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ABSTRACT
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Computer applications are evolving from traditional scientific and numerical

calculations, to a more diverse set of uses including speech recognition, robotics,

and analytics. This has created a fertile environment for the investigation of non-

traditional programming approaches and models of computing inspired by neuro-

science, often termed neuromorphic computing. Neural nets have emerged as one

of the primary neuromorphic computing approaches; von Neumann architectures,

conceived for scientific computing applications are not optimized for neural nets [1].

This research focuses on developing a general purpose computer architecture

optimized for neural net based applications. The architecture is useful for a variety

of learning algorithms, and is evaluated across a spectrum of potential applications.

Both traditional and emerging technologies are explored, with trade-offs being made

based on the most important system level metrics.
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Chapter 1: Introduction

1.1 Motivation

As a result of more than 50 years of technological advancement exemplified by

Moore’s Law and Dennard scaling [2,3], computers have become a ubiquitous feature

of modern life. In contrast to their original use for tasks requiring precise scientific

calculations, today computers are used for an incredible variety of applications,

including social media, pictures and video, and speech processing. A smartphone,

available for $500 or less, is expected to be capable of “computing” in a multitude

of ways. Extensive use of cognitive computing is anticipated [4].

These new and emerging applications do not optimally map themselves to

traditional computing paradigms developed for very precise scientific calculations [1].

In the existing paradigm, a pre-defined algorithm, implemented using a computer

language that completely specifies the sequence of calculations to be performed, is

used [5]. However, this approach is less than optimal when the algorithm is not

precisely specified and therefore the exact set of calculations are not known. For

these newer applications, researchers are looking to the human brain for inspiration,

an area of exploration that is termed neuromorphic computing (NMC) [6]. The

1



understanding of how our brains adapt and adjust to the environment has led to

significant growth in the use of artificial neural nets for these emerging applications

[7–9].

These approaches take advantage of the availability of large amounts of data

(ironically, from the same technological revolution that created the need for these

applications in the first place), to “train” the computer to learn the correct answer,

as opposed to programming the computer to calculate the correct answer [10, 11].

One of the more popular approaches uses neural networks. This approach is inspired

by the functionality of neurons in the brain; Figure 1.1 depicts the mathematical

operation of a neuron in this approach. Each input to the neuron is weighted,

which provides a mechanism for assigning levels of importance to the inputs. The

weighted inputs are then summed and evaluated. A typical evaluation function is

shown, where the output equals “1” if the value of the multiply-accumulate (MACC)

operation exceeds a threshold. Another term for this design is a Threshold Gate

Network (TGN).

A large number of these neurons can be connected in a hierarchy, which enables

the neural net to abstract information from the provided data. These deep neural

nets have proven to be very effective, particularly in the area of image classification

[7–9,12,13].

Just as the nature of programming computers for these new applications is sig-

nificantly altered, traditional computer architectures are not optimal for implement-

ing neural nets or other new models of computing. The traditional von Neumann

architecture contains both the program and data stored in a memory that is separate

2
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Single Neuron Equation
Multiply accumulate (MACC) with an activation function

Figure 1.1: Simple neuron.

from the processor [14]. Even for scientific calculations, the time and energy cost of

moving the data to the processor, “the von Neumann bottleneck” or “memory wall”,

is well-known [15]. Over time, a variety of novel processor-in-memory architectures

have been proposed as solutions to this problem [16, 17]. Neural nets, where the

memory (weights) and processing (MACC plus evaluation) are highly integrated,

will benefit from novel architectures as well [1].

Even within the context of traditional models of computing, there are a variety

of computer architectures available. The widely used central processing unit (CPU),

as typified by Intel’s x86 family, is the most common [18]. For more specialized ap-

plications such as gaming and film editing, graphics processing units (GPUs) have

proven to be highly effective [19]. GPUs trade off more limited functionality with

impressive performance for these applications. Field Programmable Gate Arrays

(FPGAs) are used by many in the scientific and engineering fields, where the flexi-

bility and performance of programming at the micro-architectural level is a benefit

3



that outweighs the much more complex programming needed [20]. Finally, Applica-

tion Specific Integrated Circuits (ASICs) provide the ultimate in performance, but

the high cost of fabrication and extreme specialization in capabilities relegate this

approach to only a few applications [21]. Even within these groupings, a range of

concepts, enabled by new technologies or innovative ideas, are possible. Analog vs.

digital computation is one example of these possibilities.

In the neuromorphic computing community, an open question is the design of

optimal architectures for implementing neural nets. Because the computing industry

has mostly focused on optimizing architectures and technologies for von Neumann

architectures and scientific applications, the opportunity for innovation and opti-

mization in neural processors is high. It would be very valuable if a general purpose

neural net architecture was available. Since much of the neural net research has been

focused on image processing or related applications, it is not clear that architectures

defined for them are sufficiently general purpose. Microprocessors are designed for

good processing capability across a wide range of applications; a general purpose

neural processor should also provide this capability.

1.2 Thesis Statement

A general purpose neuromorphic chip can have capabilities sufficiently close

to individually optimized chips to be worth building.
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1.3 Primary Contributions

In addition to the design and evaluation of a general purpose neural processing

architecture, contributions of this research include the following:

Tiled array concept

The variety of applications used in this research require a variety of crossbar array

sizes for efficient mapping of neural nets onto the hardware. Finding a single array

size that can fit this variety, desirable for a general purpose neural processor, is

problematic. We describe the development and use of tiled arrays to overcome this

limitation. A tile can be a complete array (when small arrays are efficient), and they

can also be combined to create much larger arrays, which are necessary for certain

neural networks. This novel contribution is a key component of the general purpose

neural processor.

New comparator design

The tiled array is made possible by the use of a 1/High Z neuron architecture, and

the design of a compact, power efficient, fast comparator. Many memristor-based

neural nets use a very fast, but large and power hungry analog-to-digital converter

(ADC) for neuron evaluation [22]. This would be an impractical approach with the

tiled array concept; the new comparator design can efficiently support small tiles,

which is an important attribute.
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Communication networks

The overall capability of a general purpose neural processor will be heavily depen-

dent on key aspects of the communication network. In this research we explore

and quantify the leveraging of sparsity in neural communication, and evaluate two

potential on-chip network designs: a hierarchical network of all-to-all switches, and

a more traditional 2D mesh.

Limitations on array sizes

Various parasitic or other effects can limit the size of an array; we explore a range

of possible limitations, quantifying their effects. For the more severe limitations, we

identify techniques or design approaches that can be used to enable larger arrays by

eliminating and/or minimizing their impact.

Array architecture

A variety of memristor-array architectures have been proposed in the literature. We

explore and quantify the energy efficiency of three specific concepts, demonstrating

that one concept (1/High Z) is the most power efficient.

Enhancements to existing models and techniques

This research uses a well-known memristor model [23], but we identify specific im-

provements for its use in analyzing the general purpose neural processor. This re-

search relies heavily on a versatile yet immature “neural compiler” called Loom [24];

our work reveals its limitations and introduces some enhancements to its capabilities.
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1.4 Outline of Dissertation

Chapter 2 will provide background and present related research. The back-

ground will give a brief overview of neuromorphic computing, focused primarily on

deep neural networks. Examples will be given of the use of neural nets for appli-

cations [24, 25]. Memristor technology will be briefly described. Related work will

cover an overview of computer architectures for neural nets, with specific examples

of an advanced digital design and one utilizing memristor crossbars. Chapter 3 will

describe the two learning algorithms (backpropagation and the concurrent learning

algorithm) and the three applications (MNIST, CognitiveShield, and AES-256) used

to develop and analyze the general purpose neural processor. Chapter 4 will present

the general architecture to be used, with a detailed examination of its practical lim-

itations and the key components that comprise the overall design. The tiled array

concept will be introduced here, and the details of the communication networks will

be examined. Chapter 5 will present the details of using Loom to map the appli-

cations onto both special purpose and general purpose architectures, and analyze

these designs based on varying the tile size. Chapter 6 will describe the methodology

used to select the architectures included for full evaluation, and the details of the

evaluation process. Evaluation results will be presented. Chapter 7 will state the

conclusions of the research.
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Chapter 2: Background

Designing and evaluating a general purpose neural processor requires under-

standing and applying knowledge from multiple areas. In this chapter, we briefly

review the key elements of neural networks and the use of memristor technology

and crossbar arrays for building them. A brief description of work related to this

research is provided, and two specific designs are discussed more thoroughly: the

IBM True North chip [26–28] and the HP dot product engine [22,29].

2.1 Overview

Neuromorphic computing is based on applying techniques abstracted from neu-

roscience, in particular approaches implemented as artificial neural nets. Memristor

technology, which is being explored as a possible replacement for current memories,

is a promising candidate for neuromorphic architectures. These architectures typ-

ically take the form of a crossbar array, which is expected to efficiently implement

the MACC function depicted in Figure 1.1. Key components of these architectures

include the specific memristor technology employed, the circuit design used for the

evaluation function, the on-chip network, and the choice of memristor programming

approaches.
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2.1.1 Neural nets

Neural nets are a specific implementation of neuromorphic computing. A con-

cise description can be found in [30]:

“A standard neural network (NN) consists of many simple, connected processors

called neurons, each producing a sequence of real-valued activations. Input neurons

get activated through sensors perceiving the environment, other neurons get acti-

vated through weighted connections from previously active neurons. Some neurons

may influence the environment by triggering actions. Learning or credit assignment

is about finding weights that make the NN exhibit desired behavior, such as driving

a car. Depending on the problem and how the neurons are connected, such behavior

may require long causal chains of computational stages, where each stage transforms

(often in a non-linear way) the aggregate activation of the network. Deep Learning

is about accurately assigning credit across many such stages.” This deeper hierarchy

of features tends to make classification more stable.

Neural nets have been shown to be very useful for a variety of image recogni-

tion/image processing applications [7, 9, 12, 13, 31]. They have also been shown to

be useful in malware analysis [24, 32], and the use of deep neural nets (typified by

artificial neural nets, spiking neural nets, recurrent neural nets, and convolutional

neural nets) for applications is increasing rapidly [33]. For example, AlphaGo is

a deep neural net trained to play the board game Go, which recently defeated a

world class expert [34]. Useful neural nets can range in size from very small (a few
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hundred neurons), to very large (hundreds of thousands of neurons). They can also

have very few layers of connected neurons (2-5) to very many (up to 100 have been

trained [33]). The AlphaGo neural net has 15 layers of neurons, where the input

layer is a 19x19x48 three-dimensional tensor; the Go game is on a 19x19 grid, and 48

specific features are used to represent the board and the game situation at any given

time [34]. Algorithms used to assign the weights of the neural network are called

learning algorithms that “train” the network; backpropagation, to be described in

Chapter 3, is a well-known learning algorithm [35,36]. Training is an extremely com-

putationally intense process; AlphaGo used 50 GPUs and required 1 day to play 1

million Go games as part of its training process. Using the neural net to perform

its trained task is called inference; this is much less computationally demanding.

The fouce of this research is on designing and evaluating a general purpose neural

processor for inference.

2.1.2 Memristors

In 1971, Leon Chua published a paper [37] hypothesizing the existence of a

fourth basic circuit element, which he called a memristor (a resistor with memory).

He reasoned that a fourth circuit element should exist in order to complete basic

linear relationships between the four state variables (V, I, Q, and φ). Chua described

the basic current-voltage relationship for a memristor in [38]:

I = G(X, V, t) ∗ V (2.1)
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where G is the device conductance, and is dependent on a state variable X.

dX/dt = f(X, V, t) (2.2)

The rate of change of X is dependent upon the current value of X and other inputs.

It is the interplay of G and dX/dt that gives the memristor its unique properties.

After Hewlett-Packard published a well-known Nature paper in 2008 reporting the

discovery of a memristor [39], Chua published additional work [40, 41] stating that

all resistance switching memories follow memristive behavior, and then identifying

three specific characteristics (or fingerprints) that need to exist for a device to be a

memristor. These three fingerprints include:

1. Pinched hysteresis in the I-V curve (I=0 at V=0 for an ideal device);

2. Reduction in the lobe areas of the device as frequency increases;

3. Straight line behavior (single resistive value) as the frequency approaches infinity.

Figure 2.1 provides an example of a hysteresis curve.

Because of their programmable conductance capability, memristors can func-

tion as dynamic weights in neuromorphic computing designs [42]. Referencing Fig-

ure 1.1, memristors can be programmed as the weights (wi) applied to the inputs

(xi); since the programming process can be controlled using feedback from the out-

put, it is possible for memristor-based designs to be modified during operation,

integrating learning into the system [43].
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i(t)

v(t)

Figure 2.1: General hysteresis curve for a memristor.

A comprehensive overview of memristor technology can be found in [44].

2.2 Related work in neuromorphic architectures

There are a number of groups implementing neural nets in a variety of architec-

tures and technologies, including floating gate devices [45], GPUs [12], FPGAs [13],

ASIC designs [46], and even custom analog circuits [47]. While CPU and GPU based

systems are typically used for the learning phase, the more specialized architectures

promise significant improvements in energy efficiency and area when used as the

inference engines during the operation of the neural net [45]. If a specific learn-

ing algorithm, such as back propagation, is expected to be used, the specialized

architectures can also implement on-chip training [25].
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2.2.1 TrueNorth

TrueNorth is a digital ASIC, developed by IBM under the DARPA SYNAPSE

program. Detailed information about this processor can be found in [26–28]. The

design has been fabricated in a 28 nm process, and features a 64 x 64 array of

neurosynaptic cores; each core is comprised of 256 inputs and 256 neurons (over 1

million total neurons). Communication is handled by a 2D mesh network, which en-

ables the design to easily scale to more than one chip (a 16 chip board is available).

It is probably the most complete neuromorphic computing system in existence. A

full ecosystem of applications, system software and firmware (corelet programming

and placement), and training is available for users; the design workflow has been

exercised by a growing number of researchers. Applications demonstrated on the

system include, image classification, video tracking, neural circuit modeling and a

variety of robotics/autonomous systems. The system was originally developed to

enable the exploration of a wide variety of neuron implementations; the flexibility

of the design for this purpose limits its capabilities in certain ways (for example, the

on-chip neurons are limited to a maximum output frequency of 1 kHz).

Our research focuses on a specific neuron type (TGN), which dramatically improves

its performance; our neuron can have an ouput frequency ≥ 250 MHz. We also

use analog computing in a memristor crossbar array to reduce the neuron area and

power.
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2.2.2 Memristor-based crossbar arrays

Compact size, capability for storing large numbers of weights in the form

of conductance values, low energy operation, and technology scaling opportunities

make memristor based crossbar arrays a very appealing option for neural nets [48–

53]. Figure 2.2 shows the basic structures used for creating a memristor-based

crossbar array. The upper left portion shows a two layer neural net (three inputs,

seven neurons in the first layer, fully connected to two neurons in the second layer).

To the left is an abstracted drawing of one of the neurons in the input layer, where

each blue dot represents a synapse which is implemented as a 1T1M (one transistor,

one memristor) circuit, shown to the right. The bit line sums all the weighted inputs:

the current running in the bit line is equal to the sum of the individual components,

and each component is directly proportional to the conductance (weight) of the

memristor. This circuit therefore directly (and efficiently) performs the multiply-

accumulate function needed, using Ohm's Law to make a direct calculation:

Itotal = Gtotal ∗ V mem (2.3)

where Vmem is the voltage across the memristor.

