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ABSTRACT Seven siphoviruses were isolated from soil using Streptomyces hosts.
Their genome sequences ranged from 42,730 to 57,624 bp long and had a GC content
of approximately 60%. Based on their gene content similarity to actinobacteriophages,
all seven phages were assigned to cluster BI. For several of these phages, multiple ri-
bosomal frameshifts were identified.

S treptomyces species are well known for the production of antibiotics and other bioac-
tive compounds. Here, we report on seven bacteriophages isolated from soil samples

on two members of the genus, Streptomyces scabiei RL-34 (ATCC 49173), a plant pathogen
that causes potato scab disease (1), and Streptomyces mirabilis NRRL-2400 (ARS), a species
able to grow in soils containing heavy metals (2), using standard methods (3) (Table 1).
Briefly, soil samples were washed in phage buffer (10 mM Tris [pH 7.5], 10 mM MgSO4,
1 mM CaCl2, 68.5 mM NaCl), and the wash was collected by centrifugation and filtration
(0.22-mm filter). The filtrate was then plated in tryptic soy soft agar (BD), with either S. sca-
biei or S. mirabilis overlaid on nutrient agar (BD Difco) supplemented with 10 mM MgCl2,
8 mM Ca(NO3)2, and 0.5% glucose, and incubated at 30°C for 1 to 2 days to yield bacterio-
phages Annihilus, TonyStarch, Thiqqums, CricKo, ClubPenguin, and RosaAsantewaa. For
one soil sample, the filtrate was first inoculated with S. scabiei RL-34 and incubated with
shaking for 24 h at 30°C; then, the culture was filtered and plated in soft agar with S. scabiei
yielding phage PherryCruz. All phages were purified with a minimum of three rounds of
plating. Negative stain transmission electron microscopy revealed all seven bacteriophages
to be siphoviruses (4) (Fig. 1A). The particle capsid and tail measurements are provided in
Table 1.

Genomic DNA of all seven bacteriophages was isolated from crude lysate and purified
using a Promega Wizard DNA cleanup system, prepared for sequencing using the NEB
Ultra II library kit, and sequenced at the Pittsburgh Bacteriophage Institute using the
Illumina MiSeq platform (v3 reagents), producing over 100,000 150-base single-end reads
for each phage (Table 1). The raw reads were assembled using Newbler v2.9. Quality con-
trol was performed using Consed v29 (5). The genome ends were identified by compari-
son to similar phages with known ends and confirmed by read start buildups. Based on
the gene content similarity, all seven phages were assigned using PhagesDB to actinobac-
teriophage cluster BI (6–8). The sequencing data, genome characteristics, and cluster
assignments are provided in Table 1.

Genome annotation was completed using DNA Master v5.23.6 (9) embedded with
Glimmer v3.02b (10), GeneMark v4.28 (11), Phamerator v.Actino_draft 463 (12), NCBI
blastp v2.13.0 (13), and HHpred v57c87 (14). The phages were found to have from 55
(RosaAsantewaa) to 94 (CricKo, Thiqqums) protein coding genes, of which an average
32% were assigned functions. No tRNA coding genes were identified using tRNAscan-
SE v2.0 (15) or Aragorn v1.2.41 (16).
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In the BI1 and BI2 phages examined here, the heuristic GeneMarkS algorithm (11)
was used to predict multiple programmed ribosomal frameshifts. In TonyStarch (BI1),
most putative frameshifts were in genes located near predicted endolysins and nucle-
ases, while in the cluster BI2 phages (Annihilus, PherryCruz, RosaAsantewaa), they were
in genes near predicted holins. Some of these putative frameshifts may be functional,
since the predicted products for frameshifts involving TonyStarch genes 4 to 5 and 71
to 72 improved the HHpred alignment to known protein domains compared to the lit-
eral concatenation of the respective gene products (Fig. 1B and C).

Data availability. The GenBank accession numbers for the genome sequences reported
here and the SRA accession numbers for the raw sequence reads are available in Table 1.

ACKNOWLEDGMENTS
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FIG 1 Virion imaging and putative frameshift identification in cluster BI phages. (A) Representative transmission electron microscopy images of the phages
described in this paper. (Left to right, top row) Annihilus, ClubPenguin, CricKo, and PherryCruz; (bottom) RosaAsantewaa, Thiqqums, and TonyStarch. (B) Annotated
GeneMark coding potential for TonyStarch genes 71 and 72. Green and blue highlights indicate the coding potential for genes 71 and 72 involved in a
hypothetical ribosomal frameshift. Gray highlight indicates the coding potential of gene 71 not included in that ribosomal frameshift. (C) HHpred was used to
identify a conserved domain (PF14316) using a literal concatenation of gene product 71 and 72 hits as the query, but the coding potential of gene 71 not included
in the ribosomal frameshift was not required for the alignment. Using the predicted frameshift sequence as the query resulted in an improved alignment score (35)
and probability (95.85%). Color coding as in panel B.
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Members of the 2021–2022 UMBC Phage Hunters class are listed at https://phages.
umbc.edu/home/class-lists/2021-22/. Members of STEM BUILD at UMBC Cohort 5 are listed
at https://phages.umbc.edu/home/class-lists/stem-build/cohort-5-summer-2020/.
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