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Cybersecurity threats, exploits, and intelligence sources have evolved to be

largely cross-regional over the course of time. Although the security community

perpetually addresses this topic, its scope is continually stretching and introducing

new areas of study. Particularly, an area of research that is relevant but heavily

under-explored, is the use of multilingual open source intelligence in cyber oper-

ations. Open Source Intelligence (OSINT) in the form of text is scattered across

major criminal networks, and is highly multilingual in nature. By aligning mul-

tilingual sources, the security community can tap into new pools of intelligence.

Language alignment, can be achieved through the use of neural machine translation

(NMT) systems. This thesis explores supervised and unsupervised methods in align-

ing multilingual open source intelligence sources without the use of of third party

engines. Although third party engines are growing stronger, they are unsuited for

private security environments. First, sensitive intelligence is not a permitted input

to third party engines due to privacy and confidentiality policies. In addition, third

party engines produce generalized translations that tend to lack exclusive cyber



security terminology, which could be integral in attack discovery.

We addresses these issues and describe our system that enables threat in-

telligence understanding across unfamiliar languages. We create monolingual and

multilingual word embeddings from open source intelligence data in two distinct lan-

guages, and derive a bilingual dictionary through both supervised and unsupervised

methods. We then create a neural network based system that takes in cybersecurity

data in a di↵erent language and outputs the respective English translation. We

evaluate with traditional approaches, and through experimental applications.
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Chapter 1

Introduction

1.1 The Semantics of Security

Information across political, cultural, and geographical boundaries is widely

communicated over a global Internet. Today, we have a multilingual Internet where

people converse in a variety of languages like English, Mandarin, Russian, Hindi,

etc. [4]. Cyber threats in particular, originate from and are mitigated over a broad

range of geographic regions. Although a significant amount cybersecurity web data

is available, it is spread among major natural languages, decreasing interoperability

between multilingual systems. This creates di�culty in employing strong cyber risk

management across organizations worldwide. Specifically, amongst state actors or

major criminal networks, it is likely that the threat information is in a language

other than the language of the analyst.

Intelligence gathering spans an expansive geographic distribution. As a result,

cybersecurity actors, both attackers and defenders, converse over non-traditional

sources such as social media, blogs, dark web vulnerability markets, etc. in diverse

languages. These non-traditional sources are becoming an important asset for threat

intelligence mining [30] and many times are first to receive the latest intelligence

about vulnerabilities, exploits, and threats [29]. The multilingual nature of these

non-traditional sources is a potential hindrance for cyber-defense professionals, as
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they might be limited by their knowledge of di↵erent languages. Despite this signifi-

cant issue, the role of language in addressing cyber threats has been under explored.

Multilingual understanding, adds to the many challenges security analysts continue

to encounter. The security industry is heavily dependent upon the security analyst’s

ability in using specialized experience to reason over the disparate pieces of intelli-

gence data available on the web, in order to discover potential threats and attacks.

A multilingual Internet needs a multilingual approach to cybersecurity.

1.2 Strengthening modern cyber defence systems

The abundance of cybersecurity web data has led to the use of AI/NLP based

cyber-defense systems to help analysts extract relevant pieces of information that

may constitute an attack. These systems need the ability to process multiple lan-

guages to keep up to date with the most current threat intelligence. While modern

cyber defense systems have the ability to reason over disparate pieces of threat

intelligence data on the web, we hope to create a defensive system that also un-

derstands various languages, by using the English language as a baseline. In our

previous work, we developed CyberTwitter and Cyber-All-Intel [23, 24], systems

that mine threat intelligence data from various sources, and automatically issues

cybersecurity vulnerability alerts to users. This work extends these cyber-defense

systems to a wider spectrum of potential threats, by mining threat intelligence data

in a multitude of languages. These systems typically produce “cyber terminology

representations” [23, 24] to categorize threat-related words, but only learn repre-
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sentations for English. Consequently, if a certain threat is not gathered under a

specific language, the system will not have a representation for it, even if it is a

known threat in a di↵erent language. We use our multilingual threat intelligence

system to align cyber terminology representations of di↵erent languages, expanding

monitoring capabilities across the globe.

1.3 Contribution

In this thesis, we utilize word embeddings to align cybersecurity terminol-

ogy in various languages. Primarily, we create a multilingual translation system

that harnesses critical cybersecurity data derived from various natural languages to

address the international nature of cyber attacks and assist in defensive cyber op-

erations. Our system optimizes translations particularly for cybersecurity data. By

also extending our system to use multilingual embeddings, we are able to transfer

security knowledge from one language to another, without the overhead of produc-

ing bilingual dictionaries, as we did previously. Specifically, we investigate semantic

representation of multiple languages with a corpus from Twitter, including threats

and vulnerabilities in two languages, English and Russian. We build models to re-

late the vector space representations in the two languages to translate threat from

Russian to English.
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1.3.1 Use Case

1.4 Thesis Statement

’‘Structuring language alignment tasks on multilingual OSINT word embed-

dings, will allow us to create an in-domain neural machine translation model that

yields more granular security term mappings in comparison to general translation

engines.”

We will answer the following questions:

• Do cyber security terms di↵er enough across languages to provide dramatic

impact to intelligence gathering e↵orts?

• Can we automatically align monolingual embeddings to discover relationships

between multilingual cyber security words and reveal novel threat information

in unfamiliar languages?

Our overall use case showed in Figure 1.1, utilizes embeddings created from

Russian and English threat intelligence data. The embeddings help us understand

security terms in Russian, by aligning semantically similar Russian cyber terms with

their English counterparts. The system first begins by gathering relevant Russian

threat intelligence data from sources such as Twitter. The data is then assimilated

into a vector representation in order to bring semantically similar terms together [20].