The use of two synapses for each input enables negative weights to be represented

in a simple manner, and the differential comparator at the bottom of the bit line

performs the evaluation function of the threshold gate network. The bottom figure

is the memristor crossbar array version of the two layer neural net.
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Figure 2.2: Basics of a 2 layer neural net architecture using memristors.
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2.2.3 Dot Product Engine

The Dot Product Engine (DPE) is a neuromorphic computing system design

by HP based on analog processing in memristor crossbars, developed as part of an

IARPA program [22, 29]. It uses the crossbar for matrix multiplication, and incor-

porates DAC (digital to analog converter) and ADC circuits to enable analog com-

putation with digital communication. They have refined their memristor technology

to enable up to 32 states to be precisely programmed (1% accuracy), analyzed the

effect of programming on computing accuracy, and characterized the memristors for

temperature, noise and stochasticity effects. Based on this work, they have devel-

oped a chip architecture (called ISAAC) for a neural processor. The ISAAC design

is very detailed, including an analysis of on-chip storage with eDRAM (embedded

Dynamic Random Access Memory), the analog processing crossbar, and peripheral

circuits (programming, evaluation, inputs, etc.). A breakdown of the components,

along with estimates of power, area, and timing, are provided. A comparison of this

design to digital approaches is made, using system metrics such as computational

efficiency (Ops/mm2), power efficiency (Ops/W), and storage efficiency (capacity of

synaptic weights in MB/mm2).

Our research incorporates a specialized comparator design in lieu of a general pur-

pose ADC, which significantly improves the area and performance of the processor.

We also evaluate our neural processor against a more diverse set of applications,

not just image and face recognition. We also create and evaluate special purpose,

limited purpose, and general purpose designs within the same architecture.
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Chapter 3: Conceptual approach

To analyze architectural options, the typical procedure is to use benchmarks

and proxy apps [54]. The benchmarks and proxies are chosen to represent the range

of applications that the processor is expected to execute. The choice of applications

is an important determinant of the capabilities of the processor. Because most

research in neural architectures to date have used primarily image processing or

similar applications [7, 9, 12, 13, 31], the spectrum of applications explored has been

relatively narrow. Explorations of general purpose architectures would be well-

served by looking at a wider range of applications. We will briefly describe the two

neural net learning algorithms used in our analysis, along with the three applications

chosen. These applications range from traditional (MNIST) to extremely novel and

highly digital (AES-256), providing a much wider spectrum of applications that our

general purpose architecture must handle.

3.1 Learning algorithms

One of the most prevalent algorithms for training neural nets is error back

propagation (BP) [35,36]. This technique requires that the output of the neruon yi

be a differentiable function of its inputs xj and weights wji. This technique takes
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the error from the NN (desired minus actual value) and propagates it backwards

through the NN by first calculating the partial derivative for each of the outputs

∂E

∂yi

= yi − di (3.1)

where E is the total error. By applying the chain rule you can calculate the

effect of the inputs on the total error.

∂E

∂xj

=
∂E

∂yi

· dyi

dxj

(3.2)

For a set of inputs with weights wji connecting input xj to output yi the error

contribution can be found.

∂E

∂yi

=
∑

j

∂E

∂xj

· wji (3.3)

but the inputs xj are themselves just outputs from a previous layer, so the

error from any input can also be calculated (or propagated backwards) to its inputs

and weights. The error contribution of any weight can also be calculated.

∂E

∂wji

=
∂E

∂xj

· yi (3.4)

After a training phase is completed, individual weights can then be modified

in order to reduce the overall error, and the process is repeated.
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δwji = −ε · ∂E
∂wji

(3.5)

The process of inputting a set of training data into the NN, calculating the

errors and adjusting the weights is termed a training epoch. Multiple training epochs

are used so that the total error is reduced; training is completed when:

• The total error is reduced to some specific value; or

• The change in error between epochs is less than a specified amount; or

• A pre-determined number of epochs has been completed.

After training, the NN is validated by inputting a set of new data (previously unseen

by the NN) and calculating the error. As described, BP is a supervised learning

algorithm; it uses correctly classified (or labeled) data to find the error. Figure 3.1

provides an example of how the error is reduced over many epochs; however, ex-

cessive training can lead to increased errors during validation of the neural net.

Therefore, selection of the error parameters for training is important.
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Training Example

1

Figure 3.1: Example graph of training and validation errors.
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Practical issues with using BP such as exponential decay for deep neural

nets [55] have led researchers to develop variations on this approach [56]. One

variation [57] is the concurrent learning algorithm (CLA); this is also a supervised

learning algorithm. In this approach, the inputs to the neurons have an additional

attribute termed the influence. The influence is calculated when the nodes of the

neural net are created. The nodes are mapped into a 3D space, and the distance

between any two nodes (analogous to a Euclidean distance) can be calculated and

the influence is found as:

S =
1

1 + d2
(3.6)

Any two nodes that have an influence below a set value will not be connected;

traditional feedforward networks are completely connected. The use of influence

creates two valuable conditions:

• Far fewer connections are made, enabling much faster training epochs.

• Nodes separated by an intermediate layer are allowed to be connected, which

also speeds training.

Additionally, each node in the hidden layers (stages that are not inputs or outputs)

is required to have a minimum of one connection to a delta (error) node; the strength

and existence of that connection is also determined by the influence. This enables

parallelization of the weight updates during the learning phase, hence the name

concurrent learning algorithm. The use of CLA does have the drawback of usually

requiring more training epochs, and potentially more layers in the network.
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Regardless of the learning algorithm selected, the end result is the creation of a

specific neural network: input, hidden, and output layers, with node connectivity

and weights quantified. This means that a general purpose neural processor should

be able to execute a neural network trained using any method. Differences in the

specific neural network created by varying learning algorithms can be quite small,

Figure 3.2 shows the distribution of weights for the MNIST application trained with

both BP and CLA; they are extremely similar.
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Figure 3.2: Distribution of neural network weights for MNIST, using both back-
propagation and concurrent learning algorithms.
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3.2 Application description

Our research exploration includes the development of multiple neuromorphic

computing architectures. Three of the architectures will be special purpose designs

(SPD), each optimized for one specific application. The applications can be thought

of as representing clearly different points on the computing spectrum for neuromor-

phic computing. The applications chosen are:

1. MNIST, which represents a very well-known baseline application. This ensures

traditional neural net applications are part of the exploration. Since MNIST is a

relatively simple and small neural net, it will also be used to describe the various

analyses done as well.

2. Malware analysis, which represents a hybrid neural net pattern classification ap-

plication [24, 32]. Parts of this application are essentially digital functions, but the

final layers perform more traditional classifier functions. This application is very

relevant to cybersecurity.

3. AES-256, to demonstrate that complete digital functionality is possible using a

neural net approach [24]. This is a highly unusual neural net application, and can

be expected to levy requirements on the architetcure that are very different from

MNIST. This application is also relevant to cybersecurity.

These were chosen because they represent a wider range of applications than
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just variations on traditional image processing, and a general purpose neural proces-

sor capable of running these applications efficiently would be valuable for a variety

of cybersecurity needs, which is expected to be a relevant domain for neuromorphic

computing [4].

3.2.1 MNIST

MNIST is a commonly used application for evaluating various neural network

properties and design options [28, 48, 58]. The application is used to identify hand-

written digits from 0 to 9; most neural nets for MNIST will have accuracies above

90%. The NN used in this exploration consists of two layers (see Figure 3.3).

• An input layer, consisting of 768 inputs and 256 outputs (neurons), where the

inputs represent a binary value (dark pixel or light pixel)

• An output layer, consisting of 256 inputs and 10 outputs, where each output

directly represents one of the possible digits

A specific output neuron will fire (output = 1) to indicate the classification of the

input signals as representing its digit. This is a small neural net (266 neurons), and

requires about 50 epochs to train.

3.2.2 CSlite

Cognitive Shield is a neural network designed to identify malware using n-

grams as inputs [24, 32]. An n-gram is a piece of the code (in binary); the CSlite
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Application #1 MNIST
• Traditional neural net classifier; widely used and studied

• Identifies handwritten digits from 0 to 9; most neural nets for 
MNIST will have accuracies above 90%. 

1

768 bits
MALWARE
DETECTOROutput neuron fires (=1) 

to indicate the digit

256 outputs 10 outputs

Input layer Output layer

Figure 3.3: MNIST neural net.

neural net uses 6 byte (48 bit) n-grams for its inputs. Malware detection accuracy of

80-90% is expected. CSlite is the streamlined version of Cognitive Shield, designed

for use in an embedded computing system that needs to handle high volumes of

input data. The use of neural nets for malware classification, instead of signature

based approaches, can be of high value for finding new malware without the need

to painstakingly deconstruct the code [32]. Rapidly identifying malware in high

speed data streams is an important cybersecurity application. The availability of a

compact, energy efficient neural processor would be extremely useful. The NN for

CSlite is shown in Figure 3.4. There are four distinct components:

• A decoder circuit (48 inputs, 1536 neurons), which takes each input byte and

fires one neuron (of 256) to represent its unique binary representation

• A signature pattern matcher (1536 inputs, 2000 neurons), which compares

the value against 2000 stored features; a feature represents an n-gram that is

25



highly significant for indicating malware or goodware

• A latch (2000 inputs, 2000 outputs), which keeps track of which 2000 features

have been found in a given input stream; there is also a reset input to return

all outputs to zero

• The detector stage (2000 inputs, 1 output), which is actually a three layer NN

classifier (2000:256, 256:128, 128:1); the output fires when the input stream

has been identified as malware

Three of the components of this NN (decoder, signature, latch) are essentially digi-

tal functions; only the detector component is a traditional NN. CSlite represents a

hybrid application – part digital, part neural. The entire application requires ap-

proximately 5800 neurons in 6 layers, which makes it a small-to-medium sized NN;

it requires about 100 epochs to train.

48:1536 
DECODER 

6 byte 
n-gram 

2000 
PATTERN 
MATCHER 

2000 
BIT 

LATCH 
MALWARE 
DETECTOR 

malware? 

Figure 3.4: Conceptual diagram of the CSlite malware detection neural net.
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3.2.3 AES-256

The Advanced Encryption Standard is a specification for the encryption of

electronic data established by the U.S. National Institute of Standards and Tech-

nology (NIST) in 2001 [59]. AES-256 is a block cipher with a block size of 128 bits

and a key length of 256 bits. AES became effective as a federal government standard

on May 26, 2002 after approval by the Secretary of Commerce. AES is the first (and

only) publicly accessible cipher approved by the National Security Agency (NSA)

for top secret information when used in an NSA approved cryptographic module.

Since AES was developed for traditional digital computing architectures, it repre-

sents an application that may be difficult to implement in a neural net since it must

be 100% accurate, but it has been done [24]. The implementation takes advantage

of digital hierarchical neural nets, where a large function can be decomposed into

smaller individual function and then re-assembled. This decomposition enables the

NN to be completely trained against all possible inputs; once the NN trains to no

errors, the function is known to be correctly implemented (100% accuracy). The

decomposition enables a large digital function to be trained in a reasonable time:

• A 64 input NN would require 1.6 x 1019 training vectors for complete training

• Partitioning this into 16 input components reduces this to 2.56 x 105 training

vectors

The NN for AES-256 is shown in Figure 3.5. The figure shown is replicated 4

times to handle the entire 128 bit input plain text, and output the complete 128 bit
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cipher text. There are 5 distinct components:

• A 32 bit multiplexer (64 inputs , 32 outputs), which selects either the original

plain text (first pass) or an intermediate cipher text (all other passes) to send

to the next component

• A SubBytes or partial S-Box (8 inputs, 8 outputs), which performs specified

arithmetic functions to perform a substitution

• Mix Columns A and B (16 inputs, 32 outputs), which perform a polynomial

function on their inputs; in this NN, Mix Columns A and B are the same NN

with differing weights

• Mix Column C (16 inputs, 8 outputs), which performs a similar function but

is a completely different neural network

• The state machine (5 inputs, 6 outputs) which controls the overall functionality

of the NN data flow

The entire application requires approximately 12,500 neurons in 8 layers, which is

a medium sized NN. The individual components take between 100-500 epochs to

train; once trained, they can be composed into a single application.
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AES-256 Conceptual Diagram
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Figure 3.5: Conceptual diagram of the AES-256 neural net.
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Chapter 4: Basic architecture and key components

Figure 4.1 is a block diagram of the basic architecture to be studied. This

architecture assumes off-chip learning to enable algorithm flexibility, and incorpo-

rates 1T1M unit cells to provide for more precise control of the memristors during

programming and operation. Comparators are used for the evaluation circuit to

enable a digital communication network and digital input circuits. Each of the key

components will be described, with specific emphasis on the comparators and the

on-chip network; potential limitations to building arrays of arbitrary size will also

be defined. This building block can be replicated multiple times to create a full chip

version for large neural processing applications. In the analyses below, we are gener-

ally assuming a 256 x 64 array; this refers to the number of inputs and neurons, the

number of columns (128 in this case) is twice that, since we are using a differential

current architecture. This size array is well suited for neural networks evaluating

the MNIST application [58]. This array size, fabricated in 45 nm technology, is the

nominal design point for these analyses. If other design points are used, they will

be explicitly noted. Simulations were done using LTspice [60] and 45nm technology

device parameters [61] [62].
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4.1 Analysis of neuron architectures

Memristor arrays implementing TGN can be organized in multiple ways; below

we analyze three variations. We will make specific assumptions and simplifications

to the variations to enable relative power comparisons to be made.

4.1.1 Single-ended voltage

Figure 4.2 is an example of a single-ended voltage architecture (SV); every in-

put and its inverse, along with any bias inputs, are connected to a single voltage rail

through a memristor (represented by the blue circle) with a specific programmed

conductance. This architecture has been used to design and analyze embedded

neural network processors [58]. G0 represents an “off” state, or extremely low con-

ductance, G1 represents an “on” state, or high conductance. A typical on/off ratio

can be ≥ 100 [63]. In our TGN, all the weights are integer values, which can be

represented in this simplified SV architecture as one or more inputs with wi = G1.

For example, wi = 2 can be represented by two inputs with wi = G1 (for the MNIST

application, over 90% of the weights are -1, 0 , or +1). This representation is used

here merely to simplify the analysis; for the actual design a single memristor is pro-

grammed with a conductance value (Gi) that represents the desired weight for that

particular input and neuron. The voltage Vin is compared to a reference voltage

with a differential voltage comparator to create the threshold gate. The circuit in
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Figure 4.2 can represent any neuron and set of inputs in a TGN by selecting the

proper values for α11, α10, α01, α00, and n.

The equivalent circuit for this architecture is also shown in Figure 4.2. Geff
+ repre-

sents the sum of all conductances connected to Vdd, and Geff
- represents the sum of

conductances connected to Vss.

FOUO

Vin

A1 = Vdd

G0

G1

A1 = Vss

A2 = Vdd

G1

G0

A2 = Vss

A3 = Vss

G0

G1

A3 = Vdd

A4 = Vss

G1

G0

A4 = Vdd
Vref

+        -

Vout

α11 * n

α10 * n

α01 * n

α00 * n

Vin

Vdd

Vss

Geff
+ = (α11 + α10/100 + α01/100 + α00) * n * G1

Geff
- = (α11/100 + α10 + α01+ α00/100) * n * G1

I

Memristor with 1 µS 
conductance

Memristor with 0.01 µS 
conductance

Figure 4.2: Single-ended voltage architecture (SV) and equivalent circuit.

