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Abstract

Numerical methods are needed to obtain maximum likelihood estimates (MLEs)
in many problems. Computation time can be an issue for some likelihoods even with
modern computing power. We consider one such problem where the assumed model
is the Random-Clumped Multinomial distribution. We compute MLEs for this model
in parallel using the Toolkit for Advanced Optimization (TAO) software library. The
computations are performed on a distributed-memory cluster with low latency inter-
connect. We demonstrate that for larger problems, scaling the number of processes
improves wall clock time significantly. An illustrative example shows how parallel
MLE computation can be useful in a large data analysis. Our experience with a direct
numerical approach indicates that more substantial gains may be obtained by making
use of the specific structure of the Random-Clumped model.

Key Words: parallel computing, maximum likelihood estimation, mixture distribution,
multinomial

AMS Subject Classification: 65C60, 65Y05

1 Introduction

Consider a random sample of n observations X = (X1, . . . , Xn) drawn from a probability
distribution f(x | θ). The vector of parameters θ = (θ1, . . . , θq) will be considered unknown,
and belongs to the space Θ ⊆ Rq. For a given dataset x = (x1, . . . , xn), the likelihood is
given by

L(θ | x) =
n∏

i=1

f(xi | θ),

and the maximum likelihood estimate (MLE) is obtained by

θ̂MLE = arg max
θ∈Θ

L(θ | x),
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or equivalently by maximizing the log-likelihood log L(θ | x). In some circumstances maxima
can be calculated analytically, but numerical methods are often needed to carry out the
optimization. Commonly used numerical methods include Newton-Raphson, Fisher Scoring,
and expectation maximization (EM); see [1] for a general overview.

We investigate the computation of MLEs for the Random-Clumped Multinomial distribu-
tion, introduced by Morel and Nagaraj in [4], using a parallel architecture. In particular, we
make use of a publicly available software library TAO (Toolkit for Advanced Optimization)
[2], which implements a number of commonly used numerical optimization methods. TAO
is a special optimization library designed for use in parallel computing environments. The
objective of this work is to study the effectiveness, in terms of computing time, of applying
parallel optimization to the MLE problem. We make use of the limited-memory, variable-
metric (LMVM) unconstrained optimization method in TAO. Malouf [3] has demonstrated
the effectiveness of LMVM in the setting of natural language processing. Using TAO to con-
duct maximum entropy estimation, he shows that LMVM outperforms several other methods
such as conjugate gradient.

In a 2003 report describing the now-popular R package SNOW (Simple Network of Work-
stations), Rossini, Tierney, and Li [5] noted that parallel computing had not yet been widely
adopted by statisticians. Since then, packages like SNOW and its successors have helped
make parallel computing more accessible to R programmers. Many of these packages are
geared toward “embarrassingly parallel” problems — those which can be easily decomposed
into smaller problems that have little dependence on each other. For example SNOW pro-
vides a function called parApply, which evaluates a given function on each row (or column,
or element) of a given matrix. Each row can be operated on independently, and the package
determines how to allocate the work among available parallel processes. This is adequate for
many problems in statistical computing which involve repeating the same calculation many
times using randomly generated inputs. Resampling methods such as the bootstrap and
Monte Carlo simulation fall into this class of applications. The methods presented in this
paper look deeper into the structure of the computations and seek to improve performance
within the algorithm itself. Therefore, they are best evaluated on a single complex problem
rather than on problems involving repeated computations.

Our objective is to apply parallel computing to the MLE optimization problem which
does not fit the mold of embarrassingly parallel. The required numerical optimization is an
iterative process where each step must occur sequentially. We would like to distribute the
work across many parallel processes so that the computing time can be reduced. To effec-
tively use many processes we split the workload at each iteration, then distribute the results
back to all processes to prepare for the next iteration. Therefore, efficient communication
is important for good performance, and high performance computing (HPC) is especially
suitable for this application. An HPC cluster provides an array of fast processors connected
by a low-latency high-throughput interconnect, and optimized communication software such
as the Message Passing Interface (MPI). This environment will ensure that processes can
communicate efficiently, and that we can benefit from scaling the procedure to run on a large
number of processes.

In Section 2 the Random-Clumped model is described, including an algorithm for drawing
samples from the distribution. Section 3 discusses the approach for computing MLEs in
parallel. Section 4 presents simulation studies which show how run times and solution quality
are affected as problem dimensions are varied, and which verify the consistency property of
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the resulting maximum likelihood estimates. We find that parallel computing is effective for
large problems where “large” will be quantified. In Section 5 we present a large simulated
scenario from the Random Clumped Multinomial model where inference is computationally
expensive. The parallel MLE approach is applied to significantly reduce the computation
time of a likelihood ratio test. Finally, concluding remarks are given in Section 6.

2 The RCM model

First, let us consider the standard multinomial distribution, which arises in a natural way
when a group of m people are asked a survey question with k possible responses. The sample
space is the discrete set

T =

{
t = (t1, . . . , tk) : tj ∈ {0, 1, . . . ,m},

k∑
j=1

tj = m

}
,

where ti denotes the number of people who gave the ith response. Let T = (T1, . . . , Tk)
denote a random vector of counts from T . If we assume that the participants respond to
the question independently of each other, with probabilities π = (π1, . . . , πk) corresponding
to the possible responses, T will be distributed according to the multinomial distribution,
whose density function is

f(t | π, m) =
m!

t1! t2! · · · tk!
πt1

1 πt2
2 · · · πtk

k , t ∈ T . (1)

The parameter space is then

Θ =

{
π ∈ Rk : 0 < πj < 1,

k∑
j=1

πj = 1,

}
,

with only k − 1 distinct parameters since πk = 1 −
∑k−1

j=1 πj. If a random vector T follows
this distribution, we write T ∼ Mult(π, m), and denote observed data as t = (t1, . . . , tk). If
we repeat this survey n times, each time with a group of m people, we will obtain a sample
X = (T1, . . . ,Tn), which can be thought of as a k × n matrix.