The data is then fed into CyberTwitter, which converts the English representation

of the Russian data into a machine understandable format defined using our UCO
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Figure 1.1: Multilingual Threat Intelligence Platform

Ontology [32] in OWL. This helps cyber-defense systems gain intelligence about

threats mentioned in the Russian text. The acquired intelligence is then fed into an

AI-based cyber defense system that generates conclusions from an accumulation of

aggregated threat intelligence data.

An issue with directly converting threats in foreign languages to machine read-

able formats, is removing the security analyst from the threat inspection process.

Providing analysts with raw translations help them reason over and expand upon a

new landscape of threats and vulnerabilities. Our system aims to therefore, serve as

an augmentation system that helps analysts divert full attention on their primary

roles of analyzing and piecing in novel threat information.
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Chapter 2

Overview and Related Work

2.1 Overview

The internet hosts threat intelligence available in many langauges,causing an

overload of data to be processed. The ability to transfer knowledge of commonly

understood languages to lesser known languages, certainly has the potential to grow

information sharing capabilities. Refer to the pieces of foreign threat intelligence

present below. Although translation systems are growing in popularity and have the

potential to address this issue, many argue that even with grounded human truth

they are not as reliable as human experts analysts. As expected, there seems to be

a low degree of human translators to handle the superfluous amount of potentially

useful multilingual cybers ecurity data. To combat this issue, we first create a

domain-specific translation model that takes the help of Russian cyber security

analysts to train Russian text to output its English counterparts. We compared the

accuracy of our model against third party translation systems, which are state of the

art but not preferred in sensitive security environments due to their scalability issues

as well as, privacy and confidentiality limitations. Our comparison was mainly used

to determine if we can output more cyber security specific translation. Although we

got seemingly good accuracy and usability, our next step was to make our system

could more useful with the creation of crosslingual embeddings. These crosslingual
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embeddings can also be used as input to other tasks such as question and answering

systems, and even the production of domain-specific multilingual embeddings.

2.2 Background

The methodology and architecture details are described in Chapter 3. Before

we discuss the details of system, we will briefly introduce the key concepts used in

this thesis.

2.2.1 Social Media and Open Source Threat Intelligence Mining

The Intelligence Community heavily relies on openly available information on

the internet to identify potentially malicious events. This information is commonly

known as Open Source Intelligence, and is gathered from sources such as online

newspapers, blogs social-networking sites, etc. Due to its breadth and easy access,

OSINT has emerged as an important aspect of the threat inspection process security

analysts perform. Social media in particular, delivers human sentiment and opinion,

trend analysis, and real time worldly event alerts, which together have proven to

reveal and provide threat indicators to the security community.

2.2.2 Natural Language Processing

Natural Language Processing (NLP) is a field within computer science, that

enables computers to understand human language. NLP includes syntatic tasks such

as part of speech tagging [20, 19] and semantic tasks such as machine translation [22].
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A standardized method to capture semantic properties of words is the production

of ”Word Embeddings”, described in the next section.

2.2.3 Word Embedding Models

Word embeddings are popular NLP architectures used for a variety of tasks

from recommendation systems to neural machine translation systems. Word em-

beddings are neural networks, that represent words as real numbers in a continuous

vector space. Word embeddings can be produced through various algorithms like

CBOW[], Skip-Gram, and Latent Semantic Anaysis [LSA]. In this work, we utilize

the CBOW algorithm to produce monolingual embeddings, vectors compromised

of one natural language and cross-lingual embeddings, or a representation of two

natural languages in one vector space.

2.2.4 Neural Machine Translation

Word embeddings are principle architectural components in Neural Machine

Translation (NMT) tasks. Generally, semi-supervised NMT models have used a

Sequence to Sequence architecture, in which a decoder learns a generalized seman-

tic encoding of a source language, and outputs a target translation, moving away

from phrase-phrase translation. These models make use of a bilingual dictionary of

source to target language. More recent research has moved towards unsupervised

NMT through the use of automatic dictionary generation with multilingual word

embeddings.

8



2.2.5 Multilingual Representation

The rise of linked data has stimulated semantic information publication on the

web by enabling vast opportunities to connect datasets through machine-readable

formats. Moving towards a Semantic Web also presents the ability to publish knowl-

edge in various natural languages, like Russian and Chinese. Currently, there are

over 100 languages represented on the internet. W3Techs estimated English and

Russian ranking as the top two of most represented languages, after surveying the

top 10 million websites on the web in 2017.

2.3 Related Work

In this section, we present related work on the vector space model uses, neural

machine translation, AI-based cybersecurity systems, and cybersecurity understand-

ing across di↵erent languages.

2.3.1 Text Analysis for domain specific tasks

Text analytics has been utilized in areas such as information retrieval [16],

machine translation [13], and topic detection [18]. These areas are especially useful

for domain specific tasks such as cybersecurity.

2.3.1.1 Vector Space Models

Vector Space Models, or word embeddings, hasve been used in Natural Lan-

guage Processing. Words are embedded in a continuous vector space such that,
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words that appear in the same contexts are semantically related. One method that

generates embeddings based on word co-occurrence is word2vec [20, 19]. Mikolov

et al. [19], showed that proportional analogies can be solved by finding the vector

closest to the hypothetical vector. Embeddings have also been utilized in other

areas such as word sense disambiguation [3], semantic search [31], and discovering

inter-linguistic relations in machine translation studies [22].

