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Summary. We propose adaptive selection of the coarse space of the BDDC and
FETI-DP iterative substructuring methods by adding coarse degrees of freedom
(dofs) on faces between substructures constructed using eigenvectors associated with
the faces. Provably the minimal number of coarse dofs on the faces is added to
decrease a heuristic indicator of the condition number under a target value specified
a priori. It is assumed that corner dofs are already sufficient to prevent relative
rigid body motions of any two substructures with a common face. It is shown
numerically on a 2D elasticity problem that the indicator is reasonably close to
the actual condition number and that the method can find automatically the hard
part of the problem and concentrate the computational work there to achieve the
target value for the condition number and good convergence of the iterations, at a
modest cost.

1.1 Introduction

The BDDC and FETI-DP methods are iterative substructuring methods
that use coarse degrees of freedom associated with corners and edges (in
2D) or faces (in 3D, further on just faces) between substructures, and they
are currently the most advanced versions of the BDD and FETI families of
methods. The BDDC method [2] is a Neumann-Neumann method of Schwarz
type [3]. The BDDC method iterates on the system of primal variables reduced
to the interfaces between the substructures and it can be understood as
further development of the BDD method [10]. The FETI-DP method [4, 5] is
a dual method that iterates on a system for Lagrange multipliers that enforce
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continuity on the interfaces. Algebraic relations between FETI and BDD
methods were pointed out in [6, 7, 12]. A common bound on the condition
number of both the FETI and the BDD method in terms of a single inequality
was given in [7]. In the case of corner constraints only, methods same as BDDC
were derived as primal versions of FETI-DP in [1, 6]. In [11], it was proved
that the eigenvalues of BDDC and FETI-DP are identical and a bound on the
condition number was obtained in terms of matrix data only.

In this contribution, we show how to use the algebraic estimate of the
condition number from [11] to develop an adaptive fast method. First we
estimate the condition number as the solution of an eigenvalue problem, then
obtain a reliable heuristic indicator from the eigenvalues for two substructures
with a common face faces. Finally, we show how to use the eigenvectors
to obtain coarse degrees of freedom that result in an optimal decrease of
the indicator. We demonstrate on numerical examples that the indicator
is quite close that such an adaptive approach results in the concentration
of computational work in a small part of the problem, leading to good
convergence behavior at a small added cost.

Related work on adaptive coarse space selection has focused on the
global problem of selecting the smallest number of corners to prevent coarse
mechanisms [9] and the smallest number of coarse degrees of freedom to assure
asymptotically optimal convergence estimates [8]. In contrast, our indicator
of condition number is local in nature and we assume that corner degrees of
freedom are already sufficient to prevent relative rigid body motions of any
two substructures with a common face.

1.2 Formulation of BDDC and FETI-DP

We need to briefly recall the formulation of the methods and the condition
number bound. Let Ks be the stiffness matrix and vs the vector of degrees
of freedom (dofs) for substructure s. We want to solve the problem in
decomposed form

1

2
vT Kv − vT f → min, v =




v1

...
vN


 K =




K1

. . .

KN




subject to continuity dofs between substructures. Partitioning the dofs in each
subdomain s into internal and interface (boundary)

Ks =

[
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s
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]
,

and eliminating the interior dofs we obtain the problem reduced to interfaces

1

2
wT Sw − wT g → min, S = diag(Ss), Ss = Kbb

s − Kib
s

T
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again subject to continuity of dofs between substructures.
In BDD type methods, the continuity of dofs between substructures is

enforced by imposing common values on substructures interfaces: w = Ru for
some u, where

R =




R1

...
RN




and Rs is the operator of restriction of global dofs on the interfaces
to substructure s. In FETI type methods, continuity of dofs between
substructures is enforced by the constraint Bw = 0, where the entries of B

are typically 0,±1. By construction, we have RsR
T
s = I and rangeR = nullB.

Node is the set of all dofs associated with the same location in space.
Nodes such that no other node is adjacent to the same set of substructures
are called corners. Face is the set of all dofs shared by two substructures that
contains more than one node.

A BDDC or FETI-DP method is specified by the choice of coarse dofs
and the choice of weights for intersubdomain averaging. To define the coarse
problem for BDDC, choose a matrix QT

P that selects coarse dofs uc from global
interface dofs u, e.g. as values at corners or averages on faces:

uc = QT
P u.

