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Abstract

In this paper we consider the problem of drawing inference about a commonmean vector

based on data from several independent multivariate normal populations with unknown

and unequal dispersion matrices. An unbiased estimate of the common mean vector

with its asymptotic estimated variance is suggested to test a hypothesis about it and also

to construct a confidence ellipsoid. Both are valid in large samples. Another approxi-

mate method based on the notion of generalized %-value is also mentioned. Exact test

procedures and construction of exact confidence sets for the common mean vector are

presented. A comparison of the exact tests based on their local power is carried out.

Applications include a simulated data set and also data from Current Population Survey

(CPS) Annual Social and Economic Supplement (ASEC) 2021, conducted by the US

Bureau of the Census for the Bureau of Labor Statistics.
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1. Introduction

The inferential problem of drawing inference about a common mean vector - of

several independent normal populations with unequal and unknown dispersion matrices

is considered in this paper. We treat the problems of 1) point estimation of -, 2) test

for �0 : - = -0 versus �1 : - ≠ -0, and 3) construction of confidence sets for -.5

Suppose there are : (: ≥ 2) ?-variate normal populationswith commonmean vector

- and unknown covariance matrices �1, . . . ,�: . Let ^81, . . . , ^8=8 be independent ?-

variate vector sample observations from the 8Cℎ population (8 = 1, . . . , :), and ^8 9 ∼

#? (-,�8), 9 = 1, . . . , =8 . For the 8Cℎ population, let10

¯̂
8 =

1
=8

=8∑
9=1

^8 9 and Y8 =
=8∑
9=1
(^8 9 − ¯̂

8) (^8 9 − ¯̂
8)C (1)

be the sample mean vector and sample sum of squares and products matrix. Jointly,

{ ¯̂
8 , Y8 , 8 = 1, · · · , :} provide minimal sufficient statistics for the unknown parameters

- and�8 (8 = 1, · · · , :). It is well known that one can use the familiar Hotelling’s)2 test

for �0 and reject the null based on the 8Cℎ data set when)2
8
= =8 ( ¯̂

8 − -0)CY−1
8 ( ¯̂

8 − -0)

is large. A confidence set for - based on the 8Cℎ data set is also readily obtained as15

%A
{
- : [ =8 (=8−?)

?
] ( ¯̂

8 − -)CY−1
8 ( ¯̂

8 − -) ≤ �U,?,=8−?
}
= 1 − U, 8 = 1, . . . , : .

In Section 2 we provide an unbiased estimate of - based on the minimal sufficient

statistics and provide an expression for its estimated asymptotic variance. A test pro-

cedure for �0 and a confidence ellipsoid for - then readily follow. These results are20

asymptotic in nature.

An approximate procedure for test as well as confidence set for - in our context

was suggested by Lin et al. (2007) based on the notion of generalized %-values (Tsui

and Weerahandi, 1989; Weerahandi, 1993, 2003). This is briefly mentioned in Sec-25

tion 3. The authors clearly presented relevant algorithms to carry out the suggested

procedures and also discussed their performance in terms of coverage probabilities and

expected volumes in comparison with some existing methods. Notwithstanding their
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claim of anticipated better performance over existing procedures, the fact remains the

generalized %-value based procedure is indeed approximate and may not work well in30

some situations in view of the unknown and unequal nature of the population dispersion

matrices (see Tables 5 and 6 in their paper).

Exact tests for �0 and exact confidence sets for - can be derived by efficiently

combining the : independent Hotelling’s )2 statistics. Fortunately, several well-known35

exact procedures exist in the literature (Jordan and Krishnamoorthy, 1995; Hartung

et al., 2008; Kifle et al., 2021). We provide in Section 4 a review of these exact test

procedures and in Section 5 a review of exact confidence sets. Local powers of the exact

tests are discussed in Section 6 based on a Taylor expansion of the power and these are

compared in Section 7.40

In Section 8, two applications are provided. First, we reproduce a data set from

Jordan and Krishnamoorthy (1995) for ? = 2, : = 2, =1 = =2 = 12, each from

#2 (-,�1), #2 (-,�2), and use it to construct a confidence set for the bivariate common

mean vector based on the above exact procedures. Plots showing the confidence sets45

appear in Figure 3. Our second example is based on data arising fromCurrent Population

Survey (CPS) conducted by the Bureau of the Census for the Bureau of Labor Statistics.

It turns out that the sample sizes are large for the CPS data, thus enabling us to also

include the large sample procedure described in Section 2. Plots showing the confidence

sets appear in Figures 4 - 6. For the sake of completeness we have also plotted the50

confidence set derived from the generalized %-value based method (Lin et al., 2007) in

both the applications. We conclude the paper with some conclusions in Section 9.

2. A large sample procedure

In this section we propose an unbiased estimate of - which is essentially a general-

ization of the familiar Graybill-Deal estimate (Graybill and Deal, 1959) of ` in case of55

univariate normal populations. This estimate and its estimated asymptotic variance in

3



the univariate case are given by

ˆ̀�� =
[ :∑
8=1

=8

(2
8

]−1 [ :∑
8=1

=8

(2
8

-̄8

]
with ˆ+0A ( ˆ̀��) =

[ :∑
8=1

=8

(2
8

]−1
(2)

A test for �0 : ` = `0 versus �1 : ` ≠ `0 is based on the standard normal / statistic

defined as / = ( ˆ̀�� − `0)/
√
+̂0A ( ˆ̀��). An asymptotic confidence interval for ` is

given by ˆ̀�� ∓ /U/2
√
+̂0A ( ˆ̀��).60

As a generalization to the multivariate case, we propose

-̃�� =

[ :∑
8=1

=8Y
−1
8

]−1 [ :∑
8=1

=8Y
−1
8

¯̂
8

]
with +̂0A ( -̃��) =

[ :∑
8=1

=8Y
−1
8

]−1
(3)

An asymptotic test for �0 : - = -0 versus �1 : - ≠ -0 can then be based on the j2
?

statistic

j2
? = ( -̃�� − -)C

[ :∑
8=1

=8Y
−1
8

]
( -̃�� − -) (4)

A (1 − U)100% asymptotic ellipsoidal confidence set for - is provided by65

%A
{
( -̃�� − -)C

[ :∑
8=1

=8Y
−1
8

]
( -̃�� − -) ≤ j2

?,U

}
= 1 − U (5)

Our simulation studies (see Appendix A) demonstrate the robustness of the j2 cut-off

point for variations in the unknown dispersion matrices. An applications of (5) for a

real ASEC dataset appear in Section 8.

3. Confidence Set Based on Generalized V-value

Tsui andWeerahandi (1989) came upwith a novel idea to deal with uncommon infer-70

ence problems. Examples include the ANOVA problem under variance heteroscedas-

ticity, test for treatment variance component in a one-way random effects model, test for

reliability parameter %A (- > . ) = 1−Φ
[ `H−`G√

f2
G+f2

H

]
when - ∼ # (`G , f2

G), independent

of. ∼ # (`H , f2
H ), and so on. The method is based on a function ℎ(-; G, \, [) of under-

lying random variable - , its observed value G, \, the parameter of interest, while [ is a75

nuisance parameter. Under certain conditions on ℎ(·), a test for \ and a confidence set
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for \ can be derived. Their method is referred to as generalized %-value based approach.

