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Abstract

Diabetes is a disease characterized by an excessive level of glucose in the bloodstream, which
may be a result of improper insulin secretion. Insulin is secreted in a bursting behavior of
pancreatic β-cells in islets, which is affected by oscillations of cytosolic calcium concentra-
tion. We used the Dual Oscillator Model to explore the role of calcium in calcium oscillation
independent and calcium oscillation dependent modes and the synchronization of metabolic
oscillations in electrically coupled β-cells. We implemented a synchronization index in order
to better measure the synchronization of the β-cells within an islet, and we studied heteroge-
neous modes of coupled β-cells. We saw that increasing calcium coupling or voltage coupling
in heterogeneous cases increases synchronization; however, in certain cases increasing both
voltage and calcium coupling causes desynchronization. To better represent an islet, we
altered previous code to allow for a greater number of cells to be simulated.

Keywords: pancreatic β-cells, islet, calcium, metabolic oscillations, Dual Oscillator Model

1 Introduction

Insulin is a hormone secreted by pancreatic β-cells that
manages blood plasma glucose levels. Improper insulin
secretion can result in chronically elevated levels of glu-
cose in the bloodstream in a disease known as diabetes.
Diabetes can lead to kidney failure, blindness, limb am-
putation, cardiovascular disease, and death [8]. There are
two types of diabetes: Type I involves an autoimmune de-
struction of β-cells, which results in a complete absence
of insulin. Type II involves a deficiency of insulin caused
by insulin resistance as well as a failure of β-cells to pro-
duce enough insulin to compensate. Type II is the more
common form of diabetes, with a rising number of cases
concentrated in industrialized countries [8]. The rise in
diabetes has driven research to better understand β-cells.

In Zhang et al. [18], pulsatile insulin, where insulin is
presented in brief pulses as opposed to a continuous man-
ner, is characterized. It results from bursts of calcium
releasing vesicles containing insulin. Pulsatile insulin is
known to exist in humans and many mammals [10, 15] and
to be more effective on its target tissues [13, 5, 12], while
patients with Type II diabetes exhibit disrupted pulsatil-
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sity, 3Department of Mathematics, Edmonds Community College,
4Department of Mathematical Sciences, Kent State University,
5Department of Mathematics, Vanderbilt University, 6Laboratory
of Biological Modeling, National Institutes of Health

ity [2, 14]. The period of these oscillations varies but is
generally around 5 minutes [2, 4]. The calcium bursts
responsible for releasing the insulin-containing vesicles
are known to derive from ionic channels, cellular stores,
and metabolic dynamics and demands on the cell as re-
viewed in [4]. However, some details of metabolic de-
mands and oscillations interplay with calcium dynamics
in whole islets are not well understood. We address this
with a mathematical model.

To model a β-cell, we use the Dual Oscillator
Model (DOM), a system of ordinary differential equations
which consists of the interacting electrical, glycolytic,
and mitochondrial components, based originally on the
Hodgkin-Huxley Model with significant revisions made
for our system, including the FitzHugh-Nagumo Reduc-
tion [8]. The DOM has already been used to address ques-
tions about situations under which metabolic oscillations
occur, especially focusing on the effect of calcium oscilla-
tions as newer versions of the model suggest that calcium
plays a bigger role in metabolic oscillations, where cer-
tain modes require the presence of calcium oscillations for
metabolic oscillations to occur. The model in Watts et al.
[17] has been adapted to work as a multi-cell islet model
as in Eskandar et al. [6]. We will consider how dynamics
change when working with islet oscillations dependent on
calcium oscillations.

The bifurcation structure of the DOM has been stud-
ied to examine how both the electrical oscillator and
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the glycolytic oscillator work together, and we will rely
heavily on the two-parameter bifurcation diagram in the
JGK-Cac plane based on the isolated glycolytic oscilla-
tor system to obtain our results. We have a model and
methods to further understand what causes oscillations
of β-cells in pancreatic islets to synchronize.

Our research focuses on understanding β-cells by inves-
tigating calcium oscillation independent (CaI) and cal-
cium oscillation dependent (CaD) modes. We do this
through exploring the effects of voltage and calcium cou-
pling as well as different types of heterogeneous cellular
bursting arrangements on the synchronization of cells in
these modes. We have arranged our report as follows:
In Section 2 there is a brief overview of the physiology of
β-cells as well as the Dual Oscillator Model. The method-
ology is described in Section 3 and the results are de-
scribed in Section 4. The conclusions of our research are
drawn in Section 5.

