Throughput Studies on an InfiniBand Interconnect via
All-to-All Communications

Nil Mistry
Department of Mathematics
and Statistics, University of

Jordan Ramsey
Department of Computer
Science and Electrical

Benjamin Wiley
Department of Mathematics
and Statistics, University of

Connecticut Engineering, UMBC New Mexico
nil.mistry @uconn.edu jramsey3 @umbc.edu bwileyO01 @unm.edu
Jackie Yanchuck Xuan Huang Matthias K. Gobbert
Department of Mathematics, Department of Mathematics Department of Mathematics
Seton Hill University and Statistics, UMBC and Statistics, UMBC
yan6374 @setonhill.edu hu6 @umbc.edu gobbert@umbc.edu

ABSTRACT

Distributed-memory clusters are the most important
type of parallel computer today, and they dominate the
TOP500 list. The InfiniBand interconnect is the most
popular network for distributed-memory compute clus-
ters. Contention of communications across a switched
network that connects multiple compute nodes in a
distributed-memory cluster may seriously degrade per-
formance of parallel code. This contention is maximized
when communicating large blocks of data among all par-
allel processes simultaneously. This communication pat-
tern arises in many important algorithms such as par-
allel sorting. The cluster tara in the UMBC High Per-
formance Computing Facility (HPCF) with a quad-data
rate InfiniBand interconnect provides an opportunity to
test if the capacity of a switched network can become
a limiting factor in algorithmic performance. We find
that we can design a test case of a problem involving in-
creasing usage of memory that does not scale any more
on the InifiniBand interconnect, thus becoming a limit-
ing factor for parallel scalability. However, for the case
of stable memory usage of the problem, the InifiniBand
communications get faster and will not inhibit parallel
scalability. The tests in this paper are designed to in-
volve only basic MPI commands for wide reproducibil-
ity, and the paper provides the detailed motivation of
the design of the memory usage needed for the tests.

Author Keywords
InfiniBand interconnect, All-to-All communications,
network contention, scalability studies, MPI

ACM Classification Keywords
1.6.1 SIMULATION AND MODELING (e.g. Model De-
velopment). : Performance

INTRODUCTION

The TOP500 list at www.top500.org of the world’s
most powerful supercomputers has been dominated by
distributed-memory clusters for many years by now.

HPC 2015 April 12-15, 2015, Alexandria, VA
Copyright © 2015 Society for Modeling & Simulation International
(SCS)

Distributed-memory clusters require a network for com-
munication among all nodes. The high-performance In-
finiBand interconnect is currently the most popular net-
work to communicate among the parallel processes on
several nodes in distributed-memory compute clusters.

Information transferred among nodes may stress com-
munication across the InfiniBand network, both in rela-
tion to the size of the data being sent and the number
of nodes being considered. As communication increases,
contention among the parallel processes will stress the
network due to the massive transfer of data among com-
pute nodes. At extremely high levels of contention, the
network is expected to eventually fail to process inter-
node communication efficiently. This work studies this
effect by creating the maximum possible contention by
simultaneous communication among all processes, cre-
ated by All-to-All communication commands. The tests
in this paper are designed to involve only basic MPI com-
mands for wide reproducibility, and the paper provides
the detailed motivation of the design of the memory us-
age needed.

To accomplish sufficient inter-node stress within the net-
work in an algorithmically realistic way, we implemented
a parallel sorting function which transfers the local por-
tion of a user-defined number of n pieces of data among
the p processes. Before the communications, each node
holds a portion of an array of data that is sorted lo-
cally, but may contain portions that should reside on
other processes. Using All-to-All commands, each indi-
vidual node sends the appropriate portions of data to all
other nodes in the network simultaneously, thus max-
imizing inter-node communication stress. Our results
show that, for constant global memory, as the number of
processes increase, the runtime in fact improves as the
network contention decreases under All-to-All communi-
cation. Alternately, as global memory usage is increased
maximally, that is, for constant local memory, as the
number of processes increase, the runtime deteriorates as
the network contention increases under All-to-All com-
munication. This test demonstrates that stress on the
InfiniBand network can be created that will eventually

www.top500.org

limit the scalability of parallel algorithms that use All-
to-All communications as building blocks. The situation
of constant local memory occurs in weak scalability stud-
ies, while the situation of constant global memory occurs
in strong scalability studies. Therefore, both are relevant
in practice, and the conclusion whether the InfiniBand
interconnect can become a limiting factor to parallel scal-
ability will depend on the algorithmtic structure of the
code.