In our context, following Tsui andWeerahandi (1989), Lin et al. (2007) suggested the

following algorithm to construct a confidence ellipsoid for -. An extension of the gener-80

alized %-valuemethod from a common univariate normalmeanwith unknown variances

to the case of a common multivariate normal mean vector with unknown dispersion

matrices is highly nontrivial, and the authors deserve a lot of credit to provide a solu-

tion. Starting with the basic ingredients, namely, (=1, · · · , =: ; ¯̂
8 , . . . , ¯̂

: ; Y1, . . . , Y: ),

define u8 = =−1
8
Y8 , ]8 =

[
u1/2
8

X̃
−1
8 u1/2

8

]−1, Z∗8 = ¯̂
8 −

[
u1/2
8

X−1
8 u1/2

8

]1/2
`8 , and85

] =
∑:
8=1 ]8 .

For 9 = 1, . . . , <:

Generate `1, . . . , `: from #? (0, O?).

Generate independent X8 and X̃8 from,? (=8 − 1, O?), 8 = 1, . . . , : .

Compute]1, . . . ,]: and].90

Compute Z 9 = ]−1 ∑:
8=1 ]8Z

∗
8 .

(End 9 loop)

Compute -̂) = 1/<∑<
9=1 Z 9 and �̂) = 1/(< − 1)∑<

9=1 (Z 9 − -̂) ) (Z 9 − -̂) )C .

Compute | | ˜̂Z 9 | |, where ˜̂Z 9 = �̂
−1/2
) (Z 9 − -̂) ), 9 = 1, . . . , <.

Let @ { | | ˜̂Z | |;1−U} be the 100(1 − U)Cℎ percentile of | | ˜̂Z 9 | |, 9 = 1, . . . , <, then the confi-95

dence ellipsoid of - can be obtained from the inequality{
- : (- − -̂) )C �̂

−1
) (- − -̂) ) ≤ @2

{ | | ˜̂Z | |;1−U}

}
. (6)

We have used equation 6 in Section 8.

4. Exact tests for N0 : - = -0 versus N1 : - ≠ -0

To develop the exact test for testing �0 : - = -0 versus �1 : - ≠ -0 based on all

the data sets, we proceed as follows. Recall that )2 = =( ¯̂ − -)CY−1 ( ¯̂ − -) satisfies100

)2 = ( ?

=−? )�?,=−? where �a1 ,a2 follows an �-distribution with a1 and a2 degrees of

freedom and our test procedure rejects �0 when �>1B > �a1 ,a2;U, U being Type I error

level and �>1B being the observed value of � under ` = `0. A test for �0 based on a

5



%-value on the other hand is based on %>1B = %[�a1 ,a2 > �>1B] and we reject �0 at

level U if %>1B < U. It is easy to check that the two approaches are obviously equivalent.105

A random %-value which has a Uniform(0,1) distribution under the null hypothesis

is defined as %A0= = %[�a1 ,a2 > �A0=], where �A0= =
[ =(=−?)

?

]
( ¯̂ − -0)CY−1 ( ¯̂ − -0).

All suggested exact tests for �0 are based on %>1B and �>1B values, and their properties,

including size and power, are studied under %A0= and �A0=. To simplify notations, we110

will denote %>1B by small ? and %A0= by large %. Four exact tests based on ? values

and one exact test based on �>1B as available in the literature are listed below.

4.1. Tippett’s test

This minimum %-value test was proposed by Tippett et al. (1931), who noted115

that, if %1, · · · , %: are independent ?-values from continuous test statistics, then each

has a uniform distribution under �0. According to this method, the null hypothesis

�0 : - = -0 is rejected at U level of significance if %(1) <
[
1 − (1 − U) 1

:

]
where

%(1) = <8={%1, · · · , %: }. Incidentally, this test is equivalent to the test based on

"C = <0G1≤8≤: {)2
8
} suggested by Cohen and Sackrowitz (1984).120

4.2. Wilkinson’s test

This test statistic proposed by Wilkinson (1951) is a generalization of Tippett’s

test that uses the A Cℎ smallest ?-value (%(A ) ) as a test statistic. The null hypothesis

�0 : - = -0 will be rejected if %(A ) < 3A ,U, where %(A ) follows a Beta distribution

with parameters A and (: − A + 1) under �0 and 3A ,U satisfies %A{%(A ) < 3A ,U |�0} = U.125

Obviously, this procedure generates a sequence of tests for different values of A =

1, 2, · · · , : , and an attempt has been made to identify the best choice of A [Table 2].

4.3. Inverse normal test

This exact test procedure which involves transforming each ?-value to the corre-

sponding normal score was proposed independently by Stouffer et al. (1949) and Lipták130

(1958). Using this inverse normal method, the null hypothesis �0 will be rejected at U
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level of significance if
[ ∑:

8=1Φ
−1 (%8)

] [√
:
]−1

< −IU, where Φ−1 denotes the inverse

of the cdf of a standard normal distribution and IU stands for the upper U level cutoff

point of a standard normal distribution.

4.4. Fisher’s inverse j2-test135

This inverse j2-test is one of the most widely used exact test procedures for combin-

ing : independent ?-values (Fisher, 1932). This procedure uses the
∏:
8=1 %8 to combine

the : independent ?-values. Then, using the connection between uniform and j2 dis-

tributions, the null hypothesis �0 is rejected if −2
∑:
8=1 ln(%8) > j2

2:,U, where j
2
2:,U

denotes the upper U critical value of a j2-distribution with 2: degrees of freedom.140

4.5. Jordan-Kris test

Jordan and Krishnamoorthy (1995) considered a weighted linear combination of the

Hotelling’s )2 statistic, namely ) =
∑:
8=1 �8)

2
8
, where )2

8
= =8 ( ¯̂

8 − -0)CY−1
8 ( ¯̂

8 − -0),

and �8 =
[+ 0A () 2

8
) ]−1∑:

9=1 [+ 0A () 2
9
) ]−1 with +0A ()2

8
) = 2?<2

8
(<8−1)

(<8−?−1)2 (<8−?−3) , <8 = =8 − 1, =8 >

? + 4,∀8 , 8 = 1, · · · , : . The null hypothesis �0 : - = -0 will be rejected if ) > 0,145

where %A{) > 0 |�0} = U. In applications 0 is computed by using the approximation

) ≈ 3�: ?,a , where a =
4"2: ?−2" 2

1 (: ?+2)
"2: ?−" 2

1 (: ?+2)
, 3 = "1 ( a−2

a
), "1 = ?

∑:
8=1

�8<8
<8−?−1 , and

"2 = ?(? + 2)∑:
8=1

�2
8
<2
8

(<8−?−1) (<8−?−3) + 2?2 ∑
8> 9

�8� 9<8< 9

(<8−?−1) (< 9−?−1) .

5. Exact confidence sets for -150

In this section we present some exact confidence sets for -, essentially based upon

inverting the acceptance sets resulting from the discussion in Section 4.

5.1. Confidence set based on Jordan-Kris method

Following the method proposed in Jordan and Krishnamoorthy (1995) which is

presented in section 4.5, a 100(1 − U)% confidence ellipsoid for - is a set of values -155

satisfying the following inequality.

(-− -̂)C\ (-− -̂) ≤ 0−
:∑
8=1

( :∑
9≠8

( ¯̂
8− ¯̂

9 )C]−1
9

)
\−1]−1

8 \−1
( :∑
9≠8

]−1
9 ( ¯̂

8− ¯̂
9 )
)
(7)

where -̂ = \−1 ∑:
9=1 ]

−1
9

¯̂
9 ,]−1

8 = 28=8Y
−1
8 , and \ =

∑:
8=1 ]

−1
8 .
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5.2. P-value based confidence sets

All the P-value based confidence sets are obtained by inverting the corresponding

acceptance sets and here are the results. We refer to Yu et al. (1999) for results in case160

of univariate normals. We define %8 (-) = %A
{
�?,=8−? >

[ =8 (=8−?)
?