Wordnet [21] is a human curated lexical database that groups together syn-

onyms in the English language. Many other versions of Wordnet have been pro-

duced, such as ArabicWordNet and ChineseWordnet [27]. These lexical databases

are often times used to aid lexical and term alignment.

2.3.2 Term Alignment in Vector Spaces

Analogical Relationships are often times utilized to aid term alignment in

vector spaces. Term alignment is known as statistically finding correspondences

between words in di↵erent groups [5]. Plas et al. [17] utilize automatic world

alignment to find translations from Dutch to one or more target languages. Similarly,

Brown et al. [28] aligned sentences with their translations in two parallel corpora,

consisting of French and English. Yang et al. [25] show how the pattern of the

context from word embeddings help to align similar word pairs in other languages.

Piantra et al. [9] created MultiWordnet, an aligned multilingual database curated

to produce an Italian Wordnet, by aligning synonyms in Italian to EuroWordNet.

Niemann et al. [8] aligned WordNet synonym sets and Wikipedia articles to group

10



article topics based on synonyms.

2.3.3 Neural Machine Translation

Word embeddings have aided in a diversity of machine translation tasks. Neu-

ral machine translation typically operates through the encoder-decoder-attention

architecture [7]. MMore recently, bilingual word distributions have been trained

using unsupervised methods such as Latent Dirichlet allocation (LDA) and Latent

semantic analysis (LSA) to aid machine neural translation [14]. Lample et al. [12]

trained word embeddings from monolingual data and utilized external and internal

vectors as input for the network utilized to train unfamiliar instances of words. In

terms of semantic translation tasks, Hill et al. [10] show that translation-based em-

beddings work better in applications that require concepts organized according to

similarity

2.3.3.1 Cybersecurity understanding across multiple languages

Cybersecurity terminology definitions di↵er across cultures and languages.

The Department of Homeland Security started developing multilingual resources, to

help link cybersecurity understanding across international governments [6]. Klavens

et al. [15] outlines the importance of linguistics in the domain of security and claims

language analysis propels understanding of communication between cyber-crime ac-

tivist groups, filtering relevant data collection, and understanding the intention

behind the words.
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2.3.4 AI Based Cyber Defense Systems

The use of social media in threat intelligence mining, provides a new interface

between the public and the Intelligence Community. Twitter data in particular, is

seen as a reliable OISNT resource due to its real time nature during high impact

events, such as terrorist attacks [1]. Mittal et al. [23] developed CyberTwitter, a

threat intelligence framework that utilizes twitter data to automatically issue se-

curity vulnerability alerts to users. Similarly, the Cyber-All-Intel system collects

OISNT data, stores it in a cybersecurity corpus, and utilizes word vectors for cy-

bersecurity term similarity searches [24].
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Chapter 3

System Design

3.1 Overview: Intelligence Translation Architecture

In this section, we describe our data collection methods, vector space gener-

ation, alignment techniques and neural machine translation framework. We first

create a multilingual cybersecurity corpus that contains tweets about threats and

vulnerabilities in various languages. In this paper, to create a proof of concept, we

focus on English and Russian. We investigate semantic alignment of both languages

through implicit and explicit learning. Using the collected corpus,we then produce

English and Russian vector embeddings. Once we create the embeddings, we align

both vector spaces utilizing an alignment database. Once the spaces are aligned,

we are explicitly translate of Russian threat intelligence to English. We then uti-

lize a linear transformer to represent both languages in a single vector space as an

experimental use case.

3.2 Methodology

This work’s primary goal is to configure di↵erent methods in aligning and

comparing cyber security terminology and understanding across any language. Fig-

ure 3.1 below shows the major components of this thesis work. Through both

13



semi-supervised and unsupervised learning, as well as multiple use cases to test the

system below, we conclude that in-domain modeling yields more granular security

term mappings in comparison to general translation engines. The details of each

component in Figure 3.1 are explained throughout the rest of this chapter. We first

create a multilingual cyber security corpus that contains tweets about threats and

vulnerabilities in various languages. In this paper, to create a proof of concept, we

focus on English and Russian. We then create a topic model to derive cybersecurity

concepts in both the Russian and English languages. These topics will later aid us in

creating the alignement database discussed in Section 3.6. We then use the corpus to

create monolingual English and Russian vector space embeddings. Once we create

the embeddings, we align both vector spaces utilizing an alignment database. Once

the spaces are aligned, we are able to undertake semantic translation of Russian

cyber threats and vulnerabilities to English.

Figure 3.1: System Components
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3.3 Data Collection and Pre-Processing

In this section, we describe our data collection methods, and crosslingual OS-

INT corpus. We start by describing our data Collection methodology 3.3. We then

explain methods in discovering cyber security concepts in each language 3.4. Next,

we create English and Russian word embeddings from the tweets 3.5. After, we

create a bilingual dictionary 3.6 later used in our neural machine translation sys-

tem 3.7. Finally, we use a linear transformer to align both vector spaces into one

embedding using Facebook’s FastText algorithm 3.8.

3.3.1 Collecting Open Source Intelligence data from Twitter

We collect data through the Twitter streaming API. We explore open source

intelligence data available through twitter due to its real time nature, as well as

its tendency to compose information from various other sources onto one platform.

Through twitter, we were able to naturally interface with security bloggers, security

organizations, product companies, as well as everyday users who discover vulner-

abilities. An example of open source intelligence available on twitter is shown in

Figure 3.2

We collect tweets upon three major categories. The first two categories com-

promise keywords significant to each language. These keywords were suggested by

multilingual cyber security domain experts [26] and various security analysts. Col-

lecting data using the keywords shown in Figure 3.3 gives us a direct interface to

Russian cyber colloquialisms. For example, the tweet depicted in Figure 3.2, reveals

15



Figure 3.2: Russian OSINT on Twitter

a regional-specific DDoS attack, to threat analysts outside of Ukraine. The third

category, included the same words back-translated to the corresponding language.