The sorting example used as prototypical basis for our
experiments is inspired by [8, Chapter 10] that uses it to
introduce the MPI_Alltoall and MPI_Alltoallv com-
mands. Other works that test the usage of these com-
mands over InfiniBand are [1,3-6,11] Experiments de-
signed to stress the network data transfer over Infini-
Band are described in [2,13], and [10] reports using FFT
and RandomAccess to stress the bandwidth and latency
of the Infiniband.

BACKGROUND

Computational Environment and InfiniBand Interconnect
The studies were performed on the cluster tara in the
UMBC High Performance Computing Facility (HPCF).
All details of the cluster tara and in particular about
its InfiniBand interconnect are posted on the webpage
www.umbc.edu/hpcf. Various performance studies using
tara are available as technical reports, for instance [9]
that compares performance by two implementations of
MPI. Following [9], we use the MPI implementation
MVAPICH2.

The cluster tara has 86 nodes, comprising 82 compute
nodes, 2 develop nodes, 1 user node, and 1 management
node. Each node has two quad-core Intel Nehalem X5550
processors (2.66 GHz, 8192kB cache) and 24 GB of local
memory. All components of tara are connected by a
quad-data rate InfiniBand interconnect.

InfiniBand is a connection that allows for high-speed
data transfers from computers to input/output devices
[12]. Tt is a switched fabric communication link, meaning
that it connects the nodes to each other via switches. In
computer networks, switches receive data sent from one
device and direct the data to only the device(s) which
is (are) meant to receive the data [12]. This allows for
more secure and potentially faster data transfers between
multiple devices. Using the InfiniBand communication
network, there is very low latency (1.2 us to transfer a
message between two nodes), and wide bandwidth up to
3.5 GB (28 Gb) per second.

It is intuitive to hypothesize that as the number of pro-
cesses on which a parallel job is run increases, the com-
munication between processes will become slower and
may bottleneck because more processes need to commu-
nicate with each other than when the number of pro-
cesses is small. However, many times, commercial man-
ufacturers attempt to avoid this occurrence by using
methods such as virtual channels and adaptive routing.
Adaptive routing, as apposed to merely routing, allows

nodes to reroute the path that data is sent based on net-
work fluctuations, such as congestion at one node. When
a problem is encountered while transferring data, infor-
mation is sent to the appropriate nodes, and new paths
to send data that avoid problem areas are created [12].
Virtual channels were created in order to alleviate the
issue of deadlock, and also decrease network latency and
throughput. Though these methods are commonly used
in parallel computing technology to solve many commu-
nication issues that arise, their effects on performance
have not been rigorously studied. Therefore, it is diffi-
cult to determine when inter-job communication will be-
come a performance issue. Our experiments study this
issue. In order to study the effects of inter-job com-
munication on job performance, our team implemented
a sorting algorithm which requires communication be-
tween all parallel processes.

Leaf Modules

Each leaf module in the InfiniBand switch in the cluster
has 18 ports. Two leaf modules currently have complete
sets of 18 compute nodes attached to them. The remain-
ing leaf modules contain other nodes that are not part
of the partition of compute nodes (such as the develop
nodes or components of the storage system) or have a
defective node among its connections. We can control
the choice of leaf module by explicitly requesting nodes
for our jobs by name. Therefore, in this study, our team
focuses on how contention is effected both within one leaf
module and contention over two leaf modules. Consider-
ing this network contention provides insight into whether
parallel algorithms that send large blocks of data via
All-to-All communications result in contention first over
two leaf modules or whether there is contention using
nodes located within just one leaf module. More im-
portantly, our conclusions answer the question regarding
whether implementation of parallel code requiring All-
to-All communications of large data seriously degrades
performance.

