

TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

AUTOMATED DIALOGUE SYSTEMS FOR REQUIREMENTS

ELICATION PRACTICE

By

Erika Marie Boquist

A Thesis

Presented to the Faculty of

Towson University

in partial fulfillment for the degree of

Master of Science

Department of Computer and Information Sciences

Towson University

Towson, Maryland 21252

December, 2013

ii

iii

Acknowledgements

Dr. Suranjan Chakraborty served as the thesis advisor and provided a vast amount of

expertise regarding software requirements elicitation. His primary research related to

requirements engineering processes and understanding socio-cognitive processes

underlying the formulation of requirements. For this project, Dr. Chakraborty provided

the primary project outline as well as weekly meetings to discuss progress and future

improvements of the project.

Dr. Josh Dehlinger is a member for Towson University faculty and will serve as a

member of the Thesis Committee as his area of expertise is in the field of Software

Engineering. Dr. Dehlinger also aided the project in providing a website front end from

his previous project to aid in the development of the chatbot front end.

Atiya Afsana is a doctoral student in pursuit of her Doctorate of Science in Applied

Information Technology. She has aided in this project by researching and developing

questions for the final chat bot along with their perspective answers. Her doctoral studies

may include this project to further her studies.

Dr. Siddharth Kaza is also a member of Towson University faculty and will serve as a

member of the Thesis Committee with experience in Knowledge Discovery. Dr. Kaza

also assisted in weekly meetings to provide advice for GUI implementation and possible

future server-side implementation.

iv

ABSTRACT

AUTOMATED DIALOGUE SYSTEMS FOR REQUIREMENTS ELICATION

PRACTICE

Erika Marie Boquist

Background:

Requirements gathering is a vital part of the software development lifecycle. The act of

requirements elicitation revolves around prompting prospective clients with questions

that will result in an efficient set of requirements. The questions an analyst, software

engineer, developer, or project manager asks and the way that they follow up on those

questions to probe clients for requirements provide information to aid in the requirements

elicitation process and a system’s development as a whole.

Problem Definition:

The act of requirements elicitation is difficult and requires an immense amount of skill

and attention to detail to not only draw all requirements from the clients, but to also

provide a solid basis for system development. Choosing a questioning methodology is

vital to comprehensive coverage of all categories of requirements.

Approaches:

The intention of this project was to develop an automated dialogue system that would

allow users to interact with and discover appropriate questions for requirements

elicitation. The notion of a question answer (QA) system would give users the ability to

engage in a natural language, human-like conversation, to simulate an environment in

which an analyst could ask questions to elicit system requirements.

For this project, two types of dialogue systems were implemented. The first interaction

was an AIML closed-domain chatbot allowing for open-ended set of inputs, whereas the

second closed-domain iteration implemented a closed set of acceptable inputs.

Each iteration accounted for all requirement categories and possibility of questions based

on a prompting technique that was researched and deemed to be a best fit for the system

descriptions that were included in the dialogue system’s domain.

Results:

In conducting a pilot study on the first iteration chatbot, a number of limitations

regarding AIML’s handling of an extremely open-ended variety of questions specific to a

requirements elicitation domain were discovered.

The nature of the second iteration’s restricted set of inputs guaranteed 100% accuracy in

the system’s responses, but removed the user’s ability to devise their own questions.

v

Conclusions:

This project was an introduction to developing a much larger system aiding in the

training of students pursuing and understanding of requirements engineering and the

requirements elicitation phase of the software development lifecycle. The dialogue

system implementations, results and findings of this thesis will be used in a doctoral

study expected to continue.

vi

Table of Contents

TABLE OF CONTENTS ... VI

TABLE OF FIGURES .. VIII

TABLE OF TABLES.. IX

INTRODUCTION ... 1

PROJECT OVERVIEW ... 1

OBJECTIVES AND GOALS ... 1

BACKGROUND RESEARCH .. 3

REQUIREMENTS ENGINEERING PROMPTING EFFECTIVENESS BACKGROUND 3

TECHNOLOGICAL BACKGROUND ... 4

EXPLORED TECHNOLOGIES .. 5

AIML and ALICE... 5

JavaScript, jQuery, and Hashmaps ... 6

INTERACTIVE DIALOGUE SYSTEMS ... 8

ITERATION 1 .. 8

Knowledge Base Implementation ... 8

First Generation Bot .. 9

Front End Development ... 9

Back End Development .. 11

Testing Results and Analysis ... 12

Second Generation .. 13

Front End Development ... 13

Back End Development .. 15

Testing Results and Analysis ... 15

vii

Usability Study Results and Analysis ... 16

Linguistic Issues ... 19

Synonym Issues .. 21

Survey Results ... 22

ITERATION 2 ... 23

Front End Development.. 23

Back End Development ... 25

Proposed Testing Results and Analysis.. 25

Development ... 25

Expected Results ... 26

CONCLUSION ... 27

CHALLENGES AND LIMITATIONS ... 27

FUTURE DIRECTION AND DEVELOPMENTS... 28

Developments .. 28

Implementations ... 28

Front End Developments ... 28

Back End Developments .. 29

APPENDICES ... 30

APPENDIX A – QUESTION SET FOR PROTOTYPE ... 30

APPENDIX B – PROTOTYPE STUDY RESULTS ... 32

REFERENCES ... 33

CURRICULUM VITA ... 34

viii

Table of Figures

Figure 1 - Semantic Prompting Technique ... 4

Figure 2 - jQuery Autocomplete .. 7

Figure 3-Trial Bot Splashscreen .. 10

Figure 4-Trial Chat Bot .. 10

Figure 5-Trial Chat Bot Topic ... 11

Figure 6- Trial Chat Bot Topic Templates ... 12

Figure 7 - Second Generation Chatbot .. 14

Figure 8 - Pilot Study Instructions .. 17

Figure 9 - Pilot Study Questionnaire .. 17

Figure 10 - User Input Handling ... 19

Figure 11 - Question Diagram A ... 20

Figure 12 - Question Diagram B ... 20

file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589679

ix

Table of Tables

Table 1 – AIML Category .. 5

Table 2 - jsHash Implementation .. 7

Table 3 - Requirement Categories and Questions .. 9

Table 4 - Grades Patterns .. 12

Table 5- Q&A Retrieval .. 14

Table 6 - Synonym Lookup Code ... 21

Table 7 - Questionnaire Results ... 22

Table 8 - Mongoose Schema .. 29

Table 9 - Prototype Study Results ... 32

file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589691
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589692
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589694
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589695
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589696
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589698
file:///C:/Users/572098/Desktop/Boquist_Thesis.docx%23_Toc378589699