]
( ¯̂

8 − -)CY−1
8 ( ¯̂

8 −

-)
}
, 8 = 1, . . . , : .

5.2.1. Confidence set based on Tippett’s method

A 100(1 − U)% Tippett’s confidence set for - is a set of values - satisfying{
- : %(1) (-) > 1 − [1 − U]1/:

}
.165

5.2.2. Confidence set based on Wilkinson’s method

A 100(1 − U)% Wilkinson’s (order A) confidence set for - is a set of values -

satisfying
{
- : %(A ) (-) > 3A ,U

}
.

5.2.3. Confidence set based on INN method

A 100(1 − U)% confidence set for - based on INN is a set of values - satisfying170 {
- :

∑:
8=1

Φ−1 (%8 (-))√
:

> −/U
}
.

5.2.4. Confidence set based on Fisher’s method

A 100(1 − U)% confidence set for - based on Fisher’s inverse j2-test is a set of

values - satisfying
{
- : −2

∑:
8=1 ln (%8 (-)) < j2

2:,U
}
.

175

Remark: Unlike the large sample based confidence ellipsoid presented in Section 2, the

generalized %-value based confidence ellipsoid presented in Section 3 and Jordan-Kris

confidence ellipsoid presented in Section 4, the P-value based confidence sets described

above may not always lead to confidence ellipsoids! In case of univariate normals, Yu

et al. (1999) derived sufficient conditions which will guarantee ellipsoid shapes. Similar180

sufficient conditions can be derived in case of multinormal populations, but we have

not pursued it here.

8



6. Expressions of local powers of proposed exact tests

In this sectionwe provide the expressions of local powers of the suggested exact tests.

A common premise is that we derive an expression of the power of a test under Δ2 > 0,185

and carry out its Taylor expansion around Δ2 = 0, where Δ2 = =(- − -0)C�−1 (- − -0),

and retain terms of order $ (Δ2).

The pdfs of � statistic under the null and alternative hypotheses which will be

required in the sequel are given below. Δ2 = =(-1 − -0)C�−1 (-1 − -0) below stands190

for the non-centrality parameter when -1 is chosen as an alternative value.

5 (�a1 ,a2 ) =
[
a1
a2

]a1/2

�( a1
2 ,

a2
2 )
�a1/2−1

[
1 + a1

a2
�

]−(a1+a2)/2
(8)

5Δ2 (�a1 ,a2 ) =
∞∑
:=0

4−Δ
2/2 [ Δ2

2 ]
:

�( a2
2 ,

a1
2 + :):!

(
a1
a2

) a1
2 +: [ a2

a2 + a1�

] a1+a2
2 +:

�a1/2−1+: (9)

5Δ2 (�a1 ,a2 ) ≈ 5Δ2=0 (�a1 ,a2 ) +
Δ2

2
5Δ2=0 (�)

[
� − 1

1 + a1
a2
�

]
= 5Δ2=0 (�a1 ,a2 )

[
1 + Δ

2

2

{
� − 1

1 + a1
a2
�

}]
(10)

The final expressions of the local powers of the proposed tests are given below in

the general case and also in the special case when =1 = · · · = =: = =. For detailed

proofs of all technical results we refer to the Appendix-B section of this paper.

195

6.1. Local power of Tippett’s test [!%())]

!%()) ≈ U + (1 − U) :−1
:

:∑
8=1

Δ2
8

2
b�2U;a1 ,a28

(11)

= U + (1 − U) :−1
: b�2U;a1 ,a2

{ :∑
8=1

Δ2
8

2

} [
special case

]
9



where b�2U;a1 ,a28
=

∫ ∞
2U;a1 ,a28

50 (�a1 ,a28 )
[
�−1

1+ a1
a28
�

]
3�

6.2. Local power of Wilkinson’s test [!%(,A )]

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A

[ :∑
8=1

Δ2
8

2
b�3A,U;a1 ,a28

]
(12)

= U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A b�3A,U,a1 ,a2

{ :∑
8=1

Δ2
8

2

} [
special case

]
where b�3A,U,a1 ,a2

is equivalent to b�2U;a1 ,a2
with 2U = 3A ;U.200

Remark: For the special case A = 1, !%(,A ) = !%()), as expected,

because 31;U = [1 − (1 − U)
1
: ], implying (1 − 31;U):−1 = (1 − U) :−1

: .

6.3. Local power of Inverse Normal test [!%(�##)]205

!%(�##) ≈ U + q(IU)
2
√
:

:∑
8=1
Δ2
8

[
IU

2
√
:
�a18 ,a28 − �a18 ,a28

]
(13)

= U + q(IU)√
:

[
IU

2
√
:
�a1 ,a2 − �a1 ,a2

] { :∑
8=1

Δ2
8

2

} [
special case

]
where �a1 ,a2 =

∫ ∞
−∞ Dq(D)&a1 ,a2 (D)3D, &a1 ,a2 (D) =

[
�−1

1+ a1
a2
�

]
�=�Φ(D) ;a1 ,a2

, �a1 ,a2 =∫ ∞
−∞ D

2q(D)&∗a1 ,a2 (D)3D, &
∗
a1 ,a2 (D) =

{
&a1 ,a2 (D) − � [&a1 ,a2 (D)]

}
, q(D) is standard

normal pdf and Φ(D) is standard normal cdf.

6.4. Local power of Fisher’s test [!%(�)]210

!%(�) ≈ U +
:∑
8=1

Δ2
8

4
�a18 ,a28

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
(14)

= U +
�a1 ,a2

2

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

] { :∑
8=1

Δ2
8

2

} [
special case

]
10



where �0 = �
[

log (@)
]
; �a1 ,a2 = �

[
+&∗a1 ,a2 (E)

]
; + ∼ exp[2]; @ ∼ gamma[1,:];

) ∼ 60<<0[2, :];&a1 ,a2 (E) =
[
�−1

1+ a1
a2
�

]
�=�Φ(E ) ;a1 ,a2

;&∗a1 ,a2 (D) =
{
&a1 ,a2 (D)−� [&a1 ,a2 (D)]

}
.

6.5. Local power of Jordan-Kris test [!%(� )]

!%(� ) ≈ U +
:∑
8=1

Δ2
8

2
��0

[{
�8 − 1

1 + ?

=8−?�8

}
�{∑:8=1�

∗
8
�8>0: }

]
(15)

= U + ��0

[{
�8 − 1

1 + ?

=−?�8

}
�{∑:8=1 �8>0: }

] { :∑
8=1

Δ2
8

2

} [
special case

]
where ��0 [·] stands for expectation w.r.t �1, . . . , �: under �0 [�8 ∼ � (a1, a28)].215

7. Comparison of local powers

It is interesting to observe from the above expressions that in the special case of

equal sample size, local powers can be readily compared, irrespective of the values of

the unknown dispersion matrices �8 , 8 = 1, · · · , : .220

Table 1 represents values of the second term of local power in case of equal sample

size = given above in (11) - (15), apart from the common term
[ ∑:

8=1 Δ
2
8
/2

]
, for different

values of : , ?, and =. A comparison of the second term of local power of Wilkinson’s

test for different values of A (≤ :) is provided in Table 2 for = = 15, : ∈ {2, 3, 5, 9, 10}225

and ? ∈ {2, 3, 4}. All throughout we have used U = 5%. It turns out that the exact tests

based on Inverse Normal and Jordan-Kris methods perform the best. Figures 1 and 2

present local powers of Inverse Normal and Jordan-Kris methods as a function of Δ1

and Δ2 for the special case of =1 = =2 = 15, : = 2, and ? = 2. It also turns out from

