

APPROVAL SHEET

Title of Thesis: Enhancements for the Search Functionality of an Open Source Email
Client

Name of Candidate: Aishwarya S Bhide
Master of Science, 2016

Thesis and Abstract Approved:

Dr. Charles Nicholas

Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Enhancements for the Search Functionality of an Open Source Email
Client
Aishwarya S Bhide, Master of Science, 2016

Thesis directed by: Dr. Charles Nicholas, Professor
Department of Computer Science and
Electrical Engineering

Email is one of the most popular communication media in today’s world. Various email
clients are extensively used for professional as well as personal use. Many times the users
of these email clients have to search for emails they have received or sent in the past. Al-
though all email clients support search functionality, most of the widely used email clients
do not have many advanced features. These features include query auto-correction, and
showing emails related to an open email, which make email search more user-friendly and
effective. The goal of this thesis is to identify such limitations for one such email client,

i.e. Thunderbird, and to create an add-on to address these limitations.

Enhancements for the Search Functionality of an Open

Source Email Client

by
Aishwarya S Bhide

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science

2016

(© Copyright Aishwarya S Bhide 2016

I dedicate my work to Aai, Baba, Tai and Mandar

il

ACKNOWLEDGEMENTS

I would like to first express my deepest gratitude to my thesis advisor, Dr. Charles
Nicholas for supporting me through my masters study and research. I am gratefully in-
debted to his invaluable guidance, understanding, patience and motivation for this thesis.
I would also like to thank my parents Subhashchandra Bhide and Prasanna Bhide and my
sister, Harshada Bhide for being my strength. Last but not the least, a big thank you to
my best friend and fiance, Mandar Haldekar for his unfailing support and continuous en-
couragement. This accomplishment would not have been possible without them. Thank

you!

v

TABLE OF CONTENTS

DEDICATION e iii
ACKNOWLEDGEMENTS iv
LIST OF FIGURES vii
Chapter 1 INTRODUCTION 1
1.1 Email clients and their search capabilities 2
Chapter 2 RELATED WORK 7
Chapter 3 QUERY AUTO-CORRECTION 11
3.1 Experiments performed 13
3.1.1 Word level spelling correction 13

3.1.2 Query level spelling correction 16

3.2 Thunderbirdadd-on 21
Chapter 4 RETRIEVING RELATED EMAILS 31
Chapter 5 CONCLUSION AND FUTUREWORK 35
5.1 Conclusion 35

5.2 Future Work

REFERENCES . . .

Vi

3.1

32

33

34

3.5

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

4.1

4.2

4.3

LIST OF FIGURES

Architectural diagramofadd-on Lo oL
Snapshot of input “thessis” to Thunderbird global search
Snapshot of output of Thunderbird global search for query “thessis”
Snapshot of input "thessis”toadd-on
Snapshot of output of add-on for query “thessis”
Snapshot of output of Thunderbird global search for query “socil media” . .
Snapshot of output of add-on for query ’socil media”
Snapshot of output of Thunderbird global search for query “’socil medea”
Snapshot of output of add-on for query ”socil medea”
Snapshot of output of add-on for query “traveldetails”
Snapshot of output of add-on for query “traveldetails”

2

Snapshot of output of add-on for query “unive rsal orlando”
Snapshot of output of add-on for query "unive rsal orlando™
Input email forrelatedemails

Output without sender name in searchquery

Output with sender name in searchquery

vii

24

25

26

26

27

27

4.4 Input email for related emails

4.5 Related emails for email in Fig. 4.4

viii

Chapter 1

INTRODUCTION

Email systems have become a part of day-to-day life not only for the people working
in science and technology related fields, but also for people working outside those fields.
Emails are used to communicate professional as well as personal messages. They are also a
very commonly used means for sharing information and data in various forms e.g. photos,
videos, hyperlinks, documents, etc.

Many people also use emails as storage for this information. This facilitates the user to
access this stored information regardless of time and location, the only requirement being
availability of an internet connection to access the emails. Emails are particularly useful
as storage as the information being stored gets stored on the server, so the user’s device
memory does not get used up, which is a great advantage for a user accessing emails from
small electronic devices like their smart phones. Since the users tend to have their smart
phones with an internet connection available most of the time, they have continuous access
to the information stored on email server. Also, since most modern email systems provide
large amounts of server memory for each user without cost, emails are an attractive solution
for storing information like copies of documents like passports, driving license, photos etc.

A very important feature for use of emails as a communication medium or as a means

of storing and sharing of information is the search functionality in email systems. The users

2
frequently need to search and retrieve past emails received or sent by them or information
stored in emails by them. As the email data in user accounts is composed of a large number
of emails, scanning and filtering it for search is computationally very expensive. Most
email systems in use currently provide text based search functionality, though it is not
satisfactorily advanced and user-friendly.

This thesis tries to find the limitations of search functionality and implement the solu-
tion for one such email client, namely Thunderbird. The limitations addressed in this thesis
are auto-correction of the search query and finding emails related to currently open email.

Misspelling search queries is very common in text based search systems. In Thun-
derbird, if the user misspells a query, no search results are shown. If the misspelling is
auto-corrected, user experience with the search functionality will be greatly improved.

Also, when a user opens an email, he or she may want to look for another email
related to it. If emails related to currently open email are shown in a tab beside the open
email on clicking a button instead of having to search for them, the user can easily access
the required emails without having to type a search query for it. The related email that
user is interested in can be opened and seen simultaneously with the currently open email

making reading the emails more efficient.

1.1 Email clients and their search capabilities

Email clients are programs used to access and manage user’s emails. There are many
commercial as well as open source email clients available. Some popular examples are:
Microsoft Outlook, Opera Mail, eM Client, and Mozilla Thunderbird. There are also some
command line email clients without GUI for users who prefer to manage their emails with-
out switching from the terminal to a GUI window e.g. Mutt, Alpine, and Sup. All of these

email clients provide text search functionality which lets the users retrieve their emails

3
and data using keywords related to them. However, the search functionality of these email
clients can be improved by adding some features which make email access more effective.

Though some programmers may prefer command line email clients, most users are
not much familiar with terminals and command line. GUI based email clients have a much
larger user base as they are more intuitive and easy to use. So this thesis considers one such
GUI based email client, Thunderbird.

Thunderbird is an extensively used, free and open source email client developed by
Mozilla. The source code of Thunderbird is in CPP, though extensions (TBe) providing
additional functionality can be written using Javascript and XUL (XUL). XUL stands for
XML User Interface Language, which is Mozilla’s XML-based language for building user
interfaces of applications.

Thunderbird is a good option when developing new features for an email system as
it is open source and its documentation is available on internet which provides guidance
on creating add-ons for Thunderbird. It is particularly useful in this case as it provides the
feature of text search on emails using different search engines. It also includes a message
indexing and search system called "Gloda” which provides full-text search capabilities and
displays faceted search results.

Users get a lot of emails every day. So it becomes hard to organize and keep track of
the emails. To help users to search emails effectively, Thunderbird provides many config-
uration options. The users can enable the operating systems search to search emails. They
can enable or disable the Global Search feature. Also for IMAP folders, users can decide
whether messages in that folder will be included in global search or not.

When a user types a query having multiple words, Thunderbird shows the results
which contain at least one occurrence of each of the word in the query. If user encloses
multiple words in quotation marks, Thunderbird returns search results containing messages

having all the words in the order they are specified in the search field i.e. it searches for the

4
whole phrase in quotation marks instead of searching for each word in the phrase. These
two types of searches can be combined. For example, if user types the term “computing”
and the phrase "IEEE conference”, Thunderbird will find the messages that contain both
the term and the phrase.