A mixture of ν multinomials constructed with mixing proportions w = (w1, . . . , wν) is
given by

f(t | w, π, m) =
ν∑

j=1

wj f(t | πj, m), (2)

where
∑ν

j=1 wj = 1, 0 < wj < 1 for j = 1, . . . , ν, and πj = (πj1, . . . , πjk) is the vector
of probabilities corresponding to the jth component of the mixture. One motivation for
considering a mixture distribution may be drawn from the point of view of classification.
Suppose the participants in our multinomial response survey are drawn from one of ν different
populations, and we are unable to record the population label for each subject. Of course,
if the population label were available, we will end up with ν independently distributed
multinomial count vectors. Since the labels are not available, the likelihood will be based
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on the mixture density given in (2). This distribution has been widely used in a number of
applications including text mining, linguistics, and clustering; see [6] for a detailed review.
These mixture likelihoods generally cannot be maximized in closed form, as opposed to the
standard multinomial likelihood, hence numerical methods are needed for the MLE problem.
Mixtures in general may not be identifiable without additional assumptions.

We consider a special multinomial mixture proposed by Morel and Nagaraj [4] as the
test problem for our exploration. Following [7], we will refer to this model as the Random-
Clumped Multinomial (RCM) model. The model is also described in detail in [8]. It has
more recently been referred to as the Neerchal-Morel distribution by Zhou and Lange [9],
who use it to help demonstrate the minorization-maximization principle. The motivation for
the RCM model can be seen in the survey scenario mentioned earlier. If the m participants
interact among themselves before providing their responses, then the key “independence”
assumption is violated, and the multinomial distribution does not adequately model the
responses. In fact, it can be shown that such data, due to lack of independence, exhibits
larger variability than the multinomial distribution. This phenomenon is commonly referred
to as overdispersion. Morel and Nagaraj [4] provide a model for a specific type of dependence,
which turns out to be a special case of the multinomial mixture distribution in (2). In
subsequent work [8, 10], they show that this model has many desirable theoretical and
practical properties.

The RCM model can be obtained by correlating responses within a group by a simple
logic. Imagine that the group of m respondents consists of a leader who would make his/her
response public. Then, the remaining members may either follow the leader or make up their
own mind independently of each other and of the leader. Thus, the distribution of the count
vector T would conform to the representation T = Y N + (X | N), where

N ∼ Binomial(ρ, m), Y ∼ Mult(π, 1), (X | N) ∼ Mult(π, m−N),

such that N and Y are independent, 0 < ρ < 1, and π = (π1, . . . , πk) is a vector of category
probabilities as described for the standard multinomial. It can be shown that the density
for T is

f(t | π, ρ,m) =
k∑

j=1

πj g(t |ηj, m),

where g(t |ηj, m) is the density of a standard multinomial,

ηj =

{
(1− ρ)π + ρ ej if j = 1, 2, . . . , k − 1,

(1− ρ)π if j = k,

and ej is the jth column of the identity matrix Ik. We will use the notation T ∼ RCM(π, ρ,m)
to describe the distribution of T . We have noted that RCM is a special case of the mix-
ture distribution of (2). In this mixture however, there are only k distinct parameters
θ = (π1, . . . , πk−1, ρ). Our objective will be to compute the MLE for θ under this model.
Although we will not make use of them in this paper, theoretical results are available in [10]
and [6] which help to simplify MLE computations using a Fisher Scoring approach.

Neerchal and Morel [10] describe a method for generating random samples from the RCM
distribution. We include this information as a convenience to the reader. We first consider
generation of samples from the standard multinomial distribution. Begin with a vector
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t = (t1, . . . , tk) of k zeroes, and known parameters (π1, . . . , πk). Generate m observations

from the uniform distribution U1, . . . , Um
iid∼ U(0, 1). For observation Uj, determine the

category c such that

π1 + · · ·+ πc−1 < Uj ≤ π1 + · · ·+ πc,

and add 1 to the count tc. Repeat this process for j = 1, . . . ,m to obtain t.
To generate samples from the RCM distribution, begin with known parameters (π1, . . . , πk, ρ).

Generate m + 1 observations from the standard multinomial distribution S, S0
1 , . . . ,S

0
m

iid∼
Mult(π1, . . . , πk, 1), and m observations from the uniform distribution U1, . . . , Um

iid∼ U(0, 1).
The entries of the new RCM observation are given by

tj = S I(Uj ≤ ρ) + S0
j I(Uj > ρ), j = 1, . . . m,

where I(·) represents the indicator function.
Availability of this simple and intuitive algorithm of generating data is one of the many

reasons for the choice of RCM as our test problem. It is identifiable for all values of
(π1, . . . , πk, ρ) without requiring any additional assumptions. Furthermore, the dimension of
the parameter space is proportional to the number of categories k. In a more general mix-
ture of multinomial densities there are q = ν(k− 1) + (ν − 1) distinct parameters, including
k − 1 category probabilities for each of the ν components, and ν − 1 mixing proportions.
Therefore, the dimension of the parameter space will blow up quickly as the number of cat-
egories or components is increased. Thus, the RCM model encompasses many numerical
issues one may face in computing the MLE of a mixture model (e.g. multiple local maxima),
without having to take on the full mixture. A further desirable property of RCM is that
direct numerical optimization is effective for computing its MLEs. This is not the case for all
mixture models, where a specialized approach like EM may be needed. In the next section,
this property will be put to use as we discuss conducting the optimization in parallel.

