:

• Variational Bayes parameter estimation for HMMs with semi-continuous emissions

[Majumder et al., 2021, in preparation (2021]. In particular, we focus on developing pa-

rameter estimation for emissions where the positive part of precipitation is a mixture of two

Exponential distributions. We derive parameter estimates for a single chain of univariate

emissions, multiple chains of univariate emissions, as well as for multivariate emissions

data.

• Developing model convergence metrics. We derived expressions for the evidence lower

bound (ELBO) which is used to assess model convergence in VB. We also derived expres-

sions for the deviance information criterion (DIC) which can be used for model selection.

However, we assume in this thesis that the model size is known; the DIC thus does not play

a significant role in our own numerical studies.

• Developing parameter estimation for Gamma distribution emissions. We derived the

variational posterior estimates for emission distributions where positive precipitation is ei-

ther specified as a mixture of Gamma distributions or a modified Gamma shape mixture

(GSM) distribution. Using Gamma distributions was deemed infeasible due to its compu-

tational cost. However, GSM provides a viable alternative to Exponential distributions and

required a sparser parameter set. Our formulation for the GSM distribution generalizes the

existing approach and requires fewer mixture components. We developed empirical Bayes

prior estimation for the GSM distribution; however, we concluded that GSM for positive

precipitation requires more development until it can be a good alternative to using Expo-

nential distributions.

• Stochastic variational Bayes (SVB) for computational efficiency [Majumder et al., ac-

131



6.1. LIST OF CONTRIBUTIONS

cepted (2021]. SVB is developed for this model since using the entire data for optimizing

parameters using CAVI proves unfeasible in real-life scenarios. The SVB uses minibatches

for fast optimization which takes advantage of our data structure where there is a gap be-

tween the end of the wet season for a year and the beginning of the wet season for the next

year. We also modified the minibatch sampling algorithm to add more variability to our

minibatches. The modified minibatch sampling method led to better estimates of the emis-

sion distribution parameters. However, SVB struggles to estimate the state parameters, and

we recommend running a few iterations of CAVI after SVB.

Is a univariate state process sufficient to capture the underlying weather

regimes for large spatial domains?

Proposing a clustered LHMM approach to model large geostatistical datasets [Ma-

jumder et al., in preparation (2021]. The spatial domain is divided into partitions, each with their

own state processes. For large areas like the Chesapeake Bay, it is naive to assume that a single

state process can drive the emission process for the entire watershed. It is much more reasonable

to consider a group of correlated state processes driving precipitation over different parts of the

basin. The state processes are connected by means of a Gaussian copula which allows the gener-

ation of correlated states across the basin. Emissions at any given location depend on exactly one

of the state processes. This model increases the state space of the latent process that is driving

precipitation over an area; however, it does so in a way which does not affect the number of pa-

rameters in the emission process. Since it is not easy to evaluate the CDF of a Markov chain, we

used line-search to estimate the copula correlation parameters.

How to generate correlated precipitation amounts over a large area?

Developing Gaussian copulas for each state’s emissions which can then simulate cor-

related precipitation amounts [Majumder et al., 2020]. A separate copula is constructed for

each state and cluster combination. Locations in different clusters of the LHMM are assumed

to have zero correlation, significantly lowering the number of pairwise correlations that need to
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be estimated. The copula has a two-stage estimation process, where the marginal parameters are

estimated in the first stage and the copula parameters estimated in the second stage. While in

our simulation studies we assumed that most of the true marginal parameters are known, this is

of course not the case when it comes to real life data. The use of marginal estimates results in

underestimating the copula correlation values; as a result, synthetic data generated from the fitted

model tended to have lower correlations than in historical data. However, not using a copula for

emissions results in synthetic data which has very little correlation between locations and cannot

be used for understanding the long term properties of precipitation over the entire basin. Since

multivariate specifications of semi-continuous mixture marginals are not a well-defined concept,

we believe copulas to be the way forward when developing correlation structures for HMMs with

arbitrary exponential family emission distributions.

6.2 Future Work

• Non-homogeneous hidden Markov models (NHMM). The HMMs that are considered

in this thesis are homogeneous, which means that its parameters are not time dependent.

However, it is common in precipitation literature to relax this assumption. Since the latent

variables are assumed to be local variables, its parameters can be made to vary over time.

Robertson et al. [2006] have done this for the state process parameters, while Holsclaw et al.

[2016] made the mixture assignment variable change over time. Neither of these approaches

have employed VB parameter estimation as far as we know. In both these examples, the

latent variables are categorical and this results in a generalized linear regression problem.

A Bayesian setup of this, however, cannot take advantage of conjugacy. This makes it

challenging to implement VB parameter estimation. Jordan et al. [1999] provides some

approaches which we hope to explore further.

• Estimating copula parameters simultaneously with marginal parameters using VB.

Our copula is likelihood based to a large degree at this point and its parameters are estimated

only after the marginal parameters have been estimated. However, being able to estimate all

the parameters simultaneously could provide better copula parameter estimates. Doing so in
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a variational context would require incorporating the copula likelihood into the expressions

for the ELBO, introducing more structure in the variational posterior. Tran et al. [2015]

proposed copula variational inference for estimating correlations between latent variables

using copulas. While it is difficult to implement for HMMs due to the modified VBE

step, we want to develop a similar approach for the emission process parameters. Finally,

Grazian and Liseo [2017] provides some novel approaches for the Bayesian estimation of

copula parameters which perform better than the IFM approach.

• Bayesian Deep Learning for geostatistical data. We want to expand the scope of our

current model and look at Deep Learning models. Variational Autoencoders (VAE) is a

class of models we want to explore. Generative Adverserial Networks (GAN) have also

found success in generating synthetic data. There are almost always complications when

we are trying to explore a spatiotemporal latent space. However, we believe that this is a

crucial problem we need to tackle if we want to deploy synthetic precipitation generator

models at scale and at arbitrary resolutions.
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