We make the following assumptions for this analysis.

n = total number of inputs

α11, α10, α01, and α00 represent the fraction of inputs of each type

(α11 + α10 + α01 + α00 = 1 by definition)
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The two possible conductances are G1 = 1 μS and G0 = 0.01 μS. The important

condition for this analysis is that G0 = G1/100. Given this G0/G1 ratio, for the

Geff
+ estimate we will assume (α11, α00) >> (α10/100, α01/100), and for the Geff

-

estimate we will assume (α10, α01) >> (α11/100, α00/100). To demonstrate the va-

lidity of this assumption, consider the following example: let α11 = 0.1 and α00 =

0.1; if α10 or α01 = 0.8, then the assumption is 0.1 >> 0.008, which is reasonable.

For equal probability of inputs, this assumption is essentially never violated (much

less than 1% of the time).

Using these assumptions, we can simplify Geff
+ and Geff

-

Geff
+ = (α11 + α00) ∗ n ∗G1 (4.1)

Geff
- = (α10 + α01) ∗ n ∗G1 (4.2)

Assuming Vss = 0 Volts,

V in = V dd ∗ (α11 + α00)/(α11 + α10 + α01 + α00) = V dd ∗ (α11 + α00) (4.3)

I = Geff
- ∗ V in = n ∗G1 ∗ V dd ∗ (α11 + α00) ∗ (α10 + α01) (4.4)

P s = V dd ∗ I = n ∗G1 ∗ V dd
2 ∗ [(α11 + α00) ∗ (α10 + α01)] (4.5)

Ps can now be calculated for a variety of input conditions. For example:
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Pmax can be found by using the substitutions

γ = α11 + α00 (4.6)

and

1 − γ = α01 + α10 (4.7)

then

P s = n ∗G1 ∗ V dd
2 ∗ [(γ) ∗ (1 − γ)] (4.8)

Ps = Pmax when

∂P s

∂γ
= 0 (4.9)

this occurs when

γ = 0.5 (4.10)

So for

(a11 + a00) = (a10 + a01) = 0.5 (4.11)

or

α11 = α10 = α01 = α00 = 0.25 (4.12)

we find

P s = Pmax = 0.25 ∗ n ∗G1 ∗ V dd
2 (4.13)
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4.1.2 Differential voltage

Figure 4.3 is an example of a differential voltage architecture (DV); every input

and bias is connected to both a positive voltage rail and negative voltage rail con-

ductance. The equivalent circuits for this architecture are shown. The two voltages

are compared with a differential voltage comparator to create the threshold gate. A

processor using this architecture to implement a character recognition application

was analyzed in [48].
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Geq1 = (α11 + α10/100) * n * G1

Geq2 = (α01+ α00/100) * n * G1
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V+
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G0
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G0

G1

G0
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α11 * n

α10 * n

α01 * n

α00 * n

V-

Vdd

Vss

Geq3 = (α11/100 + α10) * n * G1

Geq4 = (α01/100+ α00) * n * G1

I-

Figure 4.3: Differential voltage architecture (DV) and equivalent circuits.

Using the same assumptions as before, we find:
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V + = V dd ∗ (α11)/(α11 + α01) (4.14)

I+ = n ∗G1 ∗ V + ∗ α01 = n ∗G1 ∗ V dd ∗ (α11 ∗ α01)/(α11 + α01) (4.15)

P+ = n ∗G1 ∗ V dd
2 ∗ (α11 ∗ α01)/(α11 + α01) (4.16)

V - = V dd ∗ (α10)/(α10 + α00) (4.17)

I - = α00 ∗ n ∗G1 ∗ V - = (α10 ∗ α00 ∗ n ∗G1 ∗ V dd)/(α10 + α00) (4.18)

P - = (α10 ∗ α00 ∗ n ∗G1 ∗ V dd
2)/(α10 + α00) (4.19)

P d = P++P - = (n∗G1∗V dd
2)∗[(α11∗α01)/(α11+α01)+(α10∗α00)/(α10+α00)] (4.20)

Pd is generally not equal to Ps; however for

α11 = α10 = α01 = α00 = 0.25 (4.21)

P d = P s = 0.25 ∗ n ∗G1 ∗ V dd
2 (4.22)

Ps > Pd when (α11 + α10) > (α01 + α00) or (α11 + α10) < (α01 + α00); lots of

inputs are one or zero (see Figure 4.4). The exact Ps/Pd value will depend on the

specific distribution of the four possible types of inputs. For a given x-axis value

(fraction of ones) in Figure 4.4, the Ps/Pd value for a range of αi,j has been plotted.

It is straightforward to determine the ratio of ones (α11 + α10) and zeroes (α01

+ α00) for each neuron in an array, at least for small neural nets, by keeping track of
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them during the neural net training and/or validation. The nominal value (fraction

of ones) for the crossbar arrays in a neural network running the MNIST application

are 5%, 5%, 20%, 20%, and 62% for the four input layers and the one output layer,

respectively. Assuming that the ones are equally split between α11 and α10 (with a

similar assumption for the zeroes), we find that Ps = 2.26 * Pd.

A differential voltage architecture should also have improved common mode

noise rejection. This analysis indicates DV is a better choice than SV.
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Figure 4.4: Relative power of SV (Ps) vs. DV (Pd) architectures for varying input
ratios.
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4.1.3 Differential current with 1/High Z inputs

Figure 4.5 is an example of a differential current architecture using 1/High Z

inputs (DZ). When the input = 0, the output of the row driver circuit is a high

impedance node (High Z), rather than Vss. Every input and bias is connected to

both a positive rail and negative rail conductance. In contrast to the other two

architectures, the outputs are two currents, each summed separately on its own

bit line. The two currents are compared using a differential current comparator to

make the threshold gate. Only input = 1 conditions create current (and consume

power). The CSlite malware detection application was analyzed using this architec-

ture [24, 32].

Repeating the analysis using our previous assumptions, we find

I+ = n ∗ V mem ∗G1 ∗ α11 (4.23)

I - = n ∗ V mem ∗G1 ∗ α10 (4.24)

where Vmem is the voltage across the memristor. Assuming V+ and V- are held

relatively constant,

V mem = β ∗ V dd (4.25)

the value of β can be estimated by examining simulations from our comparator

design, which will be described and analyzed later in this chapter. It will normally
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Figure 4.5: Differential current architecture with 1/HighZ inputs(DZ).

be 0.25 - 0.30. Therefore

P+ = n ∗G1 ∗ V dd
2 ∗ α11 ∗ β (4.26)

P - = n ∗G1 ∗ V dd
2 ∗ α10 ∗ β (4.27)

P z = (n ∗G1 ∗ V dd
2) ∗ [(α10 + α10) ∗ β] (4.28)

Typically, Pd > Pz as the fraction of high inputs is reduced (see Figure 4.6, which

assumes β = 0.25).

Again using the same values (fraction of ones) for each crossbar array in a

neural network running the MNIST application (5%, 5%, 20%, 20%, 62%), we find

40



Pd = 2.98 * Pz, and Ps = 6.73 * Pz.
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Figure 4.6: Relative power of DV (Pd) vs. DZ (Pz) architectures for varying input
ratios.

This analysis indicates the 1/High Z differential current architecture (DZ) is

the most power efficient. It also has a desirable property for circuit analysis: the

current for each input is directly proportional to the weighted input for the neuron.

This enables certain mathematical properties of the TGN to be verified as correctly

implemented via simple analysis or simulation of the circuits. The DZ architecture

will also be an important factor in the development of the tile feature, described in

the next chapter.
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4.2 Input circuits

The input circuits have 4 main functions: address decoding, input data multi-

plexing, a latch to enable short-term data storage, and row drivers to transfer data

into the array. For our architecture, these are all based on traditional designs [64];

the only significant design choice to be made is associated with the row driver.

4.2.1 Row driver

The row driver (see Figure 4.7) must supply current to all inputs in a given

row, and also controls the access PFET in the unit cell; the design shown implements

the 1/High Z architecture.

The row driver needs to supply current for all its neurons (m), without a large

voltage drop

Irow = m ∗ wave ∗G1 ∗ V mem (4.29)

For m = 64, wave = 4, G1 = 1 μS, Vmem = 0.2; we find Irow = 51.2 μA. This is

assumed to be a worst-case scenario.

For a PFET device in 45 nm, ΔVds will be 1.94 mV per μA if W = 200 nm, L

= 45 nm. (See Table 4.1). The device is biased in the linear region, so linear

extrapolations of this are very accurate. Example: for Irow = 51.2 μA, W = 1200

nm, estimated ΔVds = 16.6 mV, actual ΔVds = 16.7 mV. So the device size

can be specified by estimating the worst case current required, and the maximum

ΔVds allowed for that current. Our design with 64 neurons will have a row driver
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Vdd

Row driver PFET
A

Data Input = Vdd (‘1’) or high impedance (High Z)

Irow
Data Input

Access Control Input

Figure 4.7: Row driver circuit schematic that implements the 1/High Z input.

Table 4.1: Ids (in μA) as a function of allowed ΔVds and PFET width (L = 45 nm).

Width (nm) ΔVds = 5 mV ΔVds = 10 mV ΔVds = 20 mV

200 2.578 μA 5.137 10.170
500 6.566 13.083 25.905
1000 13.210 26.323 52.124
2000 26.499 52.804 104.560 μA
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with W/L = 1200/45 nm; for other array sizes, the driver width can be adjusted

appropriately. There will be control PFETs in the comparator; they will be sized in

a similar fashion; details will be discussed as part of the comparator design section.

4.3 Unit cell

The next issue explored is the unit cell design; we have chosen to use a 1T1M

unit cell (circuit schematic, layout, and layer stack up are shown in Figure 4.8,

Figure 4.9, and Figure 4.10). Figure 4.9 actually shows two unit cells; the dashed

box indicates the size (60 F2) of a single unit cell.

Access Control Input

1T1M unit cell

Bit 
Line

Data Input

Access PFET

Memristor

Figure 4.8: Unit cell circuit schematic.

The value of the 1T1M design is that the access PFET eliminates sneak path

issues [65] and enables highly precise programming of conductances into the mem-
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Vcontrol
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Figure 4.9: Unit cell layout.

ristor [66]. It comes at a cost of greatly increased area for the unit cell (60 F2 for

the layout shown vs. 4 F2 for a memristor only design). We will show later that

the overall area cost is significantly lower, given the size of the peripheral circuits.

This is true even if you assume the peripheral circuits can be placed underneath the

memristor unit cells in the 4 F2 layout.

The access PFET is sized to be the largest possible within the unit cell layout

(W/L = 90/45 nm). Here the requirement is to understand the limitations of this

design choice. Our array assumes integer weight values up to 32 are possible (wmax

= 32, corresponding to Gmax = 32 μS), based on the measured performance of TaOx
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Figure 4.10: Unit cell layer stack (cross-section at A – A in Figure 4.9).

devices [29]. The worst case current flow (assuming Vmem = 0.2 V) is:

I = wmax ∗G1 ∗ V mem = 6.4µA (4.30)

Using LTspice [60] and 45nm technology device parameters for this design [61] [62],

ΔVds = 27.6 mV.

A second issue that needs consideration is that the access FET has a finite

conductance, so the programmed conductance should be adjusted to compensate for

this.

GPFET v 218µS (4.31)
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so

Geff = (Gmem ∗GPFET)/(Gmem +GPFET) (4.32)

or

Gmem = (Geff ∗GPFET)/(GPFET −Geff) (4.33)

where Gmem is the value actually programmed into the memristor, and Geff is the

desired value.

It should be noted that the effect of GPFET is small until Gmem is fairly large.

Without correction, if

Gmem = 1µS, I = 199.1nA (4.34)

If

Gmem = 8µS, I = 1543.4nA (4.35)

This would cause a 3% error in the actual weighting ratio (7.75/1) from the desired

weighting (8/1) if not corrected.

It should also be noted that the correction only works if Geff < < GPFET; if

Geff ≈ GPFET, then the correction becomes inaccurate very rapidly; if Geff ≥ GPFET

it is not possible to correct at all. If Geff ≥ GPFET is needed, then one (or more) of

these 4 options could be used:

• The access PFET can be widened to increase its conductance (at a cost of

larger unit cell area)
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• A control input signal < 0.0 V can be used to increase gate drive (requires an

extra voltage island)

• A PFET with a lower threshold voltage can be used (requires the device fab-

rication alternative to be available)

• Multiple inputs can be used, each with a smaller conductance; when combined,

they equal Geff (increases the array size)

4.4 Array size limitations

There are a variety of practical issues with implementing memristor crossbar

arrays that can limit their size. Parasitic effects on timing and accuracy, along with

programming precision, are explored below.

4.4.1 Parasitic effects

For the 45 nm process we are using, the nominal wire resistance and capaci-

tance values are:

C = 0.2 fF/μm of length for all lines

R = 0.214 Ω/μm of length for long lines

Rs = 0.239 Ω/square for short lines

These are consistent with other published values [67]. From the 1T1M layout,

we calculate the following values for each unit cell:
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Input line to the access FET: Rinput = 0.956 Ω, Cinput = 72 aF

Data line across a row: Rhorizontal = 0.956 Ω, Chorizontal = 72 aF

Bit line down the column: Rvertical = 0.896 Ω, Cvertical = 67.5 aF

In order to accurately analyze the transient conditions in the array, all relevant

parasitics should be incorporated. These include resistance and capacitance on the

control input signal, the input data lines, and the output bit lines, along with any

memristor parasitics. Figure 4.11 depicts a nominal 2 x 1 array, with parasitic

elements included.

Memristor parasitics Figure 4.12 is the circuit model for the memristor. For

our simulations, we use the memristor model in [23], with some minor modifications

described below. This model has been validated with various memristor devices, and

the parameters can be extracted using a straightforward test procedure [68]. It is

also less computationally complex than other models [68], which will be important

for simulating large memristor arrays. One minor issue with this model is that

under certain simulation conditions the device can be driven to zero conductance

(or infinite resistance). We correct for this by placing an additional conductance in

parallel with the memristor, the value is the off-state conductance (G0) on measured

devices. For our analysis we use G0 = 0.01 μS [63]. To account for the contact

resistance of the memristor, a 100 Ω resistor is placed in series with the device as

part of the memristor model.

Our layout enables a memristor of size 4 F2 to be fabricated; this may be
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Figure 4.11: Nominal 2 x 1 array, including parasitic elements.
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desirable for manufacturing and yield reasons. However, we have found that the

memristor capacitance can have an impact on the length of the transient response

of the bit line to changes in the input vector (up to 1 ns), so this capacitance should

be minimized if possible (reduce area and increase dielectric thickness).

Cmem = (ε0 ∗K ∗ Amem)/tmem (4.36)

The nominal value for a TaOx memristor device (K = 25), of minimum size (45 nm

x 45 nm) and with a nominal dielectric thickness of 20 nm, is 22.4 aF. Actual capac-

itances can be found using straightforward measurement techniques on fabricated

devices [69]. This capacitance is placed in parallel with the memristor in the device

model. With this capacitance value and a 1T1M unit cell, transient effects are on

the order of 200 - 250 ps.

