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A STOCHASTIC GALERKIN METHOD
WITH ADAPTIVE TIME-STEPPING FOR THE

NAVIER–STOKES EQUATIONS∗

BEDŘICH SOUSEDı́K† AND RANDY PRICE‡

Abstract. We study the time-dependent Navier–Stokes equations in the context of stochastic
finite element discretizations. Specifically, we assume that the viscosity is a random field given in
the form of a generalized polynomial chaos expansion, and we use the stochastic Galerkin method
to extend the methodology from [D. A. Kay et al., SIAM J. Sci. Comput. 32(1), pp. 111–128,
2010] into this framework. For the resulting stochastic problem, we explore the properties of the
resulting stochastic solutions, and we also compare the results with that of Monte Carlo and stochastic
collocation. Since the time-stepping scheme is fully implicit, we also propose strategies for efficient
solution of the stochastic Galerkin linear systems using a preconditioned Krylov subspace method.
The effectiveness of the stochastic Galerkin method is illustrated by numerical experiments.
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1. Introduction. Models of mathematical physics are commonly based on par-
tial differential equations (PDEs). In this study, we focus on the most popular PDE
model in fluid mechanics, which is the Navier–Stokes equation [7, 23]. We consider a
stochastic version of the model: we assume that the viscosity is given by a generalized
polynomial chaos (gPC) expansion, we discretize the problem using spectral stochastic
finite elements see, e.g., [13, 23, 25, 39], and we wish to find the gPC expansion of the
solution. The steady-state version of this problem was studied in [24, 31, 37], and our
focus here is on the time-dependent counterpart. Our approach to time discretization
is built on the fully implicit scheme with adaptive time-stepping strategy, which was
developed for the deterministic Navier–Stokes equation by Kay et al. [21], see also [15].
We extend their scheme in the stochastic Galerkin framework, and in particular we
show that the physics inspired time-stepping strategy can be also adapted to this
framework. The scheme is fully implicit, and so each time step entails a solve with
the stochastic Galerkin matrix. This typically leads to very large systems of linear
equations, for which use of direct solvers may be prohibitive, and therefore the method
could potentially be quite computationally expensive. There are other approaches to
time stepping see, e.g., [1, 7, 20] which may appear more appealing. Nevertheless,
finally we also show that the iterative solvers by Soused́ık and Elman [37], which are
based on preconditioned Krylov subspace methods, are quite effective for the implicit
time discretizations of the time-dependent Navier–Stokes problem as well.

Some aspects of the gPC methods for time-dependent problems were studied in
literature see, e.g., [16, 41, 42]. In particular, long-term integration was addressed
by Gerritsma et al. [10], Heuveline, Schick and Song [19, 34, 36], Wilkins [38], Özen
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nad Bal [29, 30], and most recently by Esquivel et al. [9], among others. Methods
for flows exhibiting uncertain periodic dynamics were proposed, e.g., by Bonnaire
et al. [2], Lacour et al. [22] and Schick et al. [33]. These methods typically entail
time-dependent or other variants of gPC expansions that are tailored to the changing
character of the solution. Nevertheless, here we use a time-independent gPC basis,
which turns out to be sufficient for the transient problems considered in our numerical
experiments. Therefore, all these techniques can be viewed as complementary to the
present study. We also note that Elman and Su [8] proposed a low-rank stochastic
Galerkin solver based on monolithic (all-at-once) time discretization of the Navier–
Stokes problem, however their scheme is based on a constant timestep.

Finally, we remark on possible interpretations of the Navier–Stokes problem with
stochastic viscosity. In such case, the Reynolds number defined as

Re(ξ) =
UL

ν(ξ)
,

where ν > 0 is the viscosity, U is the characteristic velocity and L is the characteristic
length, is also stochastic. The possible interpretations of such setup are discussed
by Powell and Silvester in [31]: for example, assuming fixed geometry, the stochastic
viscosity is equivalent to Reynolds number being stochastic, which may correspond
to a scenario when the volume of fluid moving into the channel is uncertain.

The paper is organized as follows. In Section 2 we recall the algorithm for the
deterministic problem, in Section 3 we formulate the algorithm for the stochastic
problem using both the stochastic Galerkin and sampling methods, in Section 4 we
report results of numerical experiments and provide details about the preconditioning
of the Oseen problem, and finally in Section 5 we summarize and conclude our work.