1

Introduction

Project Overview

Analyst questioning is a critical part of requirements elicitation. The questions an analyst,

software engineer, developer, or project manager asks and the way that they follow up on

those questions to probe clients for requirements provide information to aid in the

requirements elicitation process and a system’s development as a whole. Improving

developer questioning can be a catalyst for the software development process.

The act of requirements elicitation is difficult and requires an immense amount of skill

and attention to detail, to not only draw all requirements from the clients, but to also

provide a solid basis for system development. As one of the most critical aspects of

information systems development, numerous studies have been conducted discussing

prompting techniques to acquire a requirement fit for a specific category (Browne &

Rogich, 2001). Choosing a questioning methodology is vital to comprehensive coverage

of all categories of requirements.

In an attempt to assist and further the requirements elicitation phase, we proposed the

following:

 Designing an interactive dialogue system to model prospective client responses

and respond in real-time to prospective developers’ questions regarding a

system’s requirements.

 Developing a knowledge base for the interactive dialogue system by researching

types of questions and their corresponding requirement categories to program

potential responses.

 Piloting the system through integration with existing assignments as a part of a

graduate Requirements Engineering course.

Objectives and Goals

The intention of this project was to develop an automated dialogue system that would

allow users to interact with to discover appropriate questions for requirements elicitation.

The notion of a question answer (QA) system would give users the ability to engage in a

natural language, human-like conversation, to simulate an environment in which an

analyst could ask questions to elicit system requirements.

There were three goals associated with this thesis:

 Gaining an understanding of the background research for implementing a

dialogue system

 Developing a prototype

 Running a pilot study on the prototype

2

The research objectives included a substantial study of background research regarding

best practices for requirements elicitation. Additionally, we acquired knowledge to fully

implement a dialog system prototype that required extensive study of QA systems. The

objectives of this research phase were the following:

 Construction of a prototype dialogue system knowledge base for the proposed

knowledge domain relating to requirements discovery

 Acquire an understanding of the Zipf’s law and curve and their applicability to the

requirements domain.

3

Background Research

Requirements Engineering Prompting Effectiveness Background

A substantial portion of the engineering research was on systems analyst questioning

techniques. This included understanding the content to be used in developing the

knowledge base of the dialogue system. For both the trial and final systems, all

information was gathered to successfully implement the dialogue system.

The first step was gathering all information or requirements that the user would be

polling. The requirements necessary for complete system coverage were the following:

 Goal level requirements

 Process level requirements

 Task level requirements

 Information requirements

Once a collection of requirements was established, the Semantics prompting technique

was employed to develop questions according to events, states, conditions, actions,

agents, and goals (Browne & Rogich, 2001). The figure below was adapted from a

Brown and Rogich figure and displays types of prompts to acquire requirements in each

category that would serve as guidelines for handling user inputs.

4

These questions formed the basis of the question set developed for the dialogue system to

ensure acquisition of requirements for each of the categories. The questions set developed

will be discussed further in this document.

Technological Background

The proposed system was implemented as a conversational agent using technological

affordances provided by question answer (QA) systems. This type of system is a type of

natural language dialog system (NLDS) that allows users to interact with a system with

natural language queries and responses. In a 2003 study, authors Moldovan, Pasca,

Harabagiu and Surdeanu discussed the performance of a QA system as a combination of

question complexity and the difficulty of answer extraction. In that study, it was

determined there were 5 classes of QA systems: processing factual information, simple

reasoning, and inferring answers from multiple document combination, interactive

systems, and systems capable of analogical reasoning (Moldovan et al. 2003).

Goals Events

What are the system goals? What events affect the system?

How is each goal attained? What are consequences of each event
occurring?

Why is each goal important? What causes each event to occur?

What indicates that each goal is achieved? What goal does each event fulfill?

Agents States or Conditions
Can you name a person or department
involved with the system?

What states or conditions affect the system?

What role does each play? What causes or enables each state?

What are his or her goals? What are the consequences of each state being
present?

What agent has opposing goals? What goal does each state support?

Actions

Can you name the actions involved in the
system?

How does a person perform each action?

What prevents a person from being able to
perform each action?

What goal(s) does each action satisfy?

Figure 1 - Semantic Prompting Technique

5

Explored Technologies

AIML and ALICE

The initial system at the core of this proposal was based off of the ALICE chat bot,

developed in 1995 by Richard Wallace and the Alicebot free software community.

ALICE (Artificial Linguistic Internet Computer Entity) is a class 1 QA system that

employed AIML, or Artificial Intelligence Mark-up Language (Wallace, 2003). The chat

bot was created as a conversational software agent used to interact with users in natural

language. While conversations in natural dialog would seem endless and impossible to

simulate, Zipf, a contemporary of Turing, discovered a characteristic of human language

that would greatly affect the advancements of artificial intelligence (Wallace, 2003). The

idea of Zipf’s law was that sentences are distributed throughout a conversation according

to a specific curve. Zipf discovered that of all the words, only about two thousand are

used first in a sentence and that the frequency of a word was inversely proportional to its

rank in a frequency table. The frequency of each word is related to the ranking of each of

the subsequent words. He found that while words that could be articulated are infinite,

only 1800 words covered 95% of first words that are ever spoken (Goh, Fung &

Depickere, 2007).

