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Abstract: As the Autonomous Vehicle (AV) industry is rapidly advancing, the classification of
non-motorized (vulnerable) road users (VRUs) becomes essential to ensure their safety and to smooth
operation of road applications. The typical practice of non-motorized road users’ classification usually
takes significant training time and ignores the temporal evolution and behavior of the signal. In this
research effort, we attempt to detect VRUs with high accuracy be proposing a novel framework
that includes using Deep Transfer Learning, which saves training time and cost, to classify images
constructed from Recurrence Quantification Analysis (RQA) that reflect the temporal dynamics and
behavior of the signal. Recurrence Plots (RPs) were constructed from low-power smartphone sensors
without using GPS data. The resulted RPs were used as inputs for different pre-trained Convolutional
Neural Network (CNN) classifiers including constructing 227× 227 images to be used for AlexNet and
SqueezeNet; and constructing 224 × 224 images to be used for VGG16 and VGG19. Results show that
the classification accuracy of Convolutional Neural Network Transfer Learning (CNN-TL) reaches
98.70%, 98.62%, 98.71%, and 98.71% for AlexNet, SqueezeNet, VGG16, and VGG19, respectively.
Moreover, we trained resnet101 and shufflenet for a very short time using one epoch of data and then
used them as weak learners, which yielded 98.49% classification accuracy. The results of the proposed
framework outperform other results in the literature (to the best of our knowledge) and show that
using CNN-TL is promising for VRUs classification. Because of its relative straightforwardness, ability
to be generalized and transferred, and potential high accuracy, we anticipate that this framework
might be able to solve various problems related to signal classification.

Keywords: transportation mode classification; vulnerable road users; recurrence plots; computer
vision; image classification system

1. Introduction

Through the ongoing growth of the automated vehicles (AV) trade, the classification of
non-motorized road users such as pedestrians is becoming crucial in developing safety applications for
the Cooperative Intelligent Transportation System (C-ITS) to enhance the safety of non-motorized road
users [1,2]. The C-ITS has been widely investigate and used due to its ability to utilize the data and better
manage the transportation networks. The C-ITS attempts to advance health, performance, and comfort
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through various connectivity technologies, such as vehicle-to-vehicle (V2V). C-ITS shares various forms
of information, including knowledge about non-motorized road users, traffic congestion, accidents,
and road threats [3]. This helps C-ITS to create an integrated person, route, infrastructure, and vehicle
network by implementing communications and other transportation technologies. Taking advantage
of the new technology and available big datasets can create a fully functional, instant-time, precise,
and secure transport facilities [2,4]. While C-ITS is now receiving attention globally, the academic
community focused primarily on motorized road users such as motor vehicles, expressing less interest
in non-motorized road users [5]. Major planning challenges faced by deploying AV is intermodal
traffic control, where AV regulations and programming should be structured to value human life by
reducing the likelihood of crashes and protecting non-motorized road users [6,7].

The non-motorized road users are known to be one example of people intervening with AVs
“humans that do not explicitly interact with the automated vehicle but still affect how the vehicle
accomplishes its task by observing or interfering with the actions of the vehicle” [1]. The non-motorized
road users, which typically lack protection, can be described as ‘vulnerable.’ Those were identified in
this research effort by the quantity of traffic safety they lack. The lethality of non-motorized road users,
in particular pedestrians and cyclists, are greater than the norm. This is because of the discrimination
factor for non-motorized road users’ collisions is small compared to motorized road users [8].

Conversely, the use of smartphones in data analysis has also lately gained attention of academics
and policymakers. Smartphone applications (apps) have been designed and used successfully in
several fields to gather data from smartphones. Researchers can use smartphones in the transport
industry to track and gather motion information, such as velocity and motion vector from the integrated
Global Positioning System (GPS). This information has the potential to identify the travel mode of the
individual, which can be used in a variety of different ways and may decrease the amount of time and
expense of traditional travel surveys substantially.

An established practice in non-motorized road users’ classification and mode transportation
recognition tasks is using the state-of-the-art algorithms for classification by integrating frame-level
features over some period as an input. The common approach is to use the traditional statistic
techniques, such as mean and standard deviation, resulting in a less resolution dataset and losing very
valuable information such as the historical evolution and needs significant training time and expense.
In this study, we explore the possibility of using Transfer Learning with Convolutional Neural Network
to classify non-motorized road users with high precision (CNN-TL), which saves training time and
cost, to classify images constructed from Recurrence Quantification Analysis (RQA). This approach
has the potential to be popular in the transportation mode recognition field due to the potential high
accuracy and ease of implementation.

