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Abstract

Healthcare programs such as Medicaid provide crucial ser-

vices to vulnerable populations, but due to limited resources,

many of the individuals who need these services the most

languish on waiting lists. Survival models, e.g. the Cox pro-

portional hazards model, can potentially improve this sit-

uation by predicting individuals’ levels of need, which can

then be used to prioritize the waiting lists. Providing care

to those in need can prevent institutionalization for those

individuals, which both improves quality of life and reduces

overall costs. While the benefits of such an approach are

clear, care must be taken to ensure that the prioritization

process is fair, and does not reinforce harmful systemic bias.

We develop multiple fairness definitions and corresponding

fair learning algorithms for survival models to ensure eq-

uitable allocation of healthcare resources. We demonstrate

the utility of our methods in terms of fairness and predictive

accuracy on three publicly available survival datasets.

1 Introduction

Publicly funded healthcare programs such as Medicaid
provide crucial services to vulnerable populations. Most
states have subprograms within their Medicaid pro-
grams meant to serve specific target populations. These
programs are known as “waivers,” since each state must
ask the federal government to waive some portions of the
original Medicaid statute in order to better serve their
population. With this expanded authority, states can
include coverage for services that are not covered un-
der traditional Medicaid programs (such as home and
community-based long-term care), expand the finan-
cial eligibility requirements,and limit the enrollment of
each program to contain costs. Many waivers are built
to serve older adults or individuals with developmen-
tal/physical disabilities better by keeping them out of

∗This material is based upon work supported by the National

Science Foundation under Grant No.’s IIS1927486; IIS1850023.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

This work was performed under the following financial assistance
award: 60NANB18D227 from U.S. Department of Commerce,

National Institute of Standards and Technology.
†Department of Information Systems, UMBC, Baltimore, USA
‡The Hilltop Institute, UMBC, Baltimore, USA

institutional settings, e.g. nursing homes. Participation
in these programs with more services, relaxed financial
eligibility, and limited enrollment becomes a necessarily
scarce resource in need of allocation. The traditional
method of allocating spots in these programs is “first
in, first out,” where the next individual to enter the
program is the one who has been waiting the longest.

Artificial intelligence (AI) can potentially improve
this situation by predicting individuals’ risk of institu-
tionalization, which can then be used to prioritize the
list of individuals who would like to participate in the
program but for whom a spot on the waiver is not avail-
able (also known as the “waitlist”). On October 1, 2019,
the Maryland Department of Health deployed an AI sys-
tem which performs a needs-based prioritization of the
Medicaid waitlist as a function of predicted time to in-
stitutionalization, i.e. admission to a nursing home.1

While the benefits of such an approach are clear, care
must be taken to ensure that the prioritization process
is fair. AI models can have impacts with lawful, moral
or ethical consequences when utilized to predict out-
comes in societal, governmental, and public sector appli-
cations. Structural and systemic processes, often unfair
and/or biased against certain groups of people, impact
individuals’ lives and and hence their data [2], for exam-
ple based on age, race, gender, nationality, class or sex-
ual orientation. Since systemic bias is inherent in data,
machine learning models must account for this to avoid
creating discriminatory decisions. In recent years, the
machine learning (ML) community has conducted sub-
stantial research on algorithmic bias [10, 18, 15] which
aims to learn non-discriminatory predictive models by
enforcing constraints in the training phase [3, 28, 16].

Like any data that involves individuals from differ-
ent demographics, health data is subject to bias, and
the expanding amount and types of data that are ac-
cessible today can make it difficult to distinguish where
bias can emerge [13]. The goal of this work is therefore
to develop AI techniques for attenuating harmful bias
in the allocation of healthcare resources.

To predict individuals’ risk of institutionalization,
a natural approach is to use survival models. The Cox
proportional hazards (CPH) [7] model is particularly

1https://tinyurl.com/yy3odnmq
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appropriate, as the multiplicative relationship between
covariates and risk aids explainability. Though the
AI fairness community has proposed various fairness
definitions [10, 18, 15] to measure different aspects of
societal or demographic biases in AI systems, to the
best of our knowledge there are currently no fairness
definitions specific to survival models. In this paper, we
propose multiple fairness definitions for survival models
and develop corresponding fair learning algorithms for
linear and nonlinear models. The models’ risk scores can
then be used to fairly prioritize the Medicaid waitlist.
This paper extends our preliminary research, accepted
at a non-archival symposium [23].