Shawar (2011) described two types of chat bots: open-domain and closed-domain. The

distinction between an open or closed domain system lies in its content. In an open

domain system, the content is everything related to general knowledge. In contrast, a

closed domain system has a very specific domain. The chat bot developed for this

proposal was a closed-domain bot with domain-specific knowledge relating to software

requirements discovery.

ALICE took advantage of the both human and machine readable behavior of XML

(Extensible Markup Language) by defining rules for properly encoding its files. The

combination of various documents conforming to a set of rules would then be handled by

an interpreter. AIML is a dialect of XML with its interpreters available under the GNU

General Public License and hosted on Google Code (Wallace, 2013).

The focus of this project was the knowledge base of an AIML chatbot. The knowledge

base of this chatbot was a collection of units framed by tags specific to AIML. Each of

these units would address content specific to our system’s domain. Paired with the AIML

interpreter and an HTML front end, the implementation of our chatbot would be complete

(Wallace, 2003).

The fundamental unit of knowledge, the category, is devised of input questions, called

patterns, which result in a response, or template. These AIML categories are denoted as:

<category>

 <pattern> HELLO </pattern>

 <template> Hi there!</template>

 </category>

Table 1 – AIML Category

6

The chat bot receives a pattern, which is parsed into the best-fit category, and provided

with a response, or template; each of these domain-specific units are stored in a

knowledge base.

Alicebot was an attempt to bridge the gap between the slow information exchange rate of

human dialogue and the significantly faster computer communication. Proof of ALICE’s

progress is the increasing lengths at which conversation can be maintained with the bot

(Wallace, 2003). Each year a contest called Chatbot Battles is held challenging

participants to develop chatbots that stimulated longer conversations and conversations

akin to natural language of a 7
th

 grader. Last year’s contest winner’s chatbot maintained a

15 minute conversation with the judges (Worswick, 2012).

The implementation research consisted of understanding how to implement a closed-

domain chat bot with the use of HTML and AIML. HTML required very little

background research, as this was already a familiar language. Similarly, AIML is based

on XML so extensive research was not necessary and only required knowledge of

nuances specific to AIML.

The chatbot used the Pandorabots open-source web service which enabled the

development and hosting of the chatbot free of charge. Pandorabots is the largest chatbot

community on the Internet and is constantly evolving ("Pandorabots," 2002). The chatbot

hosted on Pandorabots had an initially empty knowledge base that we built upon.

Additionally, we developed a website front-end for increased human-computer

interaction satisfaction.

The primary source of AIML documentation was Richard Wallace’s The Elements of

AIML Style, which provided history and implementation guidance for the chatbot

prototype.

JavaScript, jQuery, and Hashmaps

The second candidate technology that was explored was a combination of JavaScript,

jQuery and hash maps to provide users with an input dialog enhanced with autocomplete

to ensure appropriate questions as well as their corresponding answers.

The use of HTML and JavaScript became self-evident, as JavaScript is an object-oriented

scripting language used on the Internet. JavaScript has an enormous number of libraries,

including jQuery. One of the many capabilities of jQuery is the auto-completion. A

listing or pre-populated values displaying upon matched user input would limit the types

of input allowed. JQuery’s Application Program Interface (API) provides for seamless

integration with the JavaScript backend (Swedberg, 2013).

7

Figure 2 - jQuery Autocomplete

With the need for storage of inputs and their corresponding outputs, a hash table created

at runtime sufficed. Hash tables or hash maps are data structures designed to implement

associative arrays. The idea is to map keys to values, or in this system, questions to

answers. A simple JavaScript hash table, with the ability to add, remove, modify, and

look up values by their keys, provided all the requirements needed for this type of

dialogue system. The example below demonstrates a simple jsHash implementation.

/**

* @desc demonstrates the jsHash implementation

* @author Erika Boquist

*

*/

var questions = new jsHash(),

 questionArray = [

 {

 question: "What is the goal?",

 answer: "The goal is to have 120% profit."

 },

 {

 question:"Why is the goal important?",

 answer: "To increase company stability."

 }

];

//push the questions from the question array to the available tags

//and the entire set of QAs to the hash

for(var i = 0; i<questionArray.length; i +=1){

 availableTags.push(questionArray[i].question);

 questions.setItem(questionArray[i].question,

questionArray[i]);

}

Table 2 - jsHash Implementation

8

Interactive Dialogue Systems

Iteration 1

The trial dialogue system was a chatbot with a well-defined AIML architecture hosted on

Pandorabots and an appropriate GUI for users to interact with. This trial bot had a closed

domain knowledge base which was populated with data from the Fall 2013 Software

Requirements Engineering course syllabus; topics were limited to the following: course,

exams, grades, instructor, papers, test, textbook.

Two generations of trial bots were necessary to meet all the development needs while

only one knowledge base had to be developed.

Knowledge Base Implementation

As the trial chat bots domain was specific to the course syllabus, the devised question set

that needed be accounted for in the knowledge base of the chat bot for each requirement

category are displayed in the tables below:

Goal Level Requirements

Process Level Requirements

What is required to pass the course? What do students have to do to pass this

course?

What is considered passing?

What are the prerequisites for this course?

How is the course graded?

What assignments are in this class?

What are the time constraints for this course?

What projects are in this class?

What kind of support system is there for this

course?

What exams are in this class?

Who is involved in this course?

What papers need to be written in this class?

What is this class about?

What is the weight of the (assignment,

project, exam, and paper) to the overall class?

What is the expected outcome from this

course?

When does the class meet?

What outside support is there for this course?

Where does the class meet?

 What textbooks are required for the course?

 What other suggested readings are there?

Task Level Requirements Information Level Requirements

When is (assignment, project, exam, and Where will the grades be stored?

9

paper) due?

How is the (assignment, project, exam, and

paper) to be executed?

Where will course information be hosted?

How is the (assignment, project, exam, and

paper) graded?

How is course information to be accessed?

What purpose does the (assignment, project,

exam, and paper) have?

How are the students to communicate with the

professor?

Who is required to perform the (assignment,

project, exam, and paper)?

