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ABSTRACT

Title of dissertation: A GROUP SEQUENTIAL
MULTIPLE TESTING METHOD AND
ITS APPLICATION TO GENOMIC DATA

Yewon Kim, Doctor of Philosophy, 2022

Dissertation directed by: Dr. Seungchul Baek
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Dr. Junyong Park
Department of Statistics
Seoul National University

In this dissertation, we consider the simultaneous testing of groups and hy-

potheses within the groups which occurs in many scientific problems. A group

is commonly judged to be significant if at least one hypothesis within the group

is significant which is implemented via a global test for complete null hypothesis.

However, this null hypothesis for group significance is strict, so all groups tend to

be rejected especially when the number of hypotheses within a group is large. To

avoid such trivial hypothesis testing results, we introduce the concept of margin to

multiple testing problems so that we can adjust di↵erent levels of significance of the

group. Based on this idea, we propose a group sequential multiple testing method

with controlling false discovery rate (FDR) which incorporates the margin for group

significance.

As real data applications, we apply the proposed method to functional groups



of single nucleotide polymorphisms (SNPs). We select significantly associated pairs

of the summary statistics from genome-wide association study (GWAS) and link-

age disequilibrium (LD) score. We further investigate additional local associations

within haplotype blocks while existing methods such as LD score regression (LDSC)

uses the whole SNPs. Our findings provide di↵erent aspects of explanation on the

associations between the summary statistics and LD score such as Simpson’s para-

dox.

In the second real data applications, we consider non-coding GWAS SNPs

of regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites

(DHSs). By partitioning the GWAS SNPs for type 2 diabetes into DHSs groups,

we apply the proposed method to detect statistically associated DHSs groups with

type 2 diabetes. Each of the 32 DHSs groups represents a unique organ, the group

related to the pancreas is detected as a significant group even with a large margin,

and the findings are consistent with the intuition and published articles.

Some possible extensions of the proposed method and a summarization are

discussed at the end of this dissertation.
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Chapter 1: INTRODUCTION

1.1 Motivation

In fields such as biomedical science and genomics, modern statistical inference

processes commonly involve testing a large number of hypotheses at the same time.

For example, Laird and Lange (2010) mentioned that statistical genetics has played

an important role in testing a relationship between genetic locations or genes and

human diseases simultaneously. These genetic locations and genes often have a

grouped structure for spatial, functional, biological or experimental process reasons.

For these group structures, it is necessary to select important groups and genetic

locations or genes within the groups. In the selection of significant groups, a global

test for testing the complete null hypothesis is commonly used where the complete

null hypothesis means all hypotheses within the group are null, so one should select

a group as an important one as long as at least one null hypothesis within the

group is rejected. This procedure may lead to some trivial result that all groups are

declared to be significant in practice. One main reason for this result is that the

null hypothesis for group importance is stringent, so the null hypothesis is too easily

rejected only with a few significant hypotheses within the group. This phenomenon

may occur in genetic and genomic studies since the number of groups and hypotheses
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within the group are in general large in modern biological studies, for example, see

Storey et al. (2007) and Laird and Lange (2010). We adjust the null hypothesis for

group importance by requesting more significant hypotheses within the group by

introducing the concept of the margin in the null hypothesis for group importance.

The concept of margin is commonly used in clinical trials. For example, Althunian

et al. (2017) mentioned that non-inferiority tests are used to check whether a new

treatment is not worse than active treatment by more than a non-inferiority margin.

See other related literature on the concept of margin such as Wiens (2002), Berger

and Delampady (1987), Choi and Park (2014) and Chen and Chen (1999). Such

a predetermined number of hypotheses within the group is the margin in this case

which can be decided based on scientific knowledge or researcher’s interest. We

also expect sparsity between groups for group selection by controlling the margin.

The results of changing the group significance criteria by the margin in real data

applications will be discussed in Chapters 4 and 5.

1.2 Overview of Multiple Testing Procedures

Suppose that we have n null hypotheses H0,1, · · · , H0,n and n alternative hy-

potheses H1,1, · · · , H1,n to be tested simultaneously. The goal of a multiple testing

procedure is developing a random or data driven rule for deciding which null hy-

potheses should be rejected or declared false. The decisions to reject or not the

null hypotheses are based on the joint distribution of test statistics or p-values as-

sociated with the null hypotheses. The results of multiple hypothesis testings are
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summarized in Table 1.1. Note that the total number of hypotheses n is fixed and

known, and the number of true and false null hypotheses h0 and h1, respectively, are

fixed and unknown. Rn is the number of rejected null hypotheses so it is observable,

while Wn, Un, Vn and Sn are not observable.

true H0 true H1

not reject H0 Wn Un n�Rn

reject H0 Vn Sn Rn

h0 h1 n

Table 1.1: Results of multiple hypothesis tests

Errors in hypothesis testing can be classified into type-I errors and type-II

errors. Type-I error is the wrong rejection of a true null hypothesis, known as a false

positive, while a type-II error is the incorrect acceptance of a false null hypothesis,

known as a false negative. In Table 1.1, the chances of committing these two types

of errors are inversely proportional: that is, decreasing type-I error increases type-II

error and vice versa. In general, type-I errors are considered more harmful than

type-II errors, and thus researchers bound the probability of making a type-I error

by ↵, which represents an acceptable level of risk. The probability of making a type-

I error is represented by ↵ level. Using a lower value for ↵ indicates that researchers

will be less likely to detect a true alternative hypothesis, so risk of a type-II error

will increase. The probability of having a type-II error is represented by �, and this

is related to the power of the statistical test expressed as 1� �.
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Sources of multiplicity arise in cases where researchers consider a set of statis-

tical inferences simultaneously. In other words, the more statistical inferences are

made, the probability of getting significant results simply by chance increases. Ex-

tensive research has been conducted on multiple testing procedures to address those

problems, and we will review these errors and multiplicity correction in multiple

hypotheses testing in the following sections.

1.2.1 Type-I Error Rates Based on the Distribution of the Number

of Type-I Errors

We will review frequently used measurements of type-I error which are a func-

tion of only Vn.

• Family-wise error rate (FWER) is the probability of making at least one false

rejection in a n series of hypothesis tests introduced by Tukey (1953), i.e.,

P (Vn > 0).

For many scientific applications, n is particularly large, so the researcher can

improve the ability of the procedure to detect false null hypotheses if one

or more false rejections are tolerated, and the total number of false positive

cases is controlled for k. Utilizing this idea, Lehmann and Romano (2005)

proposed to replace the control of the FWER by controlling the false rejection

probability over k, which is called generalized FWER.
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• Generalized FWER (gFWER) is

P (Vn > k),

where k is predetermined.

• Per-family error rate (PFER) is the expected number of false rejections, i.e.,

E(Vn).

1.2.2 Type-I Error Rates Based on the Distribution of the Proportion

of Type-I Errors Among the Rejected Hypotheses

We will review frequently used measurements of type-I error which are a func-

tion of Vn and Rn.

• False discover rate (FDR) is the expected proportion of type-I errors among

the rejected hypotheses introduced by Benjamini and Hochberg (1995), i.e.,

E

⇣
Vn

Rn

⌘
= E

⇣
Vn

Rn

���Rn > 0
⌘
P (Rn > 0).

Note that a complete null hypothesis is when all n individual null hypotheses

are true. Under the complete null hypothesis, FDR is equal to FWER. In

general, Rn is greater than Vn, so FDR is less than or equal to FWER.

• Marginal FDR (mFDR) is the ratio of expected number of false discovery to

the expected total number of rejected hypotheses, i.e.,

E(Vn)

E(Rn)
.
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• Storey (2002) considered a di↵erent definition of FDR, called for positive FDR,

by conditioning on the cases that Rn > 0, i.e.

E

⇣
Vn

Rn

⌘
= E

⇣
Vn

Rn

���Rn > 0
⌘
.

Note that the condition of P (Rn > 0) = 1 is common in most genomics experiments,

where the FDR and positive FDR are very similar. Storey (2002) also discussed the

advantages and disadvantages of positive FDR.

Another approach to use the concept of FDR to measure the statistical signif-

icance in genomic studies is the q-value introduced by Storey and Tibshirani (2003).

q-value is similar to the existing p-value. In particular, p-value measures significance

using false positive rate, while q-value utilizes the FDR. The local q-value is defined

as the posterior probability that the null hypothesis is true given the p-value of the

test, which is the same as the definition of the local FDR. Efron (2012) showed

that the q-value and Benjamini and Hochberg (1995) procedures are equivalent. A

detailed description of these procedures will be provided in the following Chapter 2.

FWER is appropriate when the researchers want to protect the results against

any type-I errors. However, given the large number of hypotheses which is common

in modern science, the researchers are often more interested in an e�cient measure

such as FDR. In this dissertation, we will use FDR as a measurement of overall

type-I error rates.
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1.2.3 Type-II Error Rates and Power

Statistical power in a hypothesis test is the probability that the test will cor-

rectly reject the null hypothesis when the alternative hypothesis is true, i.e.,

power = P (rejectH0 |H1 is true),

which represents true positive. Statistical power ranges from 0 to 1, and various

concepts of power with an overall measure of type-II errors have been used in the

literature. For example, as an analogue of FDR in terms of type-II errors, Genovese

and Wasserman (2002) introduced false non-discovery rate (FNR), which is expected

proportion of false non-discovery among the non-rejected null hypotheses, i.e.,

E

⇣
Un

n�Rn

⌘
= E

⇣
Un

n�Rn

���n�Rn > 0
⌘
P (n�Rn > 0).

1.3 Single Step Multiple Testing Procedures

We usually consider two main classes of multiple testing procedures, single step

and multiple step or sequential procedures, depending on whether the thresholds for

each test statistic or p-value leading to rejection of null hypothesis are random or

constant. Specifically, in single step multiple testing procedures, each null hypothesis

is tested using a threshold that is independent of the results of the tests of other

hypotheses, and the threshold is not a function of the data. For example, the

single step multiple testing procedure uses equal adjustments to each p-value in

simultaneous n series hypotheses testing. This procedure keeps the overall type-I

errors at the desired ↵ level, which is called the Bonferroni correction (Bonferroni,
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1936). The Bonferroni procedure can be used to control the FWER. In order to

utilize Bonferroni bound, we can divide the target ↵ level by the total number of

hypothesis tests and apply the updated ↵ level to each individual hypothesis test

for finding significant hypothesis. For any p-value which is less than the updated ↵

value, the corresponding null hypothesis is rejected.