Table 2 that an optimum choice of A for Wilkinson’s method is nearly
√
: .230
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Table 1: Comparison of the 2=3 term of local powers [without
∑:
8=1 Δ

2
8
/2] of five exact tests for different

values of : , ? and = (equal sample size)

Exact Test

k=2

n=15 n=25 n=40

p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

Tippett 0.0693 0.0490 0.0375 0.0777 0.0571 0.0455 0.0825 0.0618 0.0502

Wilkinson 0.0669 0.0514 0.0417 0.0777 0.0571 0.0463 0.0825 0.0618 0.0502

Inverse Normal 0.0778 0.0585 0.0471 0.0833 0.0648 0.0529 0.0862 0.0672 0.0569

Fisher 0.0596 0.0458 0.0355 0.0635 0.0493 0.0416 0.0667 0.0517 0.0445

Jordan-Kris 0.0795 0.0598 0.0486 0.0863 0.0664 0.0552 0.0899 0.0697 0.0591

Exact Test

k=3

n=15 n=25 n=40

p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

Tippett 0.0496 0.0348 0.0264 0.0562 0.0410 0.0325 0.0601 0.0447 0.0361

Wilkinson 0.0545 0.0408 0.0325 0.0582 0.0449 0.0369 0.0601 0.0471 0.0393

Inverse Normal 0.0615 0.0463 0.0372 0.0647 0.0509 0.0421 0.0681 0.0535 0.0455

Fisher 0.0487 0.0375 0.0315 0.0526 0.0404 0.0345 0.0534 0.0426 0.0352

Jordan-Kris 0.0621 0.0472 0.0392 0.0668 0.0521 0.0433 0.0701 0.0547 0.0462

Exact Test

k=5

n=15 n=25 n=40

p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

Tippett 0.0322 0.0223 0.0168 0.0370 0.0268 0.0211 0.0399 0.0294 0.0236

Wilkinson 0.0393 0.0299 0.0241 0.0424 0.0324 0.0270 0.0443 0.0340 0.0285

Inverse Normal 0.0459 0.0349 0.0283 0.0487 0.0376 0.0314 0.0495 0.0395 0.0336

Fisher 0.0373 0.0299 0.0242 0.0418 0.0334 0.0239 0.0403 0.0331 0.0283

Jordan-Kris 0.0469 0.0351 0.0295 0.0499 0.0397 0.0331 0.0516 0.0419 0.0344

8. Applications

8.1. Confidence set comparison using simulated data

In this section we follow the framework in Jordan and Krishnamoorthy (1995) who

simulated bivariate samples of 12 vectors (equal sample size =1 = =2 = 12) each

from two bivariate normal distributions, #2 (-,�1) and #2 (-,�2) with -′ = (5, 8),235

12



Table 2: Comparison of the 2=3 term of local powers [without
∑:
8=1 Δ

2
8
/2] of Wilkinson’s exact test for

= = 15 (equal sample size) and different values of : , ? and A (≤ :)

r
k=2 k=3 k=5 k=9 k=10

p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

1 0.0693 0.0490 0.0375 0.0496 0.0348 0.0264 0.0322 0.0223 0.0168 0.0194 0.0133 0.0099 0.0177 0.0121 0.009

2 0.0669 0.0514 0.0417 0.0545 0.0408 0.0325 0.0391 0.0286 0.0224 0.0253 0.0182 0.014 0.0234 0.0167 0.0129

3 0.0463 0.0369 0.0306 0.0393 0.0299 0.0241 0.0276 0.0204 0.0161 0.0257 0.0189 0.0148

4 0.0358 0.0283 0.0234 0.0281 0.0212 0.0170 0.0264 0.0199 0.0159

5 0.0286 0.0238 0.0203 0.0275 0.0213 0.0173 0.0262 0.0201 0.0163

6 0.026 0.0206 0.0171 0.0253 0.0198 0.0163

7 0.0239 0.0194 0.0163 0.0238 0.019 0.0159

8 0.0208 0.0174 0.0149 0.0217 0.0178 0.015

9 0.0162 0.0141 0.0123 0.0188 0.0158 0.0136

10 0.0146 0.0128 0.0113

Figure 1: Local Power of Inverse Normal Method for n1=n2=15, k=2, p=2

�1 =

[4.5 3.0

3.0 7.9

]
and �2 =

[5.5 3.8

3.8 6.3

]
. Summary statistics based on these two sim-

ulated data sets are: ¯̂ ′1 = (4.73, 7.93), ¯̂ ′2 = (5.21, 8.89), Y1 =

[2.71 4.46

4.46 10.91

]
,

Y2 =

[5.39 1.37

1.37 2.84

]
, and \ =

[ 8.07 −3.39

−3.39 4.10

]
.

Based on the above simulated data, we present below the 95% confidence sets for -240

resulting from the five exact methods (Figure 3) and themethod based on the generalized

13



Figure 2: Local Power of Jordan-Kris Method for n1=n2=15, k=2, p=2

%-value. It turns out that INN method followed by Jordan-Kris and Fisher methods

yield smaller observed confidence sets than Tippett and Wilkinson (A = 2) methods.

As remarked earlier, the confidence ellipsoid based on the generalized %-value method

although seems to have smaller volume, its coverage probability can not be guaranteed.245

8.2. Data Analysis: Current Population Survey (CPS) Annual Social and Economic

Supplement (ASEC)

In this section we provide a statistical analysis of data arising from Current Popula-

tion Survey (CPS) Annual Social and Economic Supplement (ASEC) 2021, conducted

by the Bureau of the Census for the Bureau of Labor Statistics.250

Under CPS typically some 70,000 housing units or other living quarters are assigned

for interview each month; about 50,000 of them containing approximately 100,000 per-

sons 15 years old and over are interviewed. The universe in this survey is the civilian

noninstitutional population of the United States living in housing units and members255

of the Armed Forces living off post or living with their families on post. Sampling

units are scientifically selected (based on a probability sample) on the basis of area of

residence to represent the nation as a whole, individual states, and other specified areas.

14



Figure 3: 95% confidence sets based on a simulated bivariate data

Although the main purpose of the survey is to collect information on the employ-260

ment situation, a very important secondary purpose is to collect information on the

demographic status of the population, information such as age, sex, race, marital sta-

tus, educational attainment, and family structure. The statistics resulting from these

questions serve to update similar information collected once every 10 years through

the decennial census and are used by government policymakers and legislators as im-265

portant indicators of our nation’s economic situation and for planning and evaluating

many government programs. CPS is the only source of monthly estimates of total

employment (both farm and nonfarm); nonfarm self-employed persons, domestics, and

unpaid workers in nonfarm family enterprises; wage and salary employees; and, finally,

15



estimates of total unemployment.270

The Annual Social and Economic (ASEC) Supplement contains the basic monthly

demographic and labor force data described above, plus additional data on work ex-

perience, income, noncash benefits, health insurance coverage, and migration. Since

1976, the survey has been supplemented with about 6000 Hispanic households from275

which at least 4500 are interviewed. But in 2002 another sample expansion occurred

to help improved states estimates of Children’s Health Insurance (CHIP) resulting in

the addition of 19000 households and raising up the total sample size for the ASEC

to about 95000 households. All Current Population Reports are available online at

https://www.census.gov/library/publications.html.280

For the purpose of our data analysis, we mainly consider two variables out of a wide

range of available data: total income and income components covering nine noncash

income sources: food stamps, school lunch program, employer-provided group health

insurance plan, employer-provided pension plan, personal health insurance, Medicaid,285

Medicare, or military health care, and energy assistance. Characteristics such as age,

sex, race, household relationship, and Hispanic origin are shown for each person in the

household enumerated. Although above type of data is available for all the 50 states,

we focus on the data from California (CA) as it is argued that this data source is the

most reliable and the sample sizes are fairly large. There are 58 counties in CA and290

the table below shows a summary of the bivariate sample mean vectors and 2x2 sample

variance-covariance matrices for 13 selected counties in CA, divided into three groups

(Table 3). We observe that the simple mean vectors in each group are fairly close,

suggesting a common population mean vector within the chosen counties of a group.