How are students to submit assignments?

What outside help is there for the

(assignment, project, exam, and paper)?

How will students receive their graded

(assignment, project, exam, and paper)?

What are class (room) policies?

Table 3 - Requirement Categories and Questions

These questions were expanded into a set of individual and common language questions

which are listed in Appendix A.

This set of questions would elicit all requirements related to the course syllabus, having

employed the semantic prompting technique, ensuring each question began with a “who,

what, why, where, when, and how” question word. Additionally, the set of questions

would satisfy acquisition of requirements to fit each of the requirement categories.

First Generation Bot

The first generation bot consisted of a simple webpage front end and AIML backend.

Front End Development

The front end provided a brief explanation on proper questioning (See Figure 4). This

page included information from the Browne and Rogich article discussing prompting

techniques for acquiring goal, process, task, and information level requirements. It also

discussed the importance of prompts from the interrogatory technique (Browne &

Rogich, 2001).

10

Figure 3-Trial Bot Splashscreen

Once the user was sufficiently educated in proper prompting techniques, a “Launch

Chatbot” button’s activation would launch a nested webpage hosted on the Pandorabots

website. This page provided sample appropriate questions such as “Who is the instructor”

and “Where does the class meet.”

The user could then input their prompt in the input text area defined by “You:” and the

chat bot would respond in the text area below the “BOT:” text (See Figure 5).

Figure 4-Trial Chat Bot

Additionally, each of the web pages included a “Contact Botmaster” button to send

emails to:

eboqui1@students.towson.edu.

Information regarding the purpose of the chat bot development as well as a link to

Towson University’s homepage was provided as a live link on the Towson logo. The

mailto:eboqui1@students.towson.edu

11

logo was included according to Towson’s brand mark standards and download page,

which can be found at:

http://www.towson.edu/creativeservices/logos.asp

Back End Development

Research of AIML structures provided very little information for proper architectures.

The majority of sample code displayed all AIML patterns in a single file. To maintain a

well-organized backend, a Towson University previous chat bot implementation

architecture was mimicked to filter on specific topics.

The backend of this trial chat bot was AIML with an architecture that would parse the

input, filtering on a specific topic. Topics that were successfully parsed are the following:

assignments, assistants, course, exams, grades, instructor, papers, projects, test, and

textbook. Figure 3 displays the introduction to filtering the input based on the topic

“grades” being present.

Figure 5-Trial Chat Bot Topic

Once the topic was discovered, various templates would be combined into a single file

for each topic.

http://www.towson.edu/creativeservices/logos.asp

12

Figure 6- Trial Chat Bot Topic Templates

Figure 4 displays the set of templates that would be available to an input in which the

topic “grade” was captured.

Testing Results and Analysis

Testing of the first trial bot was strictly on a developer level. Imitating a prospective

user’s interaction, each of the questions from Appendix A were input into the system.

The inputs and corresponding outputs were then recorded for analysis. A number of

issues were discovered during analysis.

The first issue that was found was AIML’s need for extensive redundancy. To

successfully capture a topic there had to be three patterns for every question. For

example, to capture the topic “grades,” the following three patterns were required:

The use of the wildcards above account for following three different sentences,

respectively: “What grades can I expect,” “What are grades,” and “Grades are what.”

This issue with this effort of redundancy is there is a greater likelihood of human error in

missing a pattern, size of source code, and most importantly a higher cost of running

code.

<pattern>_ grades * </pattern>
<pattern>_ grades </pattern>
<pattern> grades _</pattern>

Table 4 - Grades Patterns

13

The second issue in this architecture design was recursive patterns being overwritten by

wildcards, specifically the underscore. An example of this was in the question, “What

percentage of the grade are projects?” In this case, the topic was “projects” was set,

however when “grade” was parsed, the topic was reset according to the alternative

“grading” topic. This was causing incorrect patterns to be matched resulting in either

wrong output, or no output at all.

The third issue was quite a number of synonyms were required to capture variations on

the same question that a user would submit. Not only did we have to include synonyms

such as “lecturer,” “teacher,” and “professor” for the word instructor, but we also had to

include singular and plural variations on the same term.

The topic parsing files were enormously bloated and a significant amount of time was

spent including extra patterns and synonyms, time that could have been better spent on

furthering project implementation rather than in a thesaurus.

Second Generation

The second-generation bot evolved the front end only slightly, while the back end

changed substantially.

Front End Development

The front-end goals were to removing the splash screen providing details on requirement

elicitation and to add to provide conversation logging.

Initially, it was suggested to update the front end to log conversations by adapting an

existing front end. This front end included not only conversation logging but the

capability for exporting the logs to a file the user could download. The project was

modified and deployed to Google App Engine, however, when running the project, the

Pandorabots service could not be reached, resulting in an HTTP 503 error.

Due to time restraint, the solution for conversation logging was to incorporate an

additional log area on the previously developed chat bot front end (see Figure 8).

14

Figure 7 - Second Generation Chatbot

Implementation took advantage of AIML’s history by creating a template with condition

polling the history’s request indices. The code sample below shows a complete template

for retrieving the most recent question and answer. The entire implementation included a

number of <think> tags as well as <conditions>.

While the logging successfully displayed the user’s most recent questions and answers,

AIML currently supports logging only 20 interactions. This required the users to copy

and paste several times their 20 most recent interactions. For a second-generation trial

bot, this wasn’t optimal but sufficed.

<template>

 <think>

 <set name="_history_1"><request index="1"/></set>

 </think>

 <condition name="_history_1" value="*">

 <i>Human:</i> <request index="1"/>

 <i><bot name="name"/>:</i> <response index="1"/>

 </condition>

</template>

Table 5- Q&A Retrieval

15

Back End Development

The architecture for the new back end was similar to the first generation trial bot in that

the entry point filter.aiml file would parse the input, capturing a topic that would then be

passed to separate files pertaining to each topic.