2. Related Work

Scientists have established many methods to effectively differentiate between the modes
of transport. Machine learning and artificial intelligence algorithms have shown outstanding
performance in creating classification models with high precision, in particular with transportation
mode classification. Throughout different experiments, supervised learning models, such as Support
Vector Machines (SVMs) [9–11], Random Forests (RFs) [11,12], and Decision Trees [11,13–18], have been
utilized in different research efforts.

These research efforts have obtained various levels of accuracy in the classification. There are
many variables that influence the precision of detecting modes of transport, as for example the
monitoring time, the source of the data, number of modes, among others [12,19]. A major factor
influencing the precision of transportation mode recognition approach, however, is the classifier
used in the approach. In most of the research conducted in the past, researchers used only one
classification algorithm layer [12,14,15]. This is called a conventional framework. On the other hand,
a few researchers have used more than one classification algorithm layer, which is called a hierarchical
framework [11]. Rasti et al. have provided an overview over the deep feature extraction approaches
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with its applications to hyperspectral image classification, covering a wide range of techniques with
different classification layers.

In addition to the number of classification layers, the domain of the extracted features is another
important factor that needs to be considered in the transportation mode recognition approach.
The domain of the features can be classified into two categories: time and frequency. Several research
efforts were conducted using both as in [9–12,14,15,20] [9,11,15]. Both accomplished significant and
high accuracy.

Zadeh et al. [21] proposed a geometric approach to detect risky circumstances, so that their
built-in alert system on smartphones can secure non-motorized road users. This approach can estimate
the probability of a crash with the use of a fuzzy inference. In addition, a three-dimensional (3D)
photonic mixer camera was developed to provide pedestrian identification using a sensor device to
meet unique criteria for pedestrian safety in [22]. Anaya et al. [5] have used V2V communication to
develop a novel Advanced Driver Assistance Program to prevent collisions between motorcyclists
and cyclists. A multi-sensor approach was developed to non-motorized road users’ security as part
of the PROTECTOR project by detecting and identifying non-motorized road users from vehicles in
motion in [23]. They explored the impact of using CNN-TL on the precision of the non-motorized road
user’s classification, which was the first effort to the best of our knowledge in this respect. They aim at
precisely detecting non-motorized road users through data obtained from sensors on smartphones
with low power. High level C-ITS protection relies on a specific classification of the non-motorized
road users. A binary classifier was introduced to discriminate non-motorized road user’s modes
(i.e., cycling, running, and walking) from motorized road user’s modes (passenger car and taking a
bus). A binary classifier is useful in situations where there are higher threats to non-motorized road
users. For instance, at an intersection, all subjects’ smartphones detect non-motorized road users,
and reports them to the C-ITS roadside unit. The C-ITS roadside also receives messages from vehicles,
if any, and then transmits this message onto a warning sign if it detects a potential conflict between
non-motorized road users and the vehicle.

We should emphasize that most of the methods proposed in the latest research efforts did not
consider the shortcomings of GPS data such as signal failure or data loss, resulting in unreliable
location information. In addition, turning on the GPS service in smartphones might quickly drain the
battery; thus, this effort attempted to use collected data of various sensors in a smartphone without
GPS information.

3. Data Collection

The dataset was obtained in Blacksburg, VA using a smartphone app by Jahangiri and Rakha [12].
Ten travelers were provided with the app to track their movement in five different modes of
transportation, namely: car, bicycle, bus, running, and walking. Data were gathered from four
different sensors in the smartphone: The Global Positioning System (GPS), accelerometer, gyroscope,
and rotation-vector. Data were warehoused at the maximum viable frequency. Data gathering took
place on working days (Mondays to Fridays) and during working hours (from 8:00 AM to 6:00 PM).
Several variables have been considered to gather meaningful data that represent natural behaviors.
To ensure the sensor positioning has no impact on the data collected, travelers (i.e., participants) were
asked to consider holding the smartphone in various positions with no limitations. The data were
gathered on various road types, and some periods that indicate congestion conditions that occur in
real-life circumstances. The gathering of 30-min of data per person during the study period was
considered appropriate for each mode.

To equate the results of the analysis with results of previous research efforts [11,12], the selected
features extracted from the signals were assumed to have a significant association with the modes of
travel for the study. In addition, features that could be derived from the rotation-vector values were
omitted for the same purpose. Furthermore, GPS features were ignored in this study, allowing this



Remote Sens. 2020, 12, 3508 4 of 12

system to be applied in circumstances in which GPS data were unavailable and to resolve the issue of
battery depletion when the GPS service is turned on.