2. Algorithm for the deterministic problem. We first recall the algorithm
for the deterministic problem following Kay et al. [21]. Let D ⊂ R2 be a physical
domain, and let T > 0 denote a stopping time. We wish to solve the time-dependent
Navier–Stokes equation in D × [0, T ], where (~u, p) denote the fluid velocity and pres-
sure, and ν ≡ ν(x) > 01 is the viscosity parameter, written as

∂~u

∂t
= f(ν, ~u, p), f(ν, ~u, p) = ν∇2~u− ~u · ∇~u−∇p, (2.1)

−∇ · ~u = 0, (2.2)

with boundary and initial conditions given on ∂D = ΓD ∪ ΓN as

~u = ~g, on ΓD × [0, T ], (2.3)

ν∇~u · ~n− p~n = ~0, on ΓN × [0, T ], (2.4)

~u(~x, 0) = ~u0(~x), in D. (2.5)

The initial velocity field is assumed to satisfy the incompressibility constraint, that
is ∇ · ~u0 = 0. We also assume that ΓN has nonzero measure so that the pressure
is uniquely specified, and to this end we will use the outflow (do-nothing) boundary
condition. We begin by recalling the implicit trapezoid rule (TR) as

~ut ≈
~un+1 − ~un

kn+1
=

1

2
[fn+1 + fn] ,

1The assumption ν(x) 6= const is the only difference from the setup in [21] in this section.
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where kn+1 = tn+1−tn. Then 2~ut ≈ 2
(
~un+1 − ~un

)
/kn+1 = fn+1 +fn and (2.1)–(2.2)

can be written as

2

kn+1
~un+1 − ν∇2~un+1 + ~un+1 · ∇~un+1 +∇pn+1 =

2

kn+1
~un +

∂~un

∂t
, (2.6)

−∇ · ~un+1 = 0. (2.7)

The nonlinear term is linearized as ~un+1 · ∇~un+1 ≈ ~wn+1 · ∇~un+1. The linearization
is based on extrapolation

(
~wn+1 − ~un

)
/kn+1 =

(
~un − ~un−1

)
/kn, from which we find

~wn+1 = (1 + kn+1/kn) ~un − (kn+1/kn) ~un−1. (2.8)

Next, let (VD, QD) denote a pair of spaces satisfying the inf-sup condition and let VE
be an extension of VD containing velocity vectors that satisfy the Dirichlet bound-
ary conditions [4, 7, 14]. The mixed variational formulation of (2.6)–(2.7) is: find
(~un+1, pn+1) ∈ VE ×QD, for a given pair (~un, pn), such that

2

kn+1

∫
D

~un+1~v +

∫
D

ν∇~un+1 : ∇~v +

∫
D

(
~wn+1 · ∇~un+1

)
~v −

∫
D

pn+1 (∇ · ~v) (2.9)

=
2

kn+1

∫
D

~un~v +

∫
D

∂~un

∂t
~v,

−
∫
D

q
(
∇ · ~un+1

)
= 0, (2.10)

for all (~v, q) ∈ VD × QD. We note that pn+1 is not needed for subsequent time
steps. Next, we recall the three ingredients of the algorithm as discussed in [21]: time
integration, time-step selection and stabilization of the integrator.

Time integration. Substituting ~un+1 = ~un + kn+1
~dn into (2.9)–(2.10), rearrang-

ing and using
∫
D
q (∇ · ~un) = 0, we get the so-called discrete Oseen problem: given

~un, ∂~un/∂t and the boundary update ~g := (~gn+1 − ~gn)/kn+1, we first compute(
~dn, pn+1

)
∈ VE ×QD such that

2

∫
D

~dn~v + kn+1

∫
D

ν∇~dn : ∇v + kn+1

∫
D

(
~wn+1 · ∇~dn

)
v −

∫
D

pn+1 (∇ · ~v) (2.11)

=

∫
D

∂~un

∂t
~v −

∫
D

ν∇~un : ∇~v −
∫
D

(
~wn+1 · ∇~un

)
~v,∫

D

q
(
∇ · ~dn

)
= 0, (2.12)

for all (~v, q) ∈ VD ×QD, and the TR velocity and acceleration are updated as

~un+1 = ~un + kn+1
~dn,

∂~un+1

∂t
= 2~dn − ∂~un

∂t
. (2.13)

Time-step selection. The time step size is driven by the heuristic formula

kn+2 = kn+1

(
ε/
∥∥~en+1

∥∥)1/3 . (2.14)

The local truncation error ~en+1 is estimated by

~en+1 =
(
~un+1 − ~un+1

∗
)
/ [3 (1 + kn/kn+1)] , (2.15)
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where the TR velocity ~un+1 is compared with the AB2 velocity ~un+1
∗ , which is com-

puted using the explicit formula

~un+1
∗ = ~un +

kn+1

2

[(
2 +

kn+1

kn

)
∂~un

∂t
−
(
kn+1

kn

)
∂~un−1

∂t

]
. (2.16)

There are three issues that need to be addressed:
1. The AB2 is not self-starting. To start the simulation we require a function ~u0

with boundary data ~g0 such that∫
D

q
(
∇ · ~u0

)
= 0, ∀q ∈ QD.