The difference in this generation bot was that topics were not based on tangible concepts

such as “instructor,” “textbooks,” or “course.” These topics corresponded with prompts

defined in the Browne and Rogich study: “what, where, when, how, and who.” Each of

these prompts was associated with a variety of questions:

 What – Prompts for requirements regarding an item or concept.

 Where – Prompts for requirements regarding a location.

 When – Prompts for requirements regarding a time.

 How – Prompts for requirements regarding a process’ execution.

 Who – Prompts for requirements regarding a person.

Each of these prompts corresponded to a separate AIML file, which then included a

second level of filter based on subtopics, or types. These types were associated with the

various object of each input. For example, when asking when something will be graded,

the object could be: papers, projects, exams, or assignments. Type filtering reduced a

significant amount of redundancy in similar pattern matching.

Testing Results and Analysis

Testing of the second-generation chatbot was similar to the first chatbot testing. Inputs

were from the question list in Appendix A, and the questions and system’s answers were

recorded. The second-generation chat bot greatly reduced the number of recursive

collisions; however more nuances of AIML became apparent.

Order of input parsing plays an important role on how AIML is executed. An example is

how the following sentence is parsed: “What is the purpose of the projects?” There are

two categories checking for the keywords “purpose” and “projects.” In this example, the

category referencing “purpose” would always execute first. This created a problem as a

second input question, “What is the purpose of the exams?” While the aforementioned

subtopic, or type, is set to the “projects, papers, instructor, etc.” the “purpose” will always

execute first resulting in an empty response from the chat bot. The solution for this

parsing issue was modifying the input from “What is the purpose of the exams” to “The

projects have what purpose?” This was expected to cause an issue for user interaction, as

input wording would be critical, and something that could not be guaranteed among a

variety of users.

Of the question created for the chat bot, the following questions had to be adjusted:

1. What percentage of the grade are projects? What is the weight of projects on the

final grade?

16

2. What percentage of the grade are papers? What is the weight of papers on the

final grade?

3. What percentage of the grade are exams? What is the weight of exams on the

grade?

4. What percentage of the grade are assignments? What is the weight of assignments

on the grade?

5. What is the purpose of the assignments? What is the assignments purpose?

6. What is the purpose of the projects? What is the projects purpose?

7. What is the purpose of the exams? What is the exams purpose?

8. What is the purpose of the papers? What is the papers purpose?

9. What outside help is there for the assignments? What assignments help is there?

10. What outside help is there for the projects? What projects help is there?

11. What outside help is there for the papers? What papers help is there?

12. What outside help is there for the exams? What exams help is there?

Once these inputs were modified, the entire question set correctly responded to by the

chat bot.

Usability Study Results and Analysis

A short usability study was performed on the second-generation trial chat bot. The study

was conducted in the Towson University Software Requirements Engineering graduate

course. The study included 14 participants of which the age, race, and gender were not

documented and therefore unknown.

Participants were provided a short instruction sheet with directions for interacting with

the chat bot (see Figure 9).

17

Figure 8 - Pilot Study Instructions

Once the participants had completed and submitted their chat logs to the assignment link

on blackboard, they were then given a questionnaire to complete (See Figure 10).

Figure 9 - Pilot Study Questionnaire

18

Each of the inputs were parsed and placed in a table with twelve categories. If the system

response was correct, the correct category would be marked. If the response was

incorrect, the appropriate categories would be checked. These categories were as follows:

 Prompt – For every input, the prompt used was marked in this category. This

would be “Who, what, where, etc.” or could be empty if a prompt was missing.

 Topic- The topic that was matched or should have been matched in the input was

marked in this category.

 Sub Topic- Sub topics that were matched or should have been matched in the

input was marked in this category.

 Missing Synonym – An appropriate synonym that was used in the input but was

neglected in the chatbot’s knowledge base was marked in this category.

 Missing Descriptor – A descriptor was categorized as the subject of the question

and a modifier of the topic in the response. Descriptors that should have been

included in the chatbot’s knowledge base were placed in this category.

 Poor Ordering – In the event that sub topic was matched prior to the topic causing

an incorrect response by the system, this category was selected.

 Previous Topic Matched – Topic’s that were set when parsing a pattern, would

persist until a second topic was set. If a topic a subsequent topic was not properly

set resulting in responses related to the previous topic, this category was marked.

 Missing Prompt – This category was marked if a user neglected to include any

prompt.

 Incorrect Response – This category was marked if the behavior of the chatbot

could not be determined or had no response.

 Irrelevant Question – This category was for questions outside the scope of the

knowledge base or were not complete sentences.

 Composite Prompt – A composite prompt was marked as the category if the

user’s input contained more than one prompt.

 Correct – Correct interactions were marked in this category.

For a complete table listing of all conversation logs during this study, see the table in

Appendix B.

The results of the study displayed a number of general errors:

 Many of the students did not save the transcript logs correctly resulting in the

input and chat bot outputs not matching.

 There were an enormous number of synonyms missing from the knowledge base,

resulting in a number of patterns that could have matched, failing.

 A large number of inputs were outside the scope of the chat bot’s knowledge

base, such as plagiarism, exam preparation, reasons for teaching software

engineering, and many more.

 Many students did not use proper English to format their questions.

 Many students entered “garbage” inputs completely unrelated to the syllabus.

19

The table below displays all the user inputs and a breakdown of their responses. Of the

total number of inputs recorded, only 21.5% were answered correctly by the chatbot. 26%

of the inputs included synonyms that were missing from the knowledge base, 10% of the

questions neglected to include a question word, 26% of the questions irrelevant to the

scope of the project, 20% of the questions included descriptors not considered in the

knowledge base, with the remaining questions falling into states where the chatbot could

not respond at all.

Figure 10 - User Input Handling

Linguistic Issues

The most common variation on a planned question was on the base question “Who is the

professor?” Many students asked the same variation of “What is the professor’s name?”

These two questions appear the same as they would respond with the same answer,

however, the chat bot failed to answer the question regarding the professor’s name.

Diagramming these two sentences provided insight as to why these are two different

sentences completely ("Sentence Diagrammer," 2009).