The 18 ports in one leaf module are arranged evenly in
two rows of ports; that is, nine ports are located in the
first row and nine nodes are located in a second row.
Each of the nine ports are separated in three groups of
three ports. Our team studied contention by running
several tests by requesting specific nodes, starting with
three nodes that form one group on the leaf module,
then testing nine nodes or one row in the leaf module,
and finally extending this process to the whole leaf mod-
ule with 18 nodes, and then across two leaf modules with
36 nodes. By keeping the node assignments as tightly to-
gether as possible in this way, we give the InfiniBand in-
terconnect the best opportunity to overcome contention,
since the more local communications can profit from the
most complete set of interconnection.

METHODOLOGY

All-to-All Communications
An All-to-All communication simultaneously sends and
receives data between all parallel processes in one call.

www.umbc.edu/hpcf

Figure 1. Network schematics for All-to-All communica-
tion between N = 9,18,36 nodes.

Since is it eventually not possible to have physical ca-
ble connections between all possible pairs of ports in
the InfiniBand switch and its leaf modules, All-to-All
commands necessarily lead to contention between all re-
quired pairwise communications. The network schemat-
ics in Figure 1 gives a visual impression of how many
cables would be needed to connect N = 9,18, 36 nodes,
respectively. An All-to-All communication command
sends the ;" block of its input array from Process i to
Process j and receives it into the i*" block of the output
array on Process j. MPI has two All-to-All communi-
cation commands: MPI_Alltoall and MPI_Alltoallv.
The former command sends the same amount of data be-
tween all processes, while the latter one can send variable
(hence the letter “v” at the end of the command name)
amounts of data between all processes [8]. To test the
InfiniBand network, we will maximize the contention by
communicating the largest block sizes possible. Thus, in
our studies, also the variable version MPI_Alltoallv will
send (by choosing an appropriate example data set) the

same amount of data between all processes, since that
maximizes contention between messages.

Experimental Design

In order to effectively stress inter-job communication,
our team implemented a sorting function which trans-
fers data among all nodes within the InfiniBand net-
work utilizing the MPI commands MPI_Alltoall and
MPI_Alltoallv. The idea of the algorithm is inspired
by [8, Chapter 10] that uses a similar example to intro-
duce these MPI commands. The data structure is given
by n numbers, which are distributed onto the p paral-
lel processes. Only local arrays of length ,, := n/p are
stored, never a global array of length n. Only the mini-
mum number of arrays are used in the algorithm, namely
one vector unsorted that holds the unsorted data origi-
nally and one vector sorted that holds the sorted data at
the end of the algorithm. These two vectors have length
1,, on each parallel MPI process. In [8], the algorithm has
four steps: (i) The data in unsorted is sorted locally on
each process (by any serial method of choice); while the
numbers in unsorted are now sorted, they may contain
components that need to be sent to the other process,
thus creating the need for All-to-All communications.
(ii) An MPI_Alltoall call communicates a single integer
among all process pairs that informs the process pairs,
how many pieces of data need to be sent and received
among them in the next step. (iii) An MPI_Alltoallv
call communicates the appropriate portions of the local
unsorted vector on each process to the appropriate por-
tions of the local sorted vector on each process. (iv) The
numbers in the received sorted vector then still need lo-
cal sorting (by any serial method) to obtain the final
result of the algorithm, in which the sorted vectors — if
the were concatenated from all processes — are globally
sorted.

To focus entirely on the effect of the communications on
the timings, we choose a sample dataset, in which neither
of the local sort algorithms in steps (i) or (iv) above are
needed. Moreover, since the goal is to stress the network
by having as much simultaneous parallel communication
as possible, we design the dataset in the initial unsorted
vector to have an equal number of components that need
to be sent to all other processes. That is concretely, out
of the l,, = n/p numbers in unsorted on one parallel
process, the same block length of I,, /p components needs
to be sent to each of the p processes.