The initial acceleration (and pressure) is computed as follows: given the

boundary update ~g := (~g1 − ~g0)/k1, find the pair
(
∂~u0

∂t , p
0
)
∈ VE ×QD such

that ∫
D

∂~u0

∂t
~v −

∫
D

p0 (∇ · ~v) = −
∫
D

ν∇~u0 : ∇~v −
∫
D

(
~u0 · ∇~u0

)
~v,∫

D

q

(
∇ · ∂~u

0

∂t

)
= 0,

for all (~v, q) ∈ VD × QD. The discrete Oseen problem (2.11)–(2.12) is then

constructed by setting n = 0 and defining ~w1 = ~u0 + k1
∂~u0

∂t , and its solution(
~u1, p1

)
is used to compute the acceleration at time t = k1 as

∂~u1

∂t
=

2

k1

(
~u1 − ~u0

)
− ∂~u0

∂t
, (2.17)

and allows to compute the AB2 velocity at the second time step. The start-
up is completed by switching on the time-step control at the third time step
(k1 = k0).

2. Choice of initial time step. The strategy is to select a conservatively small
value for k0, say 10−8. The time step then typically exhibits a rapid growth

in the first few steps, roughly as kn+1/kn = O
(

(ε/eps)
1/3
)
≈ 104, with

ε = 10−4 and considering the (double) machine precision eps ≈ 10−16.
3. Time-step rejection. The new time step is proposed by formula (2.14). How-

ever, if the next time step is seriously reduced, i.e., kn+2 < 0.7kn+1 (or

equivalently
∥∥~en+1

∥∥ > (1/0.7)
3
ε), the next time step is rejected: the value of

kn+1 is multiplied by
(
ε/
∥∥~en+1

∥∥)1/3, and the current step is repeated with
this new kn+1.

Stabilization of the integrator. The numerical stabilization is implemented using
time-step averaging with the purpose to annihilate any contribution of the form (−1)n

to the solution and its time derivative, which is invoked periodically every n∗ steps.
For such a step the values of t∗ = tn and ~u∗ = ~un are saved, we set tn = tn−1 + 1

2kn,
tn+1 = t∗ + 1

2kn+1 and define the new “shifted” solution vectors as

~un =
1

2

(
~u∗ + ~un−1

)
,

∂~un

∂t
=

1

2

(
∂~un

∂t
+
∂~un−1

∂t

)
,

~un+1 = ~u∗ +
1

2
kn+1

~dn,
∂~un+1

∂t
= ~dn,
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where ~dn is the TR update computed via (2.11)–(2.12). In our implementation, the
parameter n∗ is fixed and the value is set to 10.

Finite element formulation. We consider the discretization of the Oseen prob-
lem (2.11)–(2.12) by a div-stable mixed finite element method; in the numerical ex-
periments we use Taylor–Hood elements see, e.g., [7]. Let the bases for velocity and
pressure spaces be denoted by {φi}nui=1 and {ϕj}npj=1, respectively. In matrix terminol-
ogy, the Oseen problem at time step n entails solving a linear system[

Fn+1 BT

B 0

] [
dn

pn+1

]
=

[
fn+1
v

fn+1
p

]
, (2.18)

where Fn+1 is the velocity convection-diffusion matrix: a sum of the velocity mass
matrix M, diffusion matrix A and convection matrix Nn+1, defined as

Fn+1 = 2M + kn+1A + kn+1N
n+1, (2.19)

where

A= [aab] , aab =

∫
D

ν∇φb : ∇φa,

M = [mab] , mab =

∫
D

φbφa,

Nn+1 =
[
nn+1
ab

]
, nn+1

ab =

∫
D

(
~wn+1 · ∇φb

)
· φa,

and ~wn+1 is computed from (2.8). The divergence matrix B is defined as

B = [bcd] , bcd = −
∫
D

ϕc (∇ · φd) . (2.20)

The right-hand side in (2.18) is constructed from the boundary data ~gn+1, the com-
puted velocity ~un at the previous time level, and the acceleration ∂~un

∂t .

3. Algorithms for the stochastic problem. Let (Ω,F ,P) represent a com-
plete probability space, where Ω is the sample space, F is a σ-algebra on Ω and P
is a probability measure. We assume that the randomness in the model is induced
by a vector ξ : Ω → Γ ⊂ Rmξ of independent, identically distributed (i.i.d.) random
variables ξ1(ω), . . . , ξmξ(ω), where ω ∈ Ω. Let B(Γ) denote the Borel σ-algebra on Γ
induced by ξ, and µ denote the induced measure. The expected value of the product
of measurable functions on Γ determines a Hilbert space TΓ ≡ L2 (Γ,B(Γ), µ) with
inner product

〈u, v〉 = E [uv] =

∫
Γ

u (ξ) v (ξ) dµ (ξ) , (3.1)

where the symbol E denotes mathematical expectation.
In computations, we will use a finite-dimensional subspace Tp ⊂ TΓ spanned by

a set of multivariate polynomials {ψ`(ξ)} that are orthonormal with respect to the
density function µ, that is E [ψkψ`] = δk`, and ψ1 = 1. This will be referred to as the
gPC basis [40]. The dimension of the space Tp, depends on the polynomial degree.
For polynomials of total degree pξ, the dimension is nξ =