0.22

0.26

0.10

0.26

0.20

0.07

User Input Handling

Correct

Missing Synonyms

Missing Question Word

Irrelevent Questions

Missing Descriptors

Excepted Chatbot State

20

Figure 11 - Question Diagram A

The first and expected input defined each part of speech as the following:

 Who – Pronoun – question word, subject complement noun

 Is – Verb – Verb of question clause

 The – Adjective – Adjective modifier

 Professor - Noun - Subject of question clause

The second sentence diagrams very differently:

Figure 12 - Question Diagram B

Each part of speech, with the exception of “The” and “is”, behave very differently:

 What - Pronoun – question word, subject complement noun

 Is – Verb – Verb of question clause

 The – Adjective – Adjective modifier

 Professor’s - Noun – Adjective modifier(possessive)

 Name - Noun - Subject of question clause

In the first case, the object of the sentence is “professor,” paired with “Who,” would

properly respond with who the professor was: a person. In the second case, the object is

“name,” which paired with the “What” would respond with a thing’s name. Without the

identifying adjective of “professor” there would be no way of determining who, or

what’s, name the user is attempting to retrieve.

21

This caused a serious issue for the chat bot as the template relating to a person would be

in the who.aiml, and a name would be in the what.aiml. A topic of “professor” would

have to be set, followed by the sup topic, or type, for the name. Furthermore, the structure

did not and was not prepared to house possessive forms of each topic.

This issue led to an investigation of linguistics and sentence parsing. If we could

successfully parse a sentence and extract all the sentence parts, we could then set topics

and layers of subtopics according to each particle of speech; an algorithm that could

normalize the sentence into usable objects containing properties to associate with each

topic. Indeed, there were sentence algorithms used for semantic normalization (Hart &

Goertzel, 2008).

The science of linguistics is vast, even in a basic overview and far exceeded the scope of

this project (Gasser, 2009). Additionally, a majority of the students interacting with the

system were not native English-speakers, resulting in sentences that were incomplete,

structurally incorrect, misspelled, and convoluted. As time was running out, it was

decided to reduce the input complications by limiting the number of inputs to a finite list

of questions that the user could choose from.

Synonym Issues

Addressing the second issue of lack of synonyms, the prospective solution was to

incorporate a text file dataset to quickly and easily check words inputted from the user

and not only verify they were words, but to also return the highlighted word for that

category. For instance if the user had entered the word “instructor” but the chat bot used

“professor,” a simple check could verify that “instructor” was a synonym for “professor”

and would then return “professor.”

var result,

word = {word: "instructor", type: "noun"};

if(word.type === "noun"){

result = checkSynonym(word.word);//calls some function that references a datset to return the word

that should be used. "instructor" return "professor"

if(result){

 switch(result){

 case "professor":

 //do something

 break;

 case "textbook":

 //do something

 break;

 case "course":

 //do something

 break;

 }//end switch

}else{

 return "This word is not acceptable to the program...not found in dataset";

}

}//end if noun

Table 6 - Synonym Lookup Code

22

The above code sample displays how instructor would be handled and returned as

professor for ease of processing and reduction of AIML. The three variations of handling

topics with wildcards would only be needed for one word greatly reducing the size of

each AIML file.

Survey Results

The survey results are displayed in the table below. The results were as expected,

displaying a mixture of positive and negative responses depending on what set of

questions were used.

Question # Question Responses

1 Chat Bot Pros  fast

 easy to use

 easily answered

 satisfactory answers

 easy to follow

 very specific to the questions

 started out interesting

 sounds intelligent

 sometimes provides more info that expected

2 Chat Bot Cons  answers are irrelevant

 not smart enough

 not enough synonyms

 changing one word would give different answers

 questions limited to who, when, what, etc.

 hard to get worded for questions

 sometimes don’t get any answer

 don’t provide many answers

 keyword recognition

 very frustrating

 does not read the entire questions

 misinterpret the questions

 did not understand simple ones

 structure is rigid

3 Comments  keep adding keywords

 rephrase the questions

 keyword recognition

 submit button

 doesn’t care about predicate “it” 'the', etc.

 helpful to have some sample questions,
Table 7 - Questionnaire Results

23

Future studies would benefit from correlating which user log correlated with survey

results to determine credibility of user input as a significant amount of questions were

invalid.

Iteration 2

Due to the increasing linguistic difficulties regarding text parsing for the initially

proposed automated dialog system, it was suggested that the alternatively researched

architecture for the system should be implemented. This architecture affected the front

and back ends of the dialog system.

The suggestion was that a closed set of prompts should be established within the

question-answer (QA) system to prevent users for inputting arbitrary information as well

as to avoid the linguistic difficulties discovered in the previous chatbot system.

Front End Development

Initially, the suggested alternative front-end procedure was to provide a graphical user

interface (GUI) that would contain drop down menus for the users to select and input a

predefined set of prompts (See Figure 16).

Figure 13 - Iteration 2 Initial Front End

However, upon further review, it was decided that such an explicit set of prompts would

nullify the reason for the QA system in its entirety. As such, it was suggested that an

auto-complete input form would be appropriate as to wait for the user’s initiation prior to

displaying prompting suggestions.

For the final GUI, it was decided to take a very simple approach with very little

background distraction and a simple interface to provide the user with information on

how to use the program as well as a way in which the user can save the results of their

QA session (See Figure 17).

24

Figure 14 - Iteration 2 Final Front End

Additionally, the “Save Answers” button allowed the users to save their session, for

analysis purposes (See Figure 18).

Figure 15 - Iteration 2 Save Dialog

25

Back End Development

The initial implementation of the chatbot was taking advantage of AIML and

Pandorabot’s chatbot hosting services. While AIML provided an XML structure for

simple question-answer systems, there was an extreme amount of redundancy for a

simple implementation of a chatbot. Additionally, the chatbot hosting site, Pandorabots,

had proven to be reliable throughout the duration of this project.