To the best of our knowledge, this is the first
investigation on fairness for survival models to ensure
equitable allocation of healthcare resources. The main
contributions of this work include:

• We extend three types of fairness definitions to
measure bias in the survival analysis problem.

• We develop fair learning algorithms for linear CPH
models. We then extend our method to fair deep
learning algorithms for nonlinear CPH models.

• We perform extensive experiments validating our
models with regard to both fairness and accuracy
on three publicly available survival datasets.

2 Background and Related Work

In this section, we describe survival data, the Cox
proportional hazards model, and fairness in AI.

2.1 Survival Data Survival data [21, 25] contains
three pieces of information for each individual: 1)
observed covariates/features x, 2) actual time of the
event T , and 3) event indicator E. If an event, e.g.
death, has occurred, T corresponds to the elapsed time
between when the covariates were first collected and the
time of the event occurring. If an event is not observed,
T corresponds to the elapsed time between the collection
of the covariates and the last contact with the individual
subject, and the individual is said to be right-censored.
In survival analysis, right-censored data is important
and requires special consideration, as it cannot simply
be ignored without introducing substantial bias.

2.2 Cox Proportional Hazards Model (CPH)
The Cox proportional hazards (CPH) model [7] is the
most widely used model for survival analysis. It is a
semiparametric model often used in clinical (and many
other) settings for modeling and predicting the time
until a particular event occurs, e.g. death of a patient.

Let S(t) be the probability that the event does

not occur before time t. The key concept to define
these models is the hazard function, defined to be
the instantaneous rate that the event, e.g. death or
institutionalization, occurs at continuous time t. The
hazard function is defined as

h(t) , lim
∆t→0+

Pr(t ≤ T < t+ ∆t|T ≥ t)
∆t

.(2.1)

The CPH model specifies the hazard function via

h(t) = h0(t) exp(βᵀx) ,(2.2)

where h0, called the baseline hazard, is the hazard value
regardless of features x, and β is a parameter vector.
The survival function is then determined as

S(x) = exp(−H(t)), H(t) =

∫ t

0

h(u)du .(2.3)

To perform Cox regression, β can be learned by
optimizing the Cox partial likelihood [12, 21]. The
partial likelihood is the product of the probability at
each event time Ti that the event Ei has occurred to
individual i, given the set of individuals still at risk at
time Ti and can be calculated as

(2.4) Lc(β) =
∏

i:Ei=1

exp(βᵀxi)∑
j∈<(Ti)

exp(βᵀxj)
,

where the product is defined over the set of patients
with an observable event Ei = 1 and the risk set
<(t) = {i : Ti ≥ t} is the set of patients still at risk
of failure at time t.

The CPH model assumes that an individual’s risk
of an event occurring is a linear combination of the
patient’s covariates, referred to as the linear propor-
tional hazards condition. Since this assumption may be
too simplistic in many applications such as personalized
treatment recommendations [21], recently deep neural
networks [21, 25] have been applied to CPH models to
solve the problem of nonlinear survival analysis.

2.3 Fairness in AI The increasing impact of arti-
ficial intelligence (AI) and machine learning technolo-
gies on many facets of life, from commonplace movie
recommendations to consequential criminal justice sen-
tencing decisions, has prompted concerns that these sys-
tems may behave in an unfair or discriminatory manner
[2, 26]. A number of studies have subsequently demon-
strated that bias and fairness issues in AI are both
harmful and pervasive [1, 3, 4]. The AI community has
responded by developing a broad array of mathematical
formulations of fairness and learning algorithms which
aim to satisfy them [10, 18, 28, 20].
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While a number of fairness definitions have been
proposed in the literature, at the highest level there are
three broad categories of fairness measures. Individual
fairness [10] definitions aim to ensure that similar
individuals obtain similar outcomes under the algorithm
in question. Group fairness [10] definitions aim to
preserve fairness at the level of groups of individuals,
e.g. women, the elderly, or African Americans. Finally,
intersectional fairness [15] definitions are those for
which fairness is to be ensured for a specified set of
subgroups defined by the protected attributes. These
fairness definitions can be slightly modified to form
a fairness penalty that can be added as a constraint
or a regularization term to the existing optimization
objective to enforce fairness in the algorithm [27, 5, 15].

The Cox model was previously applied to the prob-
lem of detecting racial bias in criminal recidivism pre-
diction [1]. However, there is no prior work that enforces
fairness definitions to peform fair survival analysis.