Apart from the search configuration options, following are some features which Thun-

derbird provides for storing and looking up emails:

e Quick search: Thunderbird provides quick search bar where user can look up an

email from current folder by using the subject or sender’s name.

e Smart folders: These are saved searches which are displayed as folders. The search

can be based on multiple criteria.

e Tags: Tags let users categorize their emails or give them priorities. Some predefined
tags in Thunderbird are Important, Work, Personal, To Do, Later. User can look up

emails using tags.

e Filters: This feature is useful for performing specific actions on emails matching
certain criteria. These actions include tagging emails, marking emails, forwarding
emails, deleting emails, storing emails in a specific folder etc. This can be used for

organizing emails for easier lookup.

e Views: Thunderbird has 5 different views: All, Unread, Favorites (defined by user),

Recent (recently viewed folders) and Unified (multiple accounts).

Apart from these features, Thunderbird also has a search functionality called open
search, which lets the users search a term on web using different web search engines. Also,
there are many add-ons created by Thunderbird community which provide many more

features.

5
Even though it has all these features, Thunderbird lacks some very basic functionality
which is important for efficient lookup of emails. Some extensions / add-ons are available

to improve search experience with Thunderbird. Following are some of such add-ons:

e Expression Search / GMailUI:

This add-on is based on the search functionality provided by Gmail. It allows the
user to search for their emails using expressions. This is a powerful way to search
emails for users who receive a large amount of emails. The users can search emails
using expressions like “from:”, ’to:”, ”subject:”, “attachment:” etc. Users can also

search a combination of these search expressions. Also, it provides the feature to

search similar messages on clicking a subject/from/recipient.

e Unified Search:

This add-on unifies the global search functionality and quick filter feature of Thun-

derbird.

e Remove Duplicate Messages:

This add-on helps to identify and remove duplicate messages in folders and subfold-

€rs.

Even though there are many such add-ons available for Thunderbird, Thunderbird still
lacks some features. e.g. it does not show emails related to currently open email based on
the content of email. The GMailUI extension has a click to search functionality which lets
users search for selected subject or address of sender or recipient. Though, searching using
sender/recipient may return a large number of results out of which only few may be related
to open email. Also, searching for subject may not always return related results as many

times subject of email does not represent the content of email very well. Moreover, having

6
to select the subject/Sender/Recipient and then press Ctrl/Shift + Right Click to search is
not as user friendly as clicking a button and getting results related to content of open email.

Also, a feature which autocorrects user’s text queries will improve the user experience
significantly. Thunderbird does not use synonym search while searching for emails, which
would provide better results. If the search functionality searched attachments of emails for
content related to query, it will be more effective.

Out of the improvements listed above, this thesis tries to implement the feature of auto-
correction of search queries as an add-on for Thunderbird to improve the email retrieval,
as it has a large impact on user experience. It also implements the feature of retrieving and
displaying related emails based on content of open email on click of a button.

Remainder of the thesis is organized as follows: Chapter 2 provides a summary of
related work done in auto-correction of queries and finding related emails. Chapter 3 de-
scribes experiments performed for query auto-correction and the method used to provide
it as a feature for Thunderbird. Chapter 4 describes the method used for retrieving emails
related to open email. Finally, the thesis concludes with future work and a summary of the

experiments performed.

Chapter 2

RELATED WORK

Many times users misspell the text queries when searching. The misspelling of words
involves missing characters, inserting extra characters, or changing a character to some
other character. Also, queries having multiple words may have errors like two words
merged together i.e. missing a space or splitting a word into two words i.e. extra space
inserted between a word. In such cases, the system would provide no search results or
irrelevant search results.

Hence, automatic spelling correction for queries is an important feature in search sys-
tems which can improve user experience, save time and increase productivity. Most leading
web search engines provide the functionality of spelling correction for queries based on the
query logs of a large number of users. This approach works well for web search as it
leverages the collective intelligence of all these users and the collection of documents to be
searched i.e. web is common and available for all users.

Cucerzan and Brill (Silviu Cucerzan 2004) used the above approach to iteratively
transform input query strings into other strings which are more likely to be correct queries
according to statistical information of internet search query logs. They observed that
roughly 10%-15% of queries sent to web search engines have errors. Most web queries

are not well formed sentences and may contain words that are legitimate but not present

8
in a dictionary e.g. nouns like Shrek, Nemo etc. Hence, the validity of a query cannot be
determined simply by looking up the words in query in a dictionary or by checking if it is
grammatically correct. So they proposed to use query logs of all users to check validity of a
word from its frequency in what people are searching for. The challenge with this approach
is that many frequently occurring queries in logs are misspelled.

Google search engine figures out possible misspellings and their likely correct
spellings by using words it finds while searching the web and processing user queries. So,
unlike many spelling correctors, Google can suggest common spellings for words which
are not in a dictionary like proper nouns of people, organizations and places, slang words,
acronyms etc. The search in Gmail also uses the same auto query correction functionality
as Google search. So when user misspells a word, it corrects the word based on web search
data and not based on user’s emails. e.g. if user types 'urgwy’ to search for an email con-
taining the word 'urgway’, Gmail search may not find the email and instead ask whether
user meant ‘rugby’ or ‘uruguay’.

Thus, this approach of query correction based on query logs is not very useful in email
search queries as the query log for any one user is usually not large enough and the query
log for other users is not useful when trying to check correctness of the query entered
by a particular user as emails to be searched and search intents are highly specific to the
user. Also, the emails of a user are private and available only to them. Hence, the query
corrections need to be personalized and context specific i.e. based on user’s current email
State.

Taking this into account, Bhole et al (Abhijeet Bhole 2015) have considered the prob-
lem of providing spelling corrections using user’s own email data. They have developed a
system called SpEQ which uses machine learning to find spelling corrections directly from
the user’s own email data. It works equally well on different sizes of email data and works

without having to know user’s search history. Their system employs a ranking framework

9
based on query and its context. It generates candidates for misspelled queries using dy-
namic programming and a scoring function based on inverse document frequency (IDF)
and edit distance of the candidate’s words. The set of feature functions that is used to score
the candidates is based on lexical similarity with original query, query context, content of
mailbox and search context. Content based features are based on the statistics of candidate
tokens in subject lines and contacts, number of emails fetched by a query (if a query fetches
too many emails, it is unlikely to be useful). Contextual feature functions represent current
state of mailbox i.e. they are calculated over recently accessed emails.

Bao et al (Zhuowei Bao 2011) have proposed a graph approach to spelling correction
in domain centric search where the domain could be anything like desktop, email or large
scale web sites. Their system generates candidates for each word based on edit distance.
All candidates of a word are given scores calculated using weighted Damerau-Lavenshtein
edit distance, phonetic similarity, the candidate’s existence in English words, logarithm
of the candidate’s frequency in corpus etc. The weights for these features are found using
Support Vector Machine (SVM). Their algorithm called MaxPaths returns a set of candidate
suggestions for a query based on the score. For this, it finds strongly plausible tokens for
each word, constructs the correction graph which has edges from every candidate of each
word to every candidate of its next word in query, finds the top k paths with highest weights
in the graph and then re-ranks the paths using word correlation.

Many times when users open and read an email, they may need to refer to some
previous email about the same topic, most probably sent by the same person as the current
email. e.g. User may have received information about a job position and applied for the
position, they may receive an interview call a few weeks later and may want to check the
email describing the position when reading the email regarding interview. In such cases, it
will be useful to have related emails searched on the click of a button instead of typing the

search query.