The idea is best understood by a concrete example of n =
48 numbers, given as numbers 1,2,...,48, distributed
to p = 4 processes, with ID numbers 0,1,2,3 in MPI
counting, displayed in the matrix unsorted =

1,2, 3, 13,14,15, 25,26,27, 37,38,39
| 4,5,6, 16,17,18, 28,29,30, 40,41,42
= | 7.8 09, 19,20,21, 31,32,33, 43,44,45

10,11,12, 22,23,24, 34,3536, 46,47,48

)

The p = 4 rows in this matrix list the I, = n/p =
48/4 = 12 numbers each that are initially on the Pro-

cesses 0, 1,2, 3, respectively. We note that the numbers
in each row above are already locally sorted, thus not
requiring a local sort of step (i) of the algorithm. To
achieve a globally sorted vector, stored in local vector
sorted on each process, requires for this sample dataset
the communication of a block length I, /p = 12/4 = 3 of
numbers among all pairs of processes. For example for
Process 0 (data in first row of the matrix), the group of
numbers 13,14, 15 needs to be sent to Process 1, which
— coming from Process 0 — will show up as the first
numbers in vector sorted on Process 1. This communi-
cation gives the result that can be summarized in the
matrix sorted =

1,2,3, 4,56, 7,89, 10,11,12

| 13,14,15, 16,17,18, 19,20,21, 22 23,24
25,26,27, 28,29,30, 31,32,33, 34,35,36 |
37,38,39, 40,41,42, 43,44,45, 46,47,48

which lists in each row the numbers in sorted on the Pro-
cesses 0,1, 2,3, respectively; notice the group 13, 14,15
at the start of the second row for Process 1. We observe
that the numbers in each row of this matrix are sorted
and no local sort of the vectors sorted on each process
in step (iv) of the algorithm is needed.

Memory Predictions

To stress the network as much as possible, we need to
make the amount of data communicated between each
pair of parallel processes as large as possible. In the
example dataset designed so far, this amount of data is
simply a block length l,/p of numbers, which is thus
given indirectly by choosing n and p. We introduce now
another independent variable m that allows to control
the amount of this data independently from n and p.
Namely, in place of each number in the example for the
arrays unsorted and sorted we use a struct that contains
an array of m double-precision numbers. We can now
think of the numbers in unsorted and sorted as indices
into an array of structs, and communicating each struct
requires the sending and receiving of m doubles. In other
words, in place of communicating {,, /p numbers between
process pairs, we communicate I, /p many vectors of m
double-precision numbers, called a block size I, /p of m-
vectors for short.

The benefit of introducing m is that we can now ex-
plicitly control the memory requirement of the arrays
by choosing m. The two local vectors, unsorted and
sorted, are the only major variables in memory. Since
each node on the cluster tara has 24 GB of memory, to-
tal local memory must be less than 24 GB per node. To
comfortably stay within this memory also on one node,
the vectors are chosen as less than 10 GB each to insure
that memory does not become a problem. In Table 1, we
specialize our memory calculations to use the maximum
possible number of 8 parallel processes on each compute
node, which maximizes contention on each node for the
All-to-All communications among its local processes and
contention when all local processes access the InfiniBand
cable at the same time. Table 1 provides the formulas for

Table 3. Constant global memory for m = 512: wall clock
time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m =512 1.14 0.57 0.25 0.15 0.11

memory predictions for a global array of length n con-
sisting of vectors of m doubles. The global vector is then
divided into p local arrays of block length I,, = n/p of
m-~vectors, such that the size of the local vectors is con-
stant per number of processes p. The block size of the
portions in the arrays unsorted and sorted that need to
be communicated between process pairs is then the block
size 1, /p of m doubles.

As explained in Section Background, we wish to use N =
1, 3,9, 18, 36 nodes, which we choose by name so as to en-
sure their optimal connectivity in the leaf modules in the
InfiniBand interconnect. Running then 8 processes on
each node with two quad-core CPUs for most contention
of network traffic, we have p = 8 N = 8,24, 72,144,288
parallel processes in a job. These numbers are listed in
the first two rows of Table 1.