The back translation helped us conclude that while some security terms retain the

same meaning, others are largely di↵erent. This is more clearly explained in Section

3.7.1. In this e↵ort, we hoped to find the extent to which security terms di↵ered

across the two languages. We use the Twitter API language capabilities to detect

tweet language through a flag (en=English, ru=Russian). Setting this flag provides

us the ability to collect data in both languages.

The data is stored and separated by language in MongoDB. MongoDB is a

NOSQL database that later helped us in storing and creating, our bilingual dictio-

nary described in Section 3.6.

3.3.2 Pre-Processing

After creating the twitter corpus, we pre-process the tweets by langauge. Twit-

ter data is highly unstructured, containing special characters, emoticons, as well as

16



Figure 3.3: Keywords

slang terminology. The pre-processing step was especially crucial for this thesis in

order to retain the most significant information amongst the noise. For both lan-

guages, we first tokenize the words by space. We then, remove all stop words and

stem the words to their root forms. We later lemmatize the words in order to. Lastly,

we remove all special characters except hashtags due to their heavy importance in

a tweet. The Russian and English tweets use their own tokenizers, stemmers and

lemmatizers specific to the language. We utilize the plunkt library for the Russian

corpus. Hashtags are powerful mechanisms in tweets, in that they have the power to

summarize a tweet with a few major key words. These hashtags were important for

us in our initial analysis. We were able to compare one to one major words across

two languages, before even creating embeddings to analyze the sentences. For our

translation e↵orts in Section 3.7.1 we take the hashtags out for modeling purposes.

After pre-processing our corpus size reduced from 2G of data, to 424,928KB of data.

17



Concept Definition Example

Red Systematic Attack Verbs spoof,thwart,exploit

Blue Preventative Terms protect, warning, report

Technical Explicit Attack Details rootkit, dns, xs

Political Regional Conflict russia,strategy,war

Table 3.1: LDA Concepts

3.4 Deriving Common Security Concepts

In this section we describe our topic model for deriving and analyzing concepts

for both the Russian and English tweets. We apply Latent Dirichlet Allocation sep-

arately for the Russian and English tweets, and later compare the results. Latent

Dirichlet Analysis is a probabilistic topic model used to derive classes of a document

based on. This model assumes a Dirichlet Prior over the topics. For the Russian

tweets, we derived 135 concepts overall, and for the English tweets, we derived 72

concepts. Through the help of a Russian speaker, we sifted through the concepts to

manually extract first, security related classes, and secondly similarities in classes

between both languages.Examples of similar security concepts we derived are dis-

played in Table 3.4 below. We found the concepts derived related directly to both

o↵ensive and defensive sides of the security community. The Red concept classified

attack vector terms, while the Blue concept, classified defense terminology. Figure

3.4 represents a snapshot of Red security topics related to IOT devices.
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Figure 3.4: Russian Cybersecurity Concepts for Topic Red

3.5 Producing Monolingual word embeddings

In order to learn mappings between security terms inside of one language, we

develop separate vector space models for the English tweets and the Russian tweets.

We are able to analyze semantic similarity of words in the same language space by

creating monolingual embeddings. Word embeddings composed of one language are

called monolingual embeddings, while embeddings composed of two are crosslingual

embeddings. More information on the unsupervised crosslingual embeddings we

developed with Facebook FastText can be found in Section 3.8. We generate English

and Russian word embeddings with Word2Vec. Word2Vec is a generalized package

of word vectors that can be used in multiple applications. In our application, we

train on a corpus of Russian and English tweets to find a generalized representation

of the cyber security related words.
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Word2Vec comes with two di↵erent models, the Skip Gram and the Continuous

Bag of Words (CBOW) model. We use CBOW to represent our collection of tweets

as a vector. Words in the embedding space are semantically similar if grouped

together around the same neighborhood. For example, in our English model, words

like malware,iot, network,ddos,community,etc. will be clustered together.

We import word2vec through the Gensim python library. The word embed-

dings for each language are multidimensional and have 300 dimensions each. The

more dimensions a word embedding has, the more generalized the model is, and

hence the more accurate the model is. We chose 300 dimensions, as it was the

largest number of dimensions we could implement, without making the system too

computationally expensive. The minimum word count for the model is 2. This

means, the words with an occurrence less than 2 will be ignored. We chose a lower

word count, seeing that more rare threat words will only appear once or twice, but

still need to be retained in the vocabulary. We initialized two workers running paral-

lel in one CPU core. Our context window, is 10, meaning the model blocks 10 words

to process at a time. We set the down sampling size to 1e-3, to reduce frequent

word appearance while training. Past research has shown that a strong range is 0

- 1e-5. Lastly, we set 1 seed to serve as a deterministic random number generator

in order to pick which parts of the corpus to produce into vectors. The embeddings

train for 35 epochs.

Figure 3.5, depicts a 20th iteration training snapshot, of Russian words that

start appearing near ‘’DDoS”, a type of cyber security attack. These monolingual

embeddings are later used in the neural machine translation system we develop,
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Figure 3.5: Training Snapshot

described in Section 3.7.1.