4. RQA Features

Extracting features from the signal is the standard approach in solving mode classification
problems in the literature, which can be then used as inputs into the various classification algorithms.
The traditional method creates features mainly by using statistics such as the mean, median,
and standard deviation values. This process might result in losing the temporal evolution and
behavior of the signal, which is valuable information. Extracting features that represent this behavior
maximizes the classification precision and accuracy, but it is not yet deeply investigated in the literature.
In [24], we proposed extracting features using Recurrence Quantification Analysis (RQA), which we
proved provided extensive temporal behavior of the obtained signal. RQA is a nonlinear method for
analyzing complex dynamic systems by quantifying the recurrence properties of the signal. Eckmann
et al. [25] implemented this as a visual tool for finding hidden recurring patterns and non-stationary
and systemic shifts. RQA has proven to be a robust method for analyzing dynamic systems and is
capable of quantitatively characterizing the magnitude and complexity of nonlinear, non-stationary,
and small signals [26–32]. It seems that RQA may result in more subtle kind of features to the variations
in the signal and more robust against the noise in the signal data [30,31].

In this study we used the extracted features using RQA to create images (we called them RQA
images) that could be then used as inputs in a classification algorithm instead of using many numerical
features. This has many benefits, including the ability of using pretrained deep learning algorithms
and representing the various features in one single image, which will save a significant amount of time
in computing, reducing the complexity of the system. However, before we introduce the proposed
framework, the following is a brief description of how we extracted the features using the quantification
of patterns that occur in Recurrence Plots (RPs); more information and details can be found here [24].
Extraction of RQA features involves the setting of three essential parameters: delay (τ) (i.e., lag), phase
space dimension (D), and threshold parameter (T). Delay is chosen as the minimum value for the
Average Mutual Knowledge (AMI) function. We averaged the collective average information function
over all participants and modes in order to calibrate the delay parameter for each channel, as can be
seen in Figure 1a. The phase space dimension is calculated using the False Nearest Neighbor (FNN)
test, as seen in Figure 1b. To calculate the value of T, the space dimension and the delay were used to
create the RP and to extract RQA features at various T values. We use the resulted RQA features of
each stream from applying RF algorithm as inputs. Consequently, T was calculated for each wave
based on the precision of the classification. More information and details on how we found these
parameters can be found in [24].

Jahangiri and Rakha [12] obtained measurements at a frequency of approximately 25 Hz from
the various sensors. As the sensor output samples were not synchronized, a linear interpolation was
implemented by the authors to generate continuous signals from the discrete samples. Subsequently,
they sampled the designed sensor signals at 100 Hz and divided each sensor’s output in each direction
(x, y, and z) into 1-s long, non-overlapping windows (t). Using RQA, each point (Vi) in the dimensional
space is Vi = pi + pi+τ + pi+2τ + · · ·+ pi+(D−1)τ, which means that each 1-s window (i.e., 100 samples)
results in 70× 70 RP for D = 10 and τ = 4; and 40× 40 RP for D = 30 and τ = 3. As a result, six RPs of
70× 70 and three RP of 40× 40 were extracted to be used in image classification. Table 1 shows some
information on the structure of used dataset.
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Neighbor (FNN) test.

Table 1. Input of the used dataset structure. VRU: vulnerable road users.

The Dataset Category The Dataset Type Number of Images

Test NON-VRU 20234

Test VRU 30120

Train + Validation NON-VRU 20199

Train + Validation VRU 27891

In addition, an example of the extracted RQA images of VRUs and non-VRUs modes are shown
in Figure 2.
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Figure 2. An example of a resulting Recurrence Quantification Analysis (RQA) image of VRU (right)
and non-VRU (left).

5. Methods

Convolutional Neural Network Transfer Learning (CNN-TL)

Convolutional neural network (CNN) is a Deep Learning algorithm that has recently shown
outstanding performance in many computer vision applications, such as image classification, object
classification, and face recognition [33]. In this study, we used CNN as it takes images as inputs,
and was proven to be able to process and classify it. Technically, each input image processes through a
series of convolution hidden layers with certain filters to classify it with a defined probabilistic value
between 0 and 1. However, because training CNNs needs a relatively large number of input image
data and parameters to be processed, Transfer Learning (TL) was introduced as a pretrained method
to expedite training and advance the performance of the CNN models. TL is defined as “a machine
learning method where a model developed for a task is reused as the starting point for a model on a
second task, which can be used in computer vision and natural language processing aiming to transfer
knowledge between related source and target domains” [34,35]. There are many benefits for using TL;
namely, it “overcomes the deficit of training samples for some categories by adapting classifiers trained
for other categories and to cope with different data distributions in the source and target domains for
the same categories” [33,34].