(
mξ+pξ
pξ

)
.
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3.1. Navier–Stokes equation with stochastic viscosity. We use the same
setup as in [37]. Specifically, we consider that the expansion of viscosity is given as

ν ≡ ν (x, ξ) =

nν∑
`=1

ν`(x)ψ`(ξ), (3.2)

where ν`(x) is a set of deterministic spatial functions, and index ` is related through a
multi-index to the degrees of the random variables ξ1, . . . , ξmξ used in the construction
of the gPC basis function ψ`(ξ) see, e.g., [13, Section 2.4.3] or [39, Section 5.2]. For
simplicity, we will also assume that both the Dirichlet boundary conditions (2.3) and
the initial condition (2.5) are deterministic. We seek a discrete approximation of the
velocity in the form

~u (x, t, ξ) ≈
nξ∑
k=1

nu∑
i=1

uik(x, t)φi(x)ψk(ξ) =

nξ∑
k=1

~uk(x, t)ψk(ξ). (3.3)

Remark 3.1. In literature it is sometime recommended to use a time-dependent
gPC basis, that is ψk(ξ, t), to keep the stochastic dimension low in long-time integra-
tion. However, this is a complementary strategy to the present study. Since it is not
needed in our numerical experiments, we use only a time-independent gPC basis.

3.2. Stochastic Galerkin method. The stochastic Galerkin formulation of
problem (2.9)–(2.10) consists of using the expansion (3.2) and performing a Galerkin
projection on the space TΓ using mathematical expectation in the sense of (3.1). That
is, we seek velocity ~un+1 ∈ TΓ ⊗ VE and pressure pn+1 ∈ TΓ ⊗ QD for a given pair
(~un, pn), such that

E
[

2

kn+1

∫
D

~un+1~v +

∫
D

ν∇~un+1 : ∇~v +

∫
D

(
~wn+1 · ∇~un+1

)
~v −

∫
D

pn+1 (∇ · ~v)

]
= E

[
2

kn+1

∫
D

~un~v +

∫
D

∂~un

∂t
~v

]
, ∀~v ∈ TΓ ⊗ VD,

E
[∫

D

q
(
∇ · ~un+1

)]
= 0, ∀q ∈ TΓ ⊗QD,

and the stochastic counterpart of the discrete Oseen problem (2.11)–(2.13) is: given

~un, ∂~un/∂t and the boundary update ~g := (~gn+1 − ~gn)/kn+1, we first compute ~dn ∈
TΓ ⊗ VE and pn+1 ∈ TΓ ⊗QD such that

E
[
2

∫
D

~dn~v + kn+1

∫
D

ν∇~dn : ∇v + kn+1

∫
D

(
~wn+1 · ∇~dn

)
v −

∫
D

pn+1 (∇ · ~v)

]
(3.4)

= E
[∫

D

∂~un

∂t
~v −

∫
D

ν∇~un : ∇~v −
∫
D

(
~wn+1 · ∇~un

)
~v

]
, ∀~v ∈ TΓ ⊗ VD,

E
[∫

D

q
(
∇ · ~dn

)]
= 0, ∀q ∈ TΓ ⊗QD, (3.5)

and the TR velocity and the acceleration are updated as in (2.13).
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3.2.1. Stochastic Galerkin finite element formulation. The Galerkin pro-
jection leads to a large coupled system of equations with structure depending on the
ordering of the unknown coefficientsts {uik}, {pjk}. We will group velocity-pressure
pairs for each k, the index of stochastic basis functions (and order equations in the
same way), giving the ordered list of coefficients

u1:nu,1, p1:np,1, u1:nu,2, p1:np,2, . . . , u1:nu,nξ , p1:np,nξ . (3.6)

The discrete stochastic Oseen operator is built as follows. First, we set up the discrete
components of the diffusion matrix using the expansion of viscosity (3.2) as

A`= [a`,ab] , a`,ab =

(∫
D

ν`(x)∇φb : ∇φa
)
, ` = 1, . . . , nν . (3.7)

Next, let ~wn+1
` (x) denote the `th term of the extrapolated velocity iterate (as in the

expression on the right in (3.3) for k = `) at step n, and let

Nn+1
` =

[
nn+1
`,ab

]
, nn+1

`,ab =

∫
D

(
~wn+1
` · ∇φb

)
· φa, ` = 1, . . . , nξ.

Let n̂ = max(nν , nξ) and, if needed, define A` = 0 for nν < ` ≤ n̂ and Nn+1
` = 0 for

nξ < ` ≤ n̂. Then in analogue to (2.19) define matrices

Fn+1
1 = 2M + kn+1A1 + kn+1N

n+1
1 , (3.8)

Fn+1
` = kn+1A` + kn+1N

n+1
` , ` = 2, . . . , n̂, (3.9)

which are incorporated into the block matrices

Fn+1
1 =

[
Fn+1

1 BT

B 0

]
, Fn+1

` =

[
Fn+1
` 0
0 0

]
, ` = 2, . . . , n̂. (3.10)

These operators will be coupled with matrices arising from terms in Tp,

H` = [h`,jk] , h`,jk ≡ E [ψ`ψjψk] , ` = 1, . . . , nν , j, k = 1, . . . , nξ. (3.11)

Combining the expressions from (3.10) and (3.11), using the ordering (3.6) yields the
discrete stochastic Oseen system(

n̂∑
`=1

H` ⊗Fn+1
`

)
v = y, (3.12)

where ⊗ denotes the matrix Kronecker product. The entries of the vectors v and y
are ordered as in (3.6). Note that H1 is the identity matrix of order nξ.