3 Methods

In this section, we describe our methodology to ensure
fair risk predictions with survival models. We extend
the three main types of AI fairness to survival analysis
and develop simple fair learning algorithms for them.

3.1 Fairness Definitions for Survival Models
Fairness in healthcare is a multi-stakeholder issue, and
so we cannot simply settle it with a single solution. We
instead provide stakeholders with three different pro-
posed implementations of fairness for survival models.

Individual fairness: Individual fairness [10] aims
to ensure that a model produces similar outcomes to
similar individuals. In the context of survival models,
we define individual fairness (Fi) as follows:

Fi =

N(test)∑
i=1

N(test)∑
j=i+1

max(0, |h̄β(xi)− h̄β(xj)| −D(xi,xj)) ,

(3.5)

where h̄β(x) = exp(βᵀx), the hazard function where
the base hazard h0(t), which is not individual-specific,
is dropped, and D(xi, xj) is a distance metric (e.g.
Euclidean distance) between xi and xj encoding fair
similarity, on the same scale as |h̄β(xi)− h̄β(xj)|, which

can be defined as D(xi, xj) = C
√∑n

k=1(xik − xjk)2 for
a Euclidean n-space with scale factor C. Note that
this penalizes differences in predicted hazard scores that
exceed the distance between the data points. Here, we
can make use of knowledge of the individuals who are to
be in the test set such as the individuals on the waitlist
for care (a transductive approach to fairness).

Group fairness: In group fairness definitions, e.g.

demographic parity [10], a system is fair if outcomes are
distributed fairly across different demographic groups,
e.g. different genders or races. We define the group
fairness (Fg) measures for survival models as

Fg = max
a∈A
|E[h̄β(a)]− E[h̄β(x)]| ,(3.6)

h̄β(a) ,
∫
x

exp(βᵀx)p(x|a) ,(3.7)

the worst-case deviation of the per-group expected haz-
ard function E[h̄β(a)] from the population average haz-
ard where A is the set of values in the protected at-
tribute. We estimate the above integral via an average
over the empirical data.

Intersectional fairness: Intersectional fairness
[22, 15] definitions consider subgroups of protected
groups, usually defined to be their intersecting sub-
groups. This can be used to enforce fairness metrics
that encode the principle of intersectionality [8], namely
that individuals at the intersections of protected groups,
e.g. along lines of race and gender, are vulnerable to
additional harms and should be protected. In this case,
A = S1×S2×. . . SK is a space of multi-dimensional pro-
tected attributes. Building on our earlier work on the
differential fairness metric [15], intersectional fairness
(Fε) for survival models can be extended as

Fε = max
si∈A,sj∈A

| logE[h̄β(si)]− logE[h̄β(sj)]| ,(3.8)

a worst case of log-ratios of “expected per-group hazard
functions” over pairs of intersectional subgroups si, sj
(e.g. men over 70, women between 20 - 30). With this
formulation, a direct application of Theorem IV.1 of
[15] shows that fairness Fε for intersectional subgroups
provably guarantees the same degree of fairness Fε for
the higher-level groups. E.g., protecting fairness at
the intersection of gender and race (Black women, . . . )
ensures the same fairness for gender (women, men).

3.2 Fair Survival Models We first develop sim-
ple and practical Fair linear Cox Proportional Hazards
(FCPH) models which balance fairness and accuracy.
However, in many applications we cannot assume the
survival data satisfies the linear proportional hazards
condition as the number of features and interactions in-
creases. Therefore, we extend our approach to develop
Fair Deep Cox Proportional Hazards (FDCPH) models
based on deep neural networks. The FCPH and FDCPH
models enable fair prediction of the time until a partic-
ular event occurs, for example, institutionalization into
a nursing home. The fair models’ risk scores can then
be used to prioritize the “waitlist” of patients for fair
allocation of healthcare resources.
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3.2.1 Learning Algorithms for FCPH The linear
Cox model estimates the hazard function ĥβ(x) param-
eterized by the weight vector β. Following [12, 21], the
loss function to learn β can be formulated as the nega-
tive log partial likelihood of Equation 2.4:

(3.9) LX(β) = −
∑
i:Ei=1

(βᵀxi− log
∑

j∈<(Ti)

exp(βᵀxj)) .