10
Finding related emails based on email content is similar to finding related documents
from a corpus. Though the purpose of most algorithms which try to find similar documents
is to remove duplicates. In this case, we want to find emails which are related to open email,
not duplicate emails. In most cases, the related emails will not have the exact same text
chunks as open email. In fact, the related emails we are looking for are presumed to contain
more information about the topic of open email. So the similarity detection algorithms used
for finding duplicate documents will not work for our purpose. Instead, we have to try to
find keywords from the email content and use them to search for related emails.
Chapter 3 describes the experiments performed for auto-correction of queries based

on current state of email account and how this feature works in our Thunderbird add-on.

Chapter 3

QUERY AUTO-CORRECTION

Thunderbird text search does not have a query correction mechanism. So if the user
misspells a query, the search may give no search results or irrelevant results. Also, the
multiple word text queries entered by user show only those emails in results which contain
at least one occurrence of each of the word. So if the user misspells even one word of the
query, the search will return no results even if the query contains other correct words. The
query auto-correction feature implemented as add-on in this thesis helps get better results
by correcting the misspelled words. Even when a misspelled word cannot be corrected by
the add-on, it shows the results based on the correct words.

For implementing this feature, various experiments were performed on the Enron-
Random dataset (enr) which contains randomly sampled emails from Enron corpus.

The experiments which required machine learning were performed using Scikit Learn
(Buitinck et al. 2013) which is a Python package which provides various machine learning
algorithms. The experiments performed used the machine learning algorithms SVM and
Logistic Regression.

For training the Machine Learning algorithms, Peter Norvig’s list of words and their
common misspellings was used which is available online (nor). This list contains approx-

imately 7800 words and their possible misspellings. The training set included approxi-

11

12
mately 6000 words and the test set included approximately 1800 words. Out of this list,
only the entries where the correct word is present in the index generated for searching the
email corpus were taken into consideration. The lines in the training and test files were in
the format:

CorrectWord: comma separated list of misspellings for the word

e.g. dictionary: dictionery, ductioneery, dictionary

The indexes for the corpus were generated using Whoosh (who) which is a full text
indexing, search and spell checking library in Python. Whoosh was also used for suggest-
ing candidates for word correction based on edit distance and document frequency of the
candidates. The document frequency of a word and the documents containing a word were
found using Whoosh functions. For implementing the correction of queries, three separate
indexes were generated, one index each for the content of emails, the subject of emails and
the contacts in the 'to’ and ’from’ fields of the emails. As the Enron emails are in text
document format, the subject and to-address, from-address of each email was found from
the header by parsing the metadata sections of emails.

For checking if a string was a word existing in English language, Natural Language
Toolkit i.e. NLTK (NLT) was used. NLTK is a Python package for natural language
processing tasks.

For evaluating the query auto-correction feature, a list of queries had to be extracted
from the Enron-Random emails. Multiple queries were formed for each email by taking
random strings in the emails and introducing randomized errors in them. For finding the
keywords in each of these strings, Topia.termextract (top) was used which is a Python
package which implements content term extraction. Given some text, it finds important
terms in that text using Part-of-Speech tagging and frequency of terms.

For assigning weights to the correct word candidates returned by Whoosh for each

misspelled word, following features were considered:

13
Levenshtein Distance: The Levenshtein distance is a metric for measuring the
amount of difference between two sequences i.e. an edit distance. The Levenshtein
distance between two strings is the minimum number of edits needed to transform
one string into the other, where the edit operations possible are: insertion, deletion,
or substitution of a single character. For example, the Levenshtein distance between
“kitten” and kitchen” is 2, since first word can be changed into second word by sub-
stituting second ’t” with a ’c’ and inserting an "h’ after the c. There is no way to do
this transformation with fewer than two edits. The Python package Levenshtein (lev

) was used for finding Levenshtein distance between two words.

Double Metaphone: Metaphone is a phonetic algorithm for indexing words by their
English pronunciation. In this algorithm, similar sounding words share the same
keys. It uses information about variations and inconsistencies in English spelling and
pronunciation to produce encoding for words, which can be used to match names and
words that sound similar. Double metaphone is based on the Metaphone algorithm.
While Metaphone is applicable only to English, Double Metaphone takes into ac-
count more languages. The python package Metaphone (met) was used for finding

Metaphone for the words.

3.1 Experiments performed

3.1.1 Word level spelling correction

Experiment 1: Following steps were performed on the query containing words w;

to w,,:

For each word w;, multiple candidates were generated by using edit distance and doc-

ument frequency of generated candidates. This was done using spelling corrector function-

14
ality of Whoosh. The Whoosh function takes the original word w;, the index and maximum
allowed edit distance as input. It returns a list of words having edit distance less than maxi-
mum edit distance specified from w; and which are present in the index. The candidates are
generated from each of the three indexes (content index, subject index and contacts index).
The original word w; is also considered as a candidate.

Weights are assigned to each of the candidates based on the features:

Existence of the candidate in content index

Existence of the candidate in subject index

Existence of the candidate in contacts index

Whether the metaphone encoding of candidate matches with that of original word

The Levenshtein distance of candidate from original word

Document frequency of candidate

We used document frequency as feature instead of term frequency because a candidate
present in multiple emails is more likely to be what user is searching for as opposed to a
candidate present multiple times in a single email. Each of the above features was assigned
a manual weight empirically based on importance of the feature after different combina-
tions of feature weights were tried out. Various words and their misspellings were used for
trying to determine weights of features and for testing. As each feature’s importance dif-
fered based on the errors in spellings of input words, the weights of features which worked
well for a query did not necessarily work well for another query.

The candidate having the maximum weight is returned as the most probable correct
word for each word. The most probable candidates for each word replace the original word

in the query and the query thus formed is returned as corrected query.

15

After trying out different weights for different features, the maximum accuracy
achieved was approximately 70% for test data consisting of randomly generated words
and their misspellings from the email corpus. The random misspellings were generated by
inserting a random character, deleting a random character, changing a random character to
another random character or swapping two random adjacent characters in the word. The

merge and split errors were not considered for word level query correction.

Experiment 2: Based on the above observation, weight of each feature differed for
each misspelling with respect to correct word. So to decide the correct word for each
word, Machine Learning models were trained by taking into account same features as in
Experiment 1 above. The models tried to predict whether a candidate could be the correct
word corresponding to original word. This approach was based on word level correction
part of MaxPaths algorithm of (Zhuowei Bao 2011).

The features corresponding to existence of candidate in the three indexes had binary
values i.e. value for the feature would be 1 if the feature existed in that index, 0 otherwise.
Similarly, if the metaphone encoding of a candidate matched that of the original word, the
value of metaphone feature for that candidate would be 1, otherwise it would be 0. The
Levenshtein distance feature had the value same as that of Levenshtein distance between
original word and candidate. Similarly, document frequency feature has value same as
document frequency of the candidate.

The models tried to classify words in 2 classes. Class 1 is class of correct spellings for
original word and class 0 is for incorrect candidates of original word. The features for each
misspelled word and its candidates were found and the candidate matching the correct word
for the misspelling was classified as belonging to class 1 and other words were classified as
belonging to class 0. The data used for training and testing was taken from Peter Norvig’s

list of words and their common misspellings.

16

The total number of words including both correct and incorrect words in test set were
58664 out of which only 1307 were correct spellings. Two machine learning algorithms
i.e. SVM with RBF kernel and Logistic Regression gave accuracy of approximately 98%
for predicting a word to be correct or incorrect. Though the accuracy was good, SVM
predicted only 629 words to be correct while 1307 correct words were present in the test
set. Similarly, Logistic Regression predicted only 721 words to be correct out of the 1307
correct words in test set. So the recall is approximately only 55%. The reason for less recall

was that the dataset was unbalanced.