Remark 3.2. With this ordering, which we used also in [37], the coefficient
matrix contains a set of nξ block 2 × 2 matrices of saddle-point structure along its
block diagonal, given by

Fn+1
1 +

n̂∑
`=2

h`,jjFn+1
` , j = 1, . . . , nξ.

This enables the use of existing deterministic solvers for the individual diagonal blocks.
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We find it convenient to formulate the solvers in the so-called matricized format.
To this end, we make use of isomorphism between Rnxnξ and Rnx×nξ determined
by the operators vec and mat. Let nx = nu + np and consider writing the solution
of (3.12) using the ordering (3.6) as v = [vT1 , v

T
2 , . . . , v

T
nξ

]T , where vk = [~uTk , p
T
k ] for

k = 1, . . . , nξ as in the expansions on the right in (3.3). Then we write v = vec(V),
V = mat(v), where v ∈ Rnxnξ , V ∈ Rnx×nξ and the upper/lower case notation
is assumed throughout the paper, so Y = mat(y), etc. Specifically, we define the
matricized coefficients of the solution expansion

V = mat(v) =
[
v1, v2, . . . , vnξ

]
∈ Rnx×nξ , (3.13)

where the column k contains the coefficients associated with the basis function ψk.

In this setting, since (V ⊗W) vec (X) = vec
(
WXVT

)
, the linear system (3.12) can

be equivalently written as

n̂∑
`=1

Fn+1
` VH` = Y. (3.14)

The time-step selection is driven by the formula (2.14), which we heuristically
modify as follows. First, we run the deterministic solver with viscosity ν = ν1 and
record the set of time steps 0, t1, t2, , . . . , T . Then, we divide size of each interval
[tn, tn+1] by nξ, and we further round down the time-step size to the nearest power
of 10. This procedure yields a sequence of time steps, which is then used for evolution
of the stochastic Galerkin method. We note that an alternative strategy could be
utilized by using the gPC coefficients corresponding to the mean velocity directly in
formula (2.14), that is without an a priori run of the deterministic solver.

3.3. Sampling methods. Both Monte Carlo and stochastic collocation meth-
ods are based on sampling. This entails the solution of a number of mutually indepen-
dent deterministic problems at a set of sample points

{
ξ(q)
}

, which give realizations

of the viscosity (3.2). That is, a realization of viscosity ν
(
ξ(q)
)

gives rise to determin-

istic functions ~u
(
·, ·, ξ(q)

)
and p

(
·, ·, ξ(q)

)
on D that satisfy the standard deterministic

Navier–Stokes equations, and to corresponding finite-element approximations.
In the Monte Carlo method, the nMC sample points are generated randomly,

following the distribution of the random variables ξ, and moments of the solution
are obtained from ensemble averaging. In addition the coefficients in (3.3) could be
determined at time tb using2

uik(tb) =
1

nMC

nMC∑
q=1

~u (q) (xi, tb) ψk

(
ξ(q)
)
,

where for tb, b = 1, . . . , nb, we will consider an a priori set of time barriers, which
is used in implementation to enforce all nMC instances of the deterministic solver to
step through. For stochastic collocation, the sample points consist of a set of predeter-
mined collocation points. This approach derives from a methodology for performing
quadrature or interpolation in multidimensional space using a small number of points,
a so-called sparse grid [11, 28]. There are several ways to implement stochastic col-
location to obtain the coefficients in (3.3). In the basic variant of the method, it is

2In numerical experiments, we avoid this approximation of the gPC coefficients and directly work
with the sampled quantities.
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possible proceed either by constructing a Lagrange interpolating polynomial, or, in
the so-called pseudospectral approach, by performing a discrete projection [39]. We
use the pseudospectral approach because it facilitates a direct comparison with the
stochastic Galerkin method, and we refer, e.g., to [23] for an overview and discussion
of integration rules. In particular, the coefficients in (3.3) are determined at time tb
using a quadrature rule

uik(tb) =

nq∑
q=1

~u (q) (xi, tb) ψk

(
ξ(q)
)
w(q),

where ξ(q) and w(q), q = 1, . . . , nq, are the collocation (quadrature) points and weights.
Finally, we note that the other ways to perform stochastic collocation include the
least-square approach and the compressed sensing approach see, e.g., [5, 17, 18, 27].