Our FCPH models are developed upon a general
framework for solving fairness in linear Cox models
using a penalized maximum likelihood estimation ap-
proach. The general learning objective g(β) is

g(β) = −(LX(β) + λFX(β)) ,(3.10)

where LX(β) is the log-likelihood for the linear Cox
model, FX(β) is a fairness penalty, which also doubles as
a regularizer, and λ > 0 is a trade-off parameter which
strikes a balance between predictive accuracy and fair-
ness. We set FX(β) to Fi, Fg, and Fε fairness measures
to learn Individual, Group, and Intersectional FCPH
models, respectively. We optimize the objective func-
tion in Equation 3.10 using Adam via backpropagation
(BP) and automatic differentiation (autodif ).

3.2.2 Learning Algorithms for FDCPH Our FD-
CPH models are built on the deep neural network-based
survival model DeepSurv [21]. The output of the FD-
CPH model is a single node that estimates the hazard
function ĥθ(x), where θ denote weights and intercept
terms of the deep neural network.

Like FCPH, the loss function of FDCPH models to
learn θ can be formulated with the negative log partial
likelihood and the corresponding fairness penalty:

LX(θ) = −
∑
i:Ei=1

(ĥθ(xi)− log
∑

j∈<(Ti)

exp(ĥθ(xj)) ,

(3.11)

g(θ) = −(LX(θ) + λFX(θ)) ,

where g(θ) is the objective function, LX(θ) is the
negative log-likelihood for the DeepSurv model, and
FX(θ) is a fairness penality on the model parameters
θ. We again set FX(θ) to our proposed Fi, Fg, and
Fε fairness measures to learn Individual, Group, and
Intersectional FDCPH models, respectively.

Following [21], our FDCPH models are designed
using a deep architecture, i.e. more than one hidden
layer, along with l2 regularization, dropout, gradient
clipping, and nonlinear activation functions such as
rectifier (ReLU), Leaky ReLU, or scaled exponential
linear units (SELU), etc. We once again use Adam via
BP and autodif to optimize the FDCP models’ objective
in Equation 3.11.

4 Experiments

In this section, we validate and compare our fair survival
models FCPH and FDCPH with the typical survival
models (without any fairness penalty). Our implemen-
tation’s source code is available online.2

4.1 Datasets Data for the allocation of healthcare
resources, e.g. prioritizing the wait list of patients for
healthcare, is not publicly available. Therefore, we
validate our models on three representative publicly
available datasets as proxies for the sensitive data:

• COMPAS Dataset: The COMPAS dataset re-
garding a system that is used to predict criminal
recidivism, and which has been criticized as poten-
tially biased [1]. Although the COMPAS system is
used for bail and sentencing, it could potentially be
used to allocate social work resources. Therefore,
it is a useful example dataset in our study to show
the effectiveness of our methods to fair risk pre-
diction. The COMPAS dataset consists of 10, 314
offenders and 6 features including demographic at-
tributes, while the task is to predict risk scores of
a convicted criminal to reoffend. A total of 26.75%
of subjects reoffended during the survey for data
collection with a median event time of 173 days.
We used binary-coded race (white, and African-
American) and gender (men, and women) as pro-
tected attributes in our study.

• FLC Dataset: This dataset is taken from a
study that investigated to which extent the serum
immunoglobulin free light chain (FLC) assay can be
used predict overall survival [9]. The FLC Dataset
consists of 7, 874 patients with 6 features such as
age, gender, serum creatinine, FLC group for the
patients, kappa and lambda portion for serum free
light chain, while the task is to predict the risk
score for death. A total of 27.55% of patients died
during the survey with a median death time of
2, 165 days. We used binary-coded age (age≤ 65,
and age> 65) and gender (men, and women) as
protected attributes in our fairness analysis.

• SUPPORT Dataset: Data from a large study
to understand prognoses preferences outcomes and
risks of treatment (SUPPORT) [24] which analyzed
the survival time of seriously ill hospitalized pa-
tients. SUPPORT data contains 9, 105 patients
and 14 features such as presence of diabetes, pres-
ence of dementia, presence of cancer, mean arte-
rial blood pressure, heart rate including protected

2Example code implementing fair survival models can be found
at https://github.com/kkeya1/FCPH
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attributes, i.e. age, gender, and race. During the
study, 68.10% of patients died with a median death
time of 58 days. In this work, we used binary en-
coded age (age ≤ 65 and age > 65), gender (men
and women), and race (white and non-white).