The suggestion was made that data from keyed inputs from the users in conjunction with

a look up table could quickly and easily appear to be a QA system. Implementation made

use of the prepopulated keys serving as the prepopulated list of inputs, and use these as

the keys for a collision free back end hashmap. While the initial implementation of this

QA system would not have an enormous set of questions, future use may require an

extensive set of inputs which will take advantage of the quick lookup capabilities of the

hashmap. Javascript can successfully implement the hashmap at runtime preventing any

need for storage of data on external servers.

Proposed Testing Results and Analysis

The pilot study was to determine the number of general, goal and process requirements

acquired by each system user in addition to user interaction data being gathered. Due to

time constraints on the development of this project, the pilot study on this iteration of the

dialogue system was unable to be executed; however, the intentions of the proposed study

will be discussed.

Development

Similarly to the second generation chatbot study, this study should to be performed by the

graduate level Requirements Engineering students. Students should be encouraged but

not required to participate in exchange for extra credit towards their final grade.

This study should contain a pre-task questionnaire and post-task survey as discussed in

the pilot study research section of this document.

Participants should be given 15 minutes to interact with the dialogue system, taking

advantage of the autocomplete functionality to ask as many questions and elicit the

maximum number of requirements. Once satisfied with the number of acquired

requirements, or having reached the time constraint, users should be asked to save copies

of their transcripts and submit them to their Towson University Blackboard account.

 Additionally, participants should be given a specification template with each of the

requirement categories listed. Participants should be directed to fill out the template

based on their interaction with the dialogue system; the completed specification template

should then be submitted each student’s Towson University Blackboard account.

26

Expected Results

The results from the pre-task questionnaire, conversation log, post-task survey and

specification template should then be analyzed to correlate the types of questions asked

with the number and type of requirements acquired. Additionally, there should be

analysis performed on the most infrequently and frequently asked questions. Data

gathered from the pre-task questionnaire will aid in determining what, if any,

relationships there are between ethnic and gender backgrounds and selection of prompts.

The intention is that results of this study will contribute to further the training of future

software requirement engineers. The questions a software engineer asks and the way that

they follow up on those questions to probe clients for requirements provide information

to aid in the requirements elicitation process and a system’s development as a whole.

27

Conclusion

In an attempt to assist and further the requirements elicitation phase, we designed two

interactive dialogue systems to model prospective client responses and respond in real-

time to prospective developers’ questions regarding a system’s requirements. The first

system employed an AIML based chatbot for answer questions created by the user,

whereas the second system provided users with a listing of questions that would display

as autocomplete to their input.

We developed a knowledge base for the interactive dialogue system by researching types

of questions and their corresponding requirement categories to program potential

responses. We took advantage of Browne and Rogich’s semantic prompting technique to

populate the knowledge base for the first iteration of dialogue system chatbot based on

the fall 2013 Software Requirements Engineering syllabus.

Piloting the first iteration of system through integration with existing assignments as a

part of a graduate Requirements Engineering course, we discovered that the first chatbot

would not efficiently handle various types of input from students, which ultimately lead

us to the development of the second iteration of dialogue systems.

Challenges and Limitations

Among the many challenges of this project, there were two major challenges and

limitations manifested throughout the duration of this project.

The first challenge was the time constraint. This project was to be developed throughout

a two-semester time frame. Initially, the interactive dialogue system was to have only two

iterations, the pilot chatbot based on the Requirements Engineering syllabus, and the final

chatbot based on a system description (KMC Auto Rentals) distributed to the

Requirements Engineering class. However, upon discovering the major limitations of

AIML, a second approach to a dialogue system had to be researched and implemented.

By the end of the first semester, the first chatbot had been completed, leaving only a few

months to develop an entirely new system along with knowledge base and question set

creation. Once the system was implemented, there was no longer time to run the second

study.

The second challenge to this project was the collection of limitations to the AIML

language itself. During testing, the second generation of the chatbot performed

exceptionally well with an 81% accuracy in responding to inputs. However, during the

pilot study conducted in the class, the accuracy of responses fell to a 21.5%. For a

detailed description of inputs failing to be handled by the chatbot, see section titled

“Usability Study Results.”

28

Future Direction and Developments

This project is an introduction to developing a much larger system aiding in the training

of students pursuing and understand of requirements engineering and the requirements

elicitation phase of the software development lifecycle. Additionally, the results and

findings of this thesis will be used in a doctoral study expected to continue throughout the

2014 semesters.

Developments

Future developments should be the inclusion of an automated dialogue system within a

much greater system to train users in requirements engineering as well as measure their

level of success with the dialogue system. The anticipated system should include four

categories

1. A tutorial on Requirements Engineering(RE)

a. General RE engineering overview including, but not limited to, the focus

of RE, types of requirements, as well as work and business processes.

b. The different types of questioning techniques, such as the task

characteristics, semantic, and syntactic prompting techniques (Browne &

Rogich, 2001).

2. A timed interaction with an automated dialogue system

3. A specification template to query users of the requirements they gained as well as

test their knowledge of requirement types. This would serve as the criteria for

measuring how well each user performed.

4. A questionnaire to discover what each user learned as well as gain insight as to

their questioning strategies.

Implementations

The intention is to have the new dialogue system as a part of a Massive Open Online

Course(MOOC) course. The course would be available for students from various

locations to train in the requirements elicitation phase (Cormier, 2008). Section 2 of the

anticipated system would include an implemented dialogue system based on the second

iteration discovered in this project. Development of the system would be conducted in

two sections, the front end and back end developments.

Front End Developments

Front end developments should continue in the use of HTML, Javascript/jQuery, as well

as Node.js. The Node platform will allow for a networked application without the need

for an external web server. This will provide a lightweight solution for the client-database

traffic (Dahl, 2007).

29

Back End Developments

The backend of the new system will implement Mongoose, a schema-driven NoSQL

MongoDB database. This will provide an efficient way of creating objects that can be

validated against a JSON schema to be stored in the NoSQL database. From Mongoose’s

website, a schema can be easily created and maps to the MongoDB as depicted below

("Mongoose," 2011).