The space W̃ will consist of all vectors of substructure interface dofs such that
the coarse dofs are continuous between substructures,

W̃ = {w ∈ W : ∃uc∀s : Csws = Rcsuc}

where Cs = RcsQ
T
P RT

s maps a collection of substructure dofs to a collection
of coarse dofs on substructure s, and Rcs restricts a vector of all coarse dof
values into a vector of coarse dof values that can be nonzero on substructure s.
The dual approach in FETI-DP is to construct QD such that W̃ = nullQT

DB.
In BDDC, the intersubdomain averaging is defined by the matrices

DP = diag (DPs) that form a decomposition of unity, RT DP R = I. The
corresponding dual matrices in FETI-DP are BD = [DD1B1, . . . DDNBN ],
where the dual weights DDs are defined so that BT

DB + RRT DP = I.
The BDDC method is then the method of conjugate gradients for the

assembled system Au = RT g with the system matrix A = RT SR and the
preconditioner P defined by Pr = RT DP (Ψuc + z), where uc is the solution
of the coarse problem ΨT SΨuc = ΨT DT

P Rr and z is the solution of

Sz + CT µ = DT
P Rr

Cz = 0
,

which is a collection of independent substructure problems. The coarse basis
functions Ψ are defined by energy minimization,
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[
S CT

C 0

] [
Ψ

Λ

]
=

[
0

Rc

]
.

The FETI-DP method solves the saddle point problem

min
w∈fW

max
λ

L(w, λ) = max
λ

min
w∈fW

L(w, λ),

where L(w, λ) = 1
2wT Sw − wT f + wT BT λ by iterating on the dual problem

∂F(λ)
∂λ

= Fλ − h = 0, where

F(λ) = min
w∈fW

L(w, λ),

by conjugate gradients with the preconditioner M = BDSBT
D. See [11] for

more details.

1.3 Indicator of the Condition Number

Theorem 1 ([11]). The eigenvalues of the preconditioned operators PA of
BDDC and MF of FETI-DP are same except for eigenvalues of zero and
one, and the condition numbers satisfy

κBDDC = κFETI−DP ≤ ω = sup
w∈fW

J (ω) , J (ω) =

∥∥BT
DBw

∥∥2

S

‖w‖
2
S

.

Here, the condition number is the ratio of the largest and the smallest
nonzero eigenvalue. Zero eigenvalues in FETI-DP are caused by redundant
constraints, common in practice.

As an indicator of the condition number, we propose the maximum of the
bounds from Theorem 1 computed by considering only one pair of adjacent
substructures s, t with a common face at a time:

ω ≈ ω̃ = max
st

ωst, ωst = sup
wst∈

fWst

Jst (wst) . (1.1)

All quantities with the subscript st are the same as without the subscript but
defined using the domain consisting of the substructures s and t only.

Theorem 2. Let a > 0, Πst be the orthogonal projection onto W̃st, and
I − Πst be the orthogonal projection onto

null (ΠstSstΠst + a (I − Πst)) .

Then the stationary values ωst,1 ≥ ωst,2 ≥ . . . and the corresponding

stationary vectors wst,k of the Rayleigh quotient Jst on W̃st satisfy
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Xstwst,k = ωst,kYstwst,k (1.2)

with Yst positive definite, where

Xst = ΠstB
T
stBDstSstB

T
DstBstΠst,

Yst =
(
Πst (ΠstSstΠst + a (I − Πst))Πst + a

(
I − Πst

))

The eigenvalue problem (1.2) is obtained by projecting the gradient of

the Rayleigh quotient Jst (wst) onto the complement in W̃st of the subspace

where its denominator ‖wst‖
2
Sst

= 0, in two steps. Both projections Πst and

Πst are computed by matrix algebra, which is straightforward to implement
numerically. The computation of Πst involves minimization with Lagrange
multipliers for the condition that the values of the coarse dofs on the the
substructures s and t coincide. The projection I − Πst is onto a subspace of
null Sst, and it is easily constructed computationally if a matrix Zst is given
such that null Sst ⊂ range Zst. The matrix Zst with columns consisting of
the coarse basis functions can be used because the span of the coarse basis
functions contains the rigid body modes. However, often the rigid body modes
are available directly, which leads to a smaller matrix Zst and thus cheaper
computation. Since Yst is positive definite, its Choleski decomposition exists,
and we reduce (1.2) a symmetric eigenvalue problem, which is easier and more
efficient to solve numerically.

1.4 Optimal Coarse Degrees of Freedom on Faces

Writing W̃st in the dual form W̃st= nullQT
DstBst

suggests how to add coarse
dofs in an optimal way to decrease the value of indicator ω̃. The following
theorem follows immediately from the standard characterization of eigenvalues
as minima and maxima of the Rayleigh quotient on subspaces spanned by
eigvectors, applied to (1.2).

Theorem 3. Suppose ℓst ≥ 0 and the dual coarse dof selection matrix

QT
Dst is augmented to become

[
QT

Dst, q
T

Dst,1, . . . , q
T
Dst,ℓst

]
with qT

Dst,k =

wT
st,kBT

stBDstSstB
T
Dst, where wT

st,k are the eigenvectors from (1.2). Then

ωst = ωst,ℓst+1, and ωst ≥ ωst,ℓst+1 for any other augmentation of QT
Dst by at

most ℓst columns.
In particular, if ωst,ℓst+1 ≤ τ for all pairs of substructures s, t with a

common face, then ω̃ ≤ τ .

Theorem 3 allows us to guarantee that the condition number indicator
ω̃ ≤ τ for a given target value τ , by adding the smallest possible number of
face coarse dofs.