3 Parallel MLE Computation

The High Performance Computing Facility (HPCF, http://www.umbc.edu/hpcf) at the
University of Maryland, Baltimore County (UMBC) is an interdisciplinary, shared campus re-
source for scientific computing and research on parallel algorithms. The distributed-memory
cluster tara has 86-nodes, each with two quad-core Intel Nehalem processors (2.66 GHz,
8 MB cache) and 24 GB memory, therefore up to 8 parallel processes can run simultaneously
on each node. The nodes are connected by a high performance InfiniBand network, and run
64-bit Red Hat Enterprise Linux 5 as their operating system. We make use of the GNU
C/C++ compiler, and the Open MPI 1.3.3 implementation of the Message Passing Interface
(MPI) standard.

The Toolkit for Advanced Optimization (TAO, http://www.mcs.anl.gov/research/
projects/tao) is an optimization library for both single-processor and massively-parallel
architectures. It is built on top of the Portable, Extensible Toolkit for Scientific Computation
(PETSc, http://www.mcs.anl.gov/petsc), a suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differential equations.
Both libraries are open source and were developed at Argonne National Laboratory. Both use
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MPI for handling interprocess communications. We make use of TAO 1.10 and PETSc 3.0.0
on the tara cluster, with programming carried out in the C++ language. TAO and PETSc
help to remove the burden of writing distributed code from the programmer. Management
of distributed data structures can be left up to the libraries, allowing the programmer to
focus on solving the problem at hand. This convenience also implies a loss of control, which
may mean relinquishing the best possible performance.

TAO provides a suite of optimization algorithms and a framework to use them; these are
described in detail in the user manual [2]. The programmer provides several key ingredients
such as the objective function h(θ) to be optimized, the code to evaluate the gradient vector
∇h(θ) = ∂h(θ)/∂θ, and the code to evaluate the Hessian matrix H(θ) = ∂2h(θ)/∂θ∂θT .
These three ingredients are used by the TAO algorithms to conduct a search for the optimal
solution. Several algorithm choices are available for unconstrained optimization. The Nelder-
Mead method is typically the worst performer, but requires only the objective function. The
nonlinear conjugate gradient method and limited-memory, variable-metric (LMVM) method
require both an objective and gradient function to be implemented. The Newton line search
method uses the objective, the gradient, and also the Hessian. For this work we have
considered only LMVM because it performed well, yet does not require explicit formation of
the Hessian.

We now give a brief description of the LMVM method. Given a current solution θ(i) ∈ Rq,
LMVM consists of two main steps to find the next solution θ(i+1). First the direction d of
the next step is found by solving the linear system

H(i)d = −∇h(θ(i)),

where H(i) is an approximation to the Hessian, which is computed within the method.
Computation of the approximation utilizes a limited amount of information coming from
previous steps. After the direction is obtained, a line search is performed to compute the
size of the next step τ , so that

h(θ(i) + τd)

is minimized. The next iterate is then given by θ(i+1) = θ(i) + τd. There are several tuning
parameters available for TAO’s LMVM method, but we leave them at their default settings,
except that the iteration limit was set to a very large number to ensure convergence.

The objective function for the RCM MLE problem is the negative of the log-likelihood

h(θ) := − log L(θ | X) = −
n∑

i=1

log

{
k∑

j=1

πj

[
m!

ti1! · · · tik!
ηti1

j1 · · · η
tik
jk

]}
, (3)

based on the distribution discussed in Section 2. Recall that ηj`’s are functions of π and
ρ. The log-likelihood is generally preferred over the likelihood in computations, because it
involves a summation of many moderately-sized negative numbers rather than a product of
many numbers of very small magnitude. TAO methods are set up to solve minimization
problems; taking the objective to be the negative log-likelihood accomplishes maximization.

To use an unconstrained optimization method in this problem, we must address the
natural constraints in the parameter space. That is, θ = (π1, . . . , πk, ρ) are all probabilities
which must lie between 0 and 1, and πi’s must sum to 1. To allow the optimization to work
in Rk+1, two transformations are applied to any point θ∗ ∈ Rk+1 proposed by the optimizer.
The logistic cumulative distribution function ex/(1 + ex) is first applied to each coordinate
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of θ∗ to enforce the (0, 1) range constraint. The summation constraint is then enforced by
scaling the first k coordinates by their sum. Note that because of the scaling step, we do
not use the fact that πk = 1−

∑k−1
i=1 πi to infer πk. Therefore q = k + 1 total parameters are

under consideration. To compute the gradient vector needed for LMVM, a finite difference
approximation

∂h(θ)

∂θj

≈ h(θ + δej)− h(θ)

δ
, j = 1, . . . , q

is used with δ = 10−8. Notice that two objective function evaluations are needed to compute
each component of the gradient.

There are several possible ways to achieve parallelization within the framework we have
discussed. Observe that the log-likelihood in (3) can be quite expensive to evaluate, because
it requires iterating over every component of the mixture for each observation in the sample.
Each step of LMVM requires evaluation of the gradient, and each evaluation of the gradient
requires 2q evaluations of the objective function. Additional evaluations of the log-likelihood
may be required by LMVM as well, to carry out the line search, for example. Notice that
the log-likelihood is a sum over n terms. One idea is to evaluate this sum over multiple
parallel processes, and for large sample sizes we would expect good performance. We have
chosen a different approach, however, which is to compute the q components ∂h(θ)/∂θj of
the gradient in parallel. Notice that these components can be computed independently. This
approach limits the number of parallel processes to the dimension of the problem, but has
the advantage that it generalizes to any objective function. In this scheme, all sample data
must be available on all processes in order to evaluate the log-likelihood. This could also be
seen as a drawback if the sample data is very large, and perhaps may not fit in the memory
of a single process. For the MLE problem described in this paper, memory requirements are
on the order of kn to store a sample and k to store the parameters. Memory will not be an
issue here, but may be an important consideration in other problems.