4.2 Experimental Settings We compare our pro-
posed fairness approach with several baseline models
which do not incorporate any fairness penalty in the
loss function. Typical CPH [7] was used as a baseline
for linear survival models, while we also used nonlin-
ear survival models such as DeepSurv [21] and Random
Survival Forest (RSF) [19] as baseline models. RSF is
a meta estimator that fits a number of survival trees on
various sub-samples of the dataset for the analysis of
right-censored survival data.

We held out 20% of each dataset as the test set, us-
ing the remainder for training. We further held out 20%
from each training dataset as the development set for
each dataset. Since it is challenging to estimate group
and intersectional fairness reliably on mini-batches due
to data sparsity [14], we trained all the fair survival
models, except Individual FCPH and FDCPH models,
in a batch setting for 500 iterations. It becomes very
expensive to measure individual fairness on the whole
training set in each iteration when training Individual
FCPH and FDCPH models in the batch setting. Fur-
thermore, we found that data sparsity is not a seri-
ous issue for individual fairness measures, unlike group
and intersectional fairness. To address this problem, we
trained the Individual FCPH and FDCPH models in the
mini-batch setting for 50 epochs with a mini-batch size
of 128. We found that the Individual FDCPH model
suffers from the exploding gradients problem which we
addressed using gradient clipping with a clip value of 5.

All the linear models (Typical CPH and FCPH)
were trained via Adam optimizer with learning rate
0.01 using PyTorch. We selected the hyper-parameters
for DeepSurv via grid search on the development set
for each dataset (see Appendix for more details on
the hyper-parameters). For FDCPH models, we only
selected the fairness specific tuning parameters via grid
search (details on the Section 4.4), while other hyper-
parameters were set to DeepSurv’s hyper-parameters.

We considered race for COMPAS, and age for
FLC and SUPPORT datasets as protected attributes
in the Group FCPH and FDCPH models, while we
considered all the protected attributes (race, gender for
COMPAS, age, gender for FLC, and age, gender, race
for SUPPORT datasets) in the Intersectional FCPH
and FDCPH models. There is no requirement of
protected attributes to learn the Individual FCPH and
FDCPH models since the Fi metric depends on each

individual subject rather than any group/subgroup.

4.3 Evaluation Protocols In addition to the fair-
ness measures we proposed (Equations 3.5, 3.7, and
3.8), in our evaluation we also included traditional ac-
curacy measures for the predictive performance of the
survival models: Concordance Index (C-index), Brier
Score, AUC, and Log Partial Likelihood.

The C-index [17] is a rank order statistic for pre-
dictions against true outcomes, thus highly relevant
for waitlists. It is based on the assumption that pa-
tients who lived longer should have been assigned a
lower risk than patients who lived less long. The Brier
Score [11] measures the accuracy of probabilistic pre-
dictions. Given a set of N predictions, the empirical
Brier Score measures the weighted mean squared dif-
ference between the predicted probability assigned to
possible outcomes for sample i and the actual outcome.
The time-dependent AUC [6] is a function of time that
extends the ROC curve to continuous outcomes, in par-
ticular survival time, assuming a subject’s event status
is typically not fixed and changes over time, e.g. pa-
tients who are disease-free earlier may develop the dis-
ease later due to longer study follow-up. It reflects the
area under the cumulative/dynamic ROC at time t to
determine how well a model can distinguish subjects
that experienced an event prior to or at time t (cumula-
tive cases) from subjects that experienced an event after
this time point (dynamic controls). Finally, Log Partial
Likelihood (LPL) is used from Equation 3.9 (dropping
the minus sign) as a performance measure. The effect of
the covariates can be estimated using LPL without the
need to model the change of the hazard over time and
it measures the goodness of fit of models to a sample of
data for model parameters.

4.4 Tuning for Fairness In this section, we discuss
necessary tuning approaches for fairness specific hyper-
parameters to learn fair survival models.

4.4.1 Sensitivity of Individual Fair Models The
distance metric in the individual fairness measure
(Equation 3.5) needs to be in the same scale as the
difference between hazard functions of two individual
subjects. We study the sensitivity of the individual fair
models with various scale factors C. Figure 1 shows Fi
measures for various scale factors vs. tuning parameter
λ on the development set of FLC data, while Individ-
ual FDCPH model was trained with FX(θ) = Fi for
C = 0.1, C = 0.01, and C = 0.001. As shown, the
tuning parameter λ can smoothly control the Fi metric
for Individual FDCPH models with most scale factors
considered. We get a similar trend in the Individual
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Figure 1: Fi measures for various scale factors vs. tuning parameter λ on the development set of FLC data for Individual
FDCPH model. Individual FDCPH was trained with FX(θ) = Fi for C = 0.1, C = 0.01, and C = 0.001. The models are
fairly insensitive to scale factors as long as λ is tuned to compensate. Dotted lines represent Fi = 0 values in the log-scale.