The 95% confidence sets of the common mean vector based on the methods discussed295

in this paper appear in Figures 4 - 6. The location of the well-known Graybill-Deal

estimate of the common mean vector is shown in each ellipsoid. As an illustration, we

have also added a figure (Figure 7) depicting three confidence sets under Fisher method

for the three groups for the sake of comparison.
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Table 3: Summary of the bivariate sample mean vectors and 2 × 2 sample variance-covariance matrices for

13 selected counties in CA, divided into three groups
Group-I [K=5 Counties]

Butte County Kings County Shasta County Tulare County Stanislaus County

n=32 n=49 n=45 n=57 n=67

¯̂ 11 =


46.8048

63.8037

 ¯̂ 12 =


45.6735

64.3907

 ¯̂ 13 =


48.9864

71.6568

 ¯̂ 14 =


53.5000

73.6172

 ¯̂ 15 =


49.2051

79.8356


Y11 =


2255.263 1820.256

1820.256 1851.509

 Y12 =


2249.200 1958.085

1958.085 2223.194

 Y13 =


2290.233 1670.224

1670.224 2172.094

 Y14 =


4702.451 4576.456

4576.456 5330.648

 Y15 =


3298.961 2527.469

2527.469 2828.913


Group-II [K=5 Counties]

Monterey County Los Angeles County Sacramento County Santa Cruz County San Luis Obispo County

n=62 n=1548 n=216 n=50 n=43

¯̂ 21 =


80.5238

96.1007

 ¯̂ 22 =


80.8304

101.0140

 ¯̂ 23 =


75.0044

99.6372

 ¯̂ 24 =


77.1391

100.2768

 ¯̂ 25 =


76.0411

103.1578


Y21 =


7888.208 8107.861

8107.861 8989.313

 Y22 =


10992.71 11338.02

11338.02 12834.65

 Y23 =


6417.046 6005.736

6005.736 7266.494

 Y24 =


7108.753 7022.462

7022.462 7855.648

 Y25 =


5310.268 4276.638

4276.638 4593.337


Group-III [K=3 Counties]

Alameda County San Francisco County Sonoma County

n=247 n=90 n=50

¯̂ 31 =


126.3072

147.3478

 ¯̂ 32 =


127.4039

155.6503

 ¯̂ 33 =


122.2838

166.5137


Y31 =


17857.07 17442.44

17442.44 19388.81

 Y32 =


19639.91 18455.13

18455.13 19352.74

 Y33 =


16522.68 17558.55

17558.55 23443.13
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Figure 4: 95% confidence sets based on CPS bivariate data [Group-I]

9. Concluding remarks300

In the spirit of statistical meta-analysis, this paper discusses asymptotic and exact

methods for efficiently combining data from several independent multinormal popula-

tions with a common mean vector - to draw inference upon -. It turns out that, in

18



Figure 5: 95% confidence sets based on CPS bivariate data [Group-II]

large samples, a procedure based on a standardized Graybill-Deal estimate of - is quite

satisfactory and easy to carry out. In small samples, however, several exact procedures305

with good frequentist properties exist. We should point out that although the plots of the

confidence ellipsoids based on the approximate generalized %-value method suggested

in Lin et al. (2007) appear to be quite satisfactory, there is no guarantee that the coverage

level is maintained. We hope that the methods of data analysis developed and discussed

in this paper will be used in applications whenever warranted.310
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Figure 6: 95% confidence sets based on CPS bivariate data [Group-III]
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Figure 7: 95% confidence sets based on CPS bivariate data [three groups]
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Appendix A: Robustness of the 62 cut-off point

We present here the results of our simulation based on # = 10, 000 replications

related to the cut-off point of the test statistic given by (4). We have taken several

scenarios of dispersion matrices and = = 50, 100. Our simulation studies demonstrate320

the robustness of the j2 cut-off point for variations in the unknown dispersion matrices

(Table 4 and Figure 8).

Figure 8: Chi-square with 2 degrees of freedom and large sample distributions with = = 50 and = = 100

22



Appendix B: Proofs of local powers of exact tests

We begin by stating a result which will be crucial for providing the main results on

local power of all %-value based exact tests. We denote �a1 ,a2 (·) to represent the cdf of325

a central �-distribution with a1 and a2 degrees of freedom.

Lemma 1. Let ) be a random variable with pdf ℎ(C) and CDF � (C), −∞ < C < ∞.

Define

� (C) =
∫ ∞

�� (C ) ;a1 ,a2

50 (�)
{ � − 1

1 + a1
a2
�

}
3� (16)

where 50 (�) follows an � distribution with a1 and a2 degrees of freedom (�a1 ,a2 ) and330

�� (C);a1 ,a2 satisfies

� (C) = %A [�a1 ,a2 > �� (C);a1 ,a2 ] . (17)

Then
3

3C
{� (C)} = ℎ(C)

{
� − 1

1 + a1
a2
�

}
�=�� (C ) ;a1 ,a2

(18)

Proof. Obviously,

3

3C
{� (C)} =

[
− 3

3C
{�� (C);a1 ,a2 }

] [
50 (�)

{ � − 1
1 + a1

a2
�

}]
�=�� (C ) ;a1 ,a2

(19)

From equation (17), differentiating both sides with respect to C, we get

ℎ(C) =
[
− 3

3C
{�� (C);a1 ,a2 }

]
50 (�)

��
�=�� (C ) ;a1 ,a2

(20)

Implies335

− 3
3C
{�� (C);a1 ,a2 } =

ℎ(C)
50 (�)

��
�=�� (C ) ;a1 ,a2

(21)

Lemma 1 (which is equation 18) follows upon combining equations (19) and (21). �
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I. Local power of Tippett’s test [!%())]

Recall that Tippett’s exact test rejects the null hypothesis if %(1) <
[
1− (1−U) 1

:

]
=

2U, where 2U = 1 − [1 − U]1/: . This leads to

Power = %A
{
%(1) < 2U |�1

}
= 1 − %A

{
%(1) > 2U |�1

}
= 1 − %A

{
%8 > 2U,∀8 |�1

}
= 1 −

:∏
8=1

%A
{
%8 > 2U |�1

}
= 1 −

:∏
8=1

%A
{
�?,=8−? < �2U;?,=8−? |�1

}
= 1 −

:∏
8=1

[
1 − %A

{
�a1 ,a28 > �2U;a1 ,a28 |�1

}]
[a1 = ?, a28 = =8 − ?]