We are now prepared to write down the parallel MLE algorithm.

1. Split the indices {1, . . . , q} as evenly as possible among the p available processes. De-
note Ind(s) as the set of indices assigned to process s.

2. Start with an initial guess θ(0) = (θ
(0)
1 , . . . , θ

(0)
q ).

3. Run an LMVM iteration, which will require evaluation of the gradient vector.

4. To evaluate the gradient, each process s = 1, . . . , p computes

∂h(θ(0))

∂θj

, ∀j ∈ Ind(s).

At this point processes 1, . . . , p work in parallel. (Now each process has a fragment
of the gradient vector in its local memory. To continue with the algorithm, we must
make the entire vector available on all processes).

5. Make the entire vector ∇h(θ(0)) available on all processes. This is accomplished in
MPI with a single command MPI_Allgather.

6. LMVM continues simultaneously on all processes, and a new guess θ(1) is obtained.
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7. This process repeats, giving θ(0), θ(1), . . . ,θ(g), until stopping criteria are met. Finally
θ(g) is returned as the MLE.

For all simulations presented below, we select the total number of parameters q to be
evenly divisible by p. This selection is taken for convenience and to demonstrate the ideal
case of parallel performance with equal load balancing, but is not a limitation of the method
itself. Some of the internals of LMVM potentially work in parallel as well (e.g., linear solves)
which would further improve performance, but it is not immediately apparent if they are
implemented this way. Stopping criteria are left to the TAO defaults, except that we have
raised the limit on number of iterations, as mentioned earlier.

To summarize, the RCM MLE problem has been formulated as a TAO optimization
problem. TAO was not strictly necessary to implement the idea, but is convenient because
it features a variety of optimization routines and other utilities, and it has been designed to
work in parallel. Our method of choice is LMVM; although this is an iterative method, we
have identified pieces (components of the gradient vector) which can be computed in parallel
within an iteration. We elected to use a finite difference approximation to the gradient,
but a closed-form expression could be used if available. As mentioned earlier, standard
numerical optimization works well for RCM, hence more specialized algorithms did not need
to be considered. The chosen approach does not take into consideration very large datasets,
instead it focuses on reduced computing time as the main goal.

It is worth making an important distinction between the task of computing the MLE for
a single sample, and the task of approximating, say, its sampling variance using a bootstrap
with 1000 repetitions. As mentioned earlier, the bootstrap is an embarrassingly parallel
procedure, and each repetition can run independently so that results are combined only at
the very end. Splitting the 1000 repetitions among the p available processes would eliminate
almost all communication overhead, and would therefore be the preferred parallelization
method for this case. Our approach is intended for problems where estimation for a single
sample may be prohibitively expensive. As always, it is important to evaluate the overall
computing task before deciding how parallelization should be handled.

4 Simulations

A series of simulations was carried out, first to verify that the estimation is working correctly
(“consistency check”), and then to study parallel performance as problem sizes are varied
(“performance experiments”). Problem size is determined by the following dimensions: sam-
ple size n, cluster size m, number of multinomial categories k (total parameters: q = k + 1),
number of repetitions r, and number of MPI processes p.

To select the true parameters in a simulation, a symmetric vector v = (1, 2, 3, . . . , 3, 2, 1)
is generated which contains k ∈ {1, 2, 3, . . .} elements. Let π = v/

∑
i vi, and ρ = 1/4 so that

the true parameters are θ = (π, ρ). This construction provides a quick but deterministic
construction of θ for any valid choice of k. Given θ, a random sample of n observations
X = (t1, . . . , tn) is drawn from RCM(π, ρ,m) using the procedure described in Section 2.
The objective function h(θ) given in (3) is constructed with this sample data. The TAO
framework is then invoked with an initial guess θ(0) = (π(0), ρ(0)), where π(0) = (1/k, . . . , 1/k)
and ρ(0) = 1/2. The selected optimization routine (LMVM) runs until stopping criteria are

reached. If the optimization is successful, a maximum likelihood estimate θ̂MLE is obtained.
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Repeating a simulation r times given a fixed θ yields iid RCM samples X1, . . . ,Xr, and
resulting estimates θ̂

(1)
MLE, . . . , θ̂

(r)
MLE.

4.1 Consistency Check for MLE

The consistency property can be used to provide some assurance that our parallel MLE
program is computing estimates correctly. Morel and Nagaraj verify in [4] that the MLE is
consistent and asymptotically normal for RCM. For any ε > 0,

P
(
‖θ̂MLE − θ‖ ≥ ε

)
→ 0 as n →∞,

where we will take ‖ · ‖ to be the Euclidean norm. By Chebyshev’s inequality,

P
(
‖θ̂MLE − θ‖ ≥ ε

)
≤ E‖θ̂MLE − θ‖

ε
,

and therefore it is sufficient to show that E‖θ̂MLE − θ‖ → 0 to verify consistency. We let

Qrn = Qrn(X1, . . . ,Xr) :=
1

r

r∑
j=1

‖θ̂(j)
MLE − θ‖, (4)

which is a Monte Carlo estimate for the expectation E‖θ̂MLE−θ‖. When r is fixed sufficiently
large, a decrease in Qrn for increasing n will be an indication that consistency is holding.
Demonstrating consistency does not guarantee that the estimates are global maxima of the
likelihood function, but it at least provides some evidence that the program yields a consistent
solution to the MLE problem.