In this study, we applied Convolutional Neural Network Transfer Learning (CNN-TL) to classify
the resulted RQA images using: 1) AlexNet, which contains five convolutional, three fully connected,
max-pooling, and dropout layers [36]; 2) SqueezeNet, which contains two convolution layers, eight
Fire Modules, and max-pooling layers [37]; 3) VGG16 and 4) VGG19 [38,39], both of which contain
three convolutional layers, max-pooling, and two fully-connected layers [40]. However, the “16” and
“19” stand for the number of weight layers in the network.

6. Proposed Framework and Results

In order to use CNN-TL for classifying VRU and non-VRU, we proposed the framework for
classifying VRU using CNN-TL and RF shown in Figure 3. Following the extraction of RPs using
RQA analysis, we resized and concatenated the nine resulting RPs to construct 227× 227 images to be
used for AlexNet and SqueezeNet, and 224 × 244 images to be used for VGG16,VGG19, shufflenet,
and resnet101. For each CNN method, we used 47.5% of the images for training the pre-trained deep
neural network using transfer learning, 2.5% of the images were used for validation, and the remaining
50% were used for testing. Consequently, as a key advantage of the proposed framework, we used
RF with varying number of trees from 10 to 200 to capture the temporal dependencies between the
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consecutive non-overlapping windows (t) of 1-s width and return the probability of a window/image
being VRU. As this type of neural network fails to model the time dependency, RF aims to model this
temporal relationship using the concatenating VRU probability of consecutive windows to form a
vector of probabilities. In this study, we choose 3, 5, and 7 consecutive windows, which corresponds to
3, 5, and 7 s, respectively.
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CNN-TL was trained and tested as a binary classifier (i.e., classifying whether the class is a VRU or
a non-VRU). RQA images resulted from analyzing data collected using different smartphone sensors,
namely: accelerometer, gyroscope, and rotation-vector. As Figure 3 shows, the classification results
reached the highest accuracy of 98.70%, 98.62%, 98.71%, and 98.71% using only seven consecutive
non-overlapping windows for AlexNet, SqueezeNet, VGG16, and VGG19 respectively. Figure 4 shows
the results of the different CNN-TL methods.

Finally, we used resnet101 and shufflenet, which are deeper networks than the previously used
pre-trained networks. The two deeper networks are trained used the same data but for only one
epoch, and then, the fine-tuned networks are used as weak learners where the output probabilities
from both networks are fed into the RF classifier. Figures 5 and 6 shows the classification accuracy of
both networks after one training epoch and classification accuracy after feeding their outputs into the
RF respectively.
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As show in the figure above, the classification accuracy of resnet101 and shufflenet are 98.36%
and 98.44% respectively. Moreover, the classification accuracy after feeding their outputs together into
RF becomes 98.49%.

7. Conclusions

As the AV industry is rapidly advancing, non-motorized road user (i.e., VRUs) classification
has become key to enhancing their safety in the road. In this research, by investigating the use
of a novel CNN-TL image classification framework, we investigated the impact of extracted RPs,
which captures the temporal evolution, on the precision of non-motorized road users’ classification.
We extracted RPs using data from smartphone sensors such as gyroscope, accelerometer, and rotation
vector, without GPS data (we assumed they might have some possible issues such as quickly depleting
the smartphone’s battery if the service is turned on). We proposed a framework consisting of CNN-TL
as a pretrained algorithm to reduce training time and increase the classification accuracy. We also
applied the RF algorithm to capture the temporal relationships between non-overlapping windows.
We applied different CNNs including AlexNet, SqueezeNet, VGG16, and VGG19. The classification
accuracy reached 98.70%, 98.62%, 98.71%, and 98.71% using seven consecutive windows for AlexNet,
SqueezeNet, VGG16, and VGG19 respectively. Moreover, we trained two resnet101 and shufflenet
systems for a shorter time using one epoch of data and considered them weak learners. The outputs of
the weak learners were feed into the RF for final classification.

Results of the proposed framework proved that the proposed framework is promising, and it
outperformed the results in the literature. Our experimental results show that using CNN-TL applied
to extracted RQA images has a significant discriminating ability for VRUs classification, which seems
to not be captured using other classification algorithms. Unlike other methods, images resulted from
RQA would relax the assumptions about linearity, multicollinearity, or stationarity of the data that
would be required using other features. Because of its relative straightforwardness, the ability to be
generalized and transferred, and its potential high accuracy, we anticipate that this framework might
be able to solve various problems related to signal classification and would become a popular choice in
the future.
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8. Data Availability

The dataset used to support the findings of this study is owned by Virginia Tech Transportation
Institute (VTTI), https://www.vtti.vt.edu/index.html, and available upon request.
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