Experiment 3: This experiment followed the same procedure as experiment 2
above, except that only those candidates of a word were considered which were within
an edit distance of [ogy (length of word). This was done to test if precision and recall in-
creased by considering only the words which were more likely to be correct words, since
80% of spelling errors are within edit distance 1 and almost all spelling errors are within
edit distance 2 from the correct word. Though, instead of keeping maximum edit distance
as 2, it was changed based on length of the word as longer words may have more spelling
errors.

The accuracy remained almost same as experiment 2, while the recall decreased as
SVM classified 686 words as correct and Logistic Regression classified 692 words as cor-

rect from the 1307 correct words.

3.1.2 Query level spelling correction

In the experiments for query level spelling correction, the errors caused by splitting
and merging of words were also considered in addition to the errors mentioned at word
level correction.

For this application, the execution time for correcting each query is as important as the

17
accuracy of correcting queries. If a query takes a long time to be processed for correction,
user may find out the error in query, correct it and search for the corrected query in shorter
amount of time. Also, when the original query entered by user is correct, the application
may take a long time to determine that it is correct or it may determine the query is incor-
rect and return a corrected version which is different from what the user wants to search.
Considering these factors, the query level spelling correction implemented is different than
MaxPaths, since MaxPaths would be computationally very expensive and would take a lot

of time to process each query.

Experiment 1: In this experiment, each query from test set was parsed and the
words which are English words or which are in the index are kept as they are because
they are likely to be correct and trying to find correction for them is more likely to re-
turn words that are different from what user wanted to search. Also, this saves significant
amount of processing time for each query.

The candidates for remaining words are generated using the experiment 3 in word level
spelling correction section above. Here, experiment 3 was used instead of experiment 2
above as most misspelled words are within edit distance 2 from correct word. The machine
learning model learned for word level correction is used to find if any of the candidates
is predicted as correct for each word. If we find a correct candidate, the word is replaced
by that candidate. This is useful for correcting the word misspellings that do not include
merged or split words.

For the words which do not have any candidate predicted as correct, we need to check
for merge-split errors. For this, all such words which are consecutive are considered as one
term obtained by concatenating these words in original order without spaces separating
them. For every such term, we find all possible combinations of words that can be formed

by inserting spaces in the term.

18

e.g. If a term is ”abcd”, we get all possible combinations as: ”abcd”, ”a bed”, ”ab ¢d”,
“abc d”,”abcd”,”abcd”’,’abcd” etc.

Every such combination is tried as a query_option. For each query_option, a weight is

calculated based on following features:

existence of each word in English or in index

edit distance of query option from original term

difference between number of words in original term and query option

number of documents containing all words in query_option

If a word is not existing in English or in index, it’s candidate having maximum proba-
bility to be correct according to above machine learning model replaces it in query option.
The query_option with maximum weight replaces all the words in term when forming cor-
rected query.

For testing this system, random strings were taken from each email as queries after
removing the email headers containing metadata of the email. Random errors were intro-
duced at random positions in each of the queries. Each query contained single or multiple
errors. The errors consisted of inserting a character at a random position, deleting a random
character, swapping two adjacent characters, changing a character to another character, in-
serting a space at a random position, deleting a space from the query.

After testing this system using the test data created, accuracy of this approach was
approximately only 18%. It was observed that the accuracy was very less as random lines
from emails do not represent search queries properly. Most of the random lines consisted
of many stopwords, special characters and no keywords. On the other hand, users tend to

type keywords as search queries when using text search. In this approach, queries like I

19

will see you on Monday”, ”thank you” or ”/da” were formed which are not representative

of actual search queries.

Experiment 2: Based on the above observation, instead of taking random lines as
queries, keywords were found from such random lines and were used as queries. Keywords
were found based on Part-of-Speech tags and term frequency using the Topia library. The
same procedure as above was used to correct queries. The accuracy did not improve much
over the previous experiment, but the quality of queries in test set was much better.

Both experiments mentioned above consisted of finding all possible combinations of
terms by inserting spaces in the terms which requires a lot of processing time for each term.
Also, finding candidates for all words in query or in any combination of term, which do not
exist in index or in English language is another computationally heavy part, as it requires
finding all words which are within given edit distance from original word. Finally, training
machine learning model based on thousands of words and predicting correctness of a word
based on that model takes a lot of time and memory for processing. As mentioned above,
keeping the processing time short is important for this application.

Also, following are some common observations from the queries:

e Most misspellings formed by merging words together consist of two words merged
together. It is very uncommon for more than two words to be merged together as

spelling error.

e In most split errors, one extra space is inserted between a word. It is very uncommon

for a word to be split in more than 2 words as spelling error.

e If a word is formed by a merge error, the two words being merged are less likely to

have any other spelling errors.

20

e A word can be misspelled in a number of ways. Also, for any misspelled word,
multiple candidates may be words existing in English or in index. In such cases, the
candidate having lesser edit distance from word may not always be the correct one.
Similarly, the candidate having same Metaphone encoding as the word may not be
the correct one. Thus, it is very hard to learn machine learning models that achieve
high accuracy from these features, as for each misspelling, different features have
different weights. There does not exist any pattern in misspellings. We can only try

to predict the correct word from common observations.

Experiment 3: Based on the observations above, the machine learning models were
eliminated. The features for word level correction were given weights manually based on
common observations. Also, instead of finding all possible combinations of a merge-split
term which could contain any number of words, only those combinations containing two
words were considered. In such combinations, words existing in English or in index were
given more weight as user is less likely to make another error in two words having merge-
split errors. The most probable candidates for words not in English or in index were given
less weight in comparison.

After these simplifications, the processing time for each query was significantly
shorter and 584 out of 680 random queries taken from the Enron-random corpus were
corrected properly with accuracy of approximately 86%.

Bao et al (Zhuowei Bao 2011) used a Java API to find Google’s accuracy for correcting
queries in their datasets. The accuracy was approximately 50% for email dataset, while it
was approximately 80% for site search. Our experiment gave a much better accuracy of
approximately 86% for email dataset. Also, Thunderbird can be used for multiple email
systems i.e. we can use it to access various personal as well as corporate email accounts,

while Gmail’s auto query correction is useful only for Gmail accounts. Hence, our add-on

21

provides better user experience.

3.2 Thunderbird add-on

Thunderbird add-ons are written using javascript and XUL (XML User interface Lan-
guage). The add-on created for this study uses the system in experiment 3 for query level
correction. Though, the system requires many modifications for its integration with Thun-
derbird. Following are some of the differences between the system of experiment and the

add-on:

e As the Enron-Random dataset has emails stored as a text file per email, Whoosh
was used to build an index and other processing. Thunderbird downloads and stores
the emails in user account only if POP protocol is used. In case of IMAP protocol,
which is widely used, Thunderbird does not download the emails. Instead, they are
accessed from the server. For using Whoosh in case of IMAP, all emails would have

to be downloaded which defeats the purpose of using IMAP for email access.

So the query auto-correction add-on uses the Gloda (short for Global Database) in-
dexing system provided by Thunderbird. Gloda uses a SQLite database to store all
the information regarding emails. The system uses SQLite queries to find document

frequencies of words and documents containing words.

e SQLite has a FTS4 extension called FT'S4aux which supports full text search. This

1s used to create a table with all terms in all emails.

e Spellfix1 virtual table is used to search words closely matching a word from all the
terms in emails. Spellfix1 is a loadable extension. The correct word candidates are

returned by Spellfix1 instead of using Whoosh suggest function.