The primal coarse space selection mechanism that corresponds to this
augmentation can be seen easily in the case when the entries of Bst are +1
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Fig. 1.1. Mesh with H/h = 16, 4 × 4 substructures, and one jagged edge
between substructures 2 and 6. Zero displacement is imposed on the left edge. For
compressible elasticity (Tables 1.1 and 1.2(a)) and tolerance τ = 10, 7 coarse dofs
at the jagged edge and 1 coarse dof at an adjacent edge are added automatically.

for substructure s and −1 for substructrure t. Then wst ∈ W̃st can be written
as

QT
Dst(Istws − Itswt) = 0

where Ist is the 0−1 matrix that selects from ws the degrees of freedom on the
intersection of the substructures s and t. Each column of qD of QDst defines a
coarse degree of freedom associated with the interface of substructures s and
t. The corresponding column qP of QP is such that

qT
P RT

s = qT
DIst (1.3)

Because Rs is also a 0− 1 matrix, this means that the vector qP is formed by
a scattering of the entries of the vector qD.

1.5 Numerical Results

Consider plane elasticity discretized by bilinear elements on a rectangular
mesh decomposed into 16 substructure, with one single edge between
substructures being jagged (Fig. 1.1). We have computed the eigenvalues and
eigenvectors of (1.2) by setting up the matrices and using standard methods
for the symmetric eigenvalue problem in Matlab. The eigenvalues ωst,k

associated with edges between substructures (Table 1.1) clearly distinguish
between the single problematic edge and the others. Adding the coarse dofs
created from the associated eigenvectors according to Theorem 3 decreases
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s t ωst,1 ωst,2 ωst,3 ωst,4 ωst,5 ωst,6 ωst,7 ωst,8

1 2 3.7 2.3 1.4 1.3 1.1 1.1 1.1 1.1
1 5 5.8 3.2 2.3 1.4 1.2 1.1 1.1 1.1
2 3 6.0 2.5 1.7 1.3 1.2 1.1 1. 1.1
2 6 21.7 19.5 17.8 14.9 14.5 11.7 11.2 9.7
3 4 3.3 2.3 1.4 1.3 1.1 1.1 1.1 1.1
3 7 7.1 5.1 3.2 1.8 1.4 1.3 1.2 1.1
4 8 5.9 3.4 2.6 1.4 1.2 1.1 1.1 1.1
5 6 12.0 4.9 4.4 1.8 1.6 1.3 1.3 1.2
5 9 5.9 3.4 2.6 1.4 1.3 1.3 1.1 1.1
6 7 8.7 4.9 3.9 1.8 1.5 1.3 1.2 1.1
6 10 7.3 4.8 3.4 1.8 1.4 1.3 1.2 1.1

Table 1.1. Several largest eigenvalues ωst,k for several edges for the elasticity
problem from Fig. 1.1 with H/h = 16. (s, t) = (2, 6) is the jagged edge.

H/h Ndof τ Nc eω κ it

4 578 42 10.3 5.6 19
10 43 5.2 4.0 18
3 44 3.0 4.0 18
2 58 2.0 2.8 15

16 8450 42 22 20 37
10 50 8.7 9.9 29
3 77 3.0 4.6 22
2 112 2.0 2.6 15

64 132098 42 87 40 55
10 89 9.8 9.9 36
3 151 3.0 4.7 22
2 174 2.0 2.9 17

H/h Ndof τ Nc eω κ it

4 578 42 285 208 64
10 68 8.0 8.6 28
3 89 2.9 4.6 22
2 114 2.0 2.6 16

16 8450 42 1012 1010 161
10 87 9.8 9.9 29
3 77 3.0 4.6 22
2 126 2.0 2.9 19

64 132098 42 6910 NA ∞

10 183 9.8 9.7 37
3 213 3.0 4.9 26
2 274 2.0 3.0 20

(a) compressible elasticity (b) almost incompressible

Table 1.2. BDDC for plane elasticity on a square with one jagged edge. The Lamé
coefficients are λ = 1 and µ = 2 for (a), and λ = 1000 and µ = 2 for (b). H/h is
the number of elements per substructure in one direction, Ndof the number of dofs
in the problem, τ the condition number tolerance as in Theorem 3, Nc the number
of coarse dofs, eω the value of the condition number indicator from (1.1), κ the
approximate condition number from the Lanczos sequence in conjugate gradients,
and it the number of BDDC iterations for relative residual tolerance 10−8.

the value of the condition number indicator ω̃ and improves convergence
at the cost of increasing the number of coarse dofs. This effect is even
more pronounced for almost incompressible elasticity where the iterations
converge poorly or not at all without the additional coarse dofs. This
incompressible elasticity problem is particularly hard for an iterative method
because standard bilinear elements were used instead of stable elements or
reduced integration. In all cases, values of the condition number indicator ω̃

are quite close to the actually observed condition numbers κ (Table 1.2).
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