= 1 −
:∏
8=1

[
1 −

∫ ∞

�2U ;a1 ,a28

5Δ2 (�a1 ,a2 )3�
]

Applying the approximate distribution of �a1 ,a2 (·) under the alternative hypothesis340

following its Taylor expansion around Δ2 = 0, the local power of Tippett’s test is

calculated as follows:

Local power ≈ 1 −
:∏
8=1

{
1 −

∫ ∞

�2U ;a1 ,a28

[
5Δ2=0 (�a1 ,a28 ) +

Δ2
8

2

∫ ∞

�2U ;a1 ,a28

5Δ2=0 (�)
[ � − 1
1 + a1

a28
�

] ]
3�

}
where Δ2

8 = =8 (- − -0)C�−1
8 (- − -0)

= 1 −
:∏
8=1

{
1 −

∫ ∞

�2U ;a1 ,a28

5Δ2=0 (�a1 ,a28 )3� −
Δ2
8

2

∫ ∞

�2U ;a1 ,a28

5Δ2=0 (�)
[ � − 1
1 + a1

a28
�

]
3�

}
= 1 −

:∏
8=1

{
(1 − 2U;a1 ,a28 ) −

Δ2
8

2
b�2U;a1 ,a28

}
[b�2U;a1 ,a28

> 0]

where b�2U;a1 ,a28
=

∫ ∞

�2U ;a1 ,a28

50 (�a1 ,a28 )
[ � − 1
1 + a1

a28
�

]
3�

= 1 −
{
[1 − 2U]: − [1 − 2U]:−1

:∑
8=1

Δ2
8

2
b�2U;a1 ,a28

}
= U + (1 − U) :−1

:

:∑
8=1

Δ2
8

2
b�2U;a1 ,a28

(22)
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For the special case =1 = · · · = =: = = and b�2U;a1 ,a21
, = · · · = b�2U;a1 ,a2:

= b�2U;a1 ,a2
,

the local power of Tippett’s test reduces to:

LP(T) = U + (1 − U) :−1
: b�2U;a1 ,a2

{ :∑
8=1

Δ2
8

2

}
. (23)

II. Local power of Wilkinson’s test [!%(,A )]345

Using A Cℎ smallest ?-value %(A ) as a test statistic, the null hypothesis will be rejected

if %(A ) < 3A ,U, where %(A ) ∼ Beta[A, : − A + 1] under �0 and 3A ,U satisfies

U = %A{%(A ) < 3A ,U |�0}

=

∫ 3A,U

0

DA−1 (1 − D):−A
�[A, : − A + 1] 3D

=

:∑
;=1

(
:

;

)
3;A ,U [1 − 3A ,U]:−; . (24)

This leads to

Power = %A [%(A ) < 3A ,U |�1]

=

:∑
;=A

%A{%81 , . . . , %8; < 3A ,U < %8;+1 , . . . , %8: |�1}

where (81, · · · , 8; , 8;+1, · · · , 8: ) is a permutation of (1, · · · , :). Applying Lemma 1, we

get350

%A{%81 , . . . , %8; < 3A ,U < %8;+1 , . . . , %8: |�1}

≈
{ ;∏
9=1

%A
(
%8 9 < 3A ,U

)}{ :∏
9=;+1

Pr
(
%8 9 > 3A ,U

)}
=

{ ;∏
9=1

%A
(
�a1 ,a28 9

> �3A,U ,a1 ,a28 9
|�1

)}{ :∏
9=;+1

Pr
(
�a1 ,a28 9

< �3A,U ,a1 ,a28 9

)}
=

{ ;∏
9=1

%A
(
�a1 ,a28 9

> �3A,U ,a1 ,a28 9
|�1

)}{ :∏
9=;+1

[
1 − Pr

(
�a1 ,a28 9

> �3A,U ,a1 ,a28 9

) ]}
=

{ ;∏
9=1

∫ ∞

�3A,U,a1 ,a28 9

�Δ2
8 9

3�

}{ :∏
9=;+1

[
1 −

∫ ∞

�3A,U,a1 ,a28 9

5Δ2
8 9

(�a1 ,a28 9
)3�

]}
(25)

Let’s apply now the following fact in 25∫ ∞

�3A,U,a1 ,a28

�Δ2
8
3� ≈ 3A ,U +

Δ2
8

2

∫ ∞

�3A,U,a1 ,a28

50 (�a1 ,a28 )
[ � − 1
1 + a1

a28
�

]
3�
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!%(,A ) ≈
;∏
9=1

{
3A ,U +

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}
×

:∏
9=;+1

{
(1 − 3A ,U) −

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}
=

{
3;A ,U + 3;−1

A ,U

;∑
9=1

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}
×
{
(1 − 3A ,U):−; − (1 − 3A ,U):−;−1

:∑
9=;+1

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}

= 3;A ,U (1 − 3A ,U):−; − 3;A ,U (1 − 3A ,U):−;−1
{ :∑
9=;+1

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}
+3;−1

A ,U (1 − 3A ,U):−;
{ ;∑
9=1

Δ2
8 9

2

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

}
= 3;A ,U (1 − 3A ,U):−; − 3;A ,U (1 − 3A ,U):−;−1

{ :∑
9=;+1

Δ2
8 9

2
b�3A,U,a1 ,a28 9

}
+3;−1

A ,U (1 − 3A ,U):−;
{ ;∑
9=1

Δ2
8 9

2
b�3A,U,a1 ,a28 9

}
where b�3A,U,a1 ,a28 9

=

∫ ∞

�3A,U,a1 ,a28 9

50 (�a1 ,a28 9
)
[ � − 1
1 + a1

a28 9
�

]
3�

Permuting (81, . . . , 8: ) over (1, . . . , :), we get for any fixed ; (A ≤ ; ≤ :),

1st term =

(
:

;

)
3;A ,U (1 − 3A ,U):−;

2nd term = −3;A ,U (1 − 3A ,U):−;−1
{(

: − 1
: − ; − 1

) ( :∑
8=1

Δ2
8

2
b�3A,U,a1 ,a28

)}
3rd term = 3;−1

A ,U (1 − 3A ,U):−;
{(
: − 1
; − 1

) ( :∑
8=1

Δ2
8

2
b�3A,U,a1 ,a28

)}
.

The 2nd term above follows upon noting that when
[ ∑:

9=;+1
Δ2
8 9

2 b�3A,U,a1 ,a28 9

]
is per-

muted over (8;+1 < · · · < 8: ) ⊂ (1, . . . , :), each term
Δ2
8 9

2 b�3A,U,a1 ,a28 9
appears exactly( :−1

:−;−1
)
times, for each 8 = 1, · · · , : . The 3rd term, likewise, follows upon noting that

when
[ ∑;

9=1
Δ2
8 9

2 b�3A,U,a1 ,a28 9

]
is permuted over (81 < · · · < 8;) ⊂ (1, . . . , :), each term355
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Δ2
8 9

2 b�3A,U,a1 ,a28 9
appears exactly

(:−1
;−1

)
times, for each 8 = 1, · · · , : .

Adding the above three terms and applying 24, we get

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A

[ :∑
8=1

Δ2
8

2
b�3A,U,a1 ,a28

]
(26)

where Δ2
8 = =8 (- − -0)C�−1

8 (- − -0)

For the special case =1 = · · · = =: = =, and b�3A,U,a1 ,a21
= · · · = b�3A,U,a1 ,a2:

=

b�3A,U,a1 ,a2
, the local power of Wilkinson’s test reduces to:360

!%(,A ) ≈ U +
(
: − 1
A − 1

)
3A−1
A ;U (1 − 3A ;U):−A b�3A,U,a1 ,a2

{ :∑
8=1

Δ2
8

2

}
. (27)

III. Local power of Inverse Normal test [!%(�##)]

Under this test, the null hypothesis will be rejected if 1√
:

∑:
8=1*8 < −IU, where

*8 = Φ
−1 (%8), Φ−1 is the inverse cdf and IU is the upper U level critical value of a

standard normal distribution. This leads to

Power = %A
{

1
√
:

:∑
8=1
*8 < −IU |�1 : Δ2

8 > 0,∀8
}
.