22

e As the add-on is implemented in javascript, it needs to call the Python program for

correcting entered query. nsIProcess is used for this purpose.

e GlodaMsgSearcher is used for calling the global search of Thunderbird on corrected

query.

Figure 3.1 shows the architectural diagram explaining the various components of add-

on. The UI components are defined in XUL files. When we add this add-on to Thunderbird,

Query entered by user

Query
Correction

Overlay.js

Search

System

Corrected query

Results

Database
Queries

SQlite
Database

DF, Documents
containingword

FIG. 3.1. Architectural diagram of add-on

it inserts the search box in the lower right corner of main window of Thunderbird. When

the user enters a query in the box and clicks submit button, the function in overlay.js is

23
called. This function uses nsIProcess to call the Python program which executes the query
correction. The Python program interacts with the Gloda database to find the document
frequencies of words, candidates for misspelled words and IDs of documents containing
words. All query candidates are weighted using same features as experiment 3 above. It
returns the query with maximum weight as correct query. As nsIProcess does not have a
mechanism to get output from the called program, the Python program writes the corrected
query in a file. Overlay.js reads the corrected query from the file and calls the global search
using GlodaMsgSearcher which shows the search results in a new tab.

Following are some examples of the outputs given by the extension developed and

Thunderbirds global search for same inputs for word level correction:

e For a single word misspelled query “thessis” entered in Thunderbird’s global search

box, we get no results as shown in figures 3.2 and 3.3.

Inbox - Mozilla Thunderbird ty B = &= o) cssPm i
§ & Inbox
B 2 GetMessages ~ | Write (=)chat (B Address Book Q Quick Filter thessis Ql =
[Inbox (4665) § =
[&@ applying For symantec| * | % | @ Subject o« From v vate [
ﬁ) Share your knowledge with the Stack Overflow community. © stack Exchange 03/29/2016 03:04 PM &
[prafts ShareLaTeX Reference Search & 2016 Newsletter + Henry Oswald 03/29/2016 04:04 PM
— B sent Mail (4) The queue was never so short. Save time with self-service check-in! * Jet Airways 03/30/2016 08:29 AM
EI [All Mail (a665) Paper W-2 Elimination Confirmation + adpfeedback@adp.com 03/30/2016 07:10 PM
@® spam April 18 tax deadline is almost here! * sprintax.com 03/31/2016 10:00 AM
= Bin We have news for you! s JetPrivilege 03/31/2016 06:58 AM
E | Important (318) ‘We're updating our Terms of Service and Privacy Policy * Airbnb 03/31/2016 10:31 AM
i starred (2) Aishwarya, Top matching jobs for you + Monster Jobs 03/31/2016 06:56 PM
\ i Personal @ thesis code * Aishwarya Bhide 03/31/2016 11:43 PM
é [Receipts New Updates from Authors You Follow + Goodreads 10:00 AM
i Travel 4 days to take your free ride * Uber 11:17 AM
N\ i vimp Your balance for March < splitwise 12:05 PM
B @ work Mobile threats you need to be aware of * Mob Wik 05:04 PM 6l
& Local Folders
3 & Trash
[outbox
’i
search with querycorrection
%\4 Unread: 4665 Total: 9595 Q
: search

BOPPEEH TP S B rontcr

F1G. 3.2. Snapshot of input “thessis” to Thunderbird global search

While, the same query is corrected and user gets correct results when entered in the

PN[TOm®

"‘Bﬁ w0 B D E

hessis - Mozilla Thunderbird

essis

Filters Search thessis

BOFLEE F 0@ @ Rt

FIG. 3.3. Snapshot of output of Thunderbird global search for query thessis”

querycorrection add-on search box as shown in figures 3.4 and 3.5.

e For the query ”socil media” involving multiple words out of which one is misspelled,

Thunderbird gives no results as shown in figure 3.6.

While, the add-on gives correct results by correcting the misspelled word as shown

in figure 3.7.

e For the query “’socil medea” where both words are misspelled, Thunderbird does not

give results as shown in figure 3.8.
While, the add-on corrects both words and gives results as shown in figure 3.9.

Similarly, following are some examples of the outputs given by the extension devel-

oped and Thunderbird’s global search for same inputs for query level correction:

1. For a query where two words are merged like “traveldetails”, Thunderbird global

search fails to return results as shown in figure 3.10.

25

Inbox - Mozilla Thunderbird ty B &= & 1) 656PM 3%

g & Inbox
Bl © GetMessages v | fwrite (=)chat (B Address Book Q Quick Filter search... <Ctrl+k> Ql =
E P iy e bt | g Unread 77Starred & Contact ©Tags @ Attachment Filter these messages... <Ctrl+Shift+k> Q
[Inbox (4665)
[applying For symantec| * % | & | Subject e From ¢ Date 3
ﬁ V& Share your knowledge with the Stack Overflow community. Stack Exchange 03/29/2016 03:04 PM &
[Drafts ShareLaTeX Reference Search & 2016 Newsletter © Henry Oswald 03/29/2016 04:04 PM
— Sent Mail (4) The queue was never so short. Save time with self-service check-in! © Jet Alrways 03/30/2016 08:29 AM
EI [Al Mail (4665) Paper W-2 Elimination Confirmation adpfeedback@adp.com 03/30/2016 07:10 PM
©® spam April 18 tax deadline is almost here! = Sprintax.com 03/31/2016 10:00 AM
y— & Bin We have news for you! © JetPrivilege 03/31/2016 06:58 AM
z’ & Important (318) We're updating our Terms of Service and Privacy Policy < Alrbnb 03/31/2016 10:31 AM
[starred (2) Alshwarya, Top matching jobs for you © Monster Jobs 03/31/2016 06:56 PM
3 i personal @ thesis code < Alshwarya Bhide 03/31/2016 11:43 PM
é [Receipts New Updates from Authors You Follow © Goodreads 10:00 AM
I Travel 4 days to take your free ride © Uber 11:17 AM
i vimp Your balance for March © splitwise 12:05 PM
& work Mobile threats you need to be aware of * Mob Wiki 05:04 PM ||
sil” = Local Folders
N & Trash
3 Outbox
'i
Search with querycorrection
=S "
- o Unread: 4665 Total:9595 | thessis Q
: search
OF P EE @ E S 6 retcr

F1G. 3.4. Snapshot of input “’thessis” to add-on

Whereas, the add-on split the word and returned results as shown in figure 3.11.

2. For the query "unive rsal orlando”, where the word “universal” is split into two

words, Thunderbird fails to retrieve results as shown in figure 3.12.

Whereas, the add-on attempts to correct the spelling giving output query as ”Orlando

universe 1 and returns results as shown in figure 3.13.