For the implementation of the dialogue system, each pairing of question and answer will

be stored in a schema that could include any additional information that might be useful

for analysis. Additionally, interaction sessions between the user and the system can be

tracked in a second schema to log the user, the duration of interaction, time of day,

location of user via their IP address, as well as the results of their questionnaires, surveys,

specification template and time spent reading directions and requirements engineering

overview information pages. The extensive tracking of user sessions will provide an

enormous amount of data for analysis of user interaction and system performance.

var mongoose = require('mongoose');

var Schema = mongoose.Schema;

var blogSchema = new Schema({

 title: String,

 author: String,

 body: String,

 comments: [{ body: String, date: Date }],

 date: { type: Date, default: Date.now },

 hidden: Boolean,

 meta: {

 votes: Number,

 favs: Number

 }

});

Table 8 - Mongoose Schema

30

Appendices

Appendix A – Question Set for Prototype

1. Who is the instructor?

2. Who is the lab assistant?

3. Who is the teacher’s assistant?

4. What is the instructor’s contact information?

5. What is the course name?

6. What is the course ID?

7. What is the course description?

8. What is involved in the course?

9. When is the course offered?

10. What is the course schedule?

11. When is the final exam?

12. What are the project deadlines?

13. What are the course objectives?

14. What are the course prerequisites?

15. Who can take this course?

16. What assignments are in this course?

17. What projects are in this course?

18. What papers are in this course?

19. What exams are in this course?

20. What percentage of the grade are projects?

21. What percentage of the grade are papers?

22. What percentage of the grade are exams?

23. What percentage of the grade are assignments?

24. When does the class meet?

25. Where does the class meet?

26. How is the course graded?

27. What textbook is required?

28. What other suggested readings are there?

29. How can a student withdraw from the course?

30. When are assignments due?

31. When are the projects due?

32. When are the papers due?

33. When are the exams?

34. How are projects to be executed?

35. How are exams to be executed?

36. How are papers to be executed?

31

37. How are the assignments to be executed?

38. How are projects to be graded?

39. How are exams to be graded?

40. How are papers to be graded?

41. How are the assignments to be graded?

42. What is the purpose of the assignments?

43. What is the purpose of the projects?

44. What is the purpose of the exams?

45. What is the purpose of the papers?

46. Who is required to perform the assignments?

47. Who is required to perform the projects?

48. Who is required to perform the exams?

49. Who is required to perform the papers?

50. What outside help is there for the assignments?

51. What outside help is there for the projects?

52. What outside help is there for the papers?

53. What outside help is there for the exams?

54. What are the classroom policies?

55. When will the exams be graded?

56. When will the projects be graded?

57. When will the assignments be graded?

58. When will the papers be graded?

59. Where will the grades be stored?

60. Where is the course information?

61. How do students submit assignments?

62. How do students submit exams?

63. How do students submit projects?

64. How do students submit papers?

65. How do students receive graded exams?

66. How do students receive graded assignments?

67. How do students receive graded projects?

68. How do students receive graded papers?

69. Where can the textbook be found?

70. When will final grades be posted?

71. Where will final grades be posted?

32

Appendix B – Prototype Study Results

Table 9 - Prototype Study Results

33

References

Browne, G., & Rogich, M. (2001). An empirical investigation of user requirements

elicitation: Comparing the effectiveness of prompting techniques. Journal of

Management Information Systems, 17(4), 223-249.

Cormier, D. (2008). Mooc list. Retrieved from http://www.mooc-list.com/.

Dahl, R. (2007). Node js. Retrieved from http://nodejs.org/.

Gasser, M. (2009). The cognitive science of linguistics. Retrieved from

http://www.indiana.edu/~hlw/.

Goh, O., Fung, C., & Depickere, A. (2007, June). Domain metric knowledge model for

embodied conversation agents. 5th international conference on research, innovation &

vision for the future(RIVF'07), Hanoi, Vietnam.

Hart, D., & Goertzel, B. (2008). Sentence algorithms. Retrieved from

http://wiki.opencog.org/w/Sentence_algorithms.

Moldovan, D., Pasca, M., Harabagiu, S., & Surdeanu, M. (2003). Performance issues and

error analysis in an open-domain question answering system. ACM Transactions on

Information Systems, 21(2), 133-154.

Mongoose. (2011). Retrieved from http://mongoosejs.com/index.html.

Pandorabots. (2002). Retrieved from http://www.pandorabots.com/botmaster/en/home.

Sentence Diagrammer. (2009). Retrieved from http://1aiway.com/.

Shawar, B. (2011). A Chatbot as a Natural Web Interface to Arabic Web

QA. International Journal Of Emerging Technologies In Learning, 6(1), 37-43.

doi:10.3991/ijet.v6i1.1502.

Swedberg, K. (2013). jquery. Retrieved from http://jquery.com/.

Wallace, R. (2003). The Elements of AIML Style.

Wallace, R. "Reference AIML 2.0 Interpreter."Program-AB. ALICE AI Foundation, 21

Feb 2013. Web. 2 Dec 2013. <https://code.google.com/p/program-ab/>.

Worswick, S. (2012). Chatbot battles. Retrieved from http://www.chatbotbattles.com/.

http://nodejs.org/
http://mongoosejs.com/index.html
http://www.chatbotbattles.com/

34

Curriculum Vita

NAME: Erika Marie Boquist

PERMANENT ADDRESS: 3600 Duxbury Court, Jarrettsville, MD 21084

DEGREE AND DATE TO BE CONFERRED: Master of Science., 2013

Secondary education: North Harford High School. Pylesville, MD. 2005

Collegiate Institutions Attended Dates Degree Date of Degree

Towson University 2010-
2013

Master of Science:
Computer Science
Concentration:
Software Engineering

12/2013

Frostburg State University 2005-
2010

Bachelor of Science:
Music
Concentration: Clarinet
Performance
Minor: Computer
Science

06/2010