In all following experiments, we fix the length of the
global array at n = 2. (8-18-2-3)% = 1,492,992. This
number is designed to ensure that all desired values of
the block length [, /p divide n without remainder. That
is, n needs to be divisible without remainder not just
by p, but by p?, since l,,/p = n/p?>. We had originally
planned to consider also some other values of p, hence
some additional factors are contained in the choice of n
that are not strictly needed going forward; this generality
does not impact the conclusions.

RESULTS

Experiment with Constant Global Memory

To effectively test the contention of the InfiniBand net-
work, our team conducted a performance study with a
constant global memory value, by fixing m = 512 as
constant, which makes the global memory an estimated
6 GB for each of the two arrays unsorted and sorted in
Table 2 for n = 1,492,992. The local memory of I,, = n/p
decreases from 729 MB to 20 MB, as the numbers of pro-
cesses p and nodes N increase. This effect of decreasing
memory is amplified for the block size I, /p, namely from
process to process it decreases by another factor of p, so
that 93,312 kB decrease dramatically to 72 kB eventu-
ally.

Table 3 and Figure 2 both display the runtimes in sec-
onds for the call to the MPI_Alltoallv command send-
ing and receiving ml, /p doubles between processes for
the choices of parameters in Table 2. The results show
that the communication speed of the All-to-All com-
mand in fact decreases with additional nodes in the par-
allel job. The plot brings out how dramatic the decrease
is.

Constant Global Memory

o i N

Wall Clock Time in Seconds

10 20
Number of Nodes, N

Figure 2. Constant global memory for m = 512: wall clock

time in seconds vs. number of nodes.

Table 5. Constant local memory for m = 512 N: wall clock
time in seconds.

Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m=>5I12N | 1.14 1.64 2.09 2.28 2.30

This is remarkable and demonstrates that the high-
performance InfiniBand interconnect can handle the
stress of contention in All-to-All communications suc-
cessfully, provided the overall problem does not increase
in size, that is, for constant global memory. In the con-
text of a larger algorithm that uses All-to-All communi-
cations, this communication will not be a bottleneck.

Experiment with Constant Local Memory

The results up to this point used a constant global mem-
ory with m constant for any number of p parallel pro-
cesses, which leads to a rapidly decreasing block size I, /p
between pairs of processes. Now, in order to keep the
block size in the All-to-All communications as large as
possible, the vector length m will be designed to increase
with increasing p = 8V, as reported in Table 4. The goal
is to keep the block size I,,/p as large as possible, while
p increases. This is limited by the requirement that the
arrays unsorted and sorted need to fit in memory on
each node. This implies that we cannot keep the block
size 1, /p itself constant, but only the local memory con-
trolled by [,; thus we pick the function m = 512N,
so that the local memory of each array unsorted and
sorted is 729 MB for all values of p; we call this the
case of constant local memory. The block size I,,/p will
then still decrease with increasing p, but less dramati-
cally than before. This is seen in Table 4 in a decrease
from 93,312 kB to 2,592 kB, which is a much larger final
value than the 72 kB in Table 2. Notice the size of the
global array increasing to a total of 205 GB on 36 nodes
with increasing m, showing what significant problem size
is eventually considered in this experiment.

The results displayed in Table 5 and Figure 3 present the
runtimes in seconds, as we increase the number of pro-
cesses p = 8 N, while holding local memory on N nodes
constant using m = 512 N. With the local memory held
constant, the run times steadily increase as we increase

Constant Local Memory

iy a N

Wall Clock Time in Seconds

10 20
Number of Nodes, N

Figure 3. Constant local memory for m = 512N: wall
clock time in seconds vs. number of nodes.

N. The plot in Figure 3 brings the increase out very
well, in particular compared to the decreasing line in
Figure 2, which started from the same initial data point.
Thus, in this case of maximum contention on the net-
work, it is apparent that the run times increase with the
numbers of processes, and the InfiniBand interconnect
is eventually overcome by the All-to-All contention. For
the use of All-to-All communication commands as build-
ing blocks in larger algorithms, this means that parallel
scalability studies cannot succeed, since communication
time worsens as the number of processes p increases.