Sample data was generated and stored for each distinct setting of (n, k, m), for the maxi-
mum number of repetitions needed at that setting. This ensures that any two runs using the
same dimensions (n, k, m, r) use exactly the same data, and thus their results are directly
comparable. All runs are distributed in the same way across the HPCF cluster. For p ≤ 8,
a single compute node is used (each process will then run on its own dedicated core). For
p > 8, we only consider p as a multiple of 8, and choose the number of nodes as p/8 so that
all eight cores are utilized on each machine. Raim and Gobbert [11] demonstrate that the use
of multiple cores per node is an effective strategy for distributing workloads on the HPCF
cluster. All nodes used in each simulation are reserved exclusively for us by the scheduler,
ensuring the results are free of interference from other cluster users’ jobs.

Table 1 is intended to demonstrate consistency of the computed estimates, with k,m, p
fixed and n varying from a moderate to large sample size. For each row of the table r = 512
repetitions of the simulation were carried out. The value of Qrn is displayed, along with
average number of LMVM iterations and average walltime (in seconds) per iteration. Table
2 shows similar results, but with n held fixed and m, k, and p changing individually. The
quality of the solutions (but not necessarily their consistency) can be seen from this table
as dimensions of the simulation is varied. Increasing r leads to the expected increase in
walltime and an improvement of Qrn in approximating E‖θ̂MLE − θ‖; these results are not
shown.

In Table 1, it can be seen that Qrn decreases as the sample size n increases. The quantity√
nQrn appears to stabilize around the value of 2.2 as n is increased, corresponding to the
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well-known property of the MLE bring root-n convergent. Therefore, the computed estimates
appear to be consistent. Furthermore, the average walltime per repetition roughly doubles
as the sample size is doubled, while the average number of LMVM iterations increases slowly.
Table 2(a) shows that Qrn is also decreased as the cluster size m is increased. The average
walltime and number of iterations increases for large m, but also when the cluster size is
very small (m = 1 or 2). Note that m enters the computations through factorials in the
log-likelihood. These calculations were implemented with the optimized lgamma_r function
in C rather than the naive recursive formula. Table 2(b) shows a dramatic increase in
computational time as the number of categories k is doubled. This seems intuitive since the
dimension of the optimization problem has dimension proportional to k. The average number
of LMVM iterations per repetition also increases, although not as dramatically, while Qrn

does not appear to be affected in a systematic way. Comparing entries in Table 2(c), we see
that changing the number of processes p does not have a significant effect on solutions —
individual estimates across settings of p indeed agree to 4–5 decimal places — but increasing
p decreases the required runtime as expected.

4.2 Performance Experiments

We consider the parallel performance of the RCM estimation problem when varying sample
size n, cluster size m, and number of categories k. These dimensions are altered along
with the number of processes p. Now that we have made sure the estimates are consistent
solutions to the MLE problem, the number of repetitions r will be fixed at 1. We examine
walltime as well as the metrics “speedup” and “efficiency”, which are conventionally given in
parallel performance studies. Let c ∈ {n, m, k} be an experiment variable under observation.
Define Tp(c) as the walltime in seconds to compute a problem of size c using p processes.
The speedup is defined as Sp(c) = T1(c)/Tp(c), where Sp(c) close to p suggests ideal parallel
performance. The efficiency is defined as Ep(c) = Sp(c)/p, where Ep(c) close to 1 suggests
ideal parallel performance. Whenever c is held constant and the number of processes p varies,
the same sample data has been used. This helps to simplify comparisons between different
settings of p. Parallel runs were compared to corresponding serial runs to ensure that results
matched.

Table 3 and Figure 1 show the results of simulations varying n. We can see that for each
fixed n, doubling the number of processes p shows a strong halving effect of the walltime,
which weakens at about p = 64. The pattern is similar for all settings of n, except that larger
n have slightly better scaling. This can readily be seen from the speedup and efficiency plots.
Table 4 and Figure 2 show the results of simulations where m is varied. Again we see the
definite halving effect in walltime as p is doubled, which starts to weaken around p = 64. In
the speedup and efficiency plots, we can see that all settings of m show almost exactly the
same scaling pattern.

Table 5 and Figure 3 show the results of simulations where k is varied. Recall in our
parallelization scheme that the p processes divide the work of computing the k +1 entries of
the gradient vector. When p ≥ k some processes will be left with no useful work; therefore,
these results have been omitted. Notice that for small k, the run time is too quick to
justify parallelization. As k increases, run time drastically increases. For a fixed large k
such as k = 127, doubling the number of processes p shows a strong halving effect of the
walltime, which weakens as p approaches k + 1. This effect is also reflected in the speedup
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Table 1: Results for consistency check with m = 32, k = 7, p = 1. using r = 512 repetitions.

Avg Walltime Avg Iterations
n (Per Repetition) Qrn (Per Repetition)
32 0.0953 3.9723× 10−2 22.3027
64 0.1925 2.6488× 10−2 22.3418

128 0.3930 1.9318× 10−2 22.5469
256 0.7722 1.3410× 10−2 22.8633
512 1.5759 9.7332× 10−3 23.5664

1024 3.2304 6.6835× 10−3 23.8613
2048 6.5058 4.7491× 10−3 24.5527
4096 13.8054 3.4338× 10−3 25.7402

Table 2: Check for solution quality, varying m, k, p. For each row, r = 512 repetitions of the
simulation were run.