C = 1 FI

VxIdevice

Top electrode

Bottom electrode

G0

Rcontact

CmemI

Vx = State Variable

Figure 4.12: Memristor model with extensions.
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Timing effects of wire parasitics The RC time constant across a neuron is very

small

τ = 2 ∗Rhorizontal ∗ Chorizontal = 1.4x10-4 ps (4.37)

Even if we assume 10τ (1.4 x 10-3 ps) is the timing cost for a neuron, the effect is

small; τ= 10 ps when m = 7264.

4.4.2 Limitations on the maximum number of inputs

Absolute voltage drop down the bit line The total voltage drop down the

bit line can be estimated by assuming we have equal weights for each input; the

conductance for each input will be Gave. Then:

∆V bit =
n∑

j=1

I j ∗Rj (4.38)

since

Rj = Rvertical (4.39)

and

I j = Iunit ∗ j = Gave ∗ V mem ∗ j (4.40)

then

∆V bit = Gave ∗ V mem ∗Rvertical ∗
n∑

j=1

j (4.41)

∆V bit = Iunit ∗Rvertical ∗ n ∗ (n+ 1)/2 (4.42)
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For large n, we can use the approximation

n2 v n ∗ (n+ 1) (4.43)

so

∆V bit = Gave ∗ V mem ∗Rvertical ∗ n2/2 (4.44)

or

nmax = [2 ∗ ∆V bit/(Gave ∗ V mem ∗Rvertical)]
1/2 (4.45)

Using the following values:

Gave = 2 μS, Vmem = 0.2 V, Rvertical = 0.896 Ω

We can calculate the nmax that will keep ΔVbit below any desired maximum value

(see Table 4.2). This suggests that the absolute voltage drop on the wire might

place a practical limit of the number of inputs.

Table 4.2: nmax as a function of the maximum desired ΔVbit

ΔVbit (mV) nmax

1 74
2 105
5 167
10 236
20 334
50 528

Unequal bit line voltage drop and its effect on accuracy The next analysis

considers the following scenario:
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The first row has a high positive weight

Ga
+ = G1 ∗ wmax (4.46)

The last row has a high negative weight

Gz
- = G1 ∗ (wmax − 1) (4.47)

The rows between Ga
+ and Gz

- are assumed to have alternating weights between

+1 and -1.

Because the current through Ga
+ sees higher total bit line resistance than Gz

-, this

input will have a slightly smaller Vmem, and therefore less current than expected.

We consider the case where this voltage difference is just enough to make the two

currents equal, even though they have differing weights.

Expected

Ia = Ga ∗ V mem,a (4.48)

Actual

Ia
* = Ga ∗ V mem,a

* = Ga ∗ (V mem,a − ∆V bit,a) (4.49)

Iz = Gz ∗ V mem,z (4.50)

We will approximate Vmem as the nominal voltage across the memristors

V mem,a v V mem,z = V mem (4.51)
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For

Ia
* = Iz (4.52)

Ga ∗ (V mem,a − ∆V bit,a) = Gz ∗ V mem,z (4.53)

and

∆Ia = Ia − Ia
* = Ga ∗ ∆V bit,a (4.54)

∆V bit,a v Rvertical ∗Gave ∗ V mem ∗ n2/2 (4.55)

so

∆Ia = Rvertical ∗Ga ∗Gave ∗ V mem ∗ n2/2 (4.56)

We will need to adjust Ga so that it counterbalances the ΔVbit,a effect

Ga,eff = Ga + ∆Ga (4.57)

∆Ga = ∆Ia/V mem = Rvertical ∗Ga ∗Gave ∗ n2/2 (4.58)

or

nmax = (2 ∗ ∆Ga/Rvertical ∗Ga ∗Gave)
1/2 (4.59)

Using the previous values

Rvertical = 0.896 Ω

Ga = Gmax = 32 μS

Gave = 2 μS
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Table 4.3 shows that this effect, if not corrected, places a severe limit on the

array size. However, the correction value (ΔGa) can be calculated from values that

are known in advance, so this adjustment can be done.

Table 4.3: nmax as a function of the maximum acceptable uncorrected ΔGa

ΔGa (μS) nmax

0.1 59
0.2 83
0.5 132
1.0 186

If wmax = 8, not 32, all the n values are doubled. In general, all of the

conductance values will have to be adjusted in this way. For a given row and

conductance value (Gk), the adjustment is as follows:

∆Gk = Gk ∗ [(Gave ∗Rvertical/2) ∗ (n+ k) ∗ (n+ 1 − k)] (4.60)

Again, all of the values are known in advance, so calculating this adjustment is

practical. Here are a couple of examples:

Let n = 256, k = 1, and Gk = 3 μS, Gave = 0.4 μS (this would a possible situation

for MNIST)

∆Gk = 0.035 µS (4.61)

This is probably too fine an adjustment to the memristor value to be practical.

Let n = 256, k = 200, and Gk = 32 μS, Gave = 4.0 μS (this would be an outlier case)

∆Gk = 1.49 µS (4.62)
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Effect of memristor programming precision How precisely do the memristor

devices need to be programmed to ensure functionality? How large can an array be

before it incorrectly functions due to inaccurate programming? Consider a majority

function, where Vout = Vdd if the number of high inputs with G = +1 (N+) is greater

than for G = -1 (N-). If the conductance values programmed into the memristors

are not precise, it is possible for the total G+ to be smaller than G- even if N+ > N-,

and the output will be incorrect. We will assume an expected value (μ= Gave) that

can deviate randomly due to a finite programming precision; (3 *σ/μ) is defined as

the programming precision.

We define μxy as the actual difference between the means of the two columns

in the neuron, and Gave as the desired mean for each column.

We will assume

Gave
+ = Gave − µxy/2 (4.63)

and

Gave
- = Gave + µxy/2 (4.64)

then

Gave
- −Gave

+ = µxy (4.65)

If the average value is known but varies randomly, then μxy will have a mean of zero

and

σxy = [σx
2/(nx) + σy

2/(ny)]1/2 (4.66)
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For this analysis, we assume

σx = σy = σ (4.67)

and

nx v ny = n/2 (4.68)

so

σxy = [2 ∗ 2 ∗ σ2/n]1/2 = 2 ∗ σ/n1/2 (4.69)

In order for this random variation to create inaccuracy, then

Gave
+ ∗ (n+ 1)/2 = Gave

- ∗ (n− 1)/2 (4.70)

n ∗ (Gave
+ −Gave

-) + (Gave
+ +Gave

-) = 0, (4.71)

or

2 ∗Gave = n ∗ µxy;µxy = 2 ∗Gave/n (4.72)

To ensure this is a rare occurrence, the value of μxy needed to cause this problem

should be at least 3 standard deviations from the mean (μxy = 0 is the mean). Under

this condition:

µxy = 3 ∗ σxy (4.73)

Substituting for each side of this equation from above

2 ∗Gave/n = 6 ∗ σ/n1/2 (4.74)
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since

µ = Gave (4.75)

µ/n = 3 ∗ σ/n1/2 (4.76)

[(3 ∗ σ)/µ] = n-1/2 (4.77)

or

n = [(3 ∗ σ)/µ]-2 (4.78)

So if we know the programming precision, that determines the maximum n; or the

n desired defines the programming precision required. Table 4.4 provides details.

Table 4.4: Required memristor programming precision as a function of the number
of inputs.

n Precision (σ/μ) 3 σ precision in %

32 0.059 17.6%
64 0.042 12.5%
128 0.029 8.8%
256 0.021 6.25%
512 0.015 4.4%
1024 0.010 3.125%

There is published information [29] for a programming technique that achieves 1%

precision; for this value the maximum array can have ≈ (.01)-2 = 10,000 rows.

This data indicates programming precision will not be a practical limitation on the

number of inputs in an array.

There is one additional limit on the size of the array (number of inputs): that is the
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amount of input current the comparator can practically handle. This limit will be

discussed as part of the comparator design and analysis.

4.4.3 Limitations on the maximum number of neurons

The analysis for this effect will be similar for the number of inputs, with a

couple of exceptions:

An array does not necessarily require a large number of neurons, but a large number

of inputs can be very useful (the impact of minimizing the array size is less signifi-

cant here);

The average conductance (Gave) within a neuron is likely to be larger than across

many neurons in a given row;

There are two unit cells per neuron, not one per bit line as before.

Absolute voltage drop across the array We will use the same values from the

row driver analysis

Gave = 1 μS, Vmem = 0.2 V, Rhorizontal = 0.956 Ω

The voltage drop from the input driver to the last neuron in the array can be

estimated assuming an equal current goes into each neuron in a row. Similar to the

previous analysis:

∆V row = Gave ∗ V mem ∗Rhorizontal ∗m2 (4.79)
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or

mmax = [∆V row/(Gave ∗ V mem ∗Rhorizontal)]
1/2 (4.80)

We can calculate the mmax to keep ΔVrow below any desired maximum value (see

Table 4.5). This suggests that absolute voltage drop across the row will probably

not limit the array size.

Table 4.5: mmax as a function of the ΔVrow allowed

ΔVrow (mV) mmax

1 72
2 102
5 161
10 228
20 323
50 511

Unequal voltage drop across a row and its effect on accuracy If two rows

have differing Gave values, then the voltage drop across two memristors in different

rows will be slightly different, causing the currents to be slightly different. A worst-

case scenario would be the following:

Looking at the last neuron in the array (largest voltage difference due to Gave)

One row has

Ga
+ = G1 ∗ wmax (4.81)

a different row has

Gb
- = G1 ∗ (wmax − 1) (4.82)
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For this worst-case scenario

I+ = I - (4.83)

(and unequal weights give equal currents) if

V mem
+ = V mem

- ∗ (wmax − 1)/wmax (4.84)

or

∆V mem = V mem,b − V mem,a = V mem,b/wmax v V mem/wmax (4.85)

Again using Vmem as the nominal voltage across the memristors

(V mem,a v V mem,b = V mem) (4.86)

The voltage drops can be estimated:

∆V row,a v Gave,a ∗ V mem ∗Rhorizontal ∗m2 (4.87)

∆V row,b v Gave,b ∗ V mem ∗Rhorizontal ∗m2 (4.88)

∆V mem = ∆V row,a − ∆V row,b v Rhorizontal ∗m2 ∗ V mem ∗ ∆Gave (4.89)

where

∆Gave = Gave,a −Gave,b (4.90)
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and the parasitic resistance will cause a problem if

Rhorizontal ∗m2 ∗ V mem ∗ ∆Gave = V mem/wmax (4.91)

or

∆Gave = (wmax ∗Rhorizontal ∗m2)-1 (4.92)

or

m = (wmax ∗Rhorizontal ∗ ∆Gave)
-1/2 (4.93)

Realize ΔGave is likely to drop as m grows larger, since it is the difference of the

average G values.

Let us assume the following

wmax = 32 (Gmax = 32 µS) (4.94)

Table 4.6 shows that this effect will be similar to the voltage drop (mmax can

be reasonably large, since ΔGave is very likely to be less than 1.0).

If wmax = 8, not 32, all the mmax values are doubled.

The weight for memristors across a row can also be adjusted, along the lines

of the weight adjustment described earlier.

ΔGj = Gj * [(Gave * Rhorizontal) * (j+1) * (j)]

Let j = 64, Gj = 3 μS, and Gave = 0.1μS (this is a possible situation for
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Table 4.6: mmax as a function of ΔGave

ΔGave (μS) mmax

0.1 572
0.2 404
0.5 255
1.0 180
2.0 127
5.0 80

MNIST), ΔGj = 0.001 μS; this is too fine an adjustment to the memristor value to

be practical.

Let j = 64, Gj = 32 μS, and Gave = 0.5 μS (this would be an outlier case),

ΔGj = 0.06 μS

The need for weight adjustments in this case is much less. There are two

significant reasons for this: the number of neurons in an array is expected to be

much smaller than the number of inputs, and Gave across a row will typically be

much smaller than within a neuron.

The weight adjustment for any memristor in the array, taking into account

both parasitic effects, is:

∆Gj,k = ∆Gj + ∆Gk (4.95)

∆Gj,k = Gj,k∗[(Gave,j∗Rhorizontal)∗(j+1)∗(j)+(Gave,k∗Rvertical/2)∗(n+k)∗(n+1−k)]

(4.96)

This adjustment matrix can be easily found once all the initial weights have been

calculated.
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Minimizing inaccuracy due to practical effects The analysis for the effects

of the parasitics strongly suggest that mapping the weights to the physical array

should put the highest weights in the first columns and the last rows of the ar-

ray when possible, with the lowest weights in the last columns and the first rows

(see Figure 4.13). For a given neuron, high positive and negative weights should

be grouped in nearby rows if possible. This approach will minimize the weight

adjustments needed, and will also minimize the likelihood of an incorrect neuron

output due to any inaccuracies in the weight adjustment (either through the use of

the above approximate adjustments or imprecision in the memristor programming).

This also shows the potential value of on-chip learning: the weights will automati-

cally be adjusted correctly for various effects as part of the process.

Inputs

Outputs

Highest 
weight 
values 

Lowest 
weight 
values 

Figure 4.13: Mapping of weights into the array to minimize errors due to parasitic
effects.
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4.5 Comparator design

The comparator is an important element of the architecture [22]. The speed of

this circuit is one of the main factors in estimating the neural network throughput

(the router network is another important factor). Since the comparator is required

to sink the currents from the array, it has to be large enough to handle the total

current while still being able to discriminate a minimum difference (ΔGmin = 1 μS).

This can have a major impact on the overall area and timing, and can limit the

number of inputs allowed into a single neuron. It is also a significant consumer

of the overall power. Our comparator architecture is shown in Figure 4.14. The

two input currents are transduced into differential voltages, and the difference is

amplified to create an output that can be buffered and latched for driving the data

onto the communication network. The desired design will be compact, low power,

and fast. If this can be achieved, a comparator circuit can be used for each neuron,

instead of multiplexing as is often used [22]. We have designed a comparator that

meets these requirements; assuming 45 nm processing technology, it is:

Compact (≈ 55 μm2)

Low power (≈ 15 μW)

Fast (≈ 250 MHz)
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4.5.1 Basic architecture

The basic design is easily described; Figure 4.15 has a schematic of the essen-

tial elements. The input stage is built using an FET with drain and gate connected

to create a diode-connected FET (one each for the positive and negative inputs).

The amplifier stage uses simple 5 FET differential voltage amplifiers. Two amplifiers

are used so that the output voltage of the amplifier stage is driven to ≈ Vdd or Vss as

needed. The output stage (not shown) uses four inverters to drive the output load,

which consists of wire capacitance and the input gate of the router/switch. Data

latching is enabled by the use of a controllable transmission gate between inverters

2 and 3.

Figure 4.14: Comparator Architecture.

For traditional applications this design would be impractical for at least two

reasons:

1. The maximum current input and minimum current difference that can be sensed

are inversely related, limiting the operating range of the design;

2. The design is very sensitive to device mismatches (such as small Vt differences).
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V+ V-

I+ I-

V+

Vbias

V-

Vamp

Vdd,analog

Figure 4.15: Input and amplifier stage of the comparator (simplified schematic).
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4.5.2 Design modifications and test procedures to handle

mismatches

In using the comparator for neural net applications, we can take advantage of

some conditions that are not typically available with other applications.

1. The weights in the neural network must be programmed, and are therefore known

in advance; for any given set of weights, the comparator needs to operate correctly

in only a subset of the total range required.