3.6 Bilingual Dictionary Creation

In this section we describe the methods used to create the Bilingual English to

Russian Dictionary, as well as its two purposes in this research. Its first purpose, is

to serve as an evaluation task for the word embeddings produced in Section 3.5. The

evaluation process is described in Section 4.1. The second purpose, is to serve as

parallel data that is used in neural machine translation training described in Section

3.7.1.1 and 3.7.1.2.

In order to create relationships between English and Russian cybersecurity
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words, we created a dataset to align the English and Russian vector embeddings.

An alignment in our system means creating true positive mappings of Russian cy-

bersecurity terms to their English counterparts. We derived cybersecurity synsets

for the Russian and English vocabulary embeddings, created in Section 3.6. These

cybersecurity synsets include contextually similar words to each vocabulary word

in the Russian and English vector spaces. We emphasize that, when we say con-

textually similar words, we bring together cybersecurity terms in the same word

sense. The lexical database Wordnet [22], groups similar words into sets of syn-

onyms called synsets. WordNet does not support the Russian language. We found

a similar lexical database called Wiki-Ru-Wordnet, specifically for the Russian lan-

guage.We utilize the English synsets provided by WordNet, and the Russian synsets

provided by Russnet to create our cybersecurity synsets. An example of a cyber

synset we derived is shown in Figure 3.6.

Figure 3.6: Synset

The process for this creating the aligned database is shown in Algorithm 1. We

converted the Russian and English vocabularies of each synset into a list compre-

hension and derived synets for each member of the list, and stored it in a dictionary.

Each vocabulary word serves as a key that maps to many values. In this case, as

each synset is derived for a vocabulary term, the synset is appended to a key value.

We tasked two native Russian speakers, who served as annotators, to manually
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Figure 3.7: Synset

verify the quality of cyber security synsets produced. We use the Cohens Kappa to

compute the inter-annotator agreement, and keep only those cyber security synsets

that scored higher than 0.66.

The annotators confirmed that the synsets in Wordnet, and the synsets in

Russnet, were not only similar on a translation level, but also semantically similar

in a cultural context.

3.7 Neural Machine Translation

In this section, we describe our intelligence translation framework that takes

as input a Russian tweet and outputs its respective English translation. This model

is an example of an in-domain architecture, which translates data specifically for

cyber security. We use the cyber security embeddings developed in Section 3.5 as

well as the bilingual dictionary containing cyber security synsets, as part of the
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framework.

Our intelligence translation architecture is shown in Figure 5. We implement

a standard a encoder-decoder network, which is a dual Recurrent Neural Network

(RNN). The encoder serves as an input RNN and the decoder, serves as the output.

The encoder-decoder architecture projects the input Russian word to be translated

into the English embedding space, by returning words with a representation closest

in the English vocabulary.

The encoder-decoder network is implemented using a sequence-to-sequence

architecture [8], [32]. The encoder decoder network is able to process past and

future words in a sequence, and is also able to map an input sequence to an output

sequence of a di↵erent length. This is important to note because the translation will

almost always contain a di↵erent number of words than the input. If we used a a

typical RNN rather than a bidirectional RNN, our model would return one hidden

state per input, and get one translation per input, and the output length will be

the same as the input length at each point in time. The details of each part of the

network are described below.

3.7.1 Architectural Details

In this thesis, we use the Keras seq2seq, an implementation of the encoder

decoder network. Our architecture is displayed in Figure 3.8. We start by taking

raw input in the form of a Russian tweet. We then create a compressed vectorized

representation of the tweet through the first encoder RNN. The decoder RNN pro-
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duces a translation from the compressed vector representation of the input. The

encoder and decoder utilize a Long Short Term Memory (LSTM) cell [8]. More

information on the encoder and decoder states is explained in Section 3.7.1.1 and

3.7.1.2 respectively. The model uses pretrained word embeddings produced in Sec-

tion 3.5. Due to the high accuracy of the embeddings we trained previously, we

reuse them, to reduce training time. More information on accuracy can be found

coming in Section 4.2. We initialize Russian embeddings as the input in the encoder

state, and the English embeddings as the output of the decoder state. We utilize the

cybersecurity synsets, from Section 3.6 as well as the very popular Tatoeba aligned

en-ru sentence data as our parellel data. We train on 8000 samples and validate

on 2000 samples. Our hyperparameters were set as, batch size = 64, epochs =

100, latent dimensionality = 256, sample number = 10,000. In the hidden layer, we

have one dense layer, with a softmax activation function, which allows the model to

learn a mapping from the Russian vector representation, to the English vector rep-

resentation.The encoder, takes in Russian words and maps them to their respective

vector representations. The decoder then, creates a translation of the input word

and generates its predicted aligned semantic English embedding.

3.7.1.1 Encoder

The encoder operates like a classic RNN described in Section 3.7. We first

pass in the raw input, and the model returns a series of states (h and c). The

encoder does not produce any predictions, and functions to only train the model.
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Figure 3.8: Intelligence Translation Network

The LSTM retains the last state of the sequence (h,c). The encoder gives us a

function h(t) which is considered the thought vector. The thought vector is the

compressed vectorized representation of the input sequence and is passed to the

Decoder state.

3.7.1.2 Decoder

The decoder utilizes another LSTM cell. The thought vector from the encoder

is passed into the decoder, making them the same unit size. We then pass in the

first token of the sequence along with a start of sentence token that pads the input.

(insert formula)

Using the previous state (h1) and the first token (x), the model can predict

y1. We then take the argmax of probabilistic y1, in order to return the most likely
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word in the target language. A training snapshot of the model is shown in Figure

3.9 below.