Figure 2: Fairness and accuracy trade-off plots for the development set of the FLC dataset. The plot shows the impact
of tuning parameter λ on the FCPH models’ C-index and corresponding fairness measures. Black circles correspond to
different λ values (larger to smaller from left to right), while the blue square indicates the selected FCPH model for a
specific λ value. Red square: typical CPH model without fairness penalty. The dotted line represents 5% degraded C-index
from the typical CPH model. C-index: higher is better. Fairness measures: lower is better.

FCPH model with various scale factors (see Appendix
for additional results). So, the individual fair models are
fairly insensitive to scale factors as long as λ is tuned to
compensate. We set C = 0.01 for all experiments.

4.4.2 Trade-off Between Fairness and Accuracy
AI fairness interventions may hurt accuracy because
they divert a system’s learning objective from accuracy
only to both accuracy and fairness. We assess each
proposed model based on this trade-off. Figure 2
shows the fairness and accuracy trade-off plots for the
FCPH models on the development set of the FLC
dataset. The C-index is selected as the accuracy-
based performance measure in this experiment. The
impact of the tuning parameter λ on the C-index and
corresponding fairness measures for the proposed FCPH
models are demonstrated in these figures. Larger λ
values allow us to learn more fair, but less accurate
fair survival models, while smaller λ values have the

opposite impact on the fair models.
The tuning parameter λ needs to be chosen as a

trade-off between the C-index and fairness. We chose λ
for all FCPH models via grid search on the development
set based on a pre-defined rule: select the λ that
provides the fairest (under the corresponding fairness
metric, e.g. Fi, Fg, and Fε for individual, group, and
intersectional FCPH models, respectively) Cox model on
the development set, allowing up to 5% degradation in
C-index from the typical CPH model. Similarly, we
select the λ in FDCPH models that provides the fairest
deep Cox model on the development set, allowing up to
5% degradation in C-index from the DeepSurv model.
In Figure 2, the red square represents the typical CPH
model without fairness penalty and the black circles
(corresponding to different λ values) above the dotted
line are FCPH models that degrade the C-index but
not over 5%. Finally, blue squares indicate the selected
fairest FCPH model for a specific λ value that complies
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COMPAS Dataset

Models
Performance Measures Fairness Measures

C-index ↑ Brier Score ↓ AUC ↑ LPL ↑ Fi ↓ Fg ↓ Fε ↓

Linear

Typical CPH 0.6648 0.1877 0.6872 -7.0954 0.4550 0.4198 1.0821
Individual FCPH 0.5899 0.1777 0.6058 -7.2495 0 0.0008 0.1420
Group FCPH 0.6577 0.1808 0.6890 -7.1167 0.2375 0.0765 0.2421
Intersectional FCPH 0.6445 0.1787 0.6745 -7.1542 0.1560 0.0418 0.1067

Nonlinear

RSF 0.6697 0.1816 0.6907 -7.1368 0.2042 0.1640 0.3006
DeepSurv 0.6661 0.1869 0.6865 -7.0779 0.0128 0.2907 0.8660
Individual FDCPH 0.6496 0.1946 0.6699 -7.1381 0 0.0013 0.8535
Group FDCPH 0.6607 0.1921 0.6870 -7.1001 0 0.0010 1.4588
Intersectional FDCPH 0.6414 0.1788 0.6722 -7.1567 0.0396 0.0105 0.1018

FLC Dataset

Models
Performance Measures Fairness Measures

C-index ↑ Brier Score ↓ AUC ↑ LPL ↑ Fi ↓ Fg ↓ Fε ↓

Linear

Typical CPH 0.8030 0.2244 0.8015 -6.3737 1.8655 3.0027 2.8334
Individual FCPH 0.8054 0.1989 0.8099 -6.7081 0.2634 0.4439 0.8226
Group FCPH 0.7768 0.1951 0.8147 -6.7963 0.2282 0.2879 0.7468
Intersectional FCPH 0.7885 0.1976 0.8155 -6.7299 0.2835 0.3959 0.6610