4. Numerical experiments. We implemented the method in Matlab using
the IFISS 3.5 package [6, 35], and in this section we present results of numerical
experiments for a model problem given by a flow around an obstacle. The geometry
of the problem is shown in Figure 4.1. The discretization of the physical space consists
of 12, 640 velocity and 1640 pressure degrees of freedom. The viscosity was taken to
be a lognormal process, and its representation was computed from an underlying
Gaussian random process using the transformation described in [12]. That is, for ` =
1, . . . , nν , ψ` (ξ) is the product of mξ univariate Hermite polynomials, and denoting
the coefficients of the Karhunen-Loève expansion of the Gaussian process by gj (x)
and ηj = ξj − gj , j = 1, . . . ,mξ, the coefficients in expansion (3.2) are computed as

ν` (x) = E [ψ` (η)] exp

g0 (x) +
1

2

mξ∑
j=1

(gj (x))
2

 .
The covariance function of the Gaussian field, for points Xi = (xi, yi) ∈ D, i = 1, 2,
was chosen to be

C (X1, X2) = σ2
g exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,

where Lx and Ly are the correlation lengths of the random variables ξi, i = 1, . . . ,mξ,
in the x and y directions, respectively, and σg is the standard deviation of the Gaussian
random field. The correlation lengths were set to be equal to 25% of the width and
height of the domain, i.e. Lx = 3 and Ly = 0.5. The coefficient of variation of the
lognormal field, defined as CoV = σν/ν1 where σν is the standard deviation, was set
to either 1% or 10%. The stochastic dimension was mξ = 2. The degree used for the
polynomial expansion of the solution was pξ = 3, and the degree used for the expansion
of the lognormal process was 2pξ, which ensures a complete representation of the
process in the discrete problem [26]. With these settings, nξ = 10 and nν = n̂ = 28,
and H` is of order 10 in (3.12). For the mean value of viscosity we used ν1 = 0.02,
which corresponds to mean Reynolds number Re1 = 100, and ν1 = 6.67 × 10−3,
which corresponds to mean Reynolds number Re1 = 300. We note that the steady-
state case was studied in [37], and the setup for the (deterministic) time-dependent
problem is the same to [7, Chapter 10] except that the length of the channel was set
to 12. Specifically, the initial condition for velocity was taken zero, and the Dirichlet
boundary condition on the inflow ∂DDir (the left side) was smoothly ramped up from
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zero to steady state as ~u (·, t) =
(
1− e−5t

)
~w, where ~w is a Poiseuille (parabolic) flow

profile, no-flow condition was prescribed on the top and bottom walls and natural ‘do-
nothing’ condition was used on the outflow boundary (the right side). The initial time
step was set to k0=10−9, and the problem was evolved from t0 = 0 s to T = 10 s. The
time-stepping method described in Section 2 was used for each sample of viscosity
ν
(
x, ξ(q)

)
for both Monte Carlo and the stochastic collocation methods, and the

method from Section 3.2 was used for the stochastic Galerkin method. In order to
compare the gPC coefficients at the a priori chosen set of times, which we will refer to
as time barriers, we prescribed the stochastic Galerkin solver to step through certain
times, and we used the same set also for the Monte Carlo simulation in order to
compare probability density function estimates of the velocity obtained by using all
three methods. Specifically, we used time barriers tb = {0, 0.1, 0.2, 0.5, 1, 2, 5, 6, 8, 10}.

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Fig. 4.1. Finite element mesh for the flow around an obstacle problem.

The evolution of the time step for the two deterministic cases with mean Reynolds
numbers Re1 = 100 and Re1 = 300 and for the stochastic Galerkin method is shown in
Figure 4.2. We note that the heuristic used for the stochastic Galerkin methods yields
the same time-step selection for both values of the Reynolds number. Specifically,
only three steps with size 10−9 are performed at the very beginning, then the step
size increases to 10−6 and eventually to 10−5 for the most part of the first second. For
the next two seconds it becomes 10−4 and eventually 10−3 for the rest of the time.

Now, let us consider first the case of Re1 = 100 and CoV = 10%. Figure 4.3
shows the evolution of the gPC coefficients of the horizontal velocity, and the symbols
� and × represent the results of Monte Carlo and stochastic collocation at some of
the time barriers. It can be seen that all methods are in agreement. Figure 4.4 shows
the mean horizontal velocity, Figure 4.5 the variance of the horizontal velocity, and
Figure 4.6 the variance of the vertical velocity at times 0.1s, 1s and 10s. From these
figures it can be seen that the flow quickly evolves during the first second, and the
later changes are relatively less dramatic. It can be seen that there is symmetry in
all the quantities, the mean values are essentially the same as we would expect in
the deterministic case [7], and the variance of the horizontal velocity component is
evolving to be concentrated in two “eddies” and it is larger than the variance of the
vertical velocity component. In fact, it appears that all quantities are already at time
10s close to the steady state, see also Figures 4.13 and 4.14. A different perspective on
the solution is given by Figure 4.7, which displays evolution of the probability density
function (pdf) estimates in several points of the domain at times 0.1s, 1s and 10s.
The left panels show the pdf estimates of the velocity in x direction at points with
coordinates (4.0100,−0.4339) (top), (4.0100, 0.4339) (bottom), where the variance of
the velocity is relatively large cf. Figure 4.5. The right panels show the estimates at
point (3.6436, 0) which is slightly downstream from the obstacle: the estimate in the
x direction in the top panel and the estimate in the y direction in the bottom panel.
The results were obtained using Matlab’s ksdensity function. It can be seen that
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the changes of the mean values of the pdf estimates are relatively large during the
first second, and then the uncertainty gradually increases and the supports of the pdf
estimates grow as the solution evolves away from the deterministic initial condition
and the effect of the stochastic viscosity becomes evident.
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time