2 Background

2.1 Physiology

In the pancreas, the endocrine cells are found in clusters
called islets of Langerhans [8]. The islet primarily consists
of α-, β-, and δ-cells; the β-cells are responsible for insulin
secretion. The process of insulin secretion begins when
glucose enters a β-cell. Glycolysis starts, during which
adenosine diphosphate (ADP) is converted to adenosine
triphosphate (ATP). The ratio of ATP to ADP increases,
causing the ATP dependent potassium channels (KATP)
to close and the β-cell to depolarize. As a result, the cal-
cium (Ca2`) channels open, allowing Ca2` to flow into
the cytoplasm from the outside of the cell. The increase
in Ca2` triggers the endoplasmic reticulum (ER) to open
its large Ca2` store, leading to a higher concentration
of Ca2` in the cell. Due to this greater concentration,
insulin is released into the bloodstream through exocyto-
sis. The ATP/ADP ratio is restored by exocytosis and
other cell functions, such as the calcium pump that ex-
pels excess Ca2`, lowering the concentration. The KATP

channel is reopened and the cell is repolarized, resetting
the β-cell.

The process of the calcium channels opening and clos-
ing results in calcium oscillations, whereas the flow of
ions in and out of the cell lead to voltage oscillations.
Furthermore, the ATP oscillations depend on negative
feedback from the Ca2` [11]. During the process of
glycolysis, there is a positive feedback loop of fructose
1,6-bisphosphate (FBP) on phosphofructokinase (PFK)
causing the production of more FBP until fructose 6-
phosphate (F6P) is depleted, which causes PFK activ-
ity to stop until F6P levels recover. This process causes
metabolic oscillations. There are different values of the

flux of glucokinase (JGK) that determine whether a cell
is CaI or CaD. If it depends on the calcium oscillation
levels, it is CaD, and if it does not depend on the cal-
cium oscillation levels, it is CaI. The range of CaD is
0.00 ď JGK ď 0.01 and JGK ě 0.176. The range of
CaI is 0.045 ď JGK ď 0.15, and these parameter values
are used for the β-cells [17]. Ca2` links the electrical
and metabolic oscillations that are exhibited by β-cells
in response to elevated glucose levels in the bloodstream.
Together these two oscillations regulate the secretion of
insulin by the β-cells. A complete oscillation is considered
a burst, representing one cycle of insulin secretion. β-cells
can be classified into two categories, slow and fast, based
upon their bursting periods. Slow bursting β-cells burst
approximately every four to six minutes. Fast bursting
β-cells burst approximately every ten seconds [7]. In islets
however, there is a mix of differently bursting cells called
heterogeneity. The timing of the insulin secretion process
is dependent on the (JGK) value of the cell.

The β-cells do not act independently to release insulin.
They are connected by gap junctions, which are pro-
teins split between the cell membranes that allow small
molecules to travel from cell to cell. Gap junctions impact
the voltage between cells as well as Ca2` concentration
in each cell. A transmembrane current is created across
the gap junction due to the flow of ions between cells [8].
As the process of insulin secretion happens for one cell,
it is signaled to the connecting cells and the bursting is
synchronized [7].

Insulin secretion is oscillatory in healthy cells; however,
these oscillations often are not observed in pre-diabetic
subjects. It is possible that the lack of oscillations are
connected with dysynchronization of β-cells in an islet.

2.2 Dual Oscillator Model

The Dual Oscillator Model (DOM) [17] represents the
process of insulin secretion for a single β-cell by seven
differential equations (1a)–(1g) consisting of three com-
ponents: electrical, mitochondrial, and glycolytic. The
DOM is given by

dV

dt
“ ´

IK ` ICa ` IKpCaq ` IKpATP q

Cm
(1a)

dn

dt
“
n8pV q ´ n

τn
(1b)

drCas

dt
“ fcytpJmem ` Jerq (1c)

drCaers

dt
“ ´σV ferJer (1d)

drADP s

dt
“ Jhyd ´ δJANT (1e)
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drG6P s

dt
“ kpJGK ´ JPFKq (1f)

drFBP s

dt
“ kpJPFK ´

1
2JGPDHq. (1g)

Equations (1a)–(1d) contain the electrical model, Equa-
tion (1e) describes the cell’s mitochondrial activity, and
Equations (1f) and (1g) represent glycolytic activity.
Note that r¨s represents the concentration of particular
molecules. The seven state variables are membrane po-
tential (V ), the activation variable for the voltage depen-
dent K channel (n), and the concentrations of the free cy-
toplasmic calcium (rCas), the free cytoplasmic calcium in
the ER (rCaers), ADP (rADP s), the glucose 6-phosphate
in the cell (rG6P s), and FBP (rFBP s). Also, Jx serves
to show flux where x P tmem, er, hyd,ANT,GK,PFK,
GPDHu.