Figure 3.9: Training Snapshot

3.8 Implicit Learning with Crosslingual and Multilingual Embed-

dings

In previous sections, we describe semi-supervised methods for aligning the vo-

cabularies of the Russian and English vector spaces. In this section, we describe

the unsupervised approach we used to align both embeddings in one space. We use

Facebook’s open source MUSE library to perform the alignment. MUSE provides a

linear transformer that learns a crosslingual mapping using adverserial training and

iterative Procrustes refinement.Procrustes refinement is used to map two configu-

rations that have di↵erent dimensions. Procrustes analysis achieves this by using

one configuration as a mapping and fitting the second one to it through some kind

of transformation. From our results, we found 78 percent correspondence of the
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analogy assessments with the unsupervised mappings of Facebook’s algorithm. We

calculated this by taking the vocabulary of the English language, and finding the

most similar words in both Russian and English, for each vocabulary word. We

employed the test mentioned in Section 4.1 for the Russian and English words. Due

to the high correspondence, we were able to show that this project is feasible in

the future, without heavy resources such as the manual e↵ort that we required for

the neural machine translation system. We We utilize this algorithm as a major

baseline in assessing the embedding alignments we made from a systematic view.
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Chapter 4

Evaluation

4.1 Word Embeddings

We utilize an analogy assessment to evaluate the English and Russian monolin-

gual and multilingual embeddings. Analogy assessments are state of the art evalua-

tion subtasks used to test word similarity of target words, to its neighbors. We first

use word2vec’s analogy task which utilizes the cosine similarity to assess semantic

similarity. In order to assess the relationship one word to another, the task takes

the vector for word (a) and negates the vector of word (b) and finally ads the vector

of word (c). The output of this would be the most similar, or analogous word. An

example of a similarity task done for the word ”iot” for the Russian monolingual

space is shown in Figure 4.2.

We also employ our own assessments to better evaluate our models for domain

specific cyber security tasks. We employ Mean Average Precision to assess the

presence of indomain cybersecurity words and their synonyms in our embedding

vocabularies. To do this, we map the the most similar words of each vocabulary list

as shown above, to the synonym set database described in Section 3.6. By storing

the analogies of the words in MongoDB, we were able to query value pairs for each

of the vocabulary words, and compare them with regular expressions to the most

similar words derived from word2vec most similar function.
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Figure 4.1: Mean Average Precision

4.2 Neural Machine Translation

In this section, we describe our experimental setup and evaluate our intelli-

gence translation system.

We first evaluate our encoder-decoder architecture through an accuracy metric

and a BLEU (Bilingual Evaluation Understudy) score (see Table 1). The accuracy

metric computes the percentage of times that predictions match labels. BLEU

scores, are standard metrics for evaluating a generated translation to a reference

word [11]. We use NLTK’s sentencebleu() function and provide a list of reference

and candidate sentences, given to us by our annotators. The score is generated

by counting the matches of n-grams in the reference sentence to n-grams in the

candidate sentence. An accuracy above “60%’ and a BLEU Score between “15 and

36” is considered robust [11]. Accuracy, Validation and Loss metrics over each epoch

are shown in Figure 4.3 and 4.4 respectively.

We measure the precision of our translations by checking a randomly gener-

ated sample of the output against Google Translate1. We proved that our system

produces more e↵ective translations for the security domain. We extracted 1000

1https://translate.google.com
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Figure 4.2: Word Similarity

randomly selected tweet translations and compared the output against the Google

Translate API. We check our translations against the ones provided by Google Trans-

late, both syntactically and semantically.On evaluating 1000 random samples, there

was a 64.3% syntactic correlation (BLEU-2) between the two systems,showing that

our system is comparable to a state of the art architecture, therefore showing relia-

bility in translations. We further evaluated the 357 samples that were not syntacti-

cally equivalent and tasked two security analysts to manually evaluate the semantic

meanings of the translation outputs. We found that of the 357 outputs, 349 were se-

mantically similar, but not syntactically similar to the Google translation, showing
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Figure 4.3: Accuracy

Measure Value

Accuracy 95.22%

BLEU Score .284

Table 4.1: Evaluation Metrics

97% semantic relevance. We define semantically similar as translations that do not

meet level BLEU-2 , but generate the same underlying meaning. The annotators

concluded our translations are preferable through a security perspective, in that

they proliferate terms unique to the security industry. The commercial translation

services are generalized while our system is domain specific. These security specific

translations can be attributed to the architecture of our model, that utilizes a spe-

cialized aligned database made with relevant cyber security mappings. Examples of
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Figure 4.4: Loss

unequal but semantically similar translations in our system and Google Translate

are listed in Figure 4.5. In example 1, malware registers more with a security ana-

lyst than malicious programs. In example 2, the Google Translate system translated

the relevant Russian text as spylair, while our system gives the correct translation

as spyware. These are clear instances in which our translation will provide more

relevant and direct intelligence for a security professional. Another benefit that our

system provides is that it can run independently in secluded operational settings.

A security analyst may not be able to input their sensitive data into third party

platforms due to privacy, security, and confidentiality policies.
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Figure 4.5: Translation Samples

4.2.1 Cyber-Defense System Use

Web based unstructured, textual sources such as Twitter, Reddit, blogs, dark

web forums, etc. provide a rich multilingual source of information about cyber

threats and attacks. In addition to providing details of existing attacks, such sources

(especially the dark web) can serve as advance indicators of attacks in terms of

discussions around newly discovered vulnerabilities. This information is available in

textual sources traditionally associated with Open Sources Intelligence (OSINT), as

well as in data that is present in hidden sources like dark web vulnerability markets.