2. The memristors are programmable conductance devices that can be used to en-

sure correct operation even under device and parameter mismatch conditions.

3. Corner case operating conditions that create inaccurate functionality can be tol-

erated if they rarely occur; the overall neural net accuracy can still be very good

(perhaps unaffected).

We take advantage of this knowledge by modifying the simple comparator de-

sign (see Figure 4.16). The first modification is to use multiple diode-connected

FETs in parallel for each of the two inputs. These parallel FETs have control gates

that enable one or more diodes to be active, depending on the total weight for the

neuron. The control PFETS have W/L = 270/45 nm; using the analysis from the

row driver circuit, we estimate the voltage drop will be < 5 mV. The total weight

(maximum possible conductance) is known in advance since the memristors need to

be programmed. This enables a proper number of diodes to be used, enabling the

design to operate in its desired range under most input conditions. The specifics of
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Vctrl1 Vctrl2

Gp+

Gs+
V+

Vbias1

Vctrl1Vctrl2

Gp-

Gs-

V-

Vbias1

Vctrl3 Vctrl3

Repeated multiple times

I+ I-

N1A          N1B

Figure 4.16: Modified input stage design to correct for parameter and device mis-
matches.

70



this will be discussed later. The second modification is to include additional mem-

ristors in the design. One set of two memristors (Gs
+, Gs

-) is connected to the bit

lines (like a bias or data input). The other set of two memristors (Gp
+, Gp

-) is in

parallel with the diodes. These memristors can be programmed in a manner similar

to the network weights, and enable modification of the differential voltages (V+, V-)

to compensate for device and parameter mismatches.

The series memristors have greater effect when V+ (or V-)is low; the parallel

memristors have greater effect for higher V+ (or V-). These biasing memristors can

be adjusted each time the weights are programmed. The bias values would most

likely be found as part of a chip calibration procedure. This procedure would be

done before setting the desired programming weights into the array, and uses a ma-

jority function for this purpose:

• Set the weights to create equal numbers of +1 and -1 values, and set all inputs

high

• At each major clock cycle (10 ns in the simulation shown in Figure 4.17), cycle

one +1 weight, and then one -1 weight by turning one input off, then on (each

for 5 ns)

• After this, reduce both the total positive and negative weights by 1 (or any
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other equal decrement)

• Repeat until the “common mode” weight is a minimum

• Based on the outputs, adjust the Gp and Gs devices:

• High common mode weights that create “0” errors require an increase in Gp
+

• Low common mode weights that create “1” errors require an increase in Gs
+

• Gp
- and Gs

- would be adjusted if the opposite conditions exist

This simple procedure assigns a value of 1 to each correct output, -1 to each incor-

rect output, and adjusts the comparator bias memristors until the total value equals

the number of outputs measured (fully correct functionality). This procedure can

be modified in many ways; for example, heavier emphasis can be given to getting

correct values for high total conductance values and ignoring incorrect values at

very low conductance values (or specific biases can be used to ensure extremely low

conductance levels are never seen). Other optimizing algorithms can be used as

desired. Using 45 nm design technology, LTspice simulations have shown that up to

± 10 mV (20 mV total) Vt mismatch and up to ± 5nm (10 nm total) dimensional
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mismatch can be tolerated between the critical pairs of devices in this differential

design (N1A and N1B in the input stage shown in Figure 4.16, and both sets of

input FETs in the amplifier stage). An example LTspice simulation for this level of

mismatch is shown in Figure 4.17.

Figure 4.17: Effect of biasing procedure for handling mismatch. Top plot shows V+

and V-, the middle plot is the differential voltage (ΔVdiode = V+ - V-); note that it
is almost always negative. The bottom plot is the comparator output, using a 5 ns
clock. The output signals are 100% correct and very clean.
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4.5.3 Modifications to increase performance

This next design modification is used to improve the comparator performance

(see Figure 4.18). Let us consider the basic operation. As the two currents I+ and I-

flow into the diode, they raise the diode voltages (V+ and V-). The small difference in

the currents caused by the differing weighted sums creates a small voltage difference;

this differential voltage is amplified to create a much large voltage difference between

Vgate1 and Vamp1 (Vgate1 stays relatively constant, while Vamp1 swings over a large

range). The second amplifier is used to drive its output (Vamp2) nearly to Vdd or

Vss. The speed of this basic design is mainly dependent on the first amplifier, and

is primarily determined by two factors:

1. How fast can the bias current swing Vamp?

2. How much does the bias current need to swing Vamp?

This can be expressed using the simple fact that Vamp has a node capacitance:

therefore

I = C ∗ ∆V/∆t (4.97)

or

∆t = C ∗ ∆V/I (4.98)

To reduce Δt, you have to increase I or reduce ΔV. The first factor is essentially a

design optimization: higher bias currents can swing the output faster, but take more

power and create a larger design (increased capacitance) that will slow down the

amplifier. Larger amplifier inputs will also slow down the rate at which the diodes
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can swing the input voltages, but that is a smaller, secondary influence. The second

factor is input dependent. In a situation where the previous weighted sum is highly

negative and the current weighted sum = +1, the ΔVamp1 value is very high, but the

final Vamp1 voltage will be very close to Vgate1: the bias current needs a relatively

long time to switch Vamp1 past Vgate1; only then will the second amplifier switch

as well. The second factor however, can be mostly managed by the architecture.

Figure 4.18 depicts the changes to the amplifier architecture needed, and Figure 4.19

and Figure 4.20 are timing simulations that display the effect of these changes. By

adding a transmission gate between Vamp1 and Vgate1, we can force Vamp1 to be very

close to Vgate1; ΔVamp1 will be very small (and relatively constant under all input

conditions). This is done by using a strobe signal that turns this T-gate on during

the early part of the comparison operation, and turning it off during the later part.

The diodes are always on. While this T-gate is on, a second T-gate (connected

to Vamp2) is turned off, and the T-gate in the output driver is turned on, which

keeps the previous output valid and avoids Vout glitching. The T-gates are turned

off (or on, respectively) during the later portion of the comparison operation. The

simulations in Figure 4.19 and Figure 4.20 are for the same array and inputs, with

equal time scales. The comparator in the first plot does not have the T-gate/Tstrobe

feature; since the previous sum value is very positive (ΔVdiode ≈ 6.0 mV), Vamplifier1

must swing very far to cross Vgate1 (from 900 mV to 400 mV). This takes a long

time, making ΔT large (6.865 ns). In the second plot, the comparator with the T-

gate/Tstrobe included enables Vamplifier1 to drop very close to Vgate1 almost instantly;

this greatly reduces the delay (ΔT = 1.559 ns).
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Vpowergate

Vstrobe,p

Vstrobe,n

Vdd,analog

Vgate2

Figure 4.18: Amplifier stage of the comparator with modifications.
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Figure 4.19: Timing plot for comparator with no Tstrobe.
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Figure 4.20: Timing plot for comparator with Tstrobe = 1 ns.

Figure 4.21, Figure 4.22, and Figure 4.23 show how this affects the comparator

speed. Without the T-gates, the speed is dependent on both the previous inputs

and the current inputs. With the new architecture, Vamp1 always starts very close

to Vgate1 and the worst case time delay is drastically reduced; the comparator speed

is now relatively independent of the inputs. The Tstrobe time increases the delay for

very fast transitions, but these do not define the comparator speed. Tstrobe = 1ns

appears to provide the best balance.
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Figure 4.21: Output delay times for no Tstrobe. The distribution is wide, and includes
very long delays.
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4.5.4 Practical operating range of the comparator

Another important consideration is the diode sizing: if they are too small, the

total area actually increases due to the need for tolerating dimensional mismatches; if

they are too large, the granularity of matching the diode to the programmed weights

can be too coarse. Our design uses 4 sets of controllable diodes, and one diode is

turned on and becomes active for every 60 μS of conductance programmed into the

neuron (the maximum of the positive or negative weighting is used). This assumes

nominal 0.8 and 1.1 V supplies for the digital and analog circuits, respectively (see

Table 4.7).

Table 4.7: Optimal Conductance Range (Gmin, Gmax) for nominal supply voltages

#Diodes active Gmin (μS) Gmax (μS)

1 16 60
2 32 108
3 48 176
4 64 176
3 (1.0/1.2V) 260
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This controllable input architecture enables the diode voltage Vdiode (V+ or

V- in Figure 4.16) to stay reasonably constant between 0.55 and 0.65 V, minimizing

Vmem (and power in the array), while ensuring that ΔIdiode (and therefore ΔVdiode)

when ΔG = 1 is large enough to drive the amplifiers within the clock cycle (Tclock

= 4 ns). Simulations show that Tclock > 4 ns for 0.1 mV < ΔVdiode < 0.25 mV;

we use ΔVdiode = 0.5 mV as a minimum for our analysis. As the total conductance

(Gmax) programmed into the neuron gets larger, more diodes will need to be active.

This reduces the overall sensitivity; above a certain Gmax ≈ 180 μS it will become

impractical to properly sense ΔG = 1. By operating the comparator at elevated

voltages (1.0 and 1.2V), we can increase this Gmax by about 50%. However, the

comparator will still continue to function with a higher Gmax at nominal voltages if

ΔGmin > 1; the ratio of total conductance allowed is roughly linear with the ΔGmin

needed (see Table 4.8). Gmax > 1000 μS is possible if ΔGmin = 5 μS.

Table 4.8: Maximum Conductance (Gmax) when ΔG ≥ 1, 4 diodes active

ΔGmin needed (μS) Gmax (μS) for nominal voltages Gmax (μS) for elevated voltages

1 176 260
2 310 460
3 440 640
4 570 800
5 600 1020

81



The maximum number of diode pairs designed into the comparator will need to

take into account the operating voltages, total possible array conductance, and the

ΔGmin expected at these high conductances. For example, our analysis of a neural

net using this design and running an MNIST application indicates the input neurons

typically have low total conductances (Gmax is below 100 μS ≈ 90% of the time) but

occasionally require ΔG = 1 μS (≈ 3% of the time), while the output neurons have

much higher total conductances (between 240 and 390 μS) but rarely/never require

ΔG < 5 μS.

4.5.5 Power supply variation and temperature analysis

A simple test neuron, with 256 inputs and a weight distribution representative

of an MNIST neural net, was used to examine the performance of the comparator

over a range of supply voltages and temperatures. Table 4.9 and Table 4.10 show

power and timing results for Vdd,digital from 0.8 to 1.0 V, and Vdd,analog from 1.0 to

1.2 V. Table 4.11 shows how operating temperature affects the power and speed

of the neuron with this comparator; the supply voltages used for these simulations

were Vdd,digital = 0.80 V, and Vdd,analog = 1.00 V (near worst-case). This results

indicate that an operating frequency of 250 MHz for neuron evaluation in the cross-

bar is practical, and 300 MHz is possible (only one Tmax exceeded 3.333 ns in the

simulation).
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Table 4.9: Neuron power (in μW as a function of changing supply voltages)

Vdd,digital 0.8 0.9 1.0

1.0 43.7 59.2 81.4
Vdd,analog 1.1 51.0 65.5 85.0

1.2 62.3 75.9 94.8

Table 4.10: Neuron timing (worst case delay in ns as a function of changing supply
voltages)

Vdd,digital 0.8 0.9 1.0

1.0 1.685 1.602 2.045
Vdd,analog 1.1 1.555 1.375 1.408

1.2 1.485 1.345 1.245

Table 4.11: Neuron power and timing as a function of temperature

Temperature (C) Power (μW) Tmax (ns)

0 47.6 1.435
25 43.9 1.665
50 41.9 2.065
75 40.8 2.685
100 40.8 3.535
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4.5.6 Final comparator results

A breakdown of the power components shows that the comparator consumes

15 μW, and the operating frequency is expected to be at least 250 MHz. These values

are from extensive simulation of the comparator design presented. The area of the

comparator is estimated at 55.1 μm2, calculated using the following methodology:

• Calculate the gate area (W x L) of each transistor in the design

• Sum up the total gate area of the transistors and multiply this amount by 35X

The 35X factor was determined by reviewing actual SRAM (Static Random Access

Memory) sizing as a function of technology nodes [70]. It was validated by looking

at the physical size of layouts of comparators similar to the one described here [71],

and from design information in [26]. This methodology will be used for estimating

areas as part of the array mapping and evaluations later, when specific design area

information is not available.

4.6 Tile concept as enabled by 1/High Z and com-

parator components

The use of the 1/High Z differential current architecture, and the comparator

design described above, enables an important architectural option, which we call

a tile. One of the major difficulties in trying to design a general purpose neural

processor, based on the applications in this study, is that the desired array sizes
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span a wide range. Just to use a few examples:

• The MNIST application maps well to 256 x 64 arrays

• The CSlite decoder stage naturally fits into an 8 x 256 array

• The CSlite detector stage has one layer in the network that requires 512 x 32

arrays; less than 512 inputs could not be mapped

• The AES-256 State Machine would prefer a 16 x 16 array mapping

Finding a single array size that can efficiently map all of these is a daunting task;

the availability of tiles makes it more practical. The DZ architecture and our com-

parator allow for the use of control FETs to divert the differential current to specific

diodes at the input stage of the amplifier. This means that we can add one set of

two additional control FETs per comparator (per neuron) that enable the current

to be passed to a comparator in a different array. Keep in mind that the current

being passed represents the weighted sum of the inputs; therefore the function of

the neural net is maintained. The second array is now evaluating its inputs plus the

inputs from the first array; the two arrays are now combined into a single neuron (or

set of neurons). Figure 4.24 shows the basic concept; this feature means that smaller

arrays (tiles) can be connected to form much larger arrays. For example, four 64 x

16 tiles can be connected together to make a 128 x 32 array (see Figure 4.25). Here

the inputs go into Tile 1 and Tile 3; they are also sent across to Tile 2 and Tile 4.

The comparators in Tile 1 and Tile 2 are shut down, and the current (the sum of

the weighted inputs) is passed to the comparators in Tile 3 and Tile 4, which now
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sum up all of the weighted inputs to create the final outputs.

The design optimization is now to find the optimum tile size, not the optimum array

size. This new architectural option also greatly expands the set of possible solutions.

Without this, no array smaller than 512 inputs could have been used for the general

purpose neural processor design; now tiles that are very small (8 x 2 or 16 x 1, for

example) are possible solutions.

The tile concept is further enhanced by the ability to control the current (and

therefore the power) in the unused portions of the tile (unit cells, comparators).

Simulations of a 256 x 32 array show that the active power can be completely elim-

inated; the leakage power is an extremely small fraction (much less than 1%) of the

total. There are drawbacks to using the tiles; the input circuits may need to send the

input value across a tile to a neighboring tile, through another driver/latch circuit.

This adds a small delay (≈ 30 ps per tile); as long as the number of horizontal tiles

connected is reasonable (10 or less), the effect on performance is small. Another

point to be made is that the control PFETs added to the comparator design need to

pass a large amount of current, and are therefore large (W/L = 1200/45 nm); this

keeps the ΔVds below 3 mV. This adds about 3.8 μm2 in area to the comparator.