CONCLUSIONS

As the results in Section Experiment with Constant
Local Memory show, with local memory constant and
contention on the network maximized, the run times for
MPI_Alltoallv grow with the number of processes. This
test case demonstrates that stress on the InfiniBand net-
work can be created and will eventually limit the scala-
bility of parallel algorithms that use All-to-All commu-
nications as building blocks. This is contrasted by the
results in Experiment with Constant Global Memory
that prove efficient behavior of the All-to-All communi-
cations, as long as the global memory stays constant, be-
cause this implies a dramatic decrease of the block size
of the pairwise communications in the MPI_Alltoallv
command. Both situations can occur in practice: The
case of constant global memory occurs in strong scal-
ability studies, where a fixed problem is divided onto
the parallel processes, while the case of constant local
memory appears in weak scalability studies, where the
problem size is increased such that the local memory of
each node is used at a constant level. Therefore, it de-
pends on the structure of the code and its used, whether
the InfiniBand interconnect becomes a lmiting factor in
parallel performance.

Acknowledgments

These results were obtained as part of the REU Site: In-
terdisciplinary Program in High Performance Comput-
ing (www.umbc.edu/hpcreu) in the Department of Mathe-
matics and Statistics at the University of Maryland, Bal-
timore County (UMBC) in Summer 2013, where they

www.umbc.edu/hpcreu

were originally reported in the tech. rep. [7]. This pro-
gram is funded jointly by the National Science Founda-
tion and the National Security Agency (NSF grant no.
DMS-1156976), with additional support from UMBC,
the Department of Mathematics and Statistics, the
Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing
Facility (HPCF). HPCF (www.umbc.edu/hpct) is supported
by the National Science Foundation through the MRI
program (grant nos. CNS-0821258 and CNS-1228778)
and the SCREMS program (grant no. DMS-0821311),
with additional substantial support from UMBC. Co-
author Jordan Ramsey was supported, in part, by the
UMBC National Security Agency (NSA) Scholars Pro-
gram though a contract with the NSA. Graduate RA
Xuan Huang was supported by UMBC as HPCF RA.

REFERENCES
1. Balaji, P., Buntinas, D., Goodell, D., Gropp, W.,
Kumar, S., Lusk, E., Thakur, R., and Traff, J. L.
MPI on a million processors. In Recent Advances in
Parallel Virtual Machine and Message Passing
Interface. Springer, 2009, 20-30.

2. Balaji, P., Narravula, S., Vaidyanathan, K.,
Krishnamoorthy, S., Wu, J., and Panda, D. K.
Sockets direct protocol over InfiniBand in clusters:
Is it beneficial? In Performance Analysis of
Systems and Software, 2004 IEEE International
Symposium on-ISPASS, IEEE (2004), 28-35.

3. Hoefler, T., Lumsdaine, A., and Rehm, W.
Implementation and performance analysis of
non-blocking collective operations for MPI. In
Supercomputing, 2007. SC’07. Proceedings of the
2007 ACM/IEEE Conference on, IEEE (2007),
1-10.

4. Kandalla, K., Mancini, E. P., Sur, S., and Panda,
D. K. Designing power-aware collective
communication algorithms for InfiniBand clusters.
In Parallel Processing (ICPP), 2010 39th
International Conference on, IEEE (2010), 218-227.

5. Kandalla, K., Subramoni, H., Tomko, K.,
Pekurovsky, D., and Panda, D. A novel functional
partitioning approach to design high-performance
MPI-3 non-blocking Alltoallv collective on
multi-core systems. In 42nd International
Conference on Parallel Processing (ICPP) 20183,
IEEE (2013), 611-620.

6. Kandalla, K., Subramoni, H., Tomko, K.,
Pekurovsky, D., Sur, S., and Panda, D. K.
High-performance and scalable non-blocking
all-to-all with collective offload on InfiniBand
clusters: a study with parallel 3D FFT. Computer
Science-Research and Development 26, 3-4 (2011),
237-246.