The intelligence translation system that we discuss in Section 3.7.1 will help

us automate this process by taking data from a variety of multilingual sources,

extracting, representing and integrating the knowledge present in it as embeddings

and knowledge graphs, and then use the resulting artificial intelligence systems to

provide actionable insights to SoC professionals. Figure 4.6 showcases our pipeline,
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which takes in Russian threat intelligence and stores it in as a VKG structure [25].

Figure 4.6: Cyber Defense System Use

Two such systems that we have developed in the past are CyberTwitter [24]

and Cyber-All-Intel [25]. The systems store threat intelligence in a knowledge rep-

resentation that can be used by AI based cyber-defense systems (See Figure 7).

Such systems generally have a knowledge representation engine, a reasoning engine,

and few applications like an alert generation system, recommender system, query

processing system, etc.

The knowledge representation system, converts input threat intelligence (usu-

ally in a textual format) into a machine readable format. In our system we represent

it in RDF2 ,with cybersecurity domain knowledge provided by the Unified Cyber-

security Ontology (UCO) [34]. The intelligence ontology [24] provides information

about the intelligence domain. We also include specific conceptual embeddings for

security concepts in our threat representation format [25]. The knowledge reasoning
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part of the system provides domain specific reasoning capability generally encoded

as logical rules by a domain expert. The applications and the reasoning engine

generally use the machine readable representation to provide specific functionality.

Figure 7 also provides the graph structure for the translated English intelligence:

URL Command Injection Remote Code Execution Vulnerability in Microsoft Skype.

Figure 4.7 provides the RDF representation for the same intelligence.

Figure 4.7: RDF for textual input “URL Command Injection Remote Code Execu-

tion Vulnerability in Microsoft Skype”. Also, owl : sameAs property has been used

to augment the data using an external source ‘DBpedia’ [2].
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Chapter 5

Conclusion

In this paper, we described the design, implementation, and evaluation of a

multilingual threat intelligence alignement system. We first collect Open Source

Intelligence data from twitter in two natural languages: Russian and English. We

then, derive common cybersecurity concepts in each language with LDA. After, we

create a domain specific cybersecurity term alignement dictionary that serves as

training and test data for the in domain neural machine translation system we de-

velop, as well as an evaluation task for the cybersecurity embeddings we produce.

The system uses Russian and English word embeddings created from cybersecurity

data, an aligned cyber term database, and a LSTM based neural machine trans-

lation architecture, to translate cybersecurity text from Russian to English. With

the help of Russian speaking cyber analysts, we created an alignment database by

generating synonyms for the Russian and English corpus vocabularies, along with

their respective translated Russian and English words. We utilize this database in

neural machine translation, where we use an encoder-decoder architecture to map

unfamiliar Russian cyber inputs to their English counterparts. We show that our

model not only has high syntactic correlation to third party translation systems, but

also registers prevalent cybersecurity terms in translation better than third party

engines. We extend third party translation systems by creating a domain specific
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model that can provide more pertinent intelligence for an analyst. Our system

can be utilized in private operational settings that do not permit the use of third

party applications when dealing with sensitive intelligence data. We also align both

embeddings unsupervised through Facebook’s linear transformer.

A weakness of our system, is the requirement of a cybersecurity rich alignment

to train the model. Although we derived a Russian and English cybersecurity syn-

onym sets in this proof of concept, it is an expensive task that will take dispersed

e↵ort across the linguistic and security communities, to derive across many other

languages.

In order to create more mappings for cyber terms across other languages like,

Mandarin, Cantonese, Portuguese, Arabic, Hindi, etc. future research can include

automatic creation of multilingual cyber alignment databases. We can also consider

transferring knowledge from languages with an abundance of intelligence to other

unknown languages with no or few alignments through multilingual embeddings.

We expect that aligned cyber embeddings across many languages can promote in-

ternational incident response collaboration. In addition, a highly unexplored area is

analyzing leetspeak in darkweb networks. Leetspeak is widely known as code lan-

guage that criminals use in order to openly communicate systematic attack details,

without becoming detected or understood by cyber defense systems. Another future

application could be applying methods to translate and represent leetspeak, against

natural langauges known to us.
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Appendix

Code for this Thesis

#Referenced the gensim word2vec documentation and the following repos for guidance:

#https://github.com/llSourcell/

from __future__ import absolute_import, division, print_function

import codecs

import glob

import logging

import multiprocessing

import os

import pprint

import re

import nltk

import gensim.models.word2vec as w2v

import sklearn.manifold

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

get_ipython().run_line_magic(’pylab’, ’inline’)

logging.basicConfig(format=’%(asctime)s : %(levelname)s : %(message)s’, level=logging.INFO)

nltk.download("punkt")

nltk.download("stopwords")

import pickle

tweet_filenames = sorted(glob.glob("C:\\Users\\ebiquity\\Downloads\\russiantweet.txt"))

print("Found files:")

tweet_filenames

corpus_raw = u""

for tweet_filename in tweet_filenames:

print("Reading ’{0}’...".format(tweet_filename))

with codecs.open(tweet_filename, "r", "utf-8") as tweet_file:

corpus_raw += tweet_file.read()

print("Corpus is now {0} characters long".format(len(corpus_raw)))
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print()

tokenizer = nltk.data.load(’tokenizers/punkt/russian.pickle’)

raw_sentences = tokenizer.tokenize(corpus_raw)

def sentence_to_wordlist(raw):

uni = b’\xd0\x9f\xd1\x80\xd0\xb8\xd0\xb2\xd0\xb5\xd1\x82,

\xd0\xba\xd0\xb0\xd0\xba \xd0\xb4\xd0\xb5\xd0\xbb\xd0\xb0?’.decode(’utf’)