Although the Bonferroni bound can be utilized to control the FWER, this

bound has been criticized for small power and a high probability of type-II errors.

Improvement in power, while preserving type-I error control, may be achieved by

multiple step multiple testing procedures, in which the decision to reject a particular

null hypothesis depends on the outcome of the tests of other hypotheses. In other

words, the multiple step multiple testing procedures use an adaptive adjustment for

each p-value in the n series hypothesis testing.

1.4 Multiple Step Multiple Testing Procedure

Multiple step multiple testing procedures are of two main types, step down

and step up procedures, depending on the order in which the null hypotheses are

tested.

In step down multiple testing procedures, the null hypothesis with the smallest

p-value is tested first. In particular, as long as one of null hypotheses fails to be

rejected, all the hypotheses with larger p-values would fail to be rejected. For

example, Holm (1979) controlled FWER for arbitrary dependent p-value structures

and this method provided higher statistical power than the Bonferroni correction.
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On the other hand, the step up multiple testing procedure starts from the largest

p-value and rejects all smaller p-values after the first one is rejected. For example,

Hochberg (1988) developed to control FWER.

Step down multiple testing procedures are known to be more conservative

than step up multiple testing procedures. Therefore, in order to control for type-I

error rates, the step up multiple testing procedures are subject to more conditions

than the step down multiple testing procedures. FWER control employs a more

stringent control over false discovery compared to FDR controlling procedures. FDR

controlling procedures have higher statistical power at the cost of increased rates

of type-I errors. Literature with multiple step simultaneous testing procedures and

multiple testing methods for controlling FDR will be discussed in the following

Chapter 2.
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Chapter 2: LITERATURE REVIEW

In this chapter, we will review several FDR controlling methods and simul-

taneous grouped hypothesis testing with controlling FDR that are relevant to the

methodology discussed in this dissertation.

2.1 FDR Controlling Approaches

2.1.1 Benjamini and Hochberg (1995) Procedure

Benjamini and Hochberg (1995) introduced a step up multiple testing pro-

cedure to control FDR, which is referred to as the BH procedure in the literature.

Consider n null hypothesesH0,1, · · · , H0,n and the corresponding p-values p1, · · · , pn.

In particular, p(1)  · · ·  p(n) denote the ordered p-values and H0,(i) being the null

hypothesis corresponding to p(i). The BH procedure reject k null hypotheses such

that

k = max

⇢
m : p(m) 

m

n
↵

�
.

Benjamini and Hochberg (1995) proved that if all p-values are independent, rejecting

H0,(1), · · · , H0,(k) provides the FDR at the target level ↵. Furthermore, Benjamini

and Yekutieli (2001) proved that the BH procedure also controls the FDR when

10



the test statistics have positive regression dependence on subset (PRDS) on each

of the test statistics corresponding to the true null hypotheses. For the arbitrary

dependency cases, Benjamini and Yekutieli (2001) showed that the FDR can be

controlled at the target level ↵ with a conservative and simple modification of the

BH procedure.

The FDR depends on the overall proportion of null hypothesis denoted by ⇡0,

and Storey (2002) mentioned a more powerful multiple testing procedure compared

to the BH method, which used information of ⇡0 when estimating the FDR. The

method of Storey (2002) reject k null hypotheses such that

k = max

⇢
m : p(m) 

1

b⇡0

m

n
↵

�
,

where ⇡̂0 is an estimator of ⇡0. Storey (2002) also noted that the power of the

multiple testing approach does not necessarily decrease when more hypotheses are

considered, as the estimator of ⇡0 improves when the large number of hypotheses

are simultaneously tested. One of the important ideas of the methodology of Storey

(2002) is to use data information to get better estimates of ⇡0 to improve the per-

formance of multiple testing procedures. In this dissertation, we will utilize group

information to estimate ⇡0 for each group in the multiple testing methodology which

we will discuss in the Chapter 3.

2.1.2 Empirical Bayes Procedure

In order to detect genes a↵ected by radiation treatment among 700 human

genes, Efron et al. (2001) introduced a non-parametric empirical Bayes model with
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local FDR which is closely related FDR. Consider the random mixture density for

activity of gene z ⇠ f(z) = (1 � ⇡0)f1(z) + ⇡0f0(z) where f0(z) is a null density

and f1(z) is a non null density. Here, ⇡0 is an unknown mixing probability. With

an application of Bayes theorem to the mixture model, Efron et al. (2001) defined

local FDR as

local FDR =
⇡0f0(z)

f(z)
,

which is the a posterior probability of the una↵ected by radiation treatment class

given z. Furthermore, Efron et al. (2001) estimated the mixture density using

Poisson regression using data. For the estimation of ⇡0 and f0, Efron et al. (2001)

used zero assumption, as the condition that most of the probability mass near the

mode of f is from the null density. Standard normal distribution is another candidate

for the null distribution, and the further discussion of choosing a null distribution

is covered in Efron (2004).

2.2 Grouped Multiple Testing Methodology

Large-scale genomic data approaches have enabled us to analyze genome-

wide methylation patterns and to enumerate DNA sequence alterations across the

genome. In some genomic data, the data can be grouped by functionally, struc-

turally and spatially, in which case ignoring group structure in data analysis can be

misleading the results of research. When the researchers can define such groups, it

may be desirable to control the group-wise FDR or local FDR simultaneously for

all groups. In this section, we will review some existing group structured multiple
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testing procedures with controlling FDR.

2.2.1 Heller et al. (2018) Method

Heller et al. (2018) considered multiple testing problems of grouped hypotheses

using gene expression data, namely post-selection inference. They performed FWER

or FDR controlling procedures to find significant gene sets or groups. In particular,

for selecting significant groups, Heller et al. (2018) used the global null hypothesis.

With the selected gene sets, Heller et al. (2018) performed the conditional FWER or

FDR controlling procedures in order to identify significantly di↵erentially expressed

genes within the selected gene sets. Under specific model assumptions, Heller et al.

(2018) proved that the BH method at level ↵ controls the conditional FDR at

level n0
n ↵ where n0 is the number of true null hypotheses and n is the number of

hypotheses within the gene groups. In this case, n0 is an unknown quantity, however

n0
n is less than or equal to 1. The condition of n0

n ↵  ↵ means this methodology is

conservative.

2.2.2 Sarkar et al. (2019) Method

Sarkar et al. (2019) considered n hypotheses which were simultaneously tested

in a k-group sequential method. Under positively dependent through stochastic

ordering (PDS) assumption of p-values, Sarkar et al. (2019) proposed the k-stage

group sequential BH method, and proved the FDR of the process is controlled by

⇡0↵ where ⇡0 is the null proportion. When the p-values are independent across

13



hypotheses and PDS assumption holds, Sarkar et al. (2019) extended the method

to adaptive group sequential BH method. The extended model updates the ⇡0

estimation at each step of the algorithm. Sarkar et al. (2019) showed numerical

validation of the extended method’s FDR controlling while examining the extended

method’s performance relative to other competitors.

2.2.3 Barber and Ramdas (2016) Method

Barber and Ramdas (2016) suggested multiple testing methods for group-

FDR based on arbitrary partitioned p-values. The method of Barber and Ramdas

(2016) considered a list of n p-values and handled all non-hierarchical partitions.

For example, with the finest partition into n singletons, the result of this method is

consistent with the result of the BH method. For a single group of size n, the result

of this method is the same as Simes test for the global null hypothesis. Barber

and Ramdas (2016) showed the results of methodology with grouped hypotheses

according to brain regions using fMRI data.

2.2.4 Liu et al. (2016) Method

Liu et al. (2016) provided a group sequential multiple testing process to con-

trol FDR. In particular, it considered group level FDR based on several groups by

expanding multiple testing procedures for a single group. By considering the within-

group local FDR for each group and group-wise posterior probability for group sig-

nificance, this method integrated the process of finding significant hypotheses within
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each group and the importance of that group to find hypotheses that can finally be

discovered. For a group to be significant, a condition is required that at least one

hypothesis is significant within the group. Liu et al. (2016) showed that if only a few

groups are actually significant in small-scale to medium-scale data, this methodol-

ogy is more e↵ective than other methodologies that ignore the group structure under

certain model conditions.

2.2.5 Sun et al. (2015) Method

Sun et al. (2015) considered cluster-wise multiple testing inference of spatial

signals using marginal FDR. Using the monotone ratio condition (MRC), Sun et al.

(2015) defined false cluster-wise discovery rate (FCR) and marginal FCR. For the

measurement of power, Sun et al. (2015) introduced missed discovery rate (MDR).

Based on real data application and simulation study, Sun et al. (2015) showed that

the proposed method can control marginal FCR as well as asymptotically control

FCR under some condition. However, in some cases the proposed method failed to

control FCR as proved by Heller et al. (2018). This is because marginal FDR is

more conservative than FDR.
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Chapter 3: THE PROPOSEDMETHODAND SIMULATION STUD-

IES

In this chapter, we present a proposed multiple testing method for grouped

hypotheses controlling FDR. The proposed methodology is more e�cient when the

number of hypotheses within a group is large, and it includes the case of global test-

ing. Between and within groups hypotheses are evaluated for significance using the

posterior probability, and only significant hypotheses within a significant group can

be discovered. We examine the e↵ectiveness of the proposed methodology through

simulations when the number of hypotheses in the group is all the same as well as

when the number of hypotheses is unbalanced.

3.1 The Proposed Methodology

There are two hypotheses that we are interested in here, one for the significance

of individual hypotheses and the other for group significance. As a criterion for

judging the significance of a group, a popular criterion is that the group is considered

significant if at least one hypothesis in the group is significant. If the number of

hypotheses in a group is large, the complete null hypothesis for group significance

is too strict, so the finding of a meaningful group is too trivial in the sense that all

16



groups are easily considered as significant. In this case, the selection of a significance

group under the complete null hypothesis does not provide any information on

group selection when all groups are declared to be significant. Instead, we give a

more flexible null hypothesis for group significance which depends on the number of

non-null hypotheses within the group. In other words, if the number of significant

hypotheses within the group is not enough, the group itself becomes a non-significant

group, and if the number of non-null hypotheses within a group is enough, the group

itself becomes a significant group. We call a thresholding value of the number of null

hypotheses within the group called the margin of the null group. The hypothesis

reflecting this idea and the corresponding FDR controlling procedure are presented

in the following sections.

3.1.1 Hypotheses with Margin

Consider the group structured data xgj corresponding to the jth hypothesis in

the gth group for g = 1, 2, · · · , G, j = 1, 2, · · · ,mg, and xg = (xg1, xg2, · · · , xgmg)
T .