7. Mistry, N., Ramsey, J., Wiley, B., Yanchuck, J.,
Huang, X., Gobbert, M. K., Mineo, C., and

10.

11.

13.

Mountain, D. Contention of communications in
switched networks with applications to parallel
sorting. Tech. Rep. HPCF-2013-13, UMBC High
Performance Computing Facility, University of
Maryland, Baltimore County, 2013.

Pacheco, P. S. Parallel Programming with MPI.
Morgan Kaufmann, 1997.

Raim, A. M., and Gobbert, M. K. Parallel
performance studies for an elliptic test problem on
the cluster tara. Tech. Rep. HPCF-2010-2, UMBC
High Performance Computing Facility, University
of Maryland, Baltimore County, 2010.

Reuther, A., Funk, A., Kepner, J., McCabe, A.,
Arcand, W., Currie, T., Hubbell, M., and
Michaleas, P. Benchmarking the MIT LL HPCMP
DHPI system. In DoD High Performance
Computing Modernization Program Users Group
Conference, 2007, IEEE (2007), 310-316.

Thibeault, C. M., Minkovich, K., O’Brien, M. J.,
Harris Jr, F. C.; and Srinivasa, N. Efficiently
passing messages in distributed spiking neural

network simulation. Frontiers in Computational
Neuroscience 7 (2013).

. White, C. M. Data Communications and Computer

Networks: A Business User’s Approach. Course
Technology, 2013.

Wu, J., Wyckoff, P.; and Panda, D. PVFS over
InfiniBand: Design and performance evaluation. In
Parallel Processing, 2003. Proceedings. 2003
International Conference on, IEEE (2003), 125-132.

www.umbc.edu/hpcf

Table 1. Formulas for memory predictions.

Nodes N 1 3 9 18 36

Processes p 8 24 72 144 288

Dimension m m m m m m
Length n of global array of m-vectors and their size in elements:

Length n n n n n n
Size mn mn mn mn mn
Length I,, = n/p of local arrays of m-vectors and their size in elements:

Length [, n n n n n

P p p p P
Size m % m % % m % m %

Length I, /p of block size of m-vectors in All-to-All and their size in elements:
L.ength ln/p p% p% I% 1% p%
Size m 1% m]% m z% m z% m p%
Table 2. Constant global memory for m = 512: predicted memory usage for one array.
Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512 512 512 512 512 512
Length n of global array of m-vectors and their memory in GB:

Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 6 GB 6 GB 6 GB 6 GB
Length [,, = n/p of local arrays of m-vectors and their memory in MB:

Length [, 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 243 MB 81 MB 41 MB 20 MB
Length [,,/p of block size of m-vectors in All-to-All and their memory in kB:

Length 1, /p 23,328 2,592 288 72 18
Memory 93,312 kB 10,368 kB 1,152 kB 288 kB 72 kB
Table 4. Constant local memory for m = 512 N: predicted memory usage for one array.
Nodes N 1 3 9 18 36
Processes p 8 24 72 144 288
m = 512N 512 1,536 4,608 9,216 18,432
Length n of global array of m-vectors and their memory in GB:

Length n 1,492,992 1,492,992 1,492,992 1,492,992 1,492,992
Memory 6 GB 17 GB 51 GB 103 GB 205 GB
Length [,, = n/p of local arrays of m-vectors and their memory in MB:

Length [, 186,624 62,208 20,736 10,368 5,184
Memory 729 MB 729 MB 729 MB 729 MB 729 MB
Length [,,/p of block size of m-vectors in All-to-All and their memory in kB:

Length I, /p 23,328 2,592 288 72 18
Memory 93,312 kB 31,104 kB 10,368 kB 5,184 kB 2,592 kB

	Introduction
	Background
	Computational Environment and InfiniBand Interconnect
	Leaf Modules

	Methodology
	All-to-All Communications
	Experimental Design
	Memory Predictions

	Results
	Experiment with Constant Global Memory
	Experiment with Constant Local Memory

	Conclusions
	REFERENCES