(a) Vary m, using n = 128, k = 31, p = 1
m Avg Walltime Qrn Avg Iterations

1 7.0399 3.8119× 10−1 11.3281
2 5.6237 2.5764× 10−1 8.6621
4 5.1445 2.5436× 10−1 7.8223
8 5.5690 2.5262× 10−1 8.0977

16 6.3344 2.5009× 10−1 8.7402
32 8.6227 1.4740× 10−1 10.9590
64 10.8879 1.3485× 10−2 12.1816

128 12.4226 9.5934× 10−3 12.5469
256 16.8323 6.7424× 10−3 16.2383
512 16.6591 4.8318× 10−3 15.7773
(b) Vary k, using n = 64, m = 256, p = 1
k Avg Walltime Qrn Avg Iterations
3 0.0102 9.4829× 10−3 7.9297
7 0.0904 9.3881× 10−3 10.2695

15 0.8962 9.6047× 10−3 13.3301
31 8.2345 9.5747× 10−3 15.9141
63 59.6599 9.5986× 10−3 15.4277

(c) Vary p, using n = 256, m = 256, k = 31
p Avg Walltime Qrn Avg Iterations
1 34.4564 4.7939× 10−3 16.5430
2 17.5231 4.7939× 10−3 16.5371
4 9.2531 4.7939× 10−3 16.5391
8 4.9527 4.7940× 10−3 16.5352

16 2.7603 4.7939× 10−3 16.5391
32 1.6717 4.7940× 10−3 16.5391
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and efficiency plots. The most notable observation is the decrease in run time for k = 127
from about 12.7 minutes serially, to about 10 seconds when using all 128 processes. Similar
results are obtained in Tables 3 and 4 where k is fixed at 127. Thus, for large enough problem
sizes, adding parallel processes drastically reduces the walltime needed to compute MLEs.

5 An LRT application

Our performance studies have demonstrated the effectiveness of parallel computing for the
RCM MLE problem when many parameters need to be estimated. But where might we
encounter such problems in a data analysis? To answer this question, we will next con-
sider hypothesis testing in a fixed effects model embedded into RCM. Even a fairly simple
problem in this framework can be computationally expensive if there are a large number
of multinomial categories and/or covariates. To create an effective demonstration, we will
consider a scenario which is ideally suited to RCM. It will feature both a large number of
categories and a simple fixed effects model. We will generate data for this scenario and show
that computation of the likelihood ratio test (LRT) is one instance where practical use can
be made of our parallel MLE idea.

Suppose there are n guidance counselors who advise high school students in selecting a
college from k possibilities. For simplicity, suppose m students are assigned to each counselor,
and no student is assigned to more than one counselor. A student visits his or her counselor
zero or more times for advice until they have chosen a college, and may or may not be
influenced by their counselor. Let x = (x1, . . . , xn), where xi is the total number of visits to
the ith counselor by their students. Intuitively, we might expect that a more heavily utilized
counselor will have a greater influence on their students. One can imagine each student
choosing between the counselor’s recommendation and his/her own personal choice, as in
the generation of RCM described in Section 2. This scenario is ideally modeled by RCM
with parameter ρ capturing the degree of influence of the counselor.

Let Ti = (Ti1, . . . , Tik) denote the vector of counts for counselor i, for each of the k
possible colleges. We can also suppose that the first k − 1 categories represent specific
college choices, and the kth category represents a catch-all for all other possibilities, such
as attending an unlisted college or not attending any college at all. We will suppose that
T1, . . . ,Tn are independent, and

Ti ∼ RCM(π, ρi, m), log

(
ρi

1− ρi

)
= α + βxi. (5)

Recall that ρi is the probability of “following the leader” from Section 2. In this scenario,
following the leader means choosing the preferred college of the counselor. In 5 we have
expressed the log-odds of ρi by a linear function, where α is the common baseline effect of a
counselor’s influence on students, and β is a common slope which incorporates how heavily
students have utilized their counselor. Here π is constant across all counselors. Therefore
aside from counselor influence, the probability distribution of choosing among the k colleges
is the same for all students. For this problem, the unknown parameter θ is contained in the
space

Θ =

{
(π1, . . . , πk, α, β) ∈ Rq : 0 < πj < 1,

k∑
j=1

πj = 1

}
, q = k + 2.
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Table 3: Walltime, speedup, and efficiency varying n, for k = 127, m = 64, r = 1. Tests
were performed with 8 processes per node, except for p = 1 which uses 1 process per node,
p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

(a) Wall clock time in seconds
n p = 1 2 4 8 16 32 64 128

16 150.20 81.16 40.22 20.13 10.53 5.69 3.24 2.13
32 217.70 109.42 55.86 29.36 15.17 8.06 4.62 3.03
64 323.73 165.90 82.59 43.30 22.43 12.05 6.78 4.29

128 646.91 325.20 164.33 86.37 44.64 23.73 13.46 8.23
(b) Observed speedup Sp

n p = 1 2 4 8 16 32 64 128
16 1.00 1.85 3.73 7.46 14.26 26.41 46.36 70.43
32 1.00 1.99 3.90 7.42 14.35 27.00 47.14 71.86
64 1.00 1.95 3.92 7.48 14.43 26.87 47.74 75.48

128 1.00 1.99 3.94 7.49 14.49 27.26 48.07 78.65
(c) Observed efficiency Ep

n p = 1 2 4 8 16 32 64 128
16 1.00 0.93 0.93 0.93 0.89 0.83 0.72 0.55
32 1.00 0.99 0.97 0.93 0.90 0.84 0.74 0.56
64 1.00 0.98 0.98 0.93 0.90 0.84 0.75 0.59

128 1.00 0.99 0.98 0.94 0.91 0.85 0.75 0.61
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Figure 1: Scalability (speedup and efficiency) as n varies.
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Table 4: Walltime, speedup, and efficiency varying m, for n = 128, k = 127, r = 1. Tests
were performed with 8 processes per node, except for p = 1 which uses 1 process per node,
p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

(a) Wall clock time in seconds
m p = 1 2 4 8 16 32 64 128
16 539.51 263.01 132.24 68.90 36.31 19.00 10.61 6.61
32 697.73 366.01 185.50 93.34 48.04 25.77 14.51 8.80
64 646.84 331.35 164.44 86.34 44.56 23.61 13.46 8.32