Let binary random variable ✓g be the indicator of the significance of the gth group

where ✓g = 1 if gth group is significant and ✓g = 0 otherwise, i.e., the hypotheses

on the significance of groups are

H0,g : ✓g = 0 vs. H1,g : ✓g = 1,

for g = 1, . . . , G. We also define ✓g = (✓1, ✓2, · · · , ✓G)T which is used as an overall

group-wise significance test.

Given group membership such as ✓g = 0 or 1, the state for the jth hypothesis
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in the gth group is denoted by ✓j|g where ✓j|g has a value of 0 if the corresponding

null hypothesis is true and 1 otherwise. Testing of hypotheses within the group

using the given group condition are

H0,j|g : ✓j|g = 0 vs. H1,j|g : ✓j|g = 1,

for g = 1, 2, · · · , G, j = 1, 2, · · · ,mg.

Let ✓j|g = (✓1|g, ✓2|g, · · · , ✓mg |g)
T be the vector indicating either the true null or

alternative within gth group. On the other hand, the decision rules are denoted by

�g(xg) 2 {0, 1} and �j|g(xg) 2 {0, 1} corresponding to ✓g and ✓j|g respectively, where

1 means to reject the corresponding null hypothesis and 0 otherwise. Consider the

following hierarchical models for ✓g, ✓j|g and xgj:

✓1, ✓2, · · · , ✓G
i.i.d⇠ Bernoulli(⇡1), (3.1)

✓1|g, ✓2|g, · · · , ✓mg |g|✓g = 0 ⇠ Bernoulli(✏g)I

✓ mgX

j=1

✓j|g  Mg

◆
, (3.2)

✓1|g, ✓2|g, · · · , ✓mg |g|✓g = 1 ⇠ Bernoulli(✏g)I

✓ mgX

j=1

✓j|g > Mg

◆
, (3.3)

xgj|✓j|g ⇠ fg(xgj) = (1� ✓j|g)f0,g(xgj) + ✓j|gf1,g(xgj), (3.4)

whereMg is the threshold that determines the membership of the gth group. f0,g and

f1,g are the densities of the null and non-null distributions for the gth group. If Mg

is 0, testing the significance of a group becomes a testing problem for the complete

null hypothesis that
mgT
j=1

H0,j|g are true. In the case of Mg > 0, the importance of the

group is concluded that the group is meaningful only when the number of non-null

hypotheses in the group is more than the appropriate given Mg. In our context, the

significance of the gth group is based on giving the margin or tolerance to the null
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hypothesis through
Pmg

j=1 ✓j|g  Mg rather than setting Mg = 0. As Mg increases,

the decision of the significance of the gth group is getting more conservative, since

the condition requests stronger signals in the gth group. From this formulation, we

test

H0,gj : ✓gj = 0 vs. H1,gj : ✓gj = 1,

where ✓gj = ✓j|g✓g. We see that the jth null hypothesis in the gth group is rejected

when both ✓j|g = 1 and ✓g = 1. In other words, in order for a particular hypothesis

to be significant, the group containing the hypothesis must also be significant, so

testing the significance of groups is followed by testing the jth hypothesis in the

gth group. In the following section, we present the FDR controlling procedure

incorporating (3.1)-(3.4).

3.1.2 Estimation of Null Distributions and Parameters

For the case of Mg = 0, Liu et al. (2016) provided a two-fold loop testing

algorithm (TLTA) which is a multiple testing procedure of group structured data

to control FDR at a given level of ↵. To illustrate the TLTA, Liu et al. (2016) used

PFDRT (x), the expected false discovery proportion conditional on x = {xgj} for all

(g, j), and shows that the multiple testing procedure based on PFDRT (x) controls

a given level of FDR where

PFDRT (x) = E

 PG
g=1

Pmg

j=1(1� ✓gj)�gj(xg)

{
PG

g=1

Pmg

j=1 �gj(xg)} _ 1

����x
!

 ↵, (3.5)

for �gj(xg) = �g(xg)�j|g(xg) and a _ b = max(a, b). We extend this procedure to

the case that the hypotheses of groups have a margin as described in (3.2) and
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(3.3). The likelihood function of � = (⇡1, ✏g) given data x and latent variables

⇥ = (✓g,✓j|g) for all (g, j) is

L(�|x,⇥) =
GY

g=1

✓
⇡1P (xg|✓g = 1) + (1� ⇡1)P (xg|✓g = 0)

◆
, (3.6)

where

P (xg| ✓g = 1) =
X

✓j|g2⌦g1

 
mgY

j=1

✏
✓j|g
g (1� ✏g)1�✓j|g

P (
Pmg

k=1 ✓k|g > Mg)
f✓j|g(xgj)

!
,

P (xg| ✓g = 0) =
X

✓j|g2⌦g0

 
mgY

j=1

✏
✓j|g
g (1� ✏g)1�✓j|g

P (
Pmg

k=1 ✓k|g  Mg)
f✓j|g(xgj)

!
,

for ⌦g0 = {✓j|g :
Pmg

j=1 ✓j|g  Mg} and ⌦g1 = {✓j|g :
Pmg

j=1 ✓j|g > Mg}. More detailed

derivation is given in Appendix A.1.

Since f✓j|g for ✓j|g = 0 or 1 is the mixture of f0,g and f1,g, we need to identify

them. It is typical that the distribution f0,g is assumed to be known, such as a

standard normal distribution, for example, Liu et al. (2016) used a standard normal

distribution as a null distribution. However, in many practical problems, such a

standard normal distribution may not reflect real situations such as correlated data

and existence of covariates. To overcome these di�culties, Efron (2004) introduced

the estimation of the null distribution f0,g under an empirical Bayes setting based on

the center of the data. In this dissertation, the null distributions f0,g for 1  g  G

for di↵erent groups are estimated to avoid uncertainty from a standard normal

distribution as a null distribution. See Efron (2004) for more detail. For gth group,

we estimate ✏g, f0,g and fg which can be obtained in locfdr in R-package,

f̂0,g ⇠ N(�̂g, �̂
2
g),
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✏̂g and f̂g where f̂g is estimated using Poisson regression. When we have estimators

(✏̂g, f̂0,g, f̂g), 1  g  G, we estimate ⇡1 using the EM algorithm (Dempster et al.,

1977) as follows:

Algorithm 1 EM algorithm of ⇡1

1: Set an initial ⇡̂(0)
1 = 1/2.

2: Repeat the following steps until ⇡̂(l)
1 converges:

⇡̂
(l)
1 =

1

G

GX

g=1

P (✓g = 1|xg, ⇡̂
(l�1)
1 ) =

1

G

GX

g=1

⇡̂
(l�1)
1 P (xg|✓g = 1)

g(l�1)(xg)

=
1

G

GX

g=1

⇡̂
(l�1)
1

P (
Pmg

k=1 ✓k|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)

⇡̂
(l�1)
1

P (
Pmg

k=1 ✓k|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)
+ (1� ⇡̂

(l�1)
1 )

P (
Pmg

k=1 ✓k|g  Mg|xg)

P (
Pmg

j=1 ✓j|g  Mg)

,

where g
(l�1)(xg) = ⇡̂

(l�1)
1 P (xg|✓g = 1) + (1� ⇡̂

(l�1)
1 )P (xg|✓g = 0).

Detailed derivation of Algorithm 1 is given in Appendix A.2.

We need P (
Pmg

k=1 ✓k|g > Mg|xg) and P (
Pmg

k=1 ✓k|g > Mg) for each group to

Algorithm 1, so we define the following probabilities and approximations. First of

all, we consider gfdrgj = P (✓gj = 0|xg) as the within-group local FDR,

gfdrgj =
(1� ✏g)f0,g(xgj)

fg(xgj)
, 1�gfdrgj =

✏gf1,g(xgj)

fg(xgj)
. (3.7)

There are mg tests in each group, and (3.7) is an essential factor in the within-group

discoveries. Secondly, by the law of total probability, the normalizing constant of

truncated Bernoulli distribution of ✓j|g in (3.2) and (3.3) are

P (

mgX

j=1

✓j|g  Mg) =
X

✓j|g2⌦g0

 
mgY

j=1

(1� ✏g)
1�✓j|g(✏g)

✓j|g

!
,

P (

mgX

j=1

✓j|g > Mg) =
X

✓j|g2⌦g1

 
mgY

j=1

(1� ✏g)
1�✓j|g(✏g)

✓j|g

!
,
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where ⌦g0 = {✓j|g :
Pmg

j=1 ✓j|g  Mg} and ⌦g1 = {✓j|g :
Pmg

j=1 ✓j|g > Mg}. However,

the probabilities above are computationally intractable at large mg, 1  g  G. We

apply the binomial-normal approximation with mg and ✏g for the gth group

P (

mgX

j=1

✓j|g  Mg) ⇡ �

 
Mg �mg✏gp
mg✏g(1� ✏g)

!
,

P (

mgX

j=1

✓j|g > Mg) ⇡ 1� �

 
Mg �mg✏gp
mg✏g(1� ✏g)

!
.

The probabilities above provide the prior probability of a group membership. Sim-

ilarly, the posterior probability of a group membership uses the binomial-normal

approximation for computational e�ciency,

mgX

k=1

✓k|g|xg ⇡ N

 
mgX

k=1

(1�gfdrgk) ,
mgX

k=1

gfdrgk(1�gfdrgk)
!
. (3.8)

In practice, (✏g, f0,g, fg), 1  g  G are replaced by their estimators obtained in

locfdr R-package.
Pmg

k=1 ✓k|g  Mg|xg and
Pmg

k=1 ✓k|g > Mg|xg can be expressed as

a binomial distribution, considering mg independent hypotheses and (1�gfdrgj) as

success probability of the jth hypothesis in the gth group.

3.1.3 Proposed Multiple Testing Procedure

The control of PFDRT (x) guarantees the control of the FDR at level ↵.

According to (3.5), we have

Ex(PFDRT (x)) = Ex

⇢
E

 PG
g=1

Pmg

j=1(1� ✓gj)�gj(x)

{
PG

g=1

Pmg

j=1 �gj(x)} _ 1

����x
!�

 ↵. (3.9)

The following theorem shows that PFDRT (x) is expressed based on �g(xg) and

�j|g(xg) under the situation (3.1)-(3.4) which provides the main idea of a group
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sequential multiple testing procedure with controlling FDR. Based on all estimators

in the previous section and Theorem 1, we propose a multiple testing procedure in

Algorithm 2.