print(re.findall(r’(?u)\w+’, uni))

clean = re.sub("r’(?u)\w+"," ", raw)

words = clean.split()

return words

sentences = []

for raw_sentence in raw_sentences:

if len(raw_sentence) > 0:

sentences.append(sentence_to_wordlist(raw_sentence))

print(raw_sentences[5])

print(sentence_to_wordlist(raw_sentences[5]))

token_count = sum([len(sentence) for sentence in sentences])

print("The russian tweet corpus contains {0:,} tokens".format(token_count))

num_features = 300

min_word_count = 3

num_workers = multiprocessing.cpu_count()

context_size = 10

downsampling = 1e-3

seed = 1

russian2vec = w2v.Word2Vec(

sg=1,

seed=seed,

workers=num_workers,

size=num_features,

min_count=min_word_count,

window=context_size,

sample=downsampling

)

russian2vec.build_vocab(sentences)
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print("Word2Vec vocabulary length:", len(russian2vec.wv.vocab))

russian2vec.train(sentences, total_examples=russian2vec.corpus_count,epochs=10)

if not os.path.exists("trained"):

os.makedirs("trained")

russian2vec.save(os.path.join("trained", "russian2vec.w2v"))

russian2vec = w2v.Word2Vec.load(os.path.join("trained", "russian2vec.w2v"))

tsne = sklearn.manifold.TSNE(n_components=2, random_state=0)

all_word_vectors_matrix = russian2vec.wv.syn0

all_word_vectors_matrix_2d = tsne.fit_transform(all_word_vectors_matrix)

import numpy as np

import pandas as pd

import sys

import os

import re

import codecs

import csv

from keras.layers import Embedding

from keras.layers import Dense

from keras.layers import Input

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import Model

from keras.layers import LSTM

from keras.layers import Bidirectional

from keras import initializers

from keras import regularizers

from keras import constraints

from keras import optimizers

import keras.backend

import gensim.models.word2vec as w2v

cyber2vec = w2v.Word2Vec.load(os.path.join("Untitled Folder", "russian.word2vec.model"
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cyber2vec.wv.save_word2vec_format("C:\\Users\\ebiquity\\Desktop\\russian.word2vec.txt",binary=False)

Vocab = 20000

Emb_D = 20

test_split = 0.2

batch_rate = 128

epochs = 100

samples = 10000

latent_dim = 256

source_data = []

target_data = []

target_data_offset = []

par_txt = 0

for line in open(’C:\\Users\\ebiquity\\Documents\\rus.txt’,encoding=’utf-8’):

par_txt += 1

if par_txt > samples:

break

if ’\t’ not in line:

continue

source_data, translation = line.rstrip().split(’\t’)

source_data.append(source_data)

target_data.append(translation)

tokenize_data = Tokenizer(num_words=Vocab).fit_on_texts(source_data)

token2dim_source = tokenizer_inputs.word_index

print(’Found %s unique input tokens.’ % len(token2dim_source))

num_words_input = len(token2dim_source) + 1

tokenizer_outputs = Tokenizer(num_words=Vocab, filters=’’)

tokenizer_outputs.fit_on_texts(source_data)

target_sequences = tokenizer_outputs.texts_to_sequences(source_data)

word2dim_source = tokenizer_outputs.word_index

len_target = max(len(s) for s in target_sequences)

len_source = max(max_len_source, max_len_target)

output = len(token2dim_source) + 1

source_pad = pad_sequences(input, max_len=len_source)

targets_pad = pad_sequences(output, max_len=targets_pad)
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num_words = min(Vocab, len(word2idx_inputs) + 1)

embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))

for word, i in word2idx_inputs.items():

if i < Vocab:

embedding_vector = cyber2vec.wv[cyber2vec.wv.index2word[i]]

if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

embedding_layer = Embedding(

cyber2vec.wv.vocab,

300,

weights=[embedding_matrix],

input_length=max_len_input,

)

target_one_hot = np.zeros(

(

len(source_pad),

targets_pad,

num_words_output

)

)

for x, y in enumerate(targets_pad):

for y, word in enumerate(x):

target_one_hot[x, y, word] = 1

input_layer1 = Input(shape=(len_target))

emb = Embedding(n

um_words_input, Emb_D)

t = Bidirectional(LSTM(15, return_sequences=True))(t)

output = Dense

step_1 = Input(shape=(len(source_data),))

x = embedding_layer(step_1)

encoder = LSTM(

latent_dim,

return_state=True,

dropout=0.5
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)

encoder_outputs, h, c = encoder(x)

encoder_states = [h, c]

step_2 = Input(shape=(len(target_data),))

decoder_embedding = Embedding(num_words_output, latent_dim)

decoder_emb_train = decoder_embedding(step_2)

decoder_lstm = LSTM(

latent_dim,

return_sequences=True,

return_state=True,

)

target_pad, _, _ = decoder_lstm(

decoder_emb_train,

initial_state=encoder_states

)

decoder_dense = Dense(num_words_output, activation=’softmax’)

target_pad = decoder_dense(target_pad)

model = Model([step_1, step_2], target_pad)

from nltk.corpus import wordnet

#load vocab file as a list -- english

words = [line.rstrip(’\n’) for line in open(english_vocab)]

syns = {w : [] for w in words}

for k, v in syns.items():

for synset in wordnet.synsets(k):

print synset.name.partition(’.’)[0]

for lemma in synset.lemmas():

v.append(lemma.name())

print lemma.name.partition(’.’)[0]

print(syns)

with open(synset_english_xml,’wb’) as e:

pickle.dump(syns, e)
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