Here, although the add-on did not give the correct query “universal orlando” as input
to the search, it changed the query to ”Orlando universe 1” which is close to the
correct form of original query. So user would get relevant results instead of empty
results. Thus, the add-on gives better results than Thunderbird global search in case

of misspelled queries. If a query is spelled correctly, it keeps it as it is.

thesis - Mozilla Thunderbird

26

® g
2 thesis Q
L=l Ficers Search thesis
ﬁ O From Me 0 o Me
-) Attachments 10 of 20 Open email aslist i
People ShareLaTeX Reference Search & 2016 Newsletter Henry Oswald
ECIR 2012 Organizers
g Coyversnaw ShareLaTeX recently crossed the 750,800 users mark, and a lot of time and effort has
GRLMC been spent on making sure ShareLaTeX scales out to support the ever growing number of
[— users. We're really excited that LaTex is still so popular!
Mandar Haldekar In fact, one of our developers, Brian, recently found his PhD thesis from over 20 years
e Gl ;gbye::g it still compiled in ShareLaTeX without any changes. Here's to another stable
Quora Weekly Digest
Wolfram Research Thanks...
Listall 14 thesis code Aishwarya Bhide
to. esterda
Folder
All Mall (alshwaryasbhide@gmail.com) @ experiments code tar.gz. T8 code.targz
£ Inbox (alshwaryasbhide@gmail.com) Delivery Status Notification (Failure) Mail Delivery Subsystem
A to: Aishwarya Bhide larch 24
Mailing List ~
R a e Date: Thu, 24 Mar 2016 12:20:19 -0400
HelE Message-10: <Ch 40urVT 1.gnail. com>
None Subject: thesis code
Fron: Aishwarya Bhide <aishwaryasbhide@gmail.com>
?i« To: Aishwarya Bhide <aishwaryasbhideegnail.coms...
thesis code Aishwarya Bhide
@ ° = 5
searchwith querycorrection
=
thessis
- es Q
F 4 (search]
OPLEE R TG G retcr

socil media - Mozilla Thunderbird

FIG. 3.5. Snapshot of output of add-on for query “thessis”

Q socilmedia

ty B = 0 1) s26Pm {3

@ socil media Q
[—]

Ll Fiters Search socil and media

?) From Me To Me

- s match your search
i A
@ Searchwith querycorrection
— Q
-
4 search
QF S F QG @Rt

F1G. 3.6. Snapshot of output of Thunderbird global search for query

”’socil media”

27

social media Q
Filters Search social and media
From Me 0 1o Me
[Attachments 100f 83 Open email as list sort by: relevance date
People Job Oriented Social Media Marketing Course info@monsterindia.com
to: Aishwarya Bhide 8/13/201

BlackFriday.com
ErmiEEEE in Association with Digital Vidya, India's Largest Digital Marketing Training
JetPrivilege Company Offers
Machine Learning Course Staff Job Oriented Social Media Course..
Quora Weekly Digest

JUL May New Releases Goodreads
Swachh Bharat Mission to: Aishwarya Bhide 5 15
Wenfeng Hou

Wolfram Events

Leave Your Mark: Land Your Dream Job. Kill It in Your Career. Rock

LD Social Media.
by Aliza Licht
url: http: //waw.goodreads. con/book/show/23197565 - Leave -
Folder your-mark?utm_campaign-2015_5& utm_content=nonfiction pos3_textonly&

amp; utm_med iun-emai lsamp; utn_source=new_releases..
Al Mail (aishwaryasbhide@gmail.com) piutm! i utn_ -

Inbox {asiwaryashiida@grmatl. com) Are you looking for Internships, Scholarships, Training, Let Me Know | Update
3/20/201

Festivals, Jobs and lot more exciting opportunities? 2012
Check out Let Me Know's newsletter!
to: Aishwarya Bhide

6. http://mw. facebook. com/pages/Let-Me-Know/360108142207utm_source-LMK+Subscriberss
utm_campaign-acdsdaffae-Dai lyshews Lettersutn mediun-enail

[71aid Sumner Internship in Social Media Marketing
The Research Pedia (TRP) is an online portal for research on various
tonics. We olan to hire interns for paid internshio which will be.

Searchwith querycorrection

= socilmedia Q

(search |

OF P AT RO ERetcy

FIG. 3.7. Snapshot of output of add-on for query ”socil media”

socil medea - Mozilla Thunderbird 02PM 1%

Q socilmedea

socil medea Q

Filters Search socil and medea

From Me To Me

s match your search
Searchwith querycorrection
48 aishwaryasbhide@gmail.com is up to date Q
search
OF S A F 0 S Blroecr

F1G. 3.8. Snapshot of output of Thunderbird global search for query ”socil medea”

28

- Mozilla Thunderbird

e e coreeeoi=t Job Oriented Social Media Course..

Quora Weekly Digest

May New Releases Goodreads
Swachh Bharat Mission o o1s

to: Aishwarya Bhide

social medi
@) @ social media
2 social media Q
L=l Ficers Search social and media
f) From Me 0 o Me
-) Attachments 10 of 83 Open email aslist e pme e
People Job Oriented Social Media Marketing Course info@monsterindia.com
BlackFriday.com
g cooores in Association with Digital Vidya, India's Largest Digital Marketing Training
JetPrivilege Company 0ffers

Wenfeng Hou
Violiram Events Leave Your Mark: Land Your Dream Job. Kill It in Your Career. Rock
Listail 38 Social Media.

by Aliza Licht
url: http://wnw. goodreads. com/book/show/23197565 - Leave -
Folder your-mark?utm_campaign=2615_S&utm_content=nonfiction pos3 textonly&
amp; utm_medium=enailgamp; utm_source=new_releases..

i J

Al Mall (aishwaryasbhide@gmail.com)
Inbox (alshwaryasbhide@gmail.com)

L

Are you looking for Internships, Scholarships, Training, Let Me Know | Update
Festivals, Jobs and lot more exciting opportunities? 03/
Check out Let Me Know's newsletter!

to: Aishwarya Bhide

6. http://wes. facebook. com/pages/Let-Me-Know/369108142297utn_source=LMK+Subscriberss
utm_canpaign-acdsd4ffae-DailysNews ettersutn_medium-email

[71Paid Sumer Internship in Social Media Marketing
The Research Pedia (TRP) is an online portal for research on various
topics. We olan to hire interns for vaid internshio which will be.. S

searchwith querycorrection
F=J¥ aishwaryasbhide@gmail.comis up to date socilmedea Q

= | 2220ch m—

BOFrEE QS B Ractcy

FIG. 3.9. Snapshot of output of add-on for query “socil medea”

traveldetails - Mozilla Thunderbird Ol = IC-ESED

Q traveldetails

traveldetails Q.

From Me To Me

(—|
LSl Fiers Search traveldetails

B

'

G B

Searchwith querycorraction

i

% aishwaryasbhide@gmail.com is up to date Q

search

BOFLEEE DS @ Rt

FIG. 3.10. Snapshot of output of add-on for query “traveldetails”

29

travel details - Mozilla Thunderbird B ==
Q travel details

travel details Q.

[From Me 0 To Me

(—|
LSl Fiers Searchtravel and details

[starred 10 of 263 Open email as list relevance date

e # Invoice for Booking ID : AMDGE7LBW no-reply@ibiboupdate.com
to: Aishwarya Bhide 05

People
Dear Aishwarya
Airfarewatchdog Route Alert

Pl American Express Global Business Tra Thank you for choosing Goibibo for your Travel Requirements.
Goibibo.com (feedback@goibiboprom. Attached, please find your invoice for Booking ID AMDGE7LBW dated May 17, 2014, 10:30
é Golbibo.com {feedback@goibiboprom. Pl
JetPriviiege @ Invoice.pdf
~ Quora Weekly Digest .
AU Invoice for Booking ID : AMDSE7LBW no-reply@ibiboupdate.com
&= (X [aw=ite to: Aishwarya Bhide 05/19/2014
StudentUniverse
Dear Aishwarya
List il 80
Thank you for choosing Goibibo for your Travel Requirements.
. Folder Attached, please find your invoice for Booking ID AMDGE7LBW dated May 17, 2014, 10:30
FRf il @ishwaryasthidegmal.com) Pl
= Inbox {aishwaryasbhide@gmail.com) @ Invoice.pdf
Starred (aishwaryasbhide@gmail.com] N
x = J INVOICE 2342921 for BHIDE/AISHWARYA American Express Global Business
Ref NFHMEI Travel

to: Aishwarya Bhide January 22

Please find attached your invoice.

If you have any questions regarding your reservation or invoice, please contact your
local American Exoress Global Business Travel office immediatelv.