Theorem 1 Under the settings (3.1)-(3.4), we have the PFDRT (x) defined in (3.5)

as follows :

PFDRT (x) =

PG
g=1 �g(xg)[1� wg{I(

Pmg

j=1 �j|g(xg))� PFDRw|g(xg)}]
Pmg

j=1 �j|g(xg)
PG

g=1 �g(xg){
Pmg

j=1 �j|g(xg)} _ 1
,

where

wg =

⇡1P (
Pmg

j=1 ✓j|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)

(1� ⇡1)P (
Pmg

j=1 ✓j|g  Mg|xg)

P (
Pmg

j=1 ✓j|g  Mg)
+

⇡1P (
Pmg

j=1 ✓j|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)

and

PFDRw|g(xg) =

Pmg

j=1
gfdrgj�j|g(xg)Pmg

j=1 �j|g(xg) _ 1
.

Proof 1 See A.3 in Appendix.

Based on Theorem 1, we propose the following multiple testing procedure

which selects significant groups and hypotheses within the corresponding groups.

Algorithm 2 Proposed multiple testing procedure

1: The group membership is determined based on ⇡1 obtained from Algorithm 1.

2: For each group, let gfdrg(1)  gfdrg(2)  · · ·  gfdrg(mg) be the ordered
gfdrgj with

Hg(1), · · · , Hg(mg) being the corresponding null hypotheses. For the gth group,

we reject Rg hypotheses, Hg(1), . . . , Hg(Rg) where

Rg = max

✓
kg :

1

kg

kgX

j=1

gfdrg(j)  ⌘

◆
, (3.10)

given 0  ⌘  ↵, where ⌘ is a threshold to control the within-group local FDR.
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3: For each group, compute ⌘g =
1
Rg

PRg

j=1
gfdrg(j) and fdr

⇤
g = 1�wg(1� ⌘g) where

wg is defined in Theorem 1.

4: For ordered fdr
⇤
g : fdr

⇤
(1)  fdr

⇤
(2) · · ·  fdr

⇤
(G), find out

l = max

✓
k :

Pk
g=1 R(g)fdr

⇤
(g)Pk

g=1 R(g)

 ↵

◆
, (3.11)

where R(g) is the number of possible discoveries for the group corresponding to

fdr
⇤
(g).

5: Reject the first l groups corresponding to fdr
⇤
(i) for 1  i  l and the total

Pl
i=1 R(i) hypotheses within the rejected groups.

Remark 1 An additional threshold ⌘ in (3.10) is employed to control the within-

group local FDR for each group, which is corresponding to control PFDRw|g(xg)

in Theorem 1. For example, the number of selected hypotheses in the group in

(3.10) will decrease for small values of ⌘. Due to the constraints of ↵ in (3.11),

we observe a trade-o↵ relationship between the number of significant groups and

hypotheses within the group. As ⌘ increases for some given margin, the number of

significant hypotheses within each group increases, while the number of significant

groups decreases due to the constraint of ↵. This phenomenon will be discussed

further in Section 3.2, Chapter 4 and 5.

Remark 2 Since FDR is regulated for all ⌘  ↵, we can choose ⌘ according to

our purpose. The margin is predetermined based on some prior knowledge, if we

focus more on the number of selected groups, we can choose ⌘ that maximizes the

number of groups at a given margin. On the other hand, if we want to maximize the

number of selected hypotheses, we can choose such ⌘ for a given margin. In other
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words, researchers may examine the number of significant groups and hypotheses for

the grid values of ⌘ 2 (0,↵] at a given margin. Based on the obtained results, the

researchers are able to select an appropriate ⌘ according to the purpose of the study.

Algorithm 2 can control FDR even including the process of finding ⌘.

3.2 Numerical Studies

Simulations to verify the performance of our algorithm are conducted in two

cases. The first case deals with equal-sized groups, and the second case handles

unequal group sizes. For all simulations, we set G = 50, ↵ = 0.05, f0,g(x) = �(x)

and f1,g(x) = �(x � µ), 2.5  µ  3.5 and �(x) is a standard normal distribution.

In Algorithm 2, ⌘ in (3.10) is a given value, so we use grid points of ⌘ from 0.02

to 0.05 to see the results corresponding to those di↵erent values of ⌘. We set the

number of non-significant groups to 40 and that of significant groups to 10, leading

to sparsity between groups. The margin Mg in (3.2) and (3.3) is

Mg = cmg,

where c is a given constant. Here, c controls the margin, hence we reach a conser-

vative decision on the number of significant groups for larger values of c. In our

simulation studies, we report simulations on grid points of c from 0 to 0.06. Given

the samples generated from f0,g and f1,g, we employ locfdr R-package to estimate

✏g, f0,g, fg and the within-group local FDR for each group. All simulation results

are the mean of 100 independent simulations.
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3.2.1 Simulation 1 : Equal Group Size

First, we set up all groups to have the equal sample sizes, mg = 10, 000, 1 

g  G. We report the results of simulations implemented under the model assump-

tion (3.1)-(3.4) to evaluate the performance of Algorithm 2. In particular, power is

defined as the expected proportion of alternative hypotheses that are correctly dis-

covered. For the predetermined c and ⌘, the simulation results are shown in Figure

3.1 - 3.4. When c is 0, Mg = cmg becomes 0. This is the case considered in Liu et al.

(2016) which means the groups are selected based on the complete null hypothesis

Qmg

j=1 I(✓j|g = 0) = I(
Pmg

j=1 ✓j|g = 0). Specifically, Figure 3.1 - 3.4 shows the number

of selected groups, the total number of selected hypotheses, statistical power, and

controlling the FDR, respectively. According to Figure 3.1 - 3.2, it is observed that

for a given value of c 2 [0, 0.02), there is a trade-o↵ relationship between the number

of significant groups and hypotheses within the groups as ⌘ changes, however this

phenomenon does not occur all the time. For all values of c and ⌘, Figure 3.4 shows

that FDR is controlled by ↵ level which is from (3.9).
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Figure 3.1: Simulation results of the number of significant groups when the group

sizes are balanced

Figure 3.2: Simulation results of the total number of significant hypotheses when

the group sizes are balanced
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Figure 3.3: Simulation results of power when the group sizes are balanced

Figure 3.4: Simulation results of controlling the FDR when the group sizes are

balanced
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3.2.2 Simulation 2 : Unequal Group Size

In the second case of simulations, we consider that the group sizes are unbal-

anced. All other settings are the same as simulation 1. The summary table of group

sizes is shown in Table 3.1 which mimics the real data example in Chapter 4 and 5.

For the given values of c and ⌘, the simulation results are represented in Figure 3.5

- 3.8 showing that the overall results are similar to those of simulation 1.

min Q1 median mean Q3 max

8,046 11,138 28,546 59,486 64,049 420,432

Table 3.1: Summary table for the group sizes for 52 groups in unequal group size

simulation study.

However, for all pairs of c and ⌘, the number of rejected hypotheses in Figure

3.6 tends to be less smooth than simulation 1. For a given c, we observe that

there is more dynamical change for each stimulation in the selected groups and

hypotheses of the groups for di↵erent values of ⌘. Accordingly, the sums of the

selected hypotheses tend to have more variation than those from simulation 1. We

also observe that the trade-o↵ relationship exists between the number of significant

groups and hypotheses within the groups for any given c 2 [0, 0.03) depending on

⌘. Similar to simulation 1, Figure 3.8 shows that the FDR in all the scenarios are

controlled at the level ↵ by (3.9).
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Figure 3.5: Simulation results of the number of significant groups when the group

sizes are unbalanced

Figure 3.6: Simulation results of the total number of significant hypotheses when

the group sizes are unbalanced
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Figure 3.7: Simulation results of power when the group sizes are unbalanced

Figure 3.8: Simulation results of controlling the FDR when the group sizes are

unbalanced
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Chapter 4: REAL DATA APPLICATION 1

In this chapter, we apply the proposed method to groups of single nucleotide

polymorphisms (SNPs). Bulik-Sullivan et al. (2015) and Finucane et al. (2015) parti-

tioned the SNPs into groups with genomic features such as promoters and enhancers,

and we select significant functional groups and SNPs within the selected groups. We

select significantly associated pairs of the summary statistics from genome-wide as-

sociation study (GWAS) and linkage disequilibrium (LD) score. We also perform

LD score regression (LDSC) analysis, and we compare our results with those of

LDSC. We further investigate additional local associations within haplotype blocks

while existing methods such as LDSC use the whole SNPs.

4.1 Introduction to Linkage Disequilibrium Score Regression

Due to DNA microarrays for genotyping, scientists require simultaneous hy-

pothesis tests for multiple regions of a genome in the twenty-first century. For

example, using SNP, which is the simplest type of genetic marker, Speliotes et al.

(2010) simultaneously tested the association between body mass index (BMI) and

more than 1 million SNPs in GWAS. One of the new methods used to check the

associations between phenotypes and the genetic e↵ects is LDSC introduced by
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Bulik-Sullivan et al. (2015). LD score is the numerical sum of the square of the

pairwise correlations between SNP and neighboring SNPs, and LDSC focuses on

the linear association between LD score and the summary statistics from GWAS.

LDSC is known to distinguish confounding biases such as population stratification

from heritability measuring the proportion of phenotypic variation due to the ge-

netic di↵erences. In particular, Finucane et al. (2015) extended LDSC to stratified

LDSC to partition the heritability into groups. After partitioning the heritability by

groups, Finucane et al. (2015) employed the multiple testing method to determine

the significant groups which were enriched for heritability. However, the stratified

LDSC does not explain which SNPs in the group cause the group to be discovered,

so this dissertation is concerned with how to identify significant groups as well as

SNPs within the groups. In particular, one major goal is to investigate the associa-

tion between the summary statistics and LD score using the selected SNPs, whereas

existing studies such as LDSC use the entire SNPs. Further, we examine the pat-

terns of local associations within haplotype blocks. For this selection, we adopt the

idea of combining two p-values computed from the summary statistic and LD score

and then select significantly combined p-values based on multiple testing procedure

controlling FDR. The direction we propose is di↵erent from the existing method in

the following points. Our method reflects the idea of the sparsity of SNPs, so we

exclude noise of SNPs and use only significant SNPs for regression analysis.
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4.2 Sparse Signal Detection in Genetic Association Data

Under a polygenic model, LDSC is commonly used to estimate heritability

and check genome-wide polygenic signals. Polygenicity means that the phenotype

is a↵ected by more than one functional SNPs with small e↵ect sizes. Bulik-Sullivan

et al. (2015) showed the polygenicity by observing the positive correlation between

the summary statistics from GWAS and LD score using the whole SNPs. The

result by the LDSC is made under the assumption that a large number of functional

SNPs with small e↵ect sizes provide genetic signals when they are aggregated in a

biologically meaningful way. In such a case, we may not distinguish between hidden

true genetic signals from the noise. In fact, LDSC does not distinguish the true and

false null hypotheses since many of the SNPs are assumed to include signals although

their strength may be fairly small. On the other hand, another common structural

assumption in GWAS is that a majority of SNPs are simply noisy as mentioned

in Wakefield (2008). Therefore, the LDSC approach may lead to some misleading

results in case of a large number of noisy SNPs from the true null hypotheses.