A more important issue is that all the tiles need to have comparators, which are

relatively large; this is because a tile needs to be an array itself, not just part of a

larger array. This issue will be explored more completely in the array mapping and

evaluation chapters.
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Figure 4.24: Use of control FETs that enable two smaller arrays (tiles) to be com-
bined into a single array.
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Figure 4.25: Four 64 x 16 tiles combined to form a 128 x 32 array.
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4.7 Communication network

The network-on-chip (NOC) is used to send neuron outputs from one array

to another; this assumes that direct connections are impractical. As will be seen,

the NOC capability will have a noticeable impact on the overall performance of

the neural network [72]. This is an area where the brain has better “technology”;

each neuron is directly connected to about 10,000 other neurons [73]. For neural

networks, researchers must rely on the far greater speed of electronics (MHz/GHz

compared to kHZ). There is one additional factor to be considered and leveraged

in designing the NOC, sparsity of communication. As has been shown [73, 74], the

output of a neuron changes very infrequently, so multiple neurons can be connected

together in a bus structure; [74] connects 64 neurons together with only a very small

loss in accuracy. For our analysis, we will assume 16 neurons can be connected to-

gether in a bus without causing collisions. Adding a small FIFO (First In First Out)

or other mechanism would be a possible approach to managing collisions if it proved

necessary. Leveraging the sparsity of communication inherent in neural networks

greatly reduces the NOC capability required. Since the output of a neuron for a

TGN is only a single bit, and data is only sent when the output changes, all that

needs to be sent over the NOC is the address. We will assume that 20 bits will be

sufficient for this purpose.
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4.7.1 2D mesh

The first NOC to be considered is a 2D mesh. This is a common approach for

neural nets [26, 58, 73, 75]. Figure 4.26 is a generic example. There is a router cell

located at the intersection of each row and column of arrays; the router typically

can send data in 5 directions: North, South, West, East, and into the array. It

can also recive data from those 5 directions. The basic architecture of the router

is very simple (see Figure 4.27), so it is compact, energy efficient, and fast. A

router of this design was implemented in an FPGA, with a neural net running

MNIST, to characterize its capabilities. Data was also used from [26, 58, 73, 75] to

elucidate additional aspects of building a NOC with this approach. The important

characteristics of this router are:

• The area is 4000 μm2 in 45 nm technology

• The speed is 1 GHz, or 1 ns latency per hop

• The number of hops on average has been estimated previously as 5 for a 256

x 256 array [73]; this will be analyzed more carefully later

• Power is dominated by wire capacitance, at 20 nW/wire/Ghz/μm of length:

or 400 nW per μm for our design
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Figure 4.26: NOC using a 2D mesh design; the cell implements the 5-way routing
function.
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Figure 4.27: Details of the router cell.
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4.7.2 All-to-all switch

The second NOC that will be analyzed for use is an all-to-all switch (A2A),

configured into a hierarchical tree; it is somewhat similar to the SpiNNaker NOC

design [76]. The A2A is based on a switch designed and used in a high performance

computing ASIC [77]. That switch was large (96 ports with 72 bit packets) and very

fast given its size and technology node (500 MHz, 90 nm). The power, area, and

timing of the A2A in our design will be scaled appropriately. Our A2A switches will

be connected hierarchically in a fat tree structure (see Figure 4.28). At every level,

each switch will require 25 bi-directional ports (input + output):

• 16 ports to connect to the bus/A2A from the next level down

• 8 ports to connect to other switches at the same level

• 1 port to connect to the switch one level up

This means the first level switch connects to 256 neurons directly (16 x 16; one

hop), and 2304 neurons (256 x 9) are accessible within two hops. If longer range

communication is required, only two more hops (four total) increases the reach to

36,684 neurons, and up to 589,824 neurons are within 6 hops of each other. While

the A2A switch is significantly larger and more power hungry than a single router

in the 2D mesh, there are fewer needed (one A2A is amortized over many arrays vs.

one router per array for the 2D mesh architecture) and they provide much better

performance for long range communication. The key characteristics are:
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• The area is 43,164 μm2 in 45 nm technology; 10X the size of the router in the

2D mesh

• The speed is 1 GHz, or 1 ns latency per hop

• Power is 250.8 μW for the 25-port design running at 1 GHz; this is roughly

6-7X the 2D mesh router power, assuming a 100 μm wire length
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Figure 4.28: Notional tree architecture for the A2A switch.
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4.8 Programming Circuits

High precision DAC and ADC circuits [58] will be used for programming the

memristors, since precision conductance values will be needed in order to enable

large arrays. Static or variable pulse height and widths are both possible, with

static pulse heights easier to implement. While our design exploration assumes off-

chip learning, the nominal requirements for the programming circuits have been

defined. The power requirements of the programming circuits will not impact the

overall analysis, since programming is not part of the inference operation; the area

is assumed to be negligible, since one set of programming circuits can be used for a

large number of arrays.

4.8.1 DAC and ADC

This analysis assumes a programming sequence similar to the one in [29] is

used. Here a DAC is used to provide a precise voltage on the access PFET gate

in the unit cell, and the current is read using an ADC. A feedback loop is used

to adjust the FET gate voltage until the desired current is read in the ADC. This

approach can be used to program the conductance to within 1% of the deisred value.

Figure 4.29 shows how this can be used to program the Geff of a memristor to a

range of integer weight values. In order to achieve the 1% precision desired, both

the DAC and ADC need to have 9-bit accuracy.
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Geff = 0.01        1 2 3 4 5 6 7

Figure 4.29: Example of precision programming of a memristor.
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4.8.2 Programming time

Using data from [78], we can estimate programming times for an entire chip.

With precision voltage inputs, we can program in 5 microseconds (50 pulses at 100

ns), and with precision timing inputs we can program in 2 ms (2000 pulses at 10

microseconds).

We will assume the following:

256 x 128 array = 64k memristors per array;

64 arrays per core = 4M memristors per core;

256 cores per chip = 16k arrays per chip.

This gives us 1 billion (1 x 109) memristors to program.

In complete serial fashion, this takes

(1 x 109) x (5 x 10-6) = 5 x 103 seconds (1.4 hours) with precision voltages.

(1 x 109) x (2 x 10-3) = 2 x 106 seconds (555 hours) with precision timing.

The authors note that a 1T1M design enables a whole row to be programmed

in parallel, which will reduce these times by 256x; this is one reason a 1T1M design

is useful.

5 x 103/256 = 20 seconds

2 x 106/256 = 7800 seconds = 2 hours
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Another option might be to program an array serially, but program all the

arrays on the chip in parallel, which will reduce the serial time by 16,384x

5 x 103/16384 = 0.3 seconds

2 x 106/16384 = 120 seconds

Combining these two options (1 row in each array in parallel, all arrays in

parallel) reduces the time by

256 x 16,384 = 4 x 106 time reduction

5 x 103/4 x 106 = 1 ms

2 x 106/4 x 106 = 0.5 seconds

So precision voltage programming with a 1T1M design (1 row programmed in

parallel) is clearly practical. Precision timing programming will need to utilize some

additional parallelism. Our design assume a precision voltage approach is used.

4.9 Simulation info

With our design, we can use a standard workstation to simulate a single

MNIST-relevant neuron (256 inputs, 1 neuron) using a test vector with a depth

of 256 in about 15 minutes, which generates 1-2 GB of data. This allows us to

carefully examine many aspects of the design in great detail (such as the factors

affecting the comparator speed). This simulation condition was used extensively

to provide many of the results above. An array that is close to MNIST-sized (256
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inputs, 32 neurons) takes about 3 days to run, and generates about 115 GB of data.

This can be done occasionally to investigate certain aspects of large array designs

(such as the power gating analysis that verified the tile concept validity). These

simulations are only possible because the memristor model we used is computation-

ally efficient; more complex models [63] would limit practical simulations to arrays

with perhaps 8 neurons. An MNIST-sized array (256 inputs, 64 neurons) using the

model shown in Figure 4.12 requires 3 weeks to simulate and would generate 1 TB

of data; it would be essentially impractical to simulate this size array on a single

workstation. These larger arrays require XYCE [79], a parallel SPICE simulator to

run, or need to be simulated in a partitioned fashion. These simulation results will

be published as part of a comparison of a wide variety of neural net implementations

of MNIST [80].
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Chapter 5: Mapping the neural network onto potential architectures

In this chapter we will describe the methodology and tools used to map the

three applications (MNIST, CSlite, and AES-256) onto a variety of tile sizes, in order

to determine the best possible tile size for a general purpose neural processor. We

we will also provide the rationale for using application area as the primary criteria

to reduce a large number of possible alternatives down to the most promising few.

5.1 Integrated simulation environment

To facilitate co-design of applications, architectures and technologies for neural

processors, it would be highly desirable to have a workflow to:

• Create and train a neural network for a specific application;

• Map this neural network onto an architecture with defined attributes such as

array size, weight precision and range, and allowed connectivity;

• Verify application accuracy for the NN architecture chosen;

• Perform detailed functional and circuit simulations to validate the application

and characterize important metrics such as power, performance, and area.
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This would enable faster co-design iterations, and would lead to trade-offs that op-

timize important application and system level attributes. There has been progress

in developing such tools; a workflow and toolchain for mapping spiking neural nets

(SNN) to a specific architecture that minimizes communication costs is described

in [81].

Loom [24] is a set of tools to facilitate the implementation of algorithms as Thresh-

old Gate Networks. Neural nets can be treated as TGNs. The implementation

process typically starts by breaking the application into steps or distinct subfunc-

tions. These pieces are then implemented in turn. Finally, the partial TGNs are

combined into a whole TGN and simulated. Loom has tools for each of these steps.

Loom provides two methods for generating the weights and network connectivity

needed to define a TGN. The first method trains a pre-defined network; the de-

signer creates the network topology, including nodes and interconnectivity. It sup-

ports completely connected networks in which inputs connect to nodes in the hidden

and output layers, and it can assign weights drawn from a restricted set of values

and with limited precision. This makes it a very effective tool for creating and an-

alyzing memristor based crossbar architectures.

The second method builds up a network using a linear separation algorithm [82].

This technique starts with a single neuron and then adds additional neurons to

further divide the input space until all outputs are correct. The weights for each

neuron are found using linear programming. The advantage of this method is that

the TGN size and connectivity do not have to be provided a priori. This capability

is presently under development.
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Loom also contains tools for merging interconnected TGNs into a single TGN and

for discarding redundant or unconnected neurons. TGNs can also be created out

of designs from a library of commonly used circuits. Loom combines all the TGNs

while respecting data and ordering dependencies, including recurrent feedback.

Loom can also simulate the behavior of a TGN. It converts the TGN into a weight

matrix and state vector and performs the multiply-accumulate-threshold operations

layer by layer. Loom can execute the simulations using multicore CPUs or GPUs.

Simulations allow those porting an algorithm to a TGN to test and debug the imple-

mentation with complete visibility into the network state. This approach also helps

attribute errors to either the TGN itself or to a particular physical implementation.

One current limitation of Loom is that it assumes the smallest array is the best;

based on the neural network created, it will define the smallest array potentially

possible, and then determine the minimum number of arrays of that size that the

neural network can fit into. It will then gradually increase the number of arrays until

it reaches a user defined maximum. If the network has not been mapped correctly,

it will increase the array size and re-start the process. Loom was not developed with

the tile concept in mind, which enables arrays smaller than the theoretical mini-

mum size to be used. This capability can be incorporated by including an additional

loop in the mapping that starts with a (user-defined) tile size instead of an assumed

minimum; this loop can iterate over many tile sizes if desired, using estimated area

as an optimization goal. Once a set of possible tile sizes has been generated, the

smallest area alternative would be selected.

Currently, the methodology is to use Loom to map the applications onto a variety
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of arrays with different aspect ratios (ratio of inputs to outputs) and sizes. Each

of these array sizes will require a certain number of arrays of that size to fully im-

plement the entire neural network for the application. Since Loom can partition

and decompose the neural network into its functional pieces, different sized arrays

will be optimal for the various pieces. The next step is to determine the minimum

number of tiles of various sizes that would be needed to create both the pieces and

the whole neural network; for the general purpose neural network, we are assuming

a single tile size will be used. For each tile size explored, the total area for the neural

network can be estimated. The most suitable tiles will be identified by ranking them

according to area.

Let us use the CSlite application to work through the process. The first step is to

use Loom to map each of the four modules (ByteDecoder, Signature, SetHold, and

Detector) to a wide variety of array sizes, and then identify the subset that are the

best fit. Best fit is defined by looking at the synapse utilization; the higher the uti-

lization, the better the fit. Table 5.1 and Table 5.2 show how ByteDecoder maps to

8x16 and 8x256 arrays; the utilization is 100% for each, but 8x16 requires 16 arrays

and 8x256 only 1 array (for a single byte: there will need to be 6 total, one for each

byte). Therefore 8x256 is selected as the better fit, and that array size will be used

for the special purpose design to be discussed later. Now we map the potential tile

sizes to all the possible arrays; Table 5.3 and Table 5.4 show this mapping to the

previous two arrays using a 64x16 tile. For either array size, you will need 16 tiles

(the actual total will be 6 x 16 = 96); looking at all possible tile-to-array mappings

identifies this as the minimum. This tells us we need 96 64x16 tiles to implement
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the ByteDecoder neural net for CSlite.

Table 5.1: Mapping ByteDecoder to 8x16 arrays
Array # Inputs Outputs Utilization

0 8 16 1.000
1 8 16 1.000
2 8 16 1.000
3 8 16 1.000
4 8 16 1.000
5 8 16 1.000
6 8 16 1.000
7 8 16 1.000
8 8 16 1.000
9 8 16 1.000
10 8 16 1.000
11 8 16 1.000
12 8 16 1.000
13 8 16 1.000
14 8 16 1.000
15 8 16 1.000

Table 5.2: Mapping ByteDecoder to 8x256 arrays
Array # Inputs Outputs Utilization

0 8 256 1.000

105



Table 5.3: Mapping 64x16 tiles to 8x16 arrays for ByteDecoder
Array # Inputs Outputs Utilization Vertical Horizontal Total Tiles

0 8 16 1.000 1 1 1
1 8 16 1.000 1 1 1
2 8 16 1.000 1 1 1
3 8 16 1.000 1 1 1
4 8 16 1.000 1 1 1
5 8 16 1.000 1 1 1
6 8 16 1.000 1 1 1
7 8 16 1.000 1 1 1
8 8 16 1.000 1 1 1
9 8 16 1.000 1 1 1
10 8 16 1.000 1 1 1
11 8 16 1.000 1 1 1
12 8 16 1.000 1 1 1
13 8 16 1.000 1 1 1
14 8 16 1.000 1 1 1
15 8 16 1.000 1 1 1

Total Tiles 16

Table 5.4: Mapping 64x16 tiles to 8x256 arrays for ByteDecoder
Array # Inputs Outputs Utilization Vertical Horizontal Total Tiles

0 8 256 1.000 1 16 16

Total Tiles 16
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We then repeat this process for the other modules; the results of this are in

Table 5.5 and Table 5.6. Looking at all the mapping data, we can also identify

the single array size (not tile size) that would be most suitable for CSlite, which

is 512x32. We will use this array size for what we call a limited purpose design

(LPD). While the special purpose design (SPD) will use a variety of array sizes,

each selected specifically for one module in the application, the LPD will be a single

array size selected for the entire application. This will give us a mechanism for

quantifying the value of the tile concept; if tiles were not possible, the LPD array

size would be the best fit to the application. It is straightforward to get a sense of

the mapping efficiency by looking at the total number of synapses needed (inputs x

outputs). Comparing the total needed for the best array to that for a given tile, the

64x16 tile size is a poor fit for the ByteDecoder, OK for the SetHold, and excellent

for the Signature and Detector modules. In fact, the 64x16 tile is 10% more efficient

than the “Best Array” for the Detector module! How can this be? This is a direct

result of the tile concept; without the tile feature, the minimum size array is 512x32;

this size is a good fit for most of the Detector neural net, but a very poor fit for

two of the arrays (as shown in Table 5.7). The 64x16 tile maps perfectly into the

512x32 arrays, and then nearly perfectly into the two smaller arrays also needed.