In Equation (1a), Ii indicates the ionic currents
through the specific channels where i P tK,Ca,KpCaq,
KpATP qu. Note that IK and ICa are voltage dependent,
IKpCaq is Ca2`-activated, and IKpATP q is sensitive to the
ATP/ADP ratio. The variable Cm represents the mem-
brane capacitance. In Equation (1b), τn is a time con-
stant.

The equations for the currents, which use Ohm’s law
and form the basis for Equation (1a), are given by

IK “ ḡKnpV ´ VKq (2a)

ICa “ ḡCam8pV ´ VCaq (2b)

IKpCaq “ gKpCaqpV ´ VKq (2c)

IKpATP q “ gKpATP qpV ´ VKq. (2d)

Note that gi is conductance whereas ḡi represents the
maximal conductance for the respective current.

The activation variables n and m are given by

n8pV q “
1

1` e´p16`V q{5
(3a)

m8pV q “
1

1` e´p20`V q{12
. (3b)

The K(Ca) conductance in (4a) is given by an increas-
ing sigmoidal function of the Ca2` concentration and the
K(ATP) conductance in (4b) is dependent on the ADP
and ATP concentrations, where the conductance func-
tion O8 is given by the Magnus-Keizer expression [3], as
shown by

gKpCaq “ ḡKpCaq

ˆ

Ca2

K2
D ` Ca

2

˙

(4a)

gKpATP q “ ḡKpATP qO8pADP,ATP q. (4b)

The concentration of calcium in Equation (1c) uses the
fraction of free to total cytosolic Ca2` (fcyt) along with

Equations (5a) through (5d). The flux equations are
given by

Jmem “ ´pαICa ` kPMCArCasq (5a)

Jer “ Jleak ´ JSERCA (5b)

Jleak “ pleakprCaers ´ rCasq (5c)

JSERCA “ kSERCArCas. (5d)

These equations describe the flux of Ca2` across the
membrane (Jmem), the flux of Ca2` out of the endo-
plasmic reticulum (Jer), leakage permeability (pleak), and
SERCA pump rate (kSERCA). In Equation (5a), α con-
verts current to flux and kPMCA is the Ca2` pump rate.
In our reduced model, only the leakage (Jleak) leads to
flux out of the ER, and only the SERCA pumps (JSERCA)
lead to Ca2` flux into the ER.

Returning to Equation (1d), we have rCaers deter-
mined by the volume fraction of the relationship between
the ER and the cytoplasm (σV ), the flux across the ER
(Jer), and the fraction of free to total cytosolic Ca2` in
the ER (fer).

The concentration of ADP, representing the mitochon-
drial component, is determined by the flux through the
ATP hydrolysis (Jhyd) and the flux through the mito-
chondrial translocator (JANT ) which are given by

JANT “ p19
ATPm{ADPm

ATPm{ADPm ` p20
exp

ˆ

Fψm

2RT

˙

(6a)

Jhyd “ pkhydCac ` Jhyd,SSqATPc. (6b)

In Equations (6a) and (6b), F is Faraday’s constant, R
is the universal gas constant, T is the temperature, and
ψm is the mitochondrial membrane potential, which is
taken to be constant. The calcium-dependent component
of hydrolysis is given by khyd, and Jhyd,SS is the basal
level of hydrolysis. Thus, it can be seen from (6b) that
Cac influences the rate of glycolysis [17].

Regarding the glycolytic component, Equation (1f)
shows ([G6P]), produced in the first step of glycolysis,
given by the flux through phosphofructokinase (JPFK)
and the flux through glucokinase (JGK). In Equa-
tion (1g), JPFK and the flux through glyceraldehyde 3-P
dehydrogenase (JGPDH) determine [FBP]. The glycolytic
component is capable of generating slow oscillations with-
out calcium oscillations because of negative feedback from
G6P and positive feedback by FBP.