Unlike LDSC, under the assumption of sparsity of significant SNPs, we aim to

discover genetic signals through explicit separation of true and false null hypotheses

utilizing the proposed method discussed in the previous chapter. Specifically, we

select significantly associated pairs of the summary statistics and LD score based

on combining two p-values corresponding to the summary statistics and LD score.

We apply regression analysis to the selected pairs of the summary statistic and LD

score and additionally investigate the association within haplotype blocks. As a real
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data application, we employ GWAS of BMI summary statistics from Speliotes et al.

(2010) and examine the association between LD score and the summary statistics

in the following sections.

4.3 Hypotheses for the Association Between GWAS Summary Statis-

tics and LD score

According to the guidelines of Finucane et al. (2015) and Bulik-Sullivan et al.

(2015), the SNPs of Speliotes et al. (2010) are classified into 52 groups, where SNPs

can be included in more than one group. 644,055 distinct SNPs are used, and a total

number of overlapped SNPs within 52 groups exceed 8 million. More specifically,

there are mg SNPs with a pair of GWAS summary statistics of BMI (s) and LD

score (l) in the gth group for 1  g  52 which are presented in Table 4.1.

We consider the jth SNP in the gth group provides (sgj, lgj) where sgj measures

the association between the corresponding SNP and BMI, and lgj is the sum of the

squared of the pairwise correlations between the corresponding SNP and other SNPs

within the group.

Wakefield (2008) mentioned that the proportion of true non-null signals can

be small in GWAS, known as sparse situation, which occurs commonly in large

scale problems. We also consider the number of significant pairs of (s, l) is small in

each group. Under the null hypothesis in the gth group (say, H(g)
0,j ), sgj and lgj are

independent which are generated from probability density functions fg(s) and hg(l),

respectively. Under the alternative hypothesis (H(g)
1,j ), sgj and lgj are generated from
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g mg ✏g g mg ✏g g mg ✏g g mg ✏g

1 24552 0.021 14 41094 0.015 27 203270 0.035 40 152894 0.006

2 80606 0.015 15 78952 0.036 28 38183 0.031 41 119873 0.044

3 34587 0.010 16 89102 0.021 29 121089 0.019 42 275924 0.024

4 304356 0.026 17 244734 0.031 30 201996 0.041 43 253251 0.037

5 19321 0.006 18 326365 0.030 31 300096 0.024 44 490819 0.029

6 53326 0.005 19 345769 0.034 32 314741 0.026 45 15210 0.018

7 131789 0.028 20 235433 0.024 33 7739 0.014 46 28429 0.029

8 424595 0.031 21 282240 0.028 34 27271 0.027 47 16599 0.023

9 115827 0.040 22 164541 0.028 35 30541 0.036 48 33030 0.008

10 170385 0.033 23 377376 0.025 36 36932 0.024 49 6796 0.019

11 403026 0.033 24 480855 0.026 37 247459 0.021 50 28701 0.032

12 4263 0.000 25 37941 0.040 38 403035 0.017 51 21014 0.007

13 16883 0.005 26 117990 0.034 39 150705 0.006 52 77139 0.028

Table 4.1: The detailed group information on the group sizes and the proportion of

non-null SNPs for 52 groups

some joint probability distribution, denoted by kg(s, l). More specifically, for the

gth group, the hypotheses are

H
(g)
0,j : (s, l) ⇠ fg(s)hg(l), H

(g)
1,j : (s, l) ⇠ kg(s, l).
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As the marginal distributions, fg and hg under the null hypothesis H(g)
0,j , we use

sgj ⇠ �
2
1,

lgj ⇠ lognormal(µ(g)
0 , �

(g)
0 ),

where �2
1 and lognormal(µ(g)

0 , �
(g)
0 ) means the chi-square distribution with degree of

freedom 1 and lognormal distribution with parameters µ(g)
0 and �

(g)
0 . These assump-

tions of parametric distributions have been used in Finucane et al. (2015) and Cox

et al. (2005), respectively.

Figure 4.1 shows the histograms of observed data and the null distributions

of sgj and lgj, 1  j  304, 356 for the 4th group. In the case of chi-square and

lognormal distributions, it is shown that they fit well with the actual data. This

trend appears in all 52 groups, so it can be said that the chi-square distribution and

lognormal distribution are appropriate to explain the distribution under the zero

hypothesis of s and l.

In practice, the parameters µ(g)
0 and �

(g)
0 in lognormal distribution for lgj, 1 

j  mg are unknown, so we estimate µ(g)
0 and �

(g)
0 using the data empirically which is

the empirical null distribution used in Efron (2004). The estimation of the empirical

null distribution is based on the zero assumption which implies that most of the

data around the center are generated from the null distribution. Since only a small

fraction of (sgj, lgj) is assumed to be significant, the number of significant lgjs is also

small among all lgjs in each gth group. Furthermore, since lgj is generated from

lognormal distribution, the log-transformation of lgj, log(lgj), follows the normal

distribution with mean µ
(g)
0 and standard deviation �

(g)
0 , so we can apply locfdr
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Figure 4.1: The histograms of observed data and the null distribution of GWAS

summary statistics of BMI and LD score for the 4th group

procedure to log(lgj) and obtain estimators, µ̂(g)
0 and �̂

(g)
0 . From these marginal null

distributions �2
1 and lognormal(µ̂(g)

0 , �̂
(g)
0 ), we can compute p-values which are

p
(g)
sj = P (S > sgj),

p
(g)
lj = P (Lg > lgj),

where S and Lg are the random variables of �2
1 and lognormal(µ̂(g)

0 , �̂
(g)
0 ).

Since p(g)sj and p
(g)
lj are independent and each of them has uniform distribution

on (0, 1) underH(g)
0,j , we consider combining these two p-values leading to a univariate

p-value instead of bivariate p-values. There are several approaches to combining

independent p-values such as Fisher’s method in Fisher (1932) which combines p(g)sj
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and p
(g)
lj as follows:

�
(g)
j = �2 log(p(g)sj )� 2 log(p(g)lj ) ⇠ �

2
4, (4.1)

where �
2
4 is the chi-square distribution with degrees of freedom 4. The p-value

corresponding to �
(g)
j is p(g)j = P (�2

4 > �
(g)
j ) and by the probit transformation xgj =

��1(1 � p
(g)
j ), and thus we have independent and identically distributed standard

normal distribution under H
(g)
0,j . Eventually, for the gth group, we have mg test

statistics, (xg1, xg2, · · · , xgmg), 1  g  G and the corresponding null hypotheses

denoted by (H(g)
0,1 , H

(g)
0,2 , · · · , H

(g)
0,mg

).

4.4 The Results of the Proposed Multiple Testing Procedure

Similar to the simulation studies, we consider di↵erent values of the margin

Mg = cmg, 1  g  G and ⌘. As we have done for the choices of c and ⌘ in

Chapter 3 of simulation studies, we take the grid points of ⌘ from 0.02 to 0.05 and

c from 0 to 0.06 to investigate the results corresponding to those di↵erent values of

c and ⌘. We apply the proposed method to test statistics obtained with (4.1) and

examine the association between GWAS summary statistics of BMI and LD score.

The results of Algorithm 2 are shown in Figure 4.2 - 4.4 analogous to the simulation

studies with ↵ = 0.05. When c is relatively small such as c 2 [0, 0.01), almost all

groups are selected as the significant groups regardless of ⌘. With a larger value of

c, we put a stronger requirement to declare significant groups, but the number of

those significant groups tends to be diminished. From the definition of margin, it is

expected that selected groups include a larger number of significant SNPs. Here, we

39



discover significant groups more selectively with large values of c greater than 0.01.

Figure 4.2: The results of the number of significant groups of Algorithm 2 to the

test statistics combining GWAS summary statistics of BMI and LD score data

As mentioned in Remark 1, there may be a trade-o↵ relationship between the

number of significant groups and hypotheses within the group. To demonstrate this,

we present Figure 4.5 for c = 0.0331 which shows that as ⌘ increases, the number

of significant groups decreases, meanwhile the number of discovered hypotheses in-

creases. In fact, as in this example, it is not necessarily the case of ⌘ = ↵ that we

obtain the maximum number of significant SNPs.
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Figure 4.3: The results of the total number of rejected hypotheses of Algorithm 2 to

the test statistics combining GWAS summary statistics of BMI and LD score data

Figure 4.4: The results of controlling the FDR of Algorithm 2 to the test statistics

combining GWAS summary statistics of BMI and LD score data
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Figure 4.5: The trade-o↵ relationship between the number of significant groups and

hypotheses of the test statistics combining GWAS summary statistics of BMI and

LD score data
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4.5 LD Score Regression

When we select significant groups and SNPs within those groups for given c

and ⌘, we investigate the association between the summary statistics and LD score

only for selected pairs. Many interesting relationships between GWAS summary

statistics and LD score have been discovered by LDSC. Bulik-Sullivan et al. (2015)

reported the polygenic e↵ects that contributed to the positive slope of LDSC. On

the other hand, Gazal et al. (2017) stated the summary statistics from GWAS were

negatively correlated with LD score under specific model assumptions. In our case,

we perform regression analysis with selected pairs of summary statistics and LD

score, and then the results are compared with the result of LDSC in Bulik-Sullivan

et al. (2015) which is based on all pairs of summary statistics and LD score.

We present Figure 4.6 and Figure 4.7 to compare two approaches such as

regression analysis for the 4th group with selected or all pairs of the summary

statistics and LD score. Figure 4.6 represents the results of LDSC with the SNPs

within the 4th group following the method in Bulik-Sullivan et al. (2015). Each

point in Figure 4.6 represents an LD score quantile where the x coordinate of the

point is the weighted mean of LD score using the SNPs in that quantile, and the y

coordinate of the point is the weighted mean of the summary statistics employing

the SNPs in that quantile. The black solid line in Figure 4.6 is the fitted regression

line. The genomic control inflation factor is 1.1175, and the intercept of LDSC is

0.788.