First, let us determine the pdf of* under �1, 5�1 (D), via its cdf ��1 (D) = %A{* ≤365

D |�1}.

%A{* ≤ D |�1} = %A{Φ(*) ≤ Φ(D) |�1}

= %A{% ≤ Φ(D) |�1}
[
* = Φ−1 (%) =⇒ % = Φ(*)

]
= 1 − %A{% > Φ(D) |�1}

= 1 − %A{�?,=−? < �Φ(D);?,=−? |�1}

= %A{�?,=−? > �Φ(D);?,=−? |�1}

=

∫ ∞

�Φ(D) ;?,=−?

5Δ2 (�)3�

≈
∫ ∞

�Φ(D) ;?,=−?

5Δ2=0 (�) +
Δ2

2
5Δ2=0 (�)

[ � − 1
1 + ?

=−?�

]
3�

≈ Φ(D) + Δ
2

2

∫ ∞

�Φ(D) ;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

(28)
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This implies

5�1 (D) ≈
3

3D

[
Φ(D) + Δ

2

2

∫ ∞

�Φ(D) ;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

]
≈ q(D) + Δ

2

2

{
3

3D

∫ ∞

�Φ(D) ;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

}
Applying Lemma 1

≈
q(D)

[
1 + Δ2

2 &a1 ,a2 (D)
]

1 + Δ2

2

∫ ∞
−∞ q(D)&a1 ,a2 (D)3D

, &a1 ,a2 (D) =
[ � − 1
1 + ?

=−?�

]
�=�Φ(D) ;a1 ,a2

≈ q(D)
[
1 + Δ

2

2
{
&a1 ,a2 (D) − � [&a1 ,a2 (D)]

}]
(29)

where �
[
&a1 ,a2 (D)

]
=

∫ ∞

−∞
&a1 ,a2 (D)q(D)3D

Let us define &∗a1 ,a2 (D), �a1 ,a2 , and �a1 ,a2 as &∗a1 ,a2 (D) =
{
&a1 ,a2 (D) − � [&a1 ,a2 (D)]

}
,

�a1 ,a2 =
∫ ∞
−∞ Dq(D)&a1 ,a2 (D)3D, and �a1 ,a2 =

∫ ∞
−∞ D

2q(D)&∗a1 ,a2 (D)3D. Using these

three quantities, we now approximate the distribution of* as:370

* ∼ # [��1 (*), +0A�1 (*)] where ��1 (*) =
∫ ∞

−∞
D 5�1 (D)3D ≈

Δ2

2
�a1 ,a2 and

+0A�1 (*) =
∫ ∞

−∞
D2 5�1 (D)3D ≈ 1 + Δ

2

2
�a1 ,a2 .

This leads to:

1
√
:

:∑
8=1
*8 ∼ #

[
1
√
:

:∑
8=1

� (*8),
1
:

:∑
8=1
+0A (*8)

]
∼ #

[
1
√
:
X1, 1 +

1
:
X2

]
where X1 =

:∑
8=1

Δ2
8

2
�a18 ,a28 and X2 =

:∑
8=1

Δ2
8

2
�a18 ,a28 .

Using the above result, the local power of inverse normal test is obtained by approx-
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imating its power which is %A{ 1√
:

∑:
8=1*8 < −IU |�1} as

Local power (INN) ≈ Φ

[−IU − 1√
:
X1√

1 + 1
:
X2

]
≈ Φ

[
− IU −

1
√
:
X1 +

IU

2:
X2

]
≈ Φ

[
− IU +

1
√
:

(
IU

2
√
:
X2 − X1

)]
≈ Φ(−IU) +

q(IU)√
:

[
IU

2
√
:
X2 − X1

]
≈ U + q(IU)√

:

[
IU

2
√
:
X2 − X1

]
.

Substituting back the expressions for X1 and X2 results in:

!%(�##) ≈ U + q(IU)
2
√
:

:∑
8=1
Δ2
8

[
IU

2
√
:
�a18 ,a28 − �a18 ,a28

]
.

For the special case =1 = · · · = =: = =, the local power of Inverse Normal test375

reduces to:

!%(�##) ≈ U + q(IU)
2
√
:

( :∑
8=1
Δ2
8

) [
IU

2
√
:
�a1 ,a2 − �a1 ,a2

]
= U + q(IU)√

:

[
IU

2
√
:
�a1 ,a2 − �a1 ,a2

] { :∑
8=1

Δ2
8

2

}
.
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IV. Local power of Fisher’s test [!%(�)]

According to Fisher’s exact test, the null hypothesis will be rejected if
∑:
8=1+8 >

j2
2:;U, where +8 = −2 ln (%8), and j2

2:;U is the upper U level critical value of a j2-

distribution with 2: degrees of freedom. This leads to380

Power = %A
{ :∑
8=1
+8 > j2

2:;U |�1

}
.

In a similarway to the inverse normal test inAppendix-B section III, first let us determine

the pdf of + under �1, 6�1 (E), via its cdf ��1 (E) = %A{+ ≤ E |�1}.

%A{+ ≤ E |�1} = %A{−2 ln (%) ≤ E |�1}

= %A{ln (%) > −E/2|�1}

= %A{% > 4−E/2 |�1}

= %A{�?,=−? < �4−E/2;?,=−? |�1}

= 1 − %A{�?,=−? > �4−E/2;?,=−? |�1}

= 1 −
∫ ∞

�
4−E/2;?,=−?

5Δ2 (�)3�

≈ 1 −
∫ ∞

�
4−E/2;?,=−?

5Δ2=0 (�) +
Δ2

2
5Δ2=0 (�)

[ � − 1
1 + ?

=−?�

]
3�

≈ (1 − 4−E/2) − Δ
2

2

∫ ∞

�
4−E/2;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

(30)
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This implies

6�1 (E) ≈
3

3E

[
(1 − 4−E/2) − Δ

2

2

∫ ∞

�
4−E/2;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

]
≈ 1

2
4−E/2 − Δ

2

2

{
3

3D

∫ ∞

�
4−E/2;?,=−?

5Δ2=0 (�)
[ � − 1
1 + ?

=−?�

]
3�

}
≈ 1

2
4−E/2 − Δ

2

2

{
− 4
−E/2

2
[ � − 1
1 + ?

=−?�

]
�=�

4−E/2;a1 ,a2

}
[Applying Lemma 1]

≈ 4−E/2

2
[
1 + Δ

2

2
&a1 ,a2 (E)

]
, &a1 ,a2 (E) =

[ � − 1
1 + ?

=−?�

]
�=�

4−E/2;a1 ,a2

≈
4−E/2

2
[
1 + Δ2

2 &a1 ,a2 (E)
]∫ ∞

0
4−E/2

2
[
1 + Δ2

2 &a1 ,a2 (E)
]
3E

≈
4−E/2

2
[
1 + Δ2

2 &a1 ,a2 (E)
]

1 + Δ2

2
[
�

(
&a1 ,a2 (E)

) ] , �
[
&a1 ,a2 (E)

]
=

∫ ∞

0

4−E/2

2
&a1 ,a2 (E)3E

≈ 4−E/2

2

[
1 + Δ

2

2
&∗a1 ,a2 (E)

]
(31)

where &∗a1 ,a2 (E) = &a1 ,a2 (E) −
∫ ∞

0

4−E/2

2
&a1 ,a2 (E)3E

Expectation of V can now be obtained as

��1 (+) = 2 + Δ
2

2

∫ ∞

0
E
4−E/2

2
&∗a1 ,a2 (E)3E = 2 + Δ

2

2
�a1 ,a2 (32)

where �a1 ,a2 =

∫ ∞

0
E
4−E/2

2
&∗a1 ,a2 (E)3E

Let’s approximate the distribution of + under the alternative using the method of385

moments, which implies � (+) = 23 = 2 + Δ2

2 �a1 ,a2 , and hence 3 = 1 + Δ2

4 �a1 ,a2 . We

can now approximate the distribution of + under �1 as:

+ ∼ �0<<0[V = 2, Wa1 ,a2 ] where Wa1 ,a2 =
[
1 + Δ

2

4
�a1 ,a2

]
.