10
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-1

Fig. 4.2. Evolution of the time-step size for the deterministic problems with Reynolds numbers
Re1 = 100 and Re1 = 300 and for the stochastic Galerkin method (SG).
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Fig. 4.3. Evolution of the gPC coefficients corresponding to the horizontal velocity in terms of
`2-norm for mean Reynolds number Re1 = 100 and CoV = 10%. The symbols � and × represent
the results of the Monte Carlo and stochastic collocation, respectively, at times 0.1s, 1s and 10s.

Next, let us consider the case of Re1 = 300 and CoV = 1%. Figure 4.8 shows
the evolution of the gPC coefficients of the horizontal velocity. It can be seen that
with increased Re1 it takes more time for the flow to develop, including the stochastic
components of the solution despite lower CoV than in the previous problem. Again,
all methods are in agreement. Figure 4.9 then shows the mean horizontal velocity,
Figure 4.10 the variance of the horizontal velocity, and Figure 4.11 the variance of the
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Fig. 4.4. Mean horizontal velocity at times 0.1s (top), 1s (center) and 10s (bottom) for mean
Reynolds number Re1 = 100 and CoV = 10%.
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Fig. 4.5. Variance of the horizontal velocity at times 0.1s (top), 1s (center) and 10s (bottom)
for mean Reynolds number Re1 = 100 and CoV = 10%.

vertical velocity, all at times 0.1s, 1s and 10s. The mean quantities are quite similar
to what would be expected in the deterministic case, and the variances reflect on more
complex behavior of the fluid at the higher value of Re1. Finally, Figure 4.12 displays
evolution of the probability density function (pdf) estimates at the same set of points
of the domain and times as Figure 4.7, and all three methods are again in agreement.
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Fig. 4.6. Variance of the vertical velocity at times 0.1s (top), 1s (center) and 10s (bottom) for
mean Reynolds number Re1 = 100 and CoV = 10%.
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Fig. 4.7. Estimated probability density functions at times 0.1s, 1s and 10s (left to right, all pan-
els) of the horizontal velocity at points with coordinates (4.0100,−0.4339) (top left), (4.0100, 0.4339)
(bottom left), and of the horizontal (top right) and vertical (bottom right) velocities at the point
(3.6436, 0) for mean Reynolds number Re1 = 100 and CoV = 10%.

Finally, we compare the results of the stochastic Galerkin method applied to
the steady-state problem with mean Reynolds number Re1 = 100 and CoV = 10%,
which was studied by Soused́ık and Elman in [37], and the results of the long-term
integration at time 100s. Specifically, a comparison of the mean horizontal velocity is
shown in Figure 4.13, and Figure 4.14 displays the variance of the horizontal velocity.
By comparing the two figures, it can be seen that the results are virtually identical.
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Fig. 4.8. Evolution of the gPC coefficients corresponding to the horizontal velocity in terms of
`2-norm for mean Reynolds number Re1 = 300 and CoV = 1%. The symbols � and × represent
the results of the Monte Carlo and stochastic collocation, respectively, at times 0.1s, 1s and 10s.
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Fig. 4.9. Mean horizontal velocity at times 0.1s (top), 1s (center) and 10s (bottom) for mean
Reynolds number Re1 = 300 and CoV = 1%.

4.1. Preconditioning of the Oseen problem. The solution of the Oseen
problem (3.12) in each time step of the stochastic Galerkin method is a computation-
ally expensive task. Therefore, use of a preconditioned Krylov subspace method may
be preferred over a direct solver. To this end, we used the right-preconditioned flex-
ible GMRES (fGMRES) method [32] with the so-called mean-based preconditioner
M−1

1 : R 7−→ V, which entails solving a linear system

M1V = R, (4.1)

where R and V are the matricized coefficients of the gPC expansions, cf. (3.13).
Specifically, M−1

1 denotes an action of the pressure convection-diffusion (PCD) pre-
conditioner, see [21, Section 3] and [7, Section 9.2.2], which is motivated by the block
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Fig. 4.10. Variance of the horizontal velocity at times 0.1s (top), 1s (center) and 10s (bottom)
for mean Reynolds number Re1 = 300 and CoV = 1%.