In contrast, Figure 4.7 shows the discovered SNPs (+) as the result of Algo-
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Figure 4.6: The result of LDSC for all SNPs in the 4th group

rithm 2 with c = 0 and ⌘ = 0.05 in the 4th group. The solid line in Figure 4.7

is the regression line estimated with all SNPs, and the dashed line in Figure 4.7

is the fitted regression line using only the significant SNPs. By considering Figure

4.7 and Figure 4.6, it can be seen that the signs of the regression lines obtained

using all SNPs and that of the discovered SNPs are opposite. In other words, LDSC

hypothesized that a large number of functional SNPs with small quantitative e↵ect

sizes a↵ect BMI through significant associations between LD score and the summary

statistics. However, the associations observed by the statistically significant pairs
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Figure 4.7: Pairs of LD score and the summary statistics for the selected SNPs with

fitted regression lines

of LD score and the summary statistics are di↵erent from the results of LDSC. In

Figure 4.7, as LD score increases, the summary statistics tend to decrease due to

their negative association. Specifically, large values of summary statistics with small

values of LD score represent the SNPs which a↵ect BMI independently, while SNPs

with relatively small summary statistics are correlated with other SNPs since the

LD scores increase. This motivates further how statistically significant SNPs can be

used to obtain the same pattern of association with LDSC.
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4.6 The Local Association Between GWAS Summary Statistics and

LD score

In the previous section, we discuss the association between the summary statis-

tic and LD score using the selected SNPs by the proposed multiple testing. The

discovered SNPs in the 4th group are distributed across the genome, and additional

information on genomic location of SNPs is available to gain insights into selective

local association between the summary statistics and LD score. Specifically, since

SNPs are highly associated within local regions within chromosome, called haplo-

type blocks which was noted by Slatkin (2008), it is of interest to investigate and

analyze the association between LD score and the summary statistics of BMI per

unit of haplotype block. To characterize local association between LD score and the

summary statistics, we consider the haplotype blocks of the selected SNPs, and we

explore genetic dependence by narrowing the scope of the intra-chromosome.

Figure 4.8-4.10 show three di↵erent types of association patterns in regression

analysis for haplotype blocks from di↵erent chromosomes in the 4th group as a result

of Algorithm 2 with c = 0 and ⌘ = 0.05.

Figure 4.8 shows the regression results of the selected SNPs providing pairs of

the summary statistics and LD score on chromosome 12 in the 4th group. The right

panel in Figure 4.8 represents the structure of three haplotype blocks, and the left

panel of Figure 4.8 shows three dashed regression lines to illustrate the local associa-

tion between the summary statistics and LD score, for each of the haplotype blocks.
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Figure 4.8: The result of the selected SNPs providing pairs of the summary statistics

and LD score on chromosome 12 in the 4th group

The solid line in Figure 4.8 means the fitted regression line using all selected SNPs

on chromosome 12 in the 4th group, and all the slopes of the regression analyses

support a negative correlation between LD score and the summary statistics. This

example shows that the associations within haplotype blocks have the same trend

as the association of all selected pairs of the summary statistics and LD score.

Figure 4.9 represents the regression results of the selected SNPs providing pairs

of the summary statistics and LD score on chromosome 15 in the 4th group in the

same way as Figure 4.8. In this case, we have two haplotype blocks in which we

have di↵erent signs of slopes in two regression lines. Moreover, when we ignore the

haplotype block structure and use all selected SNPs on chromosome 15 in the 4th
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Figure 4.9: The result of the selected SNPs providing pairs of the summary statistics

and LD score on chromosome 15 in the 4th group

group to estimate the regression line, the linear relationship between the LD score

and the summary statistics almost disappears. From this example, we see that there

may exist opposite signs of slopes in regression lines in haplotype blocks and such

di↵erent signs of associations may wash out overall association.

Another pattern of local association is shown in Figure 4.10, which is the case

of chromosome 11 in the 4th group. Similar to Figure 4.8, we observe four haplotype

blocks in the right panel of Figure 4.10. Here, LD scores and the summary statistics

are positively correlated for the selected SNPs in the three haplotype blocks except

one case of one block with a negligible association. On the other hand, the regression

line using all selected SNPs on chromosome 11 in the 4th group shows a negative

48



Figure 4.10: The result of the selected SNPs providing pairs of the summary statis-

tics and LD score on chromosome 11 in the 4th group

correlation between LD score and the summary statistics. This example is the case

that the association of overall selected pairs have di↵erent sign of slope than the

slopes in regression lines from haplotype blocks.

We observe the various patterns of selective local associations between LD

score and the summary statistics depending on the size and location of haplotype

blocks. While the choice of the haplotype blocks for the local association may deserve

further study, it is clear from these applications that by aggregating and using the

entire SNPs, various patterns of the local association in intra-chromosomes between

LD score and the summary statistics disappear. This phenomenon can be explained

by Simpson’s paradox mentioned in Blyth (1972), in which a linear trend in a specific
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direction appears in data of several groups, but disappears or reverses when the data

are combined.

It is worth noting that our method and Finucane et al. (2015) are based

on partitioning SNPs into groups, so the inferential results can be considerably

a↵ected by how the groups are formed. Specifically, in the right panel in Figure

4.8, we see a set of the selected SNPs with strong squared pairwise correlations

within the haplotype block. The inclusion of many SNPs from haplotype block with

strong squared pairwise correlations in the data can lead to confounding biases in

discovering true genetic signals.
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Chapter 5: REAL DATA APPLICATION 2

In this chapter, we apply the proposed method to groups of SNPs in deoxyri-

bonuclease I (DNase I) hypersensitive sites (DHSs) to see the association with type

2 diabetes. A number of studies have been conducted for the association between

human organs and type 2 diabetes, particularly the pancreas. Here, among the 32

groups of DHSs including a group related to pancreas, we select significantly asso-

ciated DHSs groups to type 2 diabetes. When the margin is small, all DHSs groups

are determined to be a significant group, and it is hard to identify the groups truly

associated with type 2 diabetes. On the other hand, when the margin is su�ciently

large, the proposed method selects the DHSs group related to pancreas as the most

significantly associated group to type 2 diabetes. Four of DHSs groups are finally

selected with conservative group selection criteria, and the results are consistent

with existing medical literature.

5.1 Introduction to Encyclopedia of DNA Elements Projects

GWAS has been used as a useful tool to identify common genetic variants

associated with complex traits or diseases. In particular, SNPs are the most common

type of genetic variation used in GWAS, and each SNP represents a single base-pair
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di↵erence in the DNA sequence. Most of the SNPs significantly associated with

traits or diseases identified by GWAS are within the non-coding region, and most

of these non-coding variants are concentrated in DHSs (Giral et al., 2018). DHSs

are specific regions with increased chromatin accessibility, and DHSs are known to

be a group of generic markers of regulatory DNA. Thus, DHSs can be used to build

a better understanding of gene regulatory networks, the organization and functions

of the human.

The Encyclopedia of DNA Elements (ENCODE) Project is a research project

that seeks to interpret the human or mouse genome sequence, and aims to identify

functional elements of the human or mouse genome. For example, phase three of

the ENCODE Project performed analysis of the cell and tissue repertoires of RNA

transcription, chromatin structure and modification, DNA methylation, chromatin

looping, and occupancy by transcription factors and RNA-binding proteins (Moore

et al., 2020). Davis et al. (2018) provided the ENCODE Portal which is a freely

accessible database and website as a source of data generated by the ENCODE

Consortium. ENCODE Portal has provided a large number of sequencing libraries

from assays including RNA-Seq and DNase-Seq. In the ENCODE Portal, we are able

to find various DHSs in the human genome. Furthermore, Meuleman et al. (2020)

produced a comprehensive collection of high-resolution maps of DHSs obtained from

733 human bio-samples within the human genome sequence including regions related

to the major organ systems. Among 733 DHSs, we choose 32 DHSs related to distinct

human organs to identify significant groups associated with type 2 diabetes.

GWAS in samples of European ancestry performed simultaneous association
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tests between more than nine millions of SNPs and type 2 diabetes in Pan-ancestry

genetic analysis of the UKB (2020). Using a generalized mixed model association

testing framework, each SNP had a regression coe�cient and corresponding p-value

and genetic location. Based on the genetic locations of SNPs used in GWAS, we

grouped the SNPs into selected 32 DHSs using GenomicRanges in R-package. Group

information and downloaded 32 data sets of DHSs from the ENCODE Portal (Davis

et al., 2018) can be found in Table 5.1 - 5.2.
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Organ Description ENCODE accession numbers the number of SNPs

1 Adrenal Gland Adrenal ENCFF525FRH 57749

2 Amion Amniotic Epithelial ENCFF316LBU 166256

3 Blood CD34+ Hematopoietic progenitor cells ENCFF059VUS 159512

4 Bone Bone leg right ENCFF369GLM 119537

5 Brain Brain ENCFF528GDM 152135

6 Esophagus Esophageal Epithelial ENCFF527EJQ 174233

7 Eye Choroid Plexus Epithelial ENCFF719FXT 169100

8 Gonad Testes ENCFF843ZSC 52395

9 Gum Gum fibroblast ENCFF507FBF 39447

10 Heart Cardiomyocytes ENCFF156RTG 151188

11 Kidney Kidney ENCFF403LQM 103415

12 Large Intestine Intestine Lg ENCFF920DDN 82457

13 Liver h.f.liver ENCFF286LYP 62734

14 Lung Lung Fibroblasts ENCFF331SYD 173580

15 Mammary Mammary Fibroblasts ENCFF387KMX 58274

16 Mesoderm CD3 ENCFF216NXR 26491

Table 5.1: The detailed group information and downloaded 16 data set of DHSs

from the ENCODE Portal
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Organ Description ENCODE accession numbers the number of SNPs

17 Muscle Muscle leg ENCFF674ZTX 193786

18 Ovary Ovary ENCFF883WWT 39934

19 Pancreas Pancreas ENCFF897PRD 36541

20 Periodontal Ligament Periodontal Ligament Fibroblasts ENCFF620HKT 139303

21 Placenta Villous Mesenchymal Fibroblasts ENCFF311UAO 145779

22 Prostate Human Prostate Epithelial Cells ENCFF608WCU 48507

23 Pulmonary Artery Pulmonary Artery Fibroblasts ENCFF385ZNB 134827

24 Skin Dermal Fibroblasts ENCFF445GCV 169356

25 Small Intestine Intestine Sm ENCFF442AYJ 33700

26 Spinal Cord Human Astrocytes - spinal cord ENCFF674LBB 132947

27 Spleen Spleen ENCFF587YNA 31294

28 Stomach Stomach ENCFF933ABR 185153

29 Stroma Bone marrow stromal cells ENCFF254WCU 75282

30 Tongue Tongue ENCFF173CEG 157060

31 Umbilical Umbilical vein endothelial ENCFF097KBE 101275

32 Vascular Human Brain Vascular Smooth Muscle Cells ENCFF788MXD 31566

Table 5.2: The detailed group information and downloaded 16 data set of DHSs

from the ENCODE Portal

5.2 Enrichment Test

Maurano et al. (2012) performed simultaneous association tests between DHSs

groups of SNPs and diseases such as Crohn’s disease, multiple sclerosis, and QRS

duration. Considering the enrichment of DHSs groups, Maurano et al. (2012) de-

termined strongly associated DHSs groups with these diseases. The enrichment of
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DHSs groups is defined as the ratio of the proportion of significant SNPs in the DHSs

group to the proportion of significant SNPs in data. As changing p-value thresh-

olds, Maurano et al. (2012) observed the patterns of the enrichment of the DHSs

groups. However, Maurano et al. (2012) did not consider the multiplicity correction

to the calculation of the enrichment of DHSs groups. In this dissertation, instead of

measuring the enrichment without considering the multiplicity problem, we apply

the proposed method to selected 32 groups of DHSs, and we measure the relative

importance of groups utilizing various group significance thresholds illustrated by

the margin.