Here Gamma[V, Wa1 ,a2 ] stands for a Gamma random variable with scale parameter V

and shape parameter Wa1 ,a2 with the pdf 5 (G) = [4−G/VGWa1 ,a2−1]/[VWa1 ,a2Γ(Wa1 ,a2 )].

By the additive property of independent �0<<0[V = 2, Wa11 ,a21 ], · · · , �0<<0[V =390

2, Wa1: ,a2: ] corresponding to +1, · · · , +: , we readily get the approximate distribution of

(+1 + · · · ++: ) as:
:∑
8=1
+8 ∼ �0<<0

[
V = 2, : + �Δ2] where � =

1
4

:∑
8=1

�a18 ,a28 .
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The local power of Fisher’s test under �1 is then obtained as follows:

Local power (F) ≈
∫ ∞

j2
2:;U

exp (−C/2)C:+�Δ2−1

2:+�Δ2
Γ(: + �Δ2)

3C

[
since

:∑
8=1
+8 ∼ �0<<0

[
V = 2, : + Δ2�

] ]
= &(Δ2).

We now expand &(Δ2) around Δ2 = 0 to get

Local power (F) ≈ U + Δ2
∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:

[
3

3Δ2

(
(C/2)�Δ2

Γ(: + �Δ2)

)
Δ2=0

]
3C

≈ U + Δ2
∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:

[
� ln (C/2)Γ(:) − �

∫ ∞
0 exp (−E)E:−1 ln (E)3E
[Γ(:)]2

]
3C

≈ U + Δ2
∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:

[
� ln (C/2)
Γ(:) −

�
∫ ∞

0 exp (−E)E:−1 ln (E)3E
[Γ(:)]2

]
3C

≈ U + Δ2�

∫ ∞

j2
2:;U

exp (−C/2)C:−1

2:Γ(:)

[
ln (C/2) −

∫ ∞

0

1
Γ(:) exp (−E)E:−1 ln (E)3E

]
3C

≈ U + Δ2�

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
(33)

where �0 =

∫ ∞

0

1
Γ(:) exp (−E)E:−1 ln (E)3E.

Here we have used the fact that 1) 3
3G

[
2b (G)

]
= (b ′(G)) (ln(G))2b (G) , 2) 3

3G

[
Γ(U +395

Vb (G))
]
= 3
3G

[ ∫ ∞
0 4−C CU+Vb (G)−13C

]
=

∫ ∞
0 4−C CU−1Vb ′(G)CVb (G) ln(C)3C, and 3) 3

3G
Γ(U+

Vb (G))
���
G=0

=
∫ ∞

0 4−C CU−1 ln(C)
{
Vb ′(0)CVb (0)

}
3C, where Vb ′(0)CVb (0) is a constant.

Therefore, in our context, 3
3G
Γ(: + �Δ2)

���
Δ2=0

= �
∫ ∞

0 4−C C:−1 ln(C)3C. Now substitut-

ing back the expressions for � in (33) results in:

!%(�) ≈ U +
:∑
8=1

Δ2
8

4
�a18 ,a28

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
. (34)

For the special case =1 = · · · = =: = = and a21 = · · · = a2: = a2 = = − 1, the local400

power of Fisher’s test reduces to:

!%(�) ≈ U +
�a1 ,a2

2

[ :∑
8=1

Δ2
8

2

] [
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

]
= U +

�a1 ,a2

2

[
�

{{
ln()/2)

}
�{) ≥j2

2:;U }

}
) ∼j2

2:

− U�0

] { :∑
8=1

Δ2
8

2

}
. (35)
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V. Local power of a Jordan-Kris test [!%(� )]

According to this test based on a weighted linear combination of the Hotelling’s

)2, the null hypothesis �0 : - = -0 will be rejected if ) > 0, where ) =
∑:
8=1 �8)

2
8
,

�8 ∝ [+0A ()2
8
)]−1, and %A{) ≈ 3�: ?,a > 0 |�0} = U. In applications 0 is computed by405

using the approximation) ≈ 3�: ?,a , where a =
4"2: ?−2" 2

1 (: ?+2)
"2: ?−" 2

1 (: ?+2)
, 3 = "1 ( a−2

a
), "1 =

?
∑:
8=1

�8<8
<8−?−1 , and"2 = ?(?+2)∑:

8=1
�2
8
<2
8

(<8−?−1) (<8−?−3) +2?2 ∑
8> 9

�8� 9<8< 9

(<8−?−1) (< 9−?−1) .

Power of � = %A

{ :∑
8=1

�8)
2
8 > 0 |�1

}
[)2
8 = =8 ( ¯̂

8 − -0)CY−1
8 ( ¯̂

8 − -0)]

= %A

{ :∑
8=1

�8
(=8 − 1)?
=8 − ?

�8 > 0 |�1

}
[�8 ∼ � (?, =8 − ?)]

= %A

{ :∑
8=1

�∗8 �8 > 0 |�1

} [
�∗8 =

�8 (=8 − 1)?
=8 − ?

]
=

∫
· · ·

∫
∑:
8=1�

∗
8
�8>0

:∏
8=1

5�1 (�8)d�8

Note that 5�1 (�) and its local expansion around Δ2 = 0 are give by

5�1 (�) ≈ 5Δ2=0 (�a1 ,a2 )
[
1 + Δ

2

2

{
� − 1

1 + a1
a2
�

}]
(36)

Using the above first order expansion of 5�1 (�) leads to the following local power410

of ) .

!%(� ) ≈
∫
· · ·

∫
∑:
8=1�

∗
8
�8>0

:∏
8=1

(
5Δ2=0 (�a1 ,a28 )

[
1 +

Δ2
8

2

{
�8 − 1

1 + a1
a28
�8

}]]) :∏
8=1

d�8

=

∫
· · ·

∫
∑:
8=1�

∗
8
�8>0

( :∏
8=1

5Δ2=0 (�a1 ,a28 )
) [

1 +
:∑
8=1

Δ2
8

2

[
�9 − 1

1 + a1
a2 9
�9

] ] :∏
8=1

d�8

= U +
:∑
8=1

Δ2
8

2

∫
· · ·

∫
∑:
8=1�

∗
8
�8>0

( :∏
8=1

5Δ2=0 (�a1 ,a28

) [
�9 − 1

1 + a1
a2 9
�9

] :∏
8=1

d�8

= U +
:∑
8=1

Δ2
8

2
��0

[{
�9 − 1

1 + a1
a2 9
�9

}
�{∑:8=1�

∗
8
�8>0}

]
(37)
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where ��0 stands for expectation w.r.t �1, . . . , �: under �0 [�9 ∼ � (a1, a2 9 )].

For the special case =1 = · · · = =: = =, the local power of this test based on a weighted

linear combination of the Hotelling’s )2 reduces to:

!%(� ) ≈ U +
:∑
8=1

Δ2
8

2
��0

[{
�9 − 1

1 + ?

=−?�9

}
�{∑:8=1 �8>0: }

]
= U + ��0

[{
�9 − 1

1 + ?

=−?�9

}
�{∑:8=1 �8>0: }

] { :∑
8=1

Δ2
8

2

}
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