2.3 Coupling

Coupling of N3 cells is considered to better understand
the way β-cells interact in islets through gap junctions.
To couple multiple cells in an islet, we created a diago-
nal coupling matrix G, which connects the voltages and
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calcium concentrations between a cell and its neighboring
cells. We construct a vector,

y “

»

—

—

—

—

—

—

—

—

–

Vi
ni
rCasi
rCaERsi

rADP si
rG6P si
rFBP si

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where i “ 1 to N , (7)

that contains these values for all of the cells. We now
define our system of ODEs to be

dy

dt
“ fpt, yq `Gy, (8)

where fpt, yq encompasses the happenings inside each cell
taken from the DOM and Gy accounts for the adjusted
behavior of the β-cells due to coupling.

3 Numerical Methods

The DOM can be examined two ways: as a single cell
model and as an islet model. The single cell model shows
how one β-cell reacts to electrical and metabolic oscilla-
tions represented in Equations (1a)–(1g). The islet model
replicates this single cell model for N3 cells then uses the
coupling matrixG to consider how the cells interact. Both
models are based on Matlab files used in previous work at
University of Maryland, Baltimore County High Perfor-
mance Computing Facility [7]. This file was adapted from
Bertram’s XPPAUT file that implemented the DOM [3].

3.1 Islet Model

The islet is modeled as a cube of NˆNˆN cells with in-
dexing pi, j, kq. Note that this means our ODE system
becomes 7N3 differential equations. For computational
purposes, the values associated with each cell are stored
in a vector y, in Equation (7). The indexing is given as
l “ i ` Npj ´ 1q ` N2pk ´ 1q to access the pi, j, kqth el-
ement in y. To compute the impact of coupling on each
cell, the C matrix shows the influence of the surrounding
cells on each individual cell. The matrix C consists of
coupling coefficient values that are modified to account
for the chosen coupling values in C 1. The matrix G is a
block diagonal matrix, with each block on the diagonal
containing C 1. Each row represents the effects of con-
necting cells to one cell. If the mth and nth cells are not
connected, then the pm,nq and pn,mq entries of the ma-
trix will be zero; if they are connected, the entries will be
their coupling relation. The diagonal of matrix C is the
number of neighboring cells multiplied by the coupling
value, g. More information on the coupling matrix can
be found in [9].

To accurately represent an islet, the initial values of
each cell are taken from a normal distribution around
the average value with standard deviation 20% of that
average value. This allows the initial values of each cell
to be chosen within a certain range of the mean to see
how the cell bursts synchronize. We take into account the
heterogeneity of an islet and use three different patterns
as seen in Figures 1a, 1b, and 1c. The equal pattern in
Figure 1a alternates between two JGK values from cell to
cell. In Figure 1b, we see a layers pattern where each row
alternates the JGK values. The last pattern we model
is called a layered split pattern that alternates between
half rows of JGK values seen in Figure 1c. Within these
patterns, we use various combinations of JGK values in
CaD and CaI ranges.

3.2 Optimizing the Numerical Method

To obtain numerical solutions for the DOM, we choose
the built-in Matlab solver ode15s, which can solve stiff
differential equations in the form My1 “ F pt, yq. It effec-
tively uses a mass symbolic Jacobian matrix obtained di-
rectly from the DOM code through the streamlined means
of Matlab’s Automatic Differentiation. We implement a
modified version of ode15s to optimize runtime and mem-
ory usage specifically for the DOM [9].

For simulations of a large N or high end time, the out-
put is too large to write a MAT-file. To overcome this
issue, we add a loop into the code that can run the sim-
ulation for a given amount of time and save the results
in a MAT-file. Then the end value is taken as the new
initial condition and the simulation is run for the next
time period, saving these results in a new MAT-file. We
call this loop the Time Interval Loop (TIL).

3.3 Synchronization Index

In order to quantitatively measure the level of synchro-
nization for each simulation, we write code to output
the synchronization index of V, [Ca], and [FBP] traces.
To weigh the stiff and nonstiff regions of the oscillations
equally in the index, we interpolate the data from the sim-
ulation using a time vector with equal spacing of 36ms per
entry. A Pearson correlation runs on the matrix contain-
ing all the V, [Ca], or [FBP] traces per simulation. We
use the built-in Matlab function, corr, for the Pearson
correlation. The pi, jqth entry of the resulting coefficient
matrix is the Pearson coefficient for the ith and jth traces.
We determine the index by taking the minimum average
value of the rows. For this index we choose for what time
period of each simulation to run the correlation. Since we
are considering what pattern the simulation settle into,
we typically run our SI on the last fifteen minutes of the
simulation.
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(a) Equal-50-Percent (b) Layers (c) Layered-split

Figure 1: Three different heterogeneity patterns where red and blue represent two different JGK values.