G B

Searchwith querycorraction
traveldetails Q

i

& aishwaryasbhide@gmail.com is up to date

: (search |

QOF L EE P IS B R

FIG. 3.11. Snapshot of output of add-on for query “traveldetails”

unive rsal orlando - Mozilla Thunderbird

Q unive rsalorlando

unive rsal orlando [

Filters Search unive andrsal and orlando

From Me To Me

match your search

PPDPNC]OE®

a‘ﬁ{

G B

Searchwith querycorrection
] Q

; search

QPP AT E OO Erctcy

{

i

F1G. 3.12. Snapshot of output of add-on for query “unive rsal orlando”

PPN Oma

WG B =

orlando universe | - Mozilla Thunderbird

] Q orlando universe

Filters

[From Me 0 To Me

[Attachments

People

Mandar Haldekar
noreply@amazingpictures.com
Richa Gandhewar
studentcouncii@sap.com
StudentUniverse

Universal Orlando Resort

Folder
Al Mail (alshwaryasbhide@gmail.com)
Inbox (aishwaryasbhide@gmall.com)

& aishwaryasbhide@gmail.com is up to date

FIG. 3.13. Snapshot of output of add-on for query

orlando universe [

Search orlando and universe and |

10 of 21 Open email as list sort by relevance date

Giving Is Universal

Universal Orlando Resort
to: Aishwarya Bhide 2 5

Celebrate the Holidays at Universal Orlando® Resort.

UNIVERSAL ORLANDO RESORT FEATURES..

Limited Time Offer For Our Newest Hotel

Universal Orlando Resort
to: Aishwarya Bhide o 1

*One_(1) $150 hotel dining credit per room. Credit applies to food and beverage
(excluding alcohol) at Loews Sapphire Falls Resort restaurants only, days/hours of
operation may vary. $15 credit must be used in full during stay. Excludes gratuities
and applicable taxes. Offer is non-transferable and cannot be combined with any other
offers, promotions, discounts or prior purchases. Any unused portions of are
non-transferable and non-refundable. Minimum of four (4) night stay required.
Pronotional offer is valid for travel between 07/14/16 — 12/15/16. Offer must be booked
by 85/31/16. No group rates or other discounts apply. Blockout dates apply 11/23/16 —
11/26/16. Travel must be copleted during promotional period(s).

~The 3-Day Park-to-Park Ticket entitles one (1) guest admission to BOTH Universal
Orlando Resort theme parks on the same day for the duration of the base ticket. Ticket
is valid for any three (3) calendar days during a fourteen (14) consecutive calendar day
period which includes the first day any portion of the ticket is used. This ticket also
includes fourteen (14) consecutive calendar days of admission to the paid entertainment
venues of Universal Citywalke (*Citywalk") which commences and includes the first day
any portion of the ticket is used. Applicable sales tax will be added to all ticket
products. The above Admission Media is non-refundable, non-transferable, and must be
used by the same person on all days. Valid only during nornal operating hours. Parks,

30

Q
Search with queryeorrection
unive rsal orlando, Q
search |
BROPILEDF B @ B rotcr

“unive rsal orlando”

Chapter 4

RETRIEVING RELATED EMAILS

Many times users want to refer to another email while reading a mail for details about
the topic of current email. In this case, the user has to type the topic in search box and go
through the search results. If the topic is very common, the search results may contain a
large number of emails, only a few of which are related to what user is searching for. In
most such cases, the related email user wants to refer to is from the same sender as current
email.

This study implements the feature of showing related emails to current open email
based on email content on the click of a button. The button is shown below the open email
in status bar of Thunderbird. When user clicks the button, keywords are found from the
email content using Part-of-Speech (POS) tags, term frequency (TF) and Inverse Document
Frequency (IDF). The Python library Topia.termextract is used for finding most probable
keywords based on POS tags and getting term frequencies. Document Frequency of key-
words is found by querying Gloda database. The keywords may consist of one or more
words. The keyword having top TF-IDF weight along with sender’s name is used as search
query.

Fig. 4.1 shows an open email for which user wants to search related emails.

Fig. 4.2 shows results of related emails for above email without using sender’s name

31

32

hi - Inbox - Mozilla Thunderbird 4 B = @) 11:32PM %
g 8 b = hi-Inbox
Bl & GetMessages v | fwrite (=)chat [@addressBook = €)Tagw search... <Ctrl+K> qQl =
E From Mandar Haldekar <hmandar999@gmail.coms: % Reply || = Forward || & Archive || © Junk || ® Delete || More v
ﬁ Subject hi 04/03/2016 05:58 PM
= To Mé!
sl Did you read my email about Sachin?
p— Thanks,
z, ~Mandar Haldekar
Ea)
=5
@
=)
: = Find related emails| Searchwith querycorrection Q search

BOFPEEF 0@ @ rentcr

FIG. 4.1. Input email for related emails

on clicking "Find related emails’ button.

As seen in the results, there are many emails which contain the proper noun ’Sachin’
which are not related to what user is searching for. Thus, the results don’t readily show the
expected email.

Fig. 4.3 shows the results of related emails for same email with sender’s name in the
query.

As seen in these results, this approach gives better results and shows the email that
user is looking for with better accuracy.

Fig. 4.4 and 4.5 show another example of finding related emails for an email having a

lot of text content.

DDDHNOE®

; §F aishwaryasbhide@gmail.com is up to date

Sachin - Mozilla Thunderbird

]

Filters

[From me 0 o Me

[Attachments
People
"174shalini@gmail.com'
aishwarya bhide
Linkedin Updates
medhavini buchade
Placement Cell
Quora Weekly Digest
shweta chapalgaonkar
tnppict2k11@googlegroups.com
List all 3390

Folder
Al Mail (aishwaryasbhide@gmail.com)
Inbox (aishwaryasbhide@gmail.com)

Mailing List

tnppict2k11@googlegroups.com
None.

33

sachin Q.
Search Sachin

10 of 46 Open email as list sort by: relevance date

What have you learnt at IIT? - Quora Quora Weekly Digest
to: Aishwarya Bhide 5/09/2014

Question: What are the greatest software misuses?

Answer from Sachin Kulkarni
Don't have a mirror at home?
No problen! Use the laptop camera instead...

What are some rocking facts about India's INS Kolkata? - Quora Weekly Digest
Quora 08/20/2014
to: Aishwarya Bhide

Question: Why are so many people content with just earning a salary and working 9-6
their entire adult life?

Priti Bisht voted up this answer.

Ansver from Sachin Sharma

A boat is docked in a tiny Mexican fishing village...

What is the bravest thing you have ever seen someone Quora Weekly Digest
do? - Quora 01/24/2015
to: Aishwarya Bhide

Question: What are some of the best (memorable, funny or touching) lines from Friends?

Answer fron Sachin singhal
Here today while watching Friends I found these Lines pretty awesome.
These are from Season 6 Episode 11(The one with the apothecary table) ...

sachin B patil's invitation is waiting for your response

Prajakta Naik
to: Aishwarya Bhide 2014

searchwith querycorrection Q search

QF P A @ Q@ Erctcy

Find related emails

<)
=
”

Mandar Haldekar <hmandar999@gmail.com> Sachin - Mozilla Thunderbird

FIG. 4.2. Output without sender name in search query

t B = =) 1155PM I

Q Mandar Haldekar <...

Mandar Haldekar <hmandar999@gmail.com> Sachin Q.