128 616.36 310.00 158.39 82.35 42.56 22.70 12.69 7.83
256 777.63 384.21 194.77 102.01 52.62 28.15 15.67 9.69
512 1056.65 531.78 285.14 141.10 72.81 38.69 21.68 13.44

(b) Observed speedup Sp

m p = 1 2 4 8 16 32 64 128
16 1.00 2.05 4.08 7.83 14.86 28.40 50.85 81.56
32 1.00 1.91 3.76 7.48 14.52 27.07 48.07 79.25
64 1.00 1.95 3.93 7.49 14.52 27.40 48.07 77.72

128 1.00 1.99 3.89 7.48 14.48 27.16 48.58 78.73
256 1.00 2.02 3.99 7.62 14.78 27.62 49.63 80.28
512 1.00 1.99 3.71 7.49 14.51 27.31 48.75 78.63

(c) Observed efficiency Ep

m p = 1 2 4 8 16 32 64 128
16 1.00 1.03 1.02 0.98 0.93 0.89 0.79 0.64
32 1.00 0.95 0.94 0.93 0.91 0.85 0.75 0.62
64 1.00 0.98 0.98 0.94 0.91 0.86 0.75 0.61

128 1.00 0.99 0.97 0.93 0.91 0.85 0.76 0.62
256 1.00 1.01 1.00 0.95 0.92 0.86 0.78 0.63
512 1.00 0.99 0.93 0.94 0.91 0.85 0.76 0.61
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Figure 2: Scalability (speedup and efficiency) as m varies.

14



Table 5: Walltime, speedup, and efficiency varying k, for n = 128, m = 256, r = 1. Tests
were performed with 8 processes per node, except for p = 1 which uses 1 process per node,
p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

(a) Wall clock time in seconds
k p = 1 2 4 8 16 32 64 128
1 0.001 0.003 — — — — — —
3 0.025 0.025 0.012 — — — — —
7 0.175 0.121 0.063 0.034 — — — —

15 1.873 1.006 0.543 0.297 0.238 — — —
31 16.714 8.538 4.556 2.397 1.389 0.870 — —
63 131.692 67.555 33.924 18.076 9.660 5.452 3.324 —

127 763.255 384.019 197.899 102.115 52.572 27.962 15.777 9.706
(b) Observed speedup Sp

k p = 1 2 4 8 16 32 64 128
1 1.00 0.50 — — — — — —
3 1.00 1.03 2.08 — — — — —
7 1.00 1.44 2.77 5.16 — — — —

15 1.00 1.86 3.45 6.30 7.87 — — —
31 1.00 1.96 3.67 6.97 12.03 19.22 — —
64 1.00 1.95 3.88 7.29 13.63 24.15 39.62 —

127 1.00 1.99 3.86 7.47 14.52 27.30 48.38 78.64
(c) Observed efficiency Ep

k p = 1 2 4 8 16 32 64 128
1 1.00 0.25 — — — — — —
3 1.00 0.51 0.52 — — — — —
7 1.00 0.72 0.69 0.64 — — — —

15 1.00 0.93 0.86 0.79 0.49 — — —
31 1.00 0.98 0.92 0.87 0.75 0.60 — —
64 1.00 0.97 0.97 0.91 0.85 0.75 0.62 —

127 1.00 0.99 0.96 0.93 0.91 0.85 0.76 0.61
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We will consider a testing problem for the significance of the slope,

H0 : β = 0 vs. H1 : β 6= 0.

Two MLE computations are needed for the LRT: the unrestricted MLE θ̂, and the MLE θ̂0

under the restriction H0. The LRT statistic can then be computed as

− 2 log Λ = −2 log
L(θ̂0)

L(θ̂)
= −2

{
log L(θ̂0)− log L(θ̂)

}
, (6)

where the likelihood is given by

L(θ) =
n∏

i=1

f(ti | π, ρi(α, β), m) (7)

and f is the density of RCM.
As before, solving the likelihood equation in closed form is not practical, and we turn to

numerical computation of the MLE. This can be accomplished in parallel by applying the
method from Section 3 and embedding the new likelihood (7) into an objective function. For
this application we use the initial guess θ(0) = (π(0), α(0), β(0)), where π(0) = (1/k, . . . , 1/k),
α(0) = 0, and β(0) = 0.

To generate data from this scenario, we select a number of categories k and sample size n,
and let m = 100 students per counselor. The category probabilities are generated by drawing
a random sample U1, . . . , Uk from U(0, 1) and then letting πj = Uj/

∑
i Ui. To generate the

covariate x, we suppose xi1, . . . , xim
iid∼ Geometric(φ), where xij represents the number of

visits of the jth student of counselor i until a college decision is made. We choose φ = 0.9 so
that the expected number of visits per student E(xij) = (1− φ)/φ = 1/9 is small. The total
number of visits xi to counselor i are then drawn independently from NegBin(m, φ). We let
α = −5 and β = 0.3, so that

log

(
ρi

1− ρi

)
= −5 + 0.3 xi ⇐⇒ ρi

1− ρi

= e−5(e0.3)xi ,

and thus the odds of “following the leader” will be multiplied by e0.3 ≈ 1.35 for each visit to
the counselor. In this scenario, utilization of the counselor has a fairly strong influence over
college choice, but students do not tend to make much use of their counselor. Now that all of
the parameters and covariates have realized values, RCM responses are generated according
to (5) using the algorithm given in Section 2.