4 Results

Our simulations examine the behavior of voltage, calcium,
and FBP under varying parameters and between hetero-
geneous groups of cells representing an islet. Our results
show simulations of varying JGK values in the CaI, CaD,
and mixed CaI and CaD ranges, as well as varying levels
of calcium coupling and voltage coupling. The calcium
coupling values are chosen from the range of no coupling
to 0.045 ms´1, from initial tests that showed no change
in synchronization when gCa ą 0.045 ms´1. The voltage
coupling values are chosen to be 0, 5, and 10 pS, from
initial tests which showed no significant change in syn-
chronization with gV ą 10 pS.

4.1 Coupling Trends

We consider coupling in the CaD and CaI modes. In Fig-
ure 2, we consider CaI mode with a 3ˆ3ˆ3 islet starting
from perturbed initial conditions of identical β-cells with-
out coupling in calcium. There are two different voltage
coupling strengths, 5 pS in Figure 2a and 10 pS in Fig-
ure 2b. We show calcium, voltage and FBP in time. As
voltage coupling increases, synchronization modestly in-
creases in all three variables. In Figure 3 we alter the JGK

value to a CaD mode. Here increasing voltage coupling
seems to increases synchronization much more quickly
and completely compared to the CaI mode in Figure 2.
When calcium coupling values are modest (ă0.045 ms´1q,
there is greater synchronization as the calcium coupling
values increase in both CaI, Figure 4, and CaD, Figure 5,
modes, though there appears to be some variation on the
fastest (ms) time scale.

When calcium coupling values are less than 0.045 ms´1,
there is greater synchronization as the calcium values in-
crease in both CaD and CaI modes as shown by Figures
4 and 5.

4.2 Heterogeneity

We test three different types of heterogeneity patterns
with various pairs of JGK values and various calcium and
voltage coupling values. We find the differences between
the three heterogeneity patterns to be small. For example
in Figure 6 with voltage coupling of 5 pS, without calcium
coupling, and with two-cell modes, one in CaD mode and
one in CaI mode, the orientation of the cell modes has
little impact on the synchronization. Similarly, in Fig-
ure 7 without voltage coupling, with calcium coupling
of 0.045 ms´1, and with two-cell modes, one in CaI low
mode and one in CaI high mode, the orientation of the
cell modes again has little impact on the synchronization.
Consequently for subsequent simulations we consider only
the equal-50-percent orientation of the islet.

4.3 Synchronization

In order to quantify synchronization, we create a plot of
the synchronization index (SI) for a set of simulations
with varying parameters. Simulations are run with either
the same or perturbed initial conditions as well as for a
time period of one or two hours. Note that we apply the SI
to the last fifteen minutes of each simulation. Each chart
consists of twelve scatter plots with each plot represent-
ing a different voltage and calcium coupling combination.
The x-axis shows the pairs of JGK values while the y-axis
represents the SI values. To represent the SI values of
voltage, calcium, and FBP per simulation, each point is
given a certain shape and color, voltage synchronization
is a pink triangle, calcium synchronization a green circle,
and FBP synchronization a blue X. An SI value of one
represents complete synchronization.

4.3.1 Synchronization Index Charts

In the synchronization index chart, we can see the trends
as we change parameters. Each column of graphs rep-
resents a specific voltage coupling, which increases from
left to right. Rows of graphs represent a given calcium
coupling increasing from top to bottom. The first three
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(a) gv “ 5 pS (b) gv “ 10 pS

Figure 2: CaI runs with a JGK value of 0.095 µM¨ms´1, a 3ˆ3ˆ3 block of cells, homogeneous, gCa “ 0 ms´1 and the
initial conditions perturbed.