Filters Search Mandar and Haldekar and <hmandar999@gmail.com> and Sachin
From Me To Me
20f2 Open email as list sort by: relevance date
Sachin Tendulkar information Mandar Haldekar
to: Aishwarya Bhide sunda
Regarded as one of the greatest batsmen ever, Sachin Ramesh Tendulkar is
the mainstay of Indian batting line-up for more than two decades. He is the
[world's leading run-scorer in both Test (14,692) and ODI (18,111} cricket.
= In 2011, Tendulkar finally achieved his dream of winning the Cricket World
Cup at the Wankhede stadium in Mumbai. It took six World Cup appearances..
é hi Mandar Haldekar
_ to: Aishwarya Bhide sund
Did you read my email about Sachin?
Thanks,
-Mandar Haldekar
A
b <l
LA
-
== L Find related emails| Searchwith querycorrection Q search
BOPLEEEH TS B rshicr

F1G. 4.3. Output with sender name in search query

34

Travel Receipt FOR BHIDE / AISHWARYA SUBHASHCHANDRA TRAVEL DATE 17Feb BWISFO Ref: KSZMOB - Inbox - Mozilla Thunderbird <)) 548PM 3%

[Travel Receipt FOR... %

& GetMessages + [/ write (S)chat [B)AddressBook €)Tagv

Q =
From Groupon@bcdtravel.com' 4 Reply | ReplyAll| » = Forward Archive| @ Junk | ® Delete | More v
Subject Travel Receipt FOR BHIDE / AISHWARYA SUBHASHCHANDRA TRAVEL DATE 17Feb BWISFO Ref: KSZMOB 02/03/2016 09:13 PM

To Me', JKHOV@GROUPON.COM.J

L]
BCD.. travel

GIVE YOUR PRINTER A BREAK

ACCESS ALL OF YOUR TRIF DETAILS DIRECTLY
FROM YOUR PHONE OR TABLET.

DOWNLOAD THIS TRIP NOW!

- tripsource

for iPhons & Android

[

TRAVELER NOTICE - Many airlines charge fees for baggage and ather services. Amounts vary by airline and are subject to change.
Travelers are responsible for verifying all fees charged by individual carriers.
A Please visit the operating carrier website of your ticketed itinerary for applicable fees.

I DD PN O
e

Cast Center: 6001
Caost Center Description: 989998
Purpose of Travet CANDIDATE TRAVEL-COLLEGE

minute to you y and be 2 If you find an error, ht to avoid
potential fees and penalties.

Printer Friendly

Enml “Amount: 677.30 USD
his ticket information applies to the folowing rip(s): o

] Find related emails| Search with querycorrection Q| search

BEOFFEF O S @ rctcr

TOETE]

F1G. 4.4. Input email for related emails

<Groupon@bcdtravel.com> February 19 2016 - Mozilla Thunderbird

g e to: Aishwarya Bhide, jkhov@groupon.com

Fallr This ticket information applies to the following trip(s):

Al Mail (aishwaryasbhide@gmail.com)

United Airlines Flight 3648 from Baltimore MD to Newark NJ on February 17
United Airlines Flight 39 from Newark HJ to San Francisco CA on February 17
United Airlines Flight 535 from San Francisco CA to Newark NJ on February 19..

g)] = Q <Groupon@bedtra... x
=4 <Groupon@bcdtravel.com> February 192016 Q.
Ll Fiters Search <Groupon@bcdtravel.com> and February and.19 and 2016
;) [From Me To Me
E 30f3 Open emall aslist v relevance date
People
groupon@bcdiravel.com Travel Receipt FOR BHIDE / AISHWARYA @bediravel.com
e thta il SUBHASHCHANDRA TRAVEL DATE 17Feb BWISFO Ref: February 3
— i KSZMOB
|

Inbox (aishwaryasbhide@gmall.com)

Hotel not booked for BHIDE/AISHWARYA grou|
SUBHASHCHANDRA Travel date 17Feb
to: Aishwarya Bhide, jkhov@groupon.com

@bcdtravel.com

B
-

Date From/To Flight/Vendor Status Depart/Arrive Class/Type
BWI-EWR 10:28 AM/1

02/17/2616 A 3648 Confirmed 1:30 AM Economy / S
02/17/2016 EWR-SFO UA 39 Confirmed 02:35 PM/05:58 PM Economy / S
02/19/2616 SFO-EWR UA 535 Confirmed 11:00 AM/07:31 PM Economy / V
02/19/2016 EWR-BWI UA 3595 Confirmed 89:54 P/10:57 PM Economy / V..

Fwd: Hotel not booked for BHIDE/AISHWARYA Aishwarya Bhide
SUBHASHCHANDRA Travel date 17Feb February 3
to: harshada bhide@gmail.com

- -~ Forwarded message --
Fron: <Groupongbedt ravel . con>
Date: 3 February 2016 at 21:10

Hotel not booked for BHIDE/ATSHWARYA SUBHASHCHANDRA Travel date

Find related emails| Searchwith querycorrection Q search

BOP/EEE DG rancy

FIG. 4.5. Related emails for email in Fig. 4.4

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This study tries to enhance the search functionality of Thunderbird, an open source
email client by providing the features of query auto-correction and displaying emails re-
lated to currently open email. Various experiments were performed to correct the text
search queries. It was found that using machine learning algorithms did not give good
results as different factors affected misspellings of words differently and predicting the
correction in a word based on the observed misspellings of other words was rarely effec-
tive. Instead, making simplifying assumptions about the misspellings and using constant
weights for each feature reduced the complexity and gave better results. Also, it was found
that emails related to an open email could be found by using term extraction techniques and
using extracted terms as search queries. Both of these enhancements would improve user’s

email search experience whether user’s device is connected or not connected to internet.

5.2 Future Work

Performing synonym search i.e. searching for a word as well as its relevant synonyms,
for the entered query would return better results. The query correction and search time

could be improved by creating a persistent database index instead of using virtual tables.

35

36

A configuration option can be provided so that the user can choose whether to use virtual

tables or persistent tables for index based on memory availability.

REFERENCES

[1] Abhijeet Bhole, R. U. 2015. On correcting misspelled queries in email search. In

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

[2] Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae,
V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; Layton, R.; VanderPlas, J.; Joly, A.; Holt,
B.; and Varoquaux, G. 2013. API design for machine learning software: experiences
from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, 108—122.

[3] Duan, H., and Hsu, B.-J. P. 2011. Online spelling correction for query completion.
WWW 2011.

[4] http://www.cs.cmu.edu/ einat/datasets.html.

[5] https://www.sqlite.org/fts3.htmlftsdaux.

[6] https://pypi.python.org/pypi/python-levenshtein.
[7] https://pypi.python.org/pypi/metaphone/0.4.

[8] Nicolas Ducheneaut, L. A. W. 2005. In search of coherence: A review of e-mail

research. HUMAN-COMPUTER INTERACTION 20:11-48.
[9] http://www.nltk.org/.
[10] http://morvig.com/ngrams/spell-errors.txt.

[11] Qing Chen, Mu Li, M. Z. 2007. Improving query spelling correction using web search
results. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning, 181-189.

37

38
[12] Silviu Cucerzan, E. B. 2004. Spelling correction as an iterative process that exploits

the collective knowledge of web users. EMNLP 4:293-300.

[13] https://www.sqlite.org/spellfix1.html.

[14] https://developer.mozilla.org/en-us/add-ons/thunderbird.

[15] https://pypi.python.org/pypi/topia.termextract/.

[16] https://pypi.python.org/pypi/whoosh/.

[17] https://developer.mozilla.org/en-us/docs/mozilla/tech/xul.

[18] Zhuowei Bao, Benny Kimelfeld, Y. L. 2011. A graph approach to spelling correction
in domain-centric search. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics, 905-914.