5.3 The Results of the Proposed Multiple Testing Procedure

In this section, we apply the proposed method to the data obtained from EN-

CODE Portal and GWAS summary statistics. Each SNP has a genomic location

and provides p-value which is the measurement of the linear association between

the corresponding genetic variation and type 2 diabetes. Using the genomic loca-

tions, the SNPs are partitioned into the selected 32 DHSs groups. With the probit

transformation utilized in Chapter 4, we obtain a test statistic for each SNP for

type 2 diabetes. Here our goal is to detect the significantly related DHSs groups

represented by the human organ system for type 2 diabetes.

Type 2 diabetes is the most common type of diabetes and is a chronic disease

with high blood glucose levels. The pancreas is the organ which produces insulin,

one of the main hormones that helps to regulate blood glucose levels (Marchetti
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et al., 2017a). If someone has type 2 diabetes, insulin resistance prevents other or-

gans, such as the liver and muscle cells, from responding properly to insulin (Taylor,

2012). The pancreas produces more insulin to control the body, however it cannot

meet the increased demand sometimes. When the pancreas can no longer produce

su�cient insulin for lower blood glucose levels, symptoms of diabetes begin to ap-

pear. Therefore, it can be said that the pancreas is the most associated organ for

type 2 diabetes.

The proposed algorithm requires two given thresholds. In particular, the two

given thresholds are ⌘, which controls the local FDR within the group, and the

margin that determines the condition for being an important group in a group

significance test. Here ⌘ is fixed at ↵ = 0.05, and the margin is set proportional

to the number of SNPs in the group, i.e., Mg = cmg, 1  g  32 where mg is

the number of SNPs in the gth DHSs group and c is a given constant. In other

words, to be a significant group, the larger the group size, the larger the number

of significant SNPs is required. The significance of the DHSs groups are evaluated

while changing c, which controls the margin, we set c from 0 to 0.0525. Figure

5.1 shows the results of the number of significant groups selected by the proposed

method with controlling for FDR at level ↵. As c increases, the number of selected

groups decreases due to the stronger requirement for the genetic signal within the

selected DHSs group. Figure 5.2 represents the rank of relative importance to the

selected DHSs groups as the margin increases.

In the Figure 5.2, the x-axis represents c which controls the margin, and the y-

axis represents the sorted order of DHSs groups in ascending order from 1 to 32. We
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Figure 5.1: The number of selected DHSs groups according to the margin

can see the flow line tracing the path of the group significance as the margin increases

in the Figure 5.2. If a DHSs group is not selected as a significant group, the path

is discontinuous. When c is smaller than 0.01, so the margin is small, all 32 DHSs

groups are selected as significant groups. In the group selection point of view, the

results of 32 significant DHSs groups are not informative. As the margin increases,

the number of significant groups decreases. When c is greater than 0.04, only four

DHSs groups are selected as important groups, and their order of importance is

unchanged. In particular, the DHSs group for pancreas is chosen by the method

as the 6th most important group for type 2 diabetes when the margin is small or
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Figure 5.2: The rank of the selected 32 DHSs groups according to the margin

c is less than 0.015. The group is selected as the most important group when the

margin is large or c is greater than 0.0396.

When the margin is large or c is more than 0.0396, the selected DHSs groups

are related to pancreas, spleen, mesoderm, and small intestines. Many researches

have been conducted for the association between human organs and type 2 diabetes.

For example, the association between pancreas and type 2 diabetes is illustrated in
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Marchetti et al. (2017b), and the association between small intestines is described

in Sanyal (2013). The SNPs in mesoderm are related to CD3 primary Cells and

CD3 protein complex is an important T cell marker for the immune system. The

spleen is a part of the lymphatic system and stores as well as filters blood and makes

white blood cells that protect the body from infection. De Candia et al. (2019) and

Berbudi et al. (2020) mentioned the association between immune system and type

2 diabetes.
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Chapter 6: SUMMARY AND FUTURE WORK

We have discussed the selection of significant groups and hypotheses within

such significant groups using multiple testing procedures controlling FDR. The pro-

posed multiple testing procedure is based on introducing the margin for group sig-

nificance leading to more selectively chosen groups and hypotheses within those

selected groups. Many statistical hypothesis testing methods using the idea of mar-

gin have been developed in many areas, however to the best of our knowledge, we

first introduce this idea to group sequential multiple testing problems.

As a real data application, we present the results of regression analysis uti-

lizing GWAS of BMI data within haplotype blocks based on the selected SNPs,

and a few ideas on our proposed procedure. To observe associations between the

summary statistics and LD score, we use the combined p-values method and then

select significantly associated pairs of the summary statistics and LD score. One

conventional approach such as LDSC considers the association of all pairs of sum-

mary statistics and LD scores, since it is based on the idea that aggregation of all

SNPs increases the e↵ect of SNPs on phenotype. This is in contradiction to some

other studies such as Wakefield (2008) claiming that only a fraction of SNPs a↵ects

the phenotype. In this sense, the proposed regression using selected pairs follows the
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idea of structural assumption such as sparsity of e↵ect of SNPs on phenotype. By

attempting regression analysis only on selected pairs, it is shown that a new pattern

such that LD score and the summary statistic tend to have negative correlations.

Further, through regression within the haplotype block, we have demonstrated that

the summary statistic and LD score have more diverse patterns. Since haplotype

blocks may correspond to hidden structures, regression analysis without such sub-

structures may have misleading results such as Simpson’s paradox. Therefore, we

claim that it is meaningful to investigate local association of the summary statistics

and LD score which may shed a new light on the area of LDSC.

In the second real data application, among selected 32 DHSs groups, we detect

the statistically associated DHSs groups with type 2 diabetes utilizing the proposed

method. Intuitively, the pancreas, the organ that produces insulin, has the most

significant association with type 2 diabetes. When the number of DHSs groups is

large, it is di�cult to selectively choose a significant group with a small margin,

however when the margin is large, the proposed model selects the pancreas as the

most important group. The results mean that the global test for testing the complete

null hypothesis is not e↵ective when the number of groups is large as well as the

number of hypotheses within the group is large. Through literature on the four

selected DHSs groups and organs under the conservative group selection thresholds,

we confirm the validity of the proposed methodology.

The proposed method ensures that each group has its own proportion of al-

ternative hypotheses and empirical null distribution. However, our main interest

is the characteristics of the selected groups. For future work, common proportion
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parameter and null distribution to non-significant groups would be a extension of

our current work. EM algorithm (Dempster et al., 1977) can be one approach to

estimate the common features. Furthermore, we consider other highly heritable

traits or diseases. Specifically, test statistics are a↵ected by disease, and LD scores

are dependent on population. Discovering SNPs for various diseases along with LD

score helps to understand the association between genetic dependent architecture

within a population and disease. Finally, we are able to perform enrichment tests.

When ⌘ increases, we can observe the pattern of concentration of significant SNPs

in each group and in data. By doing so, we are able to improve the enrichment test

used in (Maurano et al., 2012) more rigorously.
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Appendix A: SUPPLEMENTARY MATERIALS

The supplementary material provides some technical details.

A.1 Derivation of Likelihood Function in (3.6):

To proceed further with (3.6), consider ⌦g = {0, 1}mg which is a sample space

of ✓j|g, 1  g  G, 1  j  mg. ⌦g is partitioned into two disjoint sets with

given Mg: ⌦g0, ⌦g1. If ✓g = 0 is a gth group condition, then ✓j|g 2 ⌦g0 where

⌦g0 = {✓j|g :
Pmg

j=1 ✓j|g  Mg}. On the other hand, if ✓g = 1 is a gth group condition,

then ✓j|g 2 ⌦g1 where ⌦g1 = {✓j|g :
Pmg

j=1 ✓j|g > Mg}. These sample spaces have

the same meaning as the indicator functions in (3.2)-(3.3). Furthermore, if the gth

group and the jth hypothesis within the group are significant, an additional sample

space ⌦⇤
g1 = {✓k|g :

Pmg

k,k 6=j ✓k|g > Mg � 1} is also considered. Define

f✓j|g(xgj) = (1� ✓j|g)f0,g(xgj) + ✓j|gf1,g(xgj),

fg(xgj) = (1� ✏g)f0,g(xgj) + ✏gf1,g(xgj),

where f✓j|g is the conditional density of xgj for a given latent variable ✓j|g = 0 or 1

and fg is the marginal density of xgj. The conditional probability of xg given ✓g = 1
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is

P (xg| ✓g = 1)

=
X

✓j|g2⌦g1

 
mgY

j=1

✏
✓j|g
g (1� ✏g)1�✓j|g

P (
Pmg

k=1 ✓k|g > Mg)
f✓j|g(xgj)

!

=
1

P (
Pmg

k=1 ✓k|g > Mg)

X

✓j|g2⌦g1

 
mgY

j=1

✏
✓j|g
g (1� ✏g)

1�✓j|g ⇥ {(1� ✓j|g)f0,g(xgj) + ✓j|gf1,g(xgj)}
!