Nonlinear

RSF 0.8031 0.2310 0.8162 -6.4904 1.7651 2.6402 1.7103
DeepSurv 0.8102 0.2245 0.8150 -6.3459 0.0119 0.0258 2.5268
Individual FDCPH 0.8070 0.2550 0.8122 -6.3817 0 0.0022 1.3574
Group FDCPH 0.8068 0.7377 0.8111 -6.3703 0 0.0009 0.7130
Intersectional FDCPH 0.7920 0.2060 0.8180 -6.6170 0.2628 0.2455 0.7487

SUPPORT Dataset

Models
Performance Measures Fairness Measures

C-index ↑ Brier Score ↓ AUC ↑ LPL ↑ Fi ↓ Fg ↓ Fε ↓

Linear

Typical CPH 0.7375 0.2468 0.8066 -6.6474 1.1769 0.2836 0.8259
Individual FCPH 0.7129 0.2208 0.7798 -6.8965 0.0578 0.0041 0.0307
Group FCPH 0.7081 0.2311 0.7734 -6.7324 0.4555 0.0628 0.3772
Intersectional FCPH 0.7176 0.2309 0.7832 -6.7307 0.3984 0.0080 0.2140

Nonlinear

RSF 0.7376 0.2928 0.8083 -6.6828 8.2810 1.7708 0.5334
DeepSurv 0.7379 0.2345 0.8062 -6.7046 0.3355 0.0373 0.2048
Individual FDCPH 0.7213 0.2548 0.7867 -6.6811 0.0013 0.0009 0.9606
Group FDCPH 0.6913 0.2343 0.7483 -6.7190 0.1293 0.0036 1.0103
Intersectional FDCPH 0.7081 0.2495 0.7734 -6.7627 0.2118 0.0040 0.0876

Table 1: Comparison of FCPH and FDCPH models with typical survival models (Typical CPH, RSF, and
DeepSurv) on the COMPAS, FLC, and SUPPORT datasets. Higher is better for measures with ↑, while
lower is better for measures with ↓. Bold models are our proposed approaches. FCPH and FDCPH models
outperform typical survival models in terms of all fairness measures.

with the pre-defined rule. The models chosen by our
procedure (blue) substantially improved their fairness
measures with only a slight loss in C-index. Additional
experimental results on the fairness and accuracy trade-
off for the other datasets are provided in the Appendix.

4.5 Performance for Fair Survival Models We
evaluated the performance for FCPH and FDCPH mod-
els on the test data in terms of accuracy-based perfor-
mance measures and our proposed fairness measures,
and compared our fair models with the typical base-
line models: Typical CPH, DeepSurv, and RSF. The
goal of our experiments was to demonstrate the prac-
ticality of our FCPH and FDCPH models. In Table 1,
we show detailed results for COMPAS, FLC, and SUP-
PORT datasets. All FCPH and FDCPH models out-
perform typical baseline models in terms of all three
fairness measures for all datasets.

In the COMPAS dataset, Individual FCPH, Indi-
vidual FDCPH, and Group FDCPH were the best fair
models in terms of Fi metric, while Individual FCPH
and Intersectional FDCPH were the most fair mod-
els for Fg and Fε measures, respectively. In the FLC
dataset, Individual and Group FDCPH were again the
best models for Fi metric, while Group FDCPH and In-
tersectional FCPH were the most fair models in terms
of Fg and Fε measures, respectively. The Individual
FCPH and FDCPH models show superior performance
on the SUPPORT dataset outperforming the other fair
models, i.e. Individual FDCPH was the most fair model
in terms of both Fi and Fg, while Individual FCPH was
the most Fε-fair model.

The Individual and Intersectional fair models con-
sistently provided better fairness overall on all datasets
in terms of all three fairness metrics. This is presumably
due to the fact that ensuring fairness for individuals or
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COMPAS Dataset

Models
Train Set Test Set

C-index ↑ Brier Score ↓ AUC ↑ C-index ↑ Brier Score ↓ AUC ↑
DeepSurv 0.6944 0.1516 0.7339 0.6661 0.1869 0.6865
Individual FDCPH 0.6633 0.1598 0.6987 0.6496 0.1946 0.6699
Group FDCPH 0.6917 0.1610 0.7310 0.6607 0.1921 0.6870
Intersectional FDCPH 0.6496 0.1658 0.6865 0.6414 0.1788 0.6722