Table 5.5: Finding Best Array Sizes for the CSlite SPD
Module Best Array #BestArrays

ByteDecoder 8x256 6
Signature 64x16 140
SetHold 33x16 125
Detector 512x32 12
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Table 5.6: Mapping 64x16 tiles and 512x32 arrays to CSlite
Module 64x16 tiles 64x16 efficiency 512x32 arrays 512x32 efficiency

ByteDecoder 96 0.078 48 0.016
Signature 140 1.000 63 0.139
SetHold 125 0.516 63 0.064
Detector 174 1.100 12 1.000

Table 5.7: Mapping 64x16 tiles to 512x32 arrays for the Detector
Array # Inputs Outputs Utilization Vertical Horizontal Total Tiles

0 507 32 0.990 8 2 16
1 507 31 0.959 8 2 16
2 507 26 0.805 8 2 16
3 507 26 0.805 8 2 16
4 507 26 0.805 8 2 16
5 507 26 0.805 8 2 16
6 507 26 0.805 8 2 16
7 508 26 0.806 8 2 16
8 507 26 0.805 8 2 16
9 507 24 0.743 8 2 16
10 196 32 0.383 4 2 8
11 189 20 0.231 3 2 6

Total Tiles 174
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Table 5.8 and Table 5.9 provide an example of the complete output of this

methodology for the CSlite application and every tile size considered. These tables

rank tiles by the area required to implement the CSlite application, assuming no

communication network is needed; outputs are assumed to be directly connected to

the appropriate inputs. The tile sizes are ordered so that the most efficient area

mappings are in the first table, and the least efficient are in the second table. Ratio

refers to how much larger the calculated area is compared to the minimum; there

are a reasonable number of tile sizes that are fairly close to the minimum.
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Table 5.8: Ranking tiles for CSlite mapping using area (mm2); first table
Inputs Neurons Byte Decoder Signature SetHold Detector CSlite Ratio

64 16 0.117 0.171 0.153 0.213 0.655 1.00
32 8 0.093 0.144 0.121 0.324 0.681 1.04
32 16 0.078 0.226 0.101 0.280 0.686 1.05
64 32 0.103 0.274 0.135 0.186 0.698 1.07
128 32 0.156 0.208 0.204 0.143 0.710 1.08
64 8 0.147 0.191 0.191 0.258 0.788 1.20
32 4 0.123 0.160 0.160 0.391 0.834 1.27
128 16 0.185 0.241 0.241 0.169 0.836 1.28
128 64 0.141 0.370 0.188 0.182 0.882 1.35
16 8 0.071 0.221 0.093 0.497 0.883 1.35
32 32 0.070 0.375 0.275 0.253 0.974 1.49
256 64 0.221 0.294 0.294 0.166 0.975 1.49
16 4 0.087 0.226 0.113 0.551 0.976 1.49
256 32 0.250 0.328 0.328 0.114 1.020 1.56
64 64 0.095 0.500 0.250 0.226 1.072 1.64
64 4 0.206 0.268 0.268 0.344 1.087 1.66
128 8 0.243 0.317 0.317 0.229 1.106 1.69
16 16 0.064 0.371 0.249 0.458 1.142 1.74
32 2 0.183 0.239 0.239 0.557 1.217 1.86
256 128 0.206 0.550 0.275 0.223 1.255 1.92
256 16 0.308 0.400 0.400 0.160 1.269 1.94
16 2 0.118 0.306 0.153 0.712 1.288 1.97
8 4 0.068 0.267 0.089 0.867 1.291 1.97
512 128 0.328 0.437 0.437 0.191 1.393 2.13
128 128 0.134 0.635 0.357 0.279 1.405 2.15
8 2 0.084 0.219 0.110 1.017 1.430 2.18
8 8 0.061 0.375 0.158 0.842 1.435 2.19
512 64 0.357 0.475 0.475 0.149 1.456 2.22
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Table 5.9: Ranking tiles for CSlite mapping using area (mm2); second table
Inputs Neurons Byte Decoder Signature SetHold Detector CSlite Ratio

32 64 0.067 0.690 0.435 0.316 1.508 2.30
16 32 0.060 0.638 0.391 0.431 1.519 2.32
512 32 0.414 0.543 0.543 0.104 1.605 2.45
256 8 0.423 0.551 0.551 0.187 1.713 2.62
16 1 0.180 0.234 0.234 1.085 1.733 2.65
8 1 0.116 0.151 0.151 1.397 1.815 2.77
8 16 0.057 0.659 0.295 0.813 1.824 2.79
512 256 0.313 0.836 0.418 0.366 1.932 2.95
256 256 0.199 0.796 0.531 0.431 1.957 2.99
512 16 0.529 0.689 0.689 0.132 2.039 3.12
1024 128 0.571 0.761 0.761 0.190 2.283 3.49
1024 256 0.542 0.723 0.723 0.361 2.349 3.59
1024 64 0.628 0.837 0.837 0.157 2.460 3.76
8 32 0.055 1.165 0.570 0.785 2.574 3.93
1024 32 0.743 0.975 0.975 0.170 2.862 4.37
1024 512 0.528 1.407 0.704 0.704 3.342 5.10
512 512 0.306 1.633 0.816 0.714 3.470 5.30
1024 16 0.972 1.266 1.266 0.213 3.716 5.68
2048 128 1.056 1.409 1.409 0.264 4.138 6.32
2048 256 0.999 1.332 1.332 0.500 4.163 6.36
8 64 0.054 2.129 1.050 0.994 4.226 6.45
2048 64 1.171 1.561 1.561 0.293 4.586 7.00
2048 512 0.971 2.588 1.294 0.324 5.176 7.91
2048 32 1.400 1.837 1.837 0.321 5.395 8.24
1024 1024 0.694 2.776 1.388 1.388 6.246 9.54
2048 16 1.857 2.419 2.419 0.406 7.101 10.85
8 128 0.053 3.460 2.009 1.624 7.146 10.91
8 256 0.053 5.272 3.939 3.232 12.496 19.09
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5.2 Methodology for estimating area

The area calculations for the tiles (except for the unit cell, which has a layout),

use the nominal FET design dimensions (W x L) and scale this area by 35X; this

scaling factor is based on SRAM cell sizes as a function of technology nodes [70].

We will use a 256x64 array to demonstration our methodology.

The first component block is the input: Address Decoder, Multiplexer, DriverLatch,

and Row Driver. The Address Decoder is scaled to match the number of inputs,

and the Row Driver is scaled to match the number of neurons; the Multiplexer and

DriverLatch areas are independent of the tile size. For a 256x64 tile, the input block

is estimated to need 1689 μm2. The next component block is the array itself; this is

simply Inputs x Outputs x 2 x Unit Cell area; the estimate for a 256x64 tile is 3981

μm2. The final tile component is the comparator; the only scaling done here is based

on the number of inputs. Since small tiles are unlikely to need the full conductance

range that 4 diodes can provide, the number of diodes is scaled based on the tile

input size:

• ≤ 32 inputs, use 1 diode

• 64 inputs, use 2 diodes

• 128 inputs, use 3 diodes

• ≥ 256 inputs, use 4 diodes

For our example, we require 4 diodes, so the comparator area for the tile is (64 x
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55.1 = 3527 μm2). The total area needed can be found by multiplying this total

(9198 μm2) by the number of tiles required. For direct connections, there will not

be any area associated with moving addresses (register and NOC components). The

complete general purpose processor analysis will need to include the areas for these

functions. The address register (20 bits) is small (6.9 μm2 per neuron); the NOC

components are large (4000 μm2 and 43,164 μm2, respectively for the 2D mesh and

A2A switch). The NOC area will need to be amortized over the appropriate number

of tiles, which depends on the number of neurons in each tile.

If a 4F2 unit cell is used (0T1M), and the other circuits are placed underneath, the

area is reduced by <2X to 5217 μm2; this indicates the cost of the 1T1M unit cell

is reasonably small, given its clear benefits.

5.3 Use of area as a ranking mechanism

Total area can be used as the primary evaluation mechanism at this stage

because the other two major variables (power, timing) are dependent only on how

much of the tile is used, not the size of the tile itself. This can be illustrated with a

simple example; use the MNIST application, and assume a single tile size of 256 x

64. From simulations and the area estimations just described, we can estimate the

power, area, and timing. Simulations indicate a single neuron will require ≈ 38 μW

(2.46 mW for the whole array); this is split 60/40 between the array itself and the

comparator (the output changes infrequently, so the buffer consumes only ≈ 1μW
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per neuron). Our simulations also show that ≈ 300 MHz operation is possible.

The input layers of MNIST map “perfectly” into 196 x 64 arrays, so for this layer

a 256x64 array has too many inputs; the output layer maps into a 256 x 10 array;

now there are too many neurons.

The cost in timing is negligible, since it is almost completely driven by the com-

parator (T = 3.333 ns). The only additional timing cost is for the output layer,

where the circuit has to drive a larger array (in neurons); using results from the

component analysis, the cost is about 30 ps. The unused synapse weights can be

set to G0 = 0.01 μS, and the diodes and amplifiers in the comparator can be shut

down. This means the power cost is also very small, related to the fact that the

row driver has to be sized larger than necessary (about 7 μW for the output layer

neurons, essentially zero for the input layer neurons). The area cost is substantial,

since the output layer is 6.4X larger than necessary, and the input layers are 1.2X

larger. This means there are the following penalties for inefficient array sizing:

• Timing penalty is 1.01X

• Power penalty is 1.001X

• Area penalty is 1.63X

Given the large differences in these penalties, the use of area as the primary factor is

justified. This will not be the case when we evaluate the general purpose and special

purpose designs, since they will have different communication networks, which do

impose timing and power penalties that are larger than shown here. The area cost

of the different NOC options can be estimated fairly easily.
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5.4 Results of mapping the applications onto the

architectural options

We explore three applications (MNIST, CSlite, and AES-256), three networks

(direct connect, switch, mesh), and a large number of tile sizes (the two tables above

have 56 tile sizes in total). The following tables provide the area estimates for the

top 25 tile variations, grouped in three ways:

Table 5.10, Table 5.11, and Table 5.12 each rank the tiles for one network (across

all 3 applications);

Table 5.13, Table 5.14, and Table 5.15 each rank the tiles for one application (across

all 3 networks);

Table 5.16 is a combined overall ranking for the tiles (across all 3 applications and

all 3 networks).

The differing alternatives are combined into a single ranking in each table by taking

the geometric mean of the groupings. The geometric mean is an appropriate metric

when the application workloads are known, but the relative usage of each application

is not [33].

Geomean = [A ∗B ∗ C ∗ ... ∗N ]1/N (5.1)

The results indicate that there are a small number of tile sizes that are near the

top across all the rankings (256 x 32, 256 x 64, 128 x 32, 256 x 16, 128 x 16). It is

interesting to note that the aspect ratios (inputs/outputs) of the arrays that provide
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the best mappings include only 8:1, 4:1, and 16:1; square arrays are not optimal.

Additionally, only two input sizes (128 and 256) are in the top group, although

n=64 and n=512 tile sizes are near the top for some of the rankings. The tables

also show that the A2A switch designs consistently have smaller areas than the 2D

mesh designs (see Table 5.13, Table 5.14, Table 5.15, and Table 5.16). We will focus

on the few tile sizes that are most efficient in comparing our general purpose neural

processor to the special purpose and limited purpose designs (SPD, LPD).

116



Table 5.10: Ranking tiles for direct connect network using area (mm2)
Inputs Neurons CSlite AES-256 MNIST GeoMean Ratio

128 32 0.710 1.404 0.058 0.388 1.00
64 32 0.698 1.406 0.060 0.389 1.00
64 16 0.655 1.509 0.064 0.398 1.03
256 64 0.975 1.554 0.046 0.412 1.06
128 64 0.882 1.417 0.059 0.419 1.08
256 32 1.020 1.628 0.047 0.427 1.10
64 64 1.072 1.497 0.052 0.436 1.13
128 16 0.836 1.573 0.065 0.441 1.14
32 16 0.686 1.700 0.084 0.461 1.19
64 8 0.788 1.827 0.080 0.486 1.25
32 32 0.974 1.653 0.073 0.490 1.27
32 8 0.681 1.943 0.101 0.511 1.32
256 16 1.269 1.951 0.054 0.513 1.32
256 128 1.255 1.736 0.086 0.572 1.48
128 8 1.106 2.029 0.086 0.578 1.49
32 64 1.508 1.822 0.072 0.583 1.50
128 128 1.405 1.795 0.100 0.632 1.63
512 128 1.393 2.322 0.082 0.642 1.66
512 64 1.456 2.511 0.074 0.648 1.67
32 4 0.834 2.561 0.131 0.653 1.69
64 4 1.087 2.561 0.109 0.673 1.74
512 32 1.605 2.700 0.078 0.695 1.79
256 8 1.713 2.650 0.075 0.698 1.80
16 8 0.883 2.709 0.155 0.718 1.85
16 16 1.142 2.519 0.130 0.721 1.86

117



Table 5.11: Ranking tiles for A2A switch network using area (mm2)
Inputs Neurons CSlite AES-256 MNIST GeoMean Ratio

256 32 2.120 3.424 0.097 0.841 1.000
256 64 2.166 3.485 0.102 0.878 1.044
256 16 2.381 3.702 0.102 0.949 1.129
128 32 1.940 3.874 0.159 1.095 1.302
128 16 2.055 3.908 0.161 1.137 1.352
512 64 2.557 4.442 0.130 1.217 1.448
256 8 2.804 4.378 0.123 1.227 1.460
512 32 2.649 4.496 0.128 1.236 1.470
512 128 2.539 4.253 0.149 1.270 1.510
128 64 2.567 4.156 0.171 1.351 1.607
128 8 2.332 4.319 0.182 1.352 1.609
512 16 3.079 5.108 0.141 1.491 1.774
64 16 2.157 5.012 0.210 1.506 1.791
256 128 2.895 4.027 0.198 1.521 1.808
64 8 2.233 5.218 0.226 1.622 1.929
64 32 2.529 5.134 0.217 1.679 1.997
64 4 2.509 5.952 0.253 1.943 2.310
1024 64 3.516 6.353 0.187 2.044 2.431
1024 128 3.361 5.974 0.210 2.054 2.443
512 256 3.595 4.178 0.291 2.092 2.489
64 64 4.106 5.765 0.198 2.163 2.573
1024 32 3.902 6.639 0.190 2.217 2.637
1024 256 3.517 5.817 0.271 2.352 2.798
128 128 4.236 5.434 0.303 2.639 3.138
1024 512 5.049 5.847 0.266 2.801 3.331
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Table 5.12: Ranking tiles for 2D mesh network using area (mm2)
Inputs Neurons CSlite AES-256 MNIST GeoMean Ratio