(a) gv “ 5 pS (b) gv = 10

Figure 3: CaD runs with a JGK value of 0.18 µM¨ms´1, a 3ˆ3ˆ3 block of cells, homogeneous, gCa “ 0 ms´1 and the
initial conditions perturbed.
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(a) gca “ 0.000009ms´1 (b) gca “ 0.0018ms´1

(c) gca “ 0.0036ms´1

Figure 4: CaI runs with a JGK value of 0.095 µM¨ms´1, with a 3ˆ3ˆ3 block of cells, are homogeneous, gv “ 0 pS,
and the initial conditions perturbed.

(a) gca “ 0.000009ms´1 (b) gca “ 0.0018ms´1

(c) gca “ 0.0036ms´1

Figure 5: CaD runs with a JGK value of 0.18 µM¨ms´1, with a 3ˆ3ˆ3 block of cells, are homogeneous, gv “ 0 pS,
and the initial conditions perturbed.
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(a) Equal-50-percent (b) Layers

(c) Layered-split

Figure 6: Mixed CaD and CaI with JGK values of 0.14 and 0.18 µM¨ms´1, with a 3ˆ3ˆ3 block of cells, gv “ 5 pS,
gCa “ 0 ms´1, and the initial conditions perturbed.

(a) Equal-50-percent (b) Layers

(c) Layered-split

Figure 7: CaI pairs with JGK values of 0.05 and 0.14 µM¨ms´1, with a 3ˆ3ˆ3 block of cells, gv “ 0 pS, gCa “

0.045 ms´1, and the initial conditions perturbed.
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columns in each graph have cells with JGK values all in
the CaI range. The next four columns have one JGK value
in the CaI range and one in CaD. The last three columns
have JGK values both in the CaD range. These different
columns are designated by dashed lines.

In Figure 8 after an hour even a small amount of cal-
cium coupling tends to cause voltage desynchronization.
We also ran the simulations for two hours and compared
to the simulations for one hour, in the mixed pairs of
JGK , the synchronization decreases for all of the calcium
coupling strengths.

We perturbed the initial conditions in Figure 9. We
observe that there are some instances of desynchroniza-
tion when the simulations are run for two hours instead
of one hour.

4.3.2 Synchronization Trends

We can deduce from the SI plot in Figure 9, that in-
creasing voltage coupling in the CaD mode increases syn-
chronization in all three oscillations, voltage, calcium,
and FBP. Figures 10a through 10c demonstrates the trend
of synchronization as voltage increases.

Another noticeable trend drawn from Figure 9 is that
in CaI mode, increasing calcium coupling increases syn-
chronization of all three oscillations, voltage, calcium,
and FBP. Figure 11 shows the increasing trend of syn-
chronization as the strength of the calcium coupling in-
creases.

4.3.3 Desynchronization

We observe from our the SI plot in Figure 9, that in cer-
tain cases, coupling can desynchronize the oscillations.
We will compare the noticeable desynchronization cases
in the following graphs.

The first desynchronization case is observed in simula-
tions of CaD modes, where increasing calcium coupling
desynchronizes voltage as seen in Figure 12.

We also see this desynchronization through the syn-
chrony values as seen in Table 1.

SI 12a 12b

V 0.930 0.139

Ca2` 0.987 0.866

FBP 0.997 0.862

Table 1: SI Values for Figures 12a and 12b

The next desynchronization case is observed when con-
sidering simulations run for two hours. Desynchroniza-
tion occurs over time when both voltage and calcium were

coupled and in the high end of the CaD region. In Fig-
ure 13a, calcium and FBP start to desynchronize around
40 minutes. We also see this desynchronization through
the synchrony values as seen in Table 2. When we in-
crease the calcium coupling strength in Figure 13b, the
oscillations start desynchronizing around 40 minutes but
re-synchronizes around 80 minutes. This is also apparent
in its synchrony indices as seen in Table 3.

SI 1 hr 2 hr

Ca2` 0.603 0.220

FBP 0.537 0.185

Table 2: SI Values for Figure 13a

SI 1 hr 2 hr

Ca2` 0.406 0.602

FBP 0.285 0.567

Table 3: SI Values for Figure 13b

The following desynchronization case is when the FBP
oscillations stop over time. We observe this case for sim-
ulations with calcium coupling only, in CaD mode of high
JGK values. Figure 14 demonstrates this desynchroniza-
tion, where the graph of FBP oscillations become flat
around 100 minutes. Note that calcium has small fast os-
cillations mirroring the fast spiking electrical oscillations.