=
1

P (
Pmg

k=1 ✓k|g > Mg)

X

✓j|g2⌦g1

 
mgY

j=1

gfdr
1�✓j|g
gj (1�gfdrgj)✓j|g

!
mgY

j=1

fg(xgj)

⇡
Qmg

j=1 fg(xgj)

P (
Pmg

k=1 ✓k|g > Mg)
P (

mgX

j=1

✓j|g > Mg|xg). (A.1)

Similarly, we have

P (xg| ✓g = 0)

=
X

✓j|g2⌦g0

 
mgY

j=1

✏
✓j|g
g (1� ✏g)1�✓j|g

P (
Pmg

k=1 ✓k|g  Mg)
f✓j|g(xgj)

!

=
1

P (
Pmg

k=1 ✓k|g  Mg)

X

✓j|g2⌦g0

 
mgY

j=1

✏
✓j|g
g (1� ✏g)

1�✓j|g ⇥ {(1� ✓j|g)f0,g(xgj) + ✓j|gf1,g(xgj)}
!

=
1

P (
Pmg

k=1 ✓k|g  Mg)

X

✓j|g2⌦g0

 
mgY

j=1

gfdr
1�✓j|g
gj (1�gfdrgj)✓j|g

!
mgY

j=1

fg(xgj)

⇡
Qmg

j=1 fg(xgj)

P (
Pmg

k=1 ✓k|g  Mg)
P (

mgX

j=1

✓j|g  Mg|xg). (A.2)

The normal approximations in (A.1) and (A.2) are from (3.8) leading to the approx-

imate likelihood function as follows:

L(�|x,⇥)

⇡
GY

g=1

✓
⇡1P (

Pmg

j=1 ✓j|g > Mg|xg)
Qmg

j=1 fg(xgj)

P (
Pmg

k=1 ✓k|g > Mg)
+

(1� ⇡1)P (
Pmg

j=1 ✓j|g  Mg|xg)
Qmg

j=1 fg(xgj)

P (
Pmg

k=1 ✓k|g  Mg)

◆
.
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A.2 Derivation of Algorithm 1

Consider the data x = {xgj} and latent variables ⇥ = (✓g, ✓j|g) for all (g, j)

as the complete data. The complete likelihood function of � = (⇡1, ✏g) for EM

algorithm can be written as

L(�|x,⇥) =
GY

g=1

⇢✓
⇡1P (xg|✓g = 1)

◆I(✓g=1)✓
(1� ⇡1)P (xg|✓g = 0)

◆I(✓g=0)�
,

leading to the log-likelihood function

l(�|x,⇥) =
GX

g=1

⇢
I(✓g = 1)log

✓
⇡1P (xg|✓g = 1)

◆
+ I(✓g = 0)log

✓
(1� ⇡1)P (xg|✓g = 0)

◆�

=
GX

g=1

I(✓g = 1)log(⇡1) +
GX

g=1

I(✓g = 0)log(1� ⇡1)

+
GX

g=1

mgX

j=1

✓
I(✓j|g = 1)log(✏g) + I(✓j|g = 0)log(1� ✏g)

◆

+
GX

g=1

mgX

j=1

✓
I(✓g = 1, ✓j|g = 1)logf1,g(xgj) + I(✓g = 1, ✓j|g = 0)logf0,g(xgj)

����
mgX

j=1

✓j|g > Mg

◆

+
GX

g=1

mgX

j=1

✓
I(✓g = 0, ✓j|g = 1)logf1,g(xgj) + I(✓g = 0, ✓j|g = 0)logf0,g(xgj)

����
mgX

j=1

✓j|g  Mg

◆
.
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The expected value of the complete log-likelihood l(x,⇥) with respect to latent

variables given the current parameter ⇡⇤
1 and x is

Q(⇡1, ⇡
⇤
1) = E(l(x,⇥|⇡⇤

1,x))

= log(⇡1)
GX

g=1

P (✓g = 1|⇡⇤
1,xg) + log(1� ⇡1)

GX

g=1

P (✓g = 0|⇡⇤
1,xg)

+
GX

g=1

mgX

j=1

✓
P (✓j|g = 1|⇡⇤

1,xg)log(✏g) + P (✓j|g = 0|⇡⇤
1,xg)log(1� ✏g)

◆

+
GX

g=1

mgX

j=1

✓
P (✓g = 1, ✓j|g = 1|⇡⇤

1,xg)logf1,g(xgj)

+ P (✓g = 1, ✓j|g = 0|⇡⇤
1,xg)logf0,g(xgj)

����
mgX

j=1

✓j|g > Mg

◆

+
GX

g=1

mgX

j=1

✓
P (✓g = 0, ✓j|g = 1|⇡⇤

1,xg)logf1,g(xgj)

+ P (✓g = 0, ✓j|g = 0|⇡⇤
1,xg)logf0,g(xgj)

����
mgX

j=1

✓j|g  Mg

◆
,

where

P (✓g = 1|xg, ⇡
⇤
1) =

⇡
⇤
1P (xg|✓g = 1)

⇡
⇤
1P (xg|✓g = 1) + (1� ⇡

⇤
1)P (xg|✓g = 0)

=

⇡
⇤
1

P (
Pmg

k=1 ✓k|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)

⇡
⇤
1

P (
Pmg

k=1 ✓k|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)
+ (1� ⇡

⇤
1)

P (
Pmg

k=1 ✓k|g  Mg|xg)

P (
Pmg

j=1 ✓j|g  Mg)

,

P (✓g = 0|xg, ⇡
⇤
1) =

(1� ⇡
⇤
1)P (xg|✓g = 0)

⇡
⇤
1P (xg|✓g = 1) + (1� ⇡

⇤
1)P (xg|✓g = 0)

=

(1� ⇡
⇤
1)

P (
Pmg

k=1 ✓k|g  Mg|xg)

P (
Pmg

j=1 ✓j|g  Mg)

⇡
⇤
1

P (
Pmg

k=1 ✓k|g > Mg|xg)

P (
Pmg

j=1 ✓j|g > Mg)
+ (1� ⇡

⇤
1)

P (
Pmg

k=1 ✓k|g  Mg|xg)

P (
Pmg

j=1 ✓j|g  Mg)

.
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To estimate ⇡1, we need to maximizeQ(⇡1, ⇡
⇤
1) with respect to ⇡1. Taking derivatives

with respect to ⇡1 and equating them to zero, we have

dE(l(x,⇥|⇡⇤
1,x))

d⇡1
=

PG
g=1 P (✓g = 1|⇡⇤

1,xg)

⇡1
�
PG

g=1 P (✓g = 0|⇡⇤
1,xg)

1� ⇡1
⌘ 0.

Finally, we can get the maximizer for ⇡1 as

⇡
new
1 =

1

G

GX

g=1

P (✓g = 1|⇡⇤
1,xg).

A.3 Proof of Theorem 1

In order to get (3.5), we first compute E(
PG

g=1

Pmg

j=1 ✓gj|x) as follows:

E

✓ GX

g=1

mgX

j=1

✓gj

����xg

◆
= E

✓ GX

g=1

mgX

j=1

I(✓g = 1, ✓j|g = 1)

����xg

◆
=

GX

g=1

mgX

j=1

P (✓g = 1, ✓j|g = 1|xg)

=
GX

g=1

mgX

j=1

P (xg|✓g = 1, ✓j|g = 1)P (✓j|g = 1|✓g = 1)P (✓g = 1)

P (xg)

=
GX

g=1

mgX

j=1

P (xg|✓g = 1, ✓j|g = 1)P (✓j|g = 1|✓g = 1)P (✓g = 1)

P (xg|✓g = 0)P (✓g = 0) + P (xg|✓g = 1)P (✓g = 1)

= ⇡1

GX

g=1

mgX

j=1

P (xg|✓g = 1, ✓j|g = 1)P (✓j|g = 1|✓g = 1)

(1� ⇡1)P (xg|✓g = 0) + ⇡1P (xg|✓g = 1)
. (A.3)
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The numerator of (A.3) is

P (xg| ✓j|g = 1, ✓g = 1)P (✓j|g = 1|✓g = 1)

=
X

✓j|g=1,✓k|g2⌦g1

 
mgY

k=1

✏
✓k|g
g (1� ✏g)1�✓k|g
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Pmg

j=1 ✓j|g > Mg)
f✓k|g(xgk)

!

=
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Pmg

j=1 ✓j|g > Mg)

X

✓k|g2⌦⇤
g1

 
mgY

k,k 6=j

✏
✓k|g
g (1� ✏g)

1�✓k|g ⇥ {(1� ✓k|g)f0,g(xgk) + ✓k|gf1,g(xgk)}
!

=
✏gf1,g(xgj)

f(xgj)P (
Pmg

j=1 ✓j|g > Mg)

X

✓k|g2⌦⇤
g1

 
mgY

k,k 6=j

gfdr
1�✓k|g
gk (1�gfdrgk)✓k|g

!
mgY

k=1

fg(xgk)

=
(1�gfdrgj)

P (
Pmg

j=1 ✓j|g > Mg)

X

✓k|g2⌦⇤
g1

 
mgY

k,k 6=j

gfdr
1�✓k|g
gk (1�gfdrgk)✓k|g

!
mgY

k=1

fg(xgk)

⇡
(1�gfdrgj)

P (
Pmg

j=1 ✓j|g > Mg)
P

✓ mgX

k,k 6=j

✓k|g > Mg � 1

����xg

◆ mgY

k=1

fg(xgk) (A.4)

⇡
(1�gfdrgj)

P (
Pmg

j=1 ✓j|g > Mg)
P

✓ mgX

k=1

✓k|g > Mg

����xg

◆ mgY

k=1

fg(xgk). (A.5)

The approximations in (A.4) is due to (3.8) and (A.5) is due to the large number of

hypotheses in the group (mg).

Based on (A.1) and (A.2), the denominator of (A.3) is

P (xg) = (1� ⇡1)P (xg|✓g = 0) + ⇡1P (xg|✓g = 1)

⇡ (1� ⇡1)
Qmg

k=1 fg(xgk)

P (
Pmg

j=1 ✓j|g  Mg)
P (

mgX

k=1

✓k|g  Mg|xg) +
⇡1

Qmg

k=1 fg(xgk)

P (
Pmg

j=1 ✓j|g > Mg)
P (

mgX

k=1

✓k|g > Mg|xg).

(A.6)
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Therefore, by (A.5) and (A.6), (A.3) is rewritten as follows:

E

✓ GX
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mgX
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✓gj

����xg

◆
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where gfdrgj is defined in (3.7) and
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Thus, (3.5) can be expressed as
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where
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