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Most of the work that we do in signal processing these days is data driven. The shift from the more traditional and model-driven 
approaches to those that are data driven also underlined the importance of explainability of our solutions. Because most traditional 
signal processing approaches start with a number of modeling assumptions, they are comprehensible by the very nature of their 
construction. However, this is not necessarily the case when we choose to rely more heavily on the data and minimize modeling 
assumptions.  
 
Explainability is critical not only for the simple reason that one would like to have confidence over the solutions, but also because 
one would like to obtain further insights about the problem from the learned models.  This includes interpretability and completeness 
so that one can not only “audit” them, but also ask appropriate questions to probe for insights beyond the initial solution, and 
address additional concerns such as safety, fairness, and reliability. Interpretability, i.e., ability to attach a physical meaning to the 
solution, along with reproducibility, and replicability are three key aspects of explainability. Following the definitions by the National 
Academies of Sciences, Engineering, and Medicine, reproducibility refers to obtaining consistent results using the same data and 
code—i.e., method,—as the original study, and replicability is obtaining consistent results across studies aimed at answering the 
same scientific question using new data or other computational methods. 
 
In this special issue we have nine articles that demonstrate the multi-faceted nature of explainability, and span the related concepts 
of interpretability, reproducibility, and replicability. They successfully demonstrate the rich nature of these concepts, while also 
highlighting the fact that they take on slightly different meanings in different contexts, and the considerations might be slightly 
different as well. These papers also underline the fact that explainability is a key theme that requires attention across different 
application domains and types of solutions, i.e., well beyond neural networks where they have been mostly emphasized to date.  
 
The first two papers of the special issue study the questions of reproducibility, replicability and interpretability for two important 
classes of machine learning solutions, matrix and tensor decompositions (MTDs) and graph data science. The first article 
"Reproducibility in Matrix and Tensor Decompositions” by Adali et al. addresses reproducibility in MTD solutions that have been 
growing in importance, where in addition to the discovery of structure in  the data, the resulting decomposition is also directly 
interpretable. With an applied focus where there is no ground truth, authors study the intricate relationships of interpretability, 
model match, and uniqueness.  They make use of two widely used methods with relaxed uniqueness guarantees, independent 
component analysis and the canonical-polyadic decomposition, and provide examples to solidify these concepts and demonstrate 
the tradeoffs. Finally, a reproducibility checklist for MTDs is provided similar to those developed for supervised learning. In 
“Explainability in Graph Data Science”, Aviyente and Karaaslanli explain methods and metrics from network science to quantify 
three different aspects of explainability, i.e., interpretability, replicability and reproducibility, in the context of community detection. 
Specifically, the strategies described by the authors can be used to address some common issues and provide guidelines to reduce 
the opacity of community detection algorithms and their outputs. In addition, they can be extended to other community detection 
and data clustering algorithms as well as different learning tasks on graphs. 
 
The second group of papers take a broader view of explainability with a focus on neural networks. Letzgus et al. discuss an area 
of explainable artificial intelligence (XAI) that has so far received comparatively little attention, namely XAI for regression models. 
Their review, "Toward Explainable Artificial Intelligence for Regression Models," provides novel theory showing that there are 
important conceptual differences between XAI for regression and classification, not only algorithmically but also with respect to the 
choice of reference for the explanation. The paper "Explanatory Paradigms in Neural Networks", by AlRegib and Prabhushankar 
characterizes a complete explanation as an additive combination of observed correlation, counterfactual and contrastive 
explanations.   It then discusses how existing explanation methods can be analyzed   within this framework, and how well they are 
suited to different evaluation   strategies under a proposed taxonomy.  
 
The next two papers consider generative adversarial networks, which have been growing in importance. In “Robust Explainability" 
Nielsen et al. present a timely and comprehensive tutorial on gradient-based attribution/salience methods, their relationship to 
adversarial robustness and the practical importance of robust explainability of computer vision classification models based on 
these techniques, together with many of the associated terms that appear in the explainability literature. They provide a useful list 
of best practices to consider when choosing an explainability method and conclude with future directions of research in the area 
of robust explainability. They augment their paper with a website with links to all the explainability methods discussed, the paper's 
figures, and the code for generating the figures. In the second paper of this group “Explaining Artificial Intelligence Generation and 
Creativity,” Das and Varshney review different motivations, algorithms, and methods intended to explain the principles of AI 
algorithms or the possible artifacts they produce, by using a generative point-of-view with creativity as the focus. Particularly, they 
observe that discussions of interpretable AI, especially in settings of decisions and predictions, frequently start with the 



 

 

misconception that there is a fundamental trade-off between interpretability and accuracy, however, as reviewed, numerous 
examples show the opposite. 
 
The last group of papers of the special issue consider explainability with an application focus, and across a wide array of data-
driven solutions. The first two papers consider applications in healthcare and the last one on time series classification.  The first 
paper of this group, “Explainability of Methods for Critical Information Extraction From Clinical Documents”, by Ho, Luo, and 
Guido reviews a collection of representative works that address several natural language understanding tasks in healthcare, and 
discusses their explainability.  It showcases the complex dimensions of considerations in providing explainable methods for an 
essential application of artificial intelligence. In “Interpreting Brain Markers” Jiang et al. review predictive methods and their 
applications for interpreting brain signatures in neuroimaging based on a survey of more than 300 articles. This allows to better 
validate and assess reliability and interpretability of biomarkers across multiple datasets and contexts. Finally, in "Post Hoc 
Explainability for Time Series Classification," Mochaourab et al. discuss the explainability advantages of methods for time 
series   classification that are based on representations well established in signal processing.  The paper highlights the relevance 
of such conventional   transformations for the important concerns of understanding feature importance and providing 
counterfactual explanations. 

We thank our contributors for their comprehensive and interesting articles, Robert Heath for his support for our proposal, and 
Christian Jutten for providing valuable guidance and support at every step of the process. We would like to also extend our 
thanks to our reviewers for their detailed and insightful comments, to Rebecca Wollman for the guidance and support along the 
way, and to Sharon Turk for the special care in putting together our special issue. 

Data-driven solutions are becoming the dominant approach in practical problems across many domains in the sciences and 
technology, and explainability is a key aspect that will further enhance their utility. Signal processing is at the heart of data 
science, and is where the connection with applications is natural. Hence, we are hoping the insights as well as the critical 
perspectives provided by the contributions in our special issue will prove to be a useful reference and will help identify some of 
the new and emerging directions in the area.  
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