5 Discussion

We used the Dual Oscillator Model and the modified ODE
solver to better understand the role of calcium oscillations
in CaI and CaD modes. For more examples of the trends
we have observed, see reference [1]. In addition, we were
able to create a synchronization index to demonstrate the
trends in voltage and calcium coupling, as well as differing
JGK values. Through this, we were able to better study
the impact of CaI, CaD, and mixed modes on oscillations.
To improve simulations by modeling more cells in each
simulation, the code was modified to write multiple MAT-
files using a loop for a chosen time.

Coupling complex cells together has interesting dy-
namic effects. In CaI modes, increasing calcium coupling
with no voltage coupling increases synchronization. In
CaD modes, increasing voltage coupling with no calcium
coupling increases synchronization as well. However, in
CaD modes, voltage coupling with high calcium coupling
causes desynchronization in voltage. This is reminiscent
of the work on coupled cells in [16], where adding calcium
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Figure 8: Simulations run with a 5ˆ5ˆ5 cube, the same initial conditions, and the equal-50-percent bursting pattern
for one hour. V SI: 5, Ca2` SI: ©, FBP SI:

Ś

.

Figure 9: Simulations run for one hour with a 5ˆ5ˆ5 cube of cells, the equal-50-percent bursting pattern, and the
initial conditions perturbed. V SI: 5, Ca2` SI: ©, FBP SI:

Ś

.
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(a) gV “ 0 pS (b) gV “ 5 pS

(c) gV “ 10 pS

Figure 10: Simulations with a 5ˆ5ˆ5 block of cells, gCa “ 0 ms´1, JGK “ 0.18 µM¨ms´1 (blue) or JGK “

0.20 µM¨ms´1 (red), and the initial conditions perturbed.

(a) gCa “ 0ms´1 (b) gCa “ 0.0033ms´1

(c) gCa “ 0.006ms´1

Figure 11: Simulations with a 5ˆ5ˆ5 block of cells, gV “ 0 pS, JGK “ 0.08 µM¨ms´1 (blue) or JGK “ 0.10 µM¨ms´1

(red), and the initial conditions perturbed.
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(a) gCa “ 0ms´1 (b) gCa “ 0.006ms´1

Figure 12: Simulations with a 5ˆ5ˆ5 block of cells, gV “ 10 pS, JGK “ 0.18 µM¨ms´1 (blue) or JGK “ 0.20 µM¨ms´1

(red), and the initial conditions perturbed.

(a) gCa “ 0.003ms´1 (b) gCa “ 0.004ms´1

Figure 13: Simulations with a 5ˆ5ˆ5 block of cells, gV “ 5 pS, JGK “ 0.20 µM¨ms´1 (blue and red), and the initial
conditions perturbed.

Figure 14: Simulations with a 5ˆ5ˆ5 block of cells, gV “ 0 pS, gCa “ 0.004 ms´1, JGK “ 0.20 µM¨ms´1 (blue and
red), and the initial conditions perturbed.
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permeability between cells leads to a desynchronization of
voltage via a pitchfork bifurcation. These results help us
to better understand how calcium is organized in pancre-
atic islets in the process of insulin secretion.

Healthy β-cells secrete insulin in an oscillatory behav-
ior, which occurs when cells are synchronized. High syn-
chronization occurs when β-cells have higher voltage cou-
pling, but a low calcium coupling according to the syn-
chrony tables in 4.3.2. Biologically this would mean that
cells synchronize more when ions are allowed to flow be-
tween them.

However further research needs to be done into the role
of calcium in pancreatic β-cells. Calcium is necessary in
β-cells for in sensing glucose, glycolisis, and insulin se-
cretion. Through investigating the effects of CaD and
CaI glycolytic oscillations on synchronization, we hoped
to better understand its role in the β-cell. Pre-diabetic
cells may have the properties of the observed desynchro-
nization instances in 4.3.3. If identified, this will allow
for the development of more precise models, which will
assist in discovering anomalies in β-cells of patients with
diseases such as diabetes.

Our work was limited to a single islet 125 β-cell model.
This research needs to be expanded to better represent
an actual pancreatic islet of Langerhans, which has thou-
sands of cells, including α- and δ-cells, and the interaction
between the many islets in a pancreas. In our tests we
assumed each β-cell was coupled to all of its neighbors,
which may not be the case, which could affect synchro-
nization. Through better understating healthy, synchro-
nized β-cells, we hope to help discover the root cause of
diseases such as diabetes.
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