FLC Dataset

Models
Train Set Test Set

C-index ↑ Brier Score ↓ AUC ↑ C-index ↑ Brier Score ↓ AUC ↑
DeepSurv 0.8016 0.1261 0.8325 0.8102 0.2245 0.8150
Individual FDCPH 0.7955 0.1292 0.8245 0.8070 0.2550 0.8122
Group FDCPH 0.8001 0.7452 0.8302 0.8068 0.7377 0.8111
Intersectional FDCPH 0.7711 0.1418 0.8054 0.7920 0.2060 0.8180

SUPPORT Dataset

Models
Train Set Test Set

C-index ↑ Brier Score ↓ AUC ↑ C-index ↑ Brier Score ↓ AUC ↑
DeepSurv 0.7368 0.1638 0.8028 0.7379 0.2345 0.8062
Individual FDCPH 0.7284 0.1696 0.7939 0.7213 0.2548 0.7867
Group FDCPH 0.7081 0.1713 0.7664 0.6913 0.2343 0.7483
Intersectional FDCPH 0.7033 0.1801 0.7716 0.7081 0.2495 0.7734

Table 2: Comparison of the accuracy-based predictive performances for DeepSurv and FDCPH models
on the train and test set of the COMPAS, FLC, and SUPPORT datasets. Higher is better for measures
with ↑, while lower is better for measures with ↓. FDCPH models reduce overfitting.

intersectional subgroups imposes a harder constraint to
the objective function that automatically ensures fair-
ness for groups. As expected, typical survival mod-
els performed best in terms of accuracy-based perfor-
mance measures. For example, the C-index of the Deep-
Surv model is the highest on the FLC and SUPPORT
datasets. RSF showed the highest C-index and AUC on
the COMPAS data, while the LPL of the Typical CPH
model was the highest on the SUPPORT dataset. How-
ever, surprisingly, we found that our fair models also
outperformed typical survival models in some accuracy-
based performance measures, including the Brier Score
for all three datasets and AUC in few cases.

4.6 Do Fair Models Reduce Overfitting? The
improved performance of the fair models over typical
models is counter-intuitive. We further study this result
in this section by comparing the generalization of the
models. Table 2 compares the accuracy-based predictive
performances for FDCPH models with DeepSurv model
on the train and test set of all datasets.

The DeepSurv was the best model for all three
datasets in all predictive measures on the training set,
but FDCPH models performed better than DeepSurv
on the test set in most of the cases. In the COMPAS
dataset, Group and Intersectional FDCPH models were
the best models on the held-out data in terms of
AUC and Brier Score, respectively. The Intersectional
FDCPH model showed the best Brier Score and AUC

measures on the held-out FLC data. Finally, the
Group FDCPH model provided the best Brier Score
on the test set of the SUPPORT data. We see a
similar trend in the performances for FCPH and Typical
CPH models on the train and test set of all datasets
(see Appendix for details). We also found that our
fair models decrease the corresponding gap between
accuracy-based predictive measures on the train and
test data due to the regularization behavior of the
fairness constraints. Thus, fair survival models reduce
overfitting of the typical survival models to some extent.

5 Discussion and Future Work

In this work, we investigated fairness for survival mod-
els and developed methods to ensure fair risk scores.
Balance between accuracy and fairness is an important
decision when deploying fair models, which depends on
the stakeholders. To validate our proposed models, we
performed experiments on three public proxy datasets,
with promising fairness/accuracy results.

The eventual goal of this research is the successful
application and deployment of our methods to the fair
needs-based ranking of the individuals waiting to receive
Medicaid care in the state of Maryland. In future, we
plan to study our proposed methods on data from the
Maryland Department of Health. We further plan to
study the impact of an intervention to the prioritization
process on each individual which determines the waiting
time to receive home and community-based healthcare
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services, and to study how stakeholders can be included
in fair AI decision-making processes.

6 Conclusion

We developed three fairness definitions for survival mod-
els and corresponding learning algorithms to ensure eq-
uitable allocation of healthcare resources. In extensive
experiments on publicly available datasets, we demon-
strated that our methods are practical and effective.
The proposed methods for fair prioritization of health-
care have the potential to prevent avoidable institution-
alization of elderly and disabled individuals, thereby im-
proving quality of life and saving taxpayer dollars, while
ensuring fair and equitable allocation of resources.
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