0 2 4 6 8 10 12

-1

0

1

0.5

1

1.5

2

10
-6

0 2 4 6 8 10 12

-1

0

1

2

4

6

8

10

10
-6

0 2 4 6 8 10 12

-1

0

1

2
4
6
8
10
12
14

10
-6

Fig. 4.11. Variance of the vertical velocity at times 0.1s (top), 1s (center) and 10s (bottom)
for mean Reynolds number Re1 = 300 and CoV = 1%.

inverse of the matrix Fn+1
1 in (3.10). It can be specifically written as

M−1
1 =

[ (
Fn+1

1

)−1 (
Fn+1

1

)−1
BTX−1

0 −X−1

]
, (4.2)
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Fig. 4.12. Estimated probability density functions at times 0.1s, 1s and 10s (left to right, all pan-
els) of the horizontal velocity at points with coordinates (4.0100,−0.4339) (top left), (4.0100, 0.4339)
(bottom left), and of the horizontal (top right) and vertical (bottom right) velocities at the point
(3.6436, 0) for mean Reynolds number Re1 = 300 and CoV = 1%.
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Fig. 4.13. Mean horizontal velocity obtained using the stochastic Galerkin methods for the
steady-state problem (top), and at time 100s (bottom) with mean Reynolds number Re1 = 100 and
CoV = 10%.

where Fn+1
1 is the matrix from (3.8), and X−1 is the pressure convection-diffusion term

X−1= A−1
p Fn+1

p M−1
p .

First, we used LU factorizations of the matrices from (4.2), which are updated in
each time step. Since the solves with the (mean) matrix M1 are thus exact, this
illustrates the approximation properties of the mean-based preconditioner. Then, we
also used the IFISS implementation of the PCD iterated preconditioner, in which
the solves involving both Fn+1

1 and Ap = BT−1BT , where T is the diagonal of the
velocity mass matrix, are replaced by a single V-cycle of AMG using the IFISS default
parameters, and the solve with the pressure matrix Mp is effected by five Chebyshev
iterations, see [7, Section 10.3]. The construction of the matrix Fn+1

p is described
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Fig. 4.14. Variance of the horizontal velocity obtained using the stochastic Galerkin methods
for the steady-state problem (top), and at time 100s (bottom) with mean Reynolds number Re1 = 100
and CoV = 10%.

in [7, Chapter 9]. We note that the AMG implementation is based on HSL MI20 [3].
All tests started with a zero initial iterate and stopped when the relative residual
was reduced to 10−8 in the Euclidean norm. The numbers of fGMRES iterations for
solves in the time interval [0, 10s] with the exact mean-based preconditioner (4.1) are
shown in Figure 4.15. It can be seen that at most three iterations were needed in
all steps. A comparison of the exact mean-based preconditioner (LU) and its PCD
iterated variant (AMG) is illustrated by Figure 4.16. It can be seen that the numbers
of iterations are the same in most cases, or it takes at most one extra step for the PCD
iterated variant to converge. Thus both exact and iterated versions of the mean-based
preconditioner are suitable for the problems studied in our numerical experiments.
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Fig. 4.15. Numbers of fGMRES iterations with the exact mean-based preconditioner for mean
Reynolds number Re1 = 100, CoV = 10% (top), and Re1 = 300, CoV = 1% (bottom).
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Fig. 4.16. A comparison of the exact mean-based preconditioner (LU) and its PCD iterated
variant (AMG) in terms of the numbers of fGMRES iterations for mean Reynolds number Re1 =
100, CoV = 10% (top), and Re1 = 300, CoV = 1% (bottom).

5. Conclusion. We studied the time-dependent Navier–Stokes equations with
stochastic viscosity, which was given in terms of a polynomial chaos expansion. For
this problem, we developed a stochastic Galerkin method with adaptive, mean-informed
time stepping. We applied the method to a popular benchmark problem given by a
flow around an obstacle, and we compared the solution of the time-dependent prob-
lem after the transient to that of the corresponding steady-state problem. Next, since
the time-stepping scheme is fully implicit, a linear solve with the stochastic Galerkin
matrix is required in each time step. Use of direct solvers may be prohibitive due to
the large size of the systems, and in fact it is even not desirable to form the matrices
explicitly. Therefore, we also formulated a preconditioner, which is used by the right-
preconditioned flexible GMRES method, and allows to solve the stochastic Galerkin
systems efficiently. We studied two variants of the preconditioner. The first variant
is based on exact factorization of the matrix corresponding to the underlying mean
problem, and the second one was an iterated variant by means of an algebraic multi-
grid solver. In the numerical experiments we observed that the performance of the
exact and iterated variants of the preconditioner was virtually identical, and only a
couple of GMRES iterations were needed for convergence in all time steps. Therefore,
the proposed stochastic Galerkin method is designed as a wrapper around an existing
code for the corresponding deterministic problem, and in fact an efficient solver for the
deterministic problem is the essential component also for the method presented in this
study. Finally, we also compared the stochastic Galerkin solution with the stochastic
collocation and Monte Carlo solutions, and we observed an excellent agreement for
all problems studied in our numerical experiments.
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