Table 6 shows the results of our computations on two problems: (k = 50, n = 500) and
(k = 98, n = 1000). For each problem, two cases are shown which correspond to the two
likelihood maximizations that need to be computed. In each case results from three runs
are shown: one for TAO code in serial, one for TAO code in parallel, and one for a simple
implementation in R using the optim function with the built-in BFGS optimization method.
The maximized log-likelihood, walltime in hours:minutes:seconds format, and number of
iterations are shown for each run. The number of iterations for serial R was limited to 100,
which is the default setting. For each parallel TAO run, we choose a moderately sized p
which evenly divides the number of parameters, and used the smallest number of compute
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Table 6: Results for LRT computations of generated application problems. For problem size
(a), the parallel full space run used 13 processes across 2 nodes, and the parallel restricted
run used 17 processes across 2 nodes. For problem size (b), the parallel full space run used
20 processes across 3 nodes, and the parallel restricted run used 11 processes across 2 nodes.

(a) Results for k = 50, n = 500
case #params run log-lik walltime #iters
Under H0 51 serial R -40791.06 02:53:43 57

serial TAO -40791.06 00:03:14 14
parallel TAO -40791.06 00:00:16 14

Full space 52 serial R -37284.64 03:21:25 60
serial TAO -37284.63 00:05:53 25
parallel TAO -37284.63 00:00:35 25

(b) Results for k = 98, n = 1000
case #params run log-lik walltime #iters
Under H0 99 serial R -111241.20 48:54:17 100

serial TAO -111241.23 01:12:15 24
parallel TAO -111241.23 00:07:43 24

Full space 100 serial R -104468.55 49:10:42 100
serial TAO -104467.38 02:02:48 40
parallel TAO -104467.38 00:07:20 40

nodes possible to run each job. All parallel TAO jobs shown in Table 6 were run on either
two or three nodes, and 11 to 20 processes overall. As in Section 4, the number of parameters
for both problems here were chosen deliberately for convenience so that the work could be
split evenly across a moderate number of processes.

Notice first that for each case, the values of the log-likelihoods attained across all three
runs are nearly the same. This gives a cross-check between the TAO and R codes that
correct solutions to the MLE problem are computed. The iteration counts match between
serial and parallel TAO runs, but R required significantly more iterations. In fact, in the
larger problem the iteration limit of 100 has been reached, hence further improvement may
have been possible. Also, notice that in the restricted case of the larger problem, R has
managed to find a slightly better solution than TAO. These issues are not necessarily cause
for alarm, since there may be differences between the two optimization methods and their
implementations.

We see that the R code is dramatically slower than the serial TAO code. For instance,
the larger problem required over two days in R to solve either case, whereas the serial TAO
code required only about 1 to 2 hours. This observation should be viewed in light of the
fact that neither the R nor TAO codes were carefully tuned for performance. Moving from
serial TAO to parallel TAO, we see that either case of the larger problem can now be solved
in about 7 to 8 minutes using at most 20 processes on 3 nodes. Therefore computing the
entire LRT for the larger problem has taken about 4 days in serial R, compared to about
3:15 hours in serial TAO and about 15 minutes in parallel TAO. From Section 4, we would
expect performance to scale well with additional parallel processes.

Finally, we may compute the LRT for the two problems using the results in Table 6. For
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the (k = 50, n = 500) problem we have −2 log Λ = 7012.87. For the (k = 98, n = 1000)
problem the test statistic evaluates to −2 log Λ = 13547.70. Under the −2 log Λ ' χ2

1

approximation, we may correctly reject H0 in both cases and conclude that the number of
visits xi to a counselor has a significant effect on the log-odds of “following the leader”.

In this problem we considered a simple model with a single covariate but a large number of
categories in the response. Notice that a model with many covariates and perhaps a smaller
number of categories also leads to a many-parameter situation, where parallel computing
would be useful for obtaining MLEs. Notice that covariates can easily be added for the
counselor, or perhaps at a less granular level such as the high school which employs the
counselor or their geographical region. Covariates at the student level are more granular
however, and would complicate the model significantly. Adding covariates at the student
level would require the Ti’s to be split into smaller observations sharing common counselors,
and hence the observations would no longer be independent.

6 Conclusions

We have demonstrated the effectiveness of computing MLEs in parallel using the Random-
Clumped model as a test problem. TAO provided an environment to conduct numerical
optimizations in parallel, requiring only an objective function, gradient vector, and Hessian
matrix. The MLE procedure is just one example of an application that can benefit from this
kind of parallel optimization.

The effects of adjusting sample size, cluster size, and number of categories were studied by
simulation. Increasing the sample size verified that the computed estimates were consistent.
Increasing the number of categories quickly caused run time to increase. Increasing the
cluster size increased run time to a lesser extent, and it also improved the quality of estimates.
The parallel performance was also studied, varying the number of processes along with sample
size, number of multinomial categories, and cluster size. We observed excellent parallel
performance when varying sample size and cluster size. The best parallel performance is
possible when the number of categories is large. However, increasing the number of categories
causes run time to increase faster than linearly. Therefore, RCM likelihoods with a very
large number of categories will be infeasible to maximize, even on a large cluster, using the
basic approach presented here. Smaller problems involving many repetitions do not require
a high performance computing cluster, since repetitions are computationally independent
and require little communication. This kind of parallelism can be accomplished with less
elaborate programming using tools like the SNOW package for R.

Finally, we saw how the parallel MLE approach could be used in a more realistic RCM
analysis. We used this method to compute the numerator and denominator of the LRT, and
we conducted a test for the slope in a linked model. This yielded a significant improvement
in performance using only a few compute nodes.

The approach used here can be applied to statistical computations in general; partic-
ularly, we have exploited it to compute MLEs for the Random-Clumped model. For this
model, useful theoretical results are available to vastly improve the performance of MLE
computation. For example, Neerchal and Morel [8] suggest a block diagonal approximation
for the Fisher information matrix, which can be used to effectively carry out Fisher Scoring
iterations. Further improvements are proposed in [6], in the context of EM. Incorporating
these results could yield vastly improved performance, and perhaps new opportunities for
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applications of the RCM model.
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