256 32 2.631 4.201 0.121 1.101 1.000
256 64 2.718 4.333 0.128 1.147 1.042
256 16 2.896 4.454 0.124 1.171 1.063
256 8 3.310 5.120 0.145 1.349 1.225
512 32 3.134 5.273 0.152 1.358 1.233
512 64 3.067 5.289 0.156 1.364 1.239
128 32 2.511 4.964 0.206 1.370 1.244
128 16 2.620 4.932 0.205 1.384 1.257
512 128 3.070 5.117 0.181 1.416 1.286
512 16 3.560 5.860 0.164 1.506 1.367
128 8 2.900 5.322 0.226 1.516 1.377
128 64 3.348 5.379 0.223 1.590 1.444
256 128 3.656 5.058 0.250 1.667 1.513
64 16 2.854 6.577 0.277 1.733 1.574
64 8 2.903 6.731 0.293 1.790 1.625
1024 64 4.005 7.201 0.213 1.832 1.663
1024 128 3.861 6.837 0.241 1.854 1.683
64 32 3.378 6.807 0.290 1.882 1.709
1024 32 4.383 7.416 0.213 1.907 1.731
64 4 3.168 7.465 0.319 1.962 1.781
512 256 4.366 5.074 0.354 1.987 1.804
1024 256 4.059 6.712 0.312 2.041 1.854
1024 16 5.225 8.670 0.242 2.221 2.017
64 64 5.512 7.696 0.265 2.241 2.035
1024 512 5.841 6.763 0.307 2.299 2.087
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Table 5.13: Ranking tiles for CSlite application using area (mm2)
Inputs Neurons Direct A2A Switch 2D Mesh Geomean Ratio

128 32 0.710 1.940 2.511 1.512 1.000
64 16 0.655 2.157 2.854 1.591 1.052
128 16 0.836 2.055 2.620 1.651 1.091
64 8 0.788 2.233 2.903 1.722 1.139
256 32 1.020 2.120 2.631 1.785 1.180
256 64 0.975 2.166 2.718 1.790 1.184
64 32 0.698 2.529 3.378 1.813 1.199
32 8 0.681 2.660 3.577 1.865 1.233
128 8 1.106 2.332 2.900 1.955 1.293
128 64 0.882 2.567 3.348 1.964 1.299
32 4 0.834 2.664 3.512 1.983 1.311
64 4 1.087 2.509 3.168 2.052 1.357
32 16 0.686 3.062 4.163 2.060 1.362
256 16 1.269 2.381 2.896 2.061 1.362
512 128 1.393 2.539 3.070 2.214 1.464
512 64 1.456 2.557 3.067 2.252 1.489
256 128 1.255 2.895 3.656 2.368 1.566
512 32 1.605 2.649 3.134 2.371 1.567
32 2 1.217 3.008 3.838 2.413 1.595
256 8 1.713 2.804 3.310 2.514 1.662
16 4 0.976 4.008 5.413 2.766 1.829
16 8 0.883 4.213 5.758 2.777 1.836
512 16 2.039 3.079 3.560 2.817 1.863
64 64 1.072 4.106 5.512 2.895 1.914
32 32 0.974 4.709 6.441 3.091 2.044

120



Table 5.14: Ranking tiles for AES-256 application using area (mm2)
Inputs Neurons Direct A2A Switch 2D Mesh Geomean Ratio

256 32 1.628 3.424 4.201 2.861 1.000
256 64 1.554 3.485 4.333 2.863 1.001
128 32 1.404 3.874 4.964 3.000 1.049
128 16 1.573 3.908 4.932 3.118 1.090
128 64 1.417 4.156 5.379 3.164 1.106
256 16 1.951 3.702 4.454 3.180 1.112
256 128 1.736 4.027 5.058 3.282 1.147
128 8 2.029 4.319 5.322 3.600 1.258
512 256 2.246 4.178 5.074 3.624 1.267
64 32 1.406 5.134 6.807 3.663 1.280
64 16 1.509 5.012 6.577 3.678 1.285
512 128 2.322 4.253 5.117 3.697 1.292
256 256 1.991 4.687 5.937 3.812 1.332
512 64 2.511 4.442 5.289 3.893 1.360
256 8 2.650 4.378 5.120 3.902 1.364
512 32 2.700 4.496 5.273 4.000 1.398
64 8 1.827 5.218 6.731 4.004 1.399
64 64 1.497 5.765 7.696 4.050 1.416
128 128 1.795 5.434 7.090 4.104 1.435
512 16 3.357 5.108 5.860 4.649 1.625
64 4 2.561 5.952 7.465 4.846 1.694
32 16 1.700 7.630 10.320 5.115 1.788
32 32 1.653 8.033 10.936 5.257 1.837
32 8 1.943 7.626 10.201 5.327 1.862
1024 256 3.884 5.817 6.712 5.333 1.864
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Table 5.15: Ranking tiles for MNIST application using area (mm2)
Inputs Neurons Direct A2A Switch 2D Mesh Geomean Ratio

256 32 0.047 0.097 0.121 0.082 1.000
256 64 0.046 0.102 0.128 0.084 1.030
256 16 0.054 0.102 0.124 0.088 1.079
256 8 0.075 0.123 0.145 0.110 1.342
512 32 0.078 0.128 0.152 0.115 1.399
512 64 0.074 0.130 0.156 0.115 1.402
128 32 0.058 0.159 0.206 0.124 1.517
128 16 0.065 0.161 0.205 0.129 1.578
512 16 0.094 0.141 0.164 0.129 1.579
512 128 0.082 0.149 0.181 0.130 1.589
128 64 0.059 0.171 0.223 0.131 1.598
64 64 0.052 0.198 0.265 0.139 1.701
128 8 0.086 0.182 0.226 0.152 1.858
64 16 0.064 0.210 0.277 0.155 1.887
64 32 0.060 0.217 0.290 0.156 1.900
256 128 0.086 0.198 0.250 0.162 1.979
1024 64 0.131 0.187 0.213 0.173 2.115
64 8 0.080 0.226 0.293 0.174 2.123
1024 32 0.139 0.190 0.213 0.178 2.171
1024 128 0.143 0.210 0.241 0.193 2.359
64 4 0.109 0.253 0.319 0.207 2.522
1024 16 0.172 0.220 0.242 0.209 2.553
128 128 0.100 0.303 0.396 0.229 2.795
32 32 0.073 0.354 0.484 0.232 2.836
32 64 0.072 0.364 0.500 0.236 2.877
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Table 5.16: Ranking tiles across applications and networks using area (mm2)
Inputs Neurons Direct A2A Switch 2D Mesh Geomean Ratio

256 32 0.427 0.841 1.101 0.734 1.000
256 64 0.412 0.878 1.147 0.746 1.016
256 16 0.513 0.949 1.171 0.829 1.130
128 32 0.388 1.095 1.370 0.835 1.137
128 16 0.441 1.137 1.384 0.886 1.207
128 64 0.419 1.351 1.590 0.965 1.316
64 16 0.398 1.506 1.733 1.012 1.380
512 64 0.648 1.217 1.364 1.024 1.396
512 128 0.642 1.270 1.416 1.049 1.430
256 8 0.698 1.227 1.349 1.049 1.430
512 32 0.695 1.236 1.358 1.053 1.435
128 8 0.578 1.352 1.516 1.058 1.442
64 32 0.389 1.679 1.882 1.071 1.460
64 8 0.486 1.622 1.790 1.121 1.528
256 128 0.572 1.521 1.667 1.132 1.542
512 16 0.862 1.491 1.506 1.246 1.699
64 64 0.436 2.163 2.241 1.283 1.749
64 4 0.673 1.943 1.962 1.369 1.865
512 256 0.879 2.092 1.987 1.541 2.099
32 16 0.461 2.965 2.802 1.565 2.133
32 8 0.511 2.822 2.681 1.569 2.138
128 128 0.632 2.639 2.498 1.609 2.193
1024 128 1.096 2.054 1.854 1.610 2.194
1024 64 1.125 2.044 1.832 1.615 2.201
1024 32 1.245 2.217 1.907 1.740 2.371
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Chapter 6: Evaluation

The primary evaluation is to compare the general purpose neural processors

(GP), utilizing a single tile mapping and network (NOC), to the special purpose

designs (SPD). In the SPD, each component of the application uses the most effi-

cient array size, and direct connections are used (no NOC). For each application, we

will also develop a limited purpose design (LPD); this design will assume a single

array size for the entire application, but will still assume direct connections. Finally,

we will compare our GP designs that use tiles, to GP designs that assume the tile

concept had not been invented. This will provide a quantification of the value of

the tile concept.

6.1 Criteria

The primary criteria for any design is performance, but it is usually better to

evaluate options on a normalized basis, in terms of Performance/Watt or Perfor-

mance/Cost [22,77]. Since neural nets typically are used for streaming applications

or as accelerators, the proper performance metric is application throughput, defined

as number of new input bits per second. While costs for a design can be estimated,
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using chip area is a reasonable proxy [77]. This provides us with two primary met-

rics:

• Throughput/Watt (T/W)

• Throughput/Area (T/A)

with Watts/Area (W/A) as a constraint due to cooling.

The most important comparison will be based on the relative capabilities of the SPD

and GP neural processing architectures. Current architectures are also evaluated

in this way, and will serve as a guide for our conclusion [21, 83]. To justify highly

specialized architectures, typical improvements in the 100X range in Ops/Watt and

Ops/Area are needed, absent a compelling need for ultimate performance or energy

efficiency. If the GP neural processor is within 10X of the SPD options in both T/W

and T/A, that will be a strong argument for the practicality of a general purpose

neural processor. If the GP capabilities are ≥100X worse in both T/W and T/A,

this would indicate a general purpose neural processor, based on our design, is not

practical.

6.2 Methodology

For each design point, the area will be calculated as described previously. For

directly connected designs, the timing will be straightforward; it will be the speed of

the comparator (3.333 ns/300 MHz). For the networked designs, a worst-case tim-
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ing analysis will be done based on the actual size of the design (number of neurons)

needed for the application. Worst-case latency is especially important for neural nets

in time critical scenarios, such as on-line translation services [33] and some types of

cybersecurity applications. Keep in mind that the initial analysis of the hierarchical

A2A suggested that approximately 500,000 neurons are reachable in only 6 cycles

(or 6 ns); this means the time delay for this design will at most be a small multiple

of the comparator delay (assumed to be 4 ns to account for the possibility of hori-

zontal tiling). The 2D mesh NOC has a much larger time delay for worst-case timing.

The power data from LTspice simulations and the actual NOC implementa-

tions have been parameterized in terms of inputs, neurons, clock frequency, and tile

size. Once the compute + communicate timing is known, it will be straightforward

to estimate the power. Finally the T/W and T/A metrics (and W/A) will be cal-

culated, assuming a chip size of 10 mm2. This will enable the capabilities of the

designs to be compared.

Let us work through an example calculation, using the AES-256 application

and one of the general purpose tile sizes (in this case, a 128x16 tile), and assuming

the A2A switch is used for the NOC. This will require 817 tiles in total, which

is found by determining the number of tiles needed for each of the components

(MixAB, MixC, State Machine, SubBytes) and adding them together. The first

part of the analysis is to find the compute time and the communication time; we

assume they do not overlap. The compute time for tiles will always be assumed
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to be 4 ns, allowing for the potential additional delay when inputs need to cross

multiple tiles. The communication time is found by determining how many switch

levels are needed. At level 1, a switch has 16 ports for connection to the tiles, and

each port is connected to 16 neurons (sparsity of communication leveraging). So we

can calculate the number of level 1 switches using:

Number of switches at Level 1 is

NS1 = #neurons/(16 * 16) = #neurons/256 = (817 * 16)/256 = 51.06, or 52

switches

This same ratio of switch ports continues at every successive level, so

NS2 = NS1/16 = 52/16 = 3.25, or 4 switches

NS3 = 0, since at any level up to 9 switches can directly connected (NS3 = 0 since

NS2 ≤ 9).

So we have 52 + 4 = 56 switches in total. For all of the applications we are looking

at, no NS3 switches will be needed. Since we will need two levels of switches, a

communication could pass through as many as 4 switches (2 up, 2 down); a switch

is assumed to have a latency of 1 ns, so the worst-case communication time is 4 ns.

This provides us enough information to calculate power, area, and timing.

Timing = Compute time + Communication time = 4 + 4 = 8 ns;

Frequency = 125 MHz = 0.125 GHz

The area is the previous total tile area (3.868 mm2), which already includes any

level 1 switches, plus the area of the level 2 switches (4 * .043 mm2).

Area (mm2) = 3.868 + (4 * 0.043) = 4.040 mm2
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The total power includes the following. The values come from the neuron sim-

ulations, except for the NOC power, which is estimated from a scaled down version

of the A2A switch (or from the measurement of the FPGA for the 2D mesh).

Input circuits (excluding the row driver) = 0.11 μW/GHz/input/tile

Row driver = 0.01 μW/GHz/input/neuron/tile

Output buffer = 6 μW/GHz/neuron/tile

Switch = 250.8 μW/GHz/switch

The unit cell and the comparator need to have their power calculated slightly dif-

ferently, since these circuits are always using power while active. We will scale this

power based on the ratio of compute time to total time (or activity factor).

α = compute/(compute + communicate) = 4/ (4 + 4) = 0.5

Unit cell = α * 0.0825 μW/input/neuron/tile

Comparator = α * 15 μW/neuron/tile

So now we can calculate the total power for our example

Input = 0.11 ∗ 0.125 ∗ 128 ∗ 817 = 1437.9µW (6.1)

Rowdriver = 0.01 ∗ 0.125 ∗ 128 ∗ 16 ∗ 817 = 2091.5µW (6.2)

Outputbuffer = 6.0 ∗ 0.125 ∗ 16 ∗ 817 = 9804.0µW (6.3)

Switch = 250.8 ∗ 0.125 ∗ 56 = 1755.6µW (6.4)

UnitCell = 0.5 ∗ 0.0825 ∗ 128 ∗ 16 ∗ 817 = 69020.2µW (6.5)
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Comparator = 0.5 ∗ 15 ∗ 16 ∗ 817 = 98040.0µW (6.6)

Total = 1437.9+2091.5+9804.0+1755.6+69020.2+98040.0 = 182149.2µW = 182.1mW

(6.7)

The dominant factors in the power are the unit cells and the comparator; for this ex-

ample, they comprise 37.9% and 53.8% of the power, respectively (combined, 91.7%

of the total).

With this information, we can estimate the key metrics:

Throughput = Bits/cycle ∗ cycles/sec = 128 ∗ 125 ∗ 106 = 16Gbps (6.8)

T/W = 16 ∗ 109/182.1 ∗ 10-3 = 87.9Gbps/W (6.9)

T/A = 16 ∗ 109/4.040 = 3.96Gbps/mm2 (6.10)

W/A = 182.1 ∗ 10-3/4.040 = 0.045W/mm2 (6.11)

As long as W/mm2 stays below 0.5, power density is not an issue (air cooling will

be possible).
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6.3 Special purpose designs and capabilities for

the three applications

For each of the three applications (MNIST, CSlite, and AES-256) it is possi-

ble to construct a highly specialized or special purpose design (SPD) by identifying

the optimal array size for each component of the application. Optimal array size

can be found by using array utilization, as described in the previous chapter, or by

inspection of the mapping. We will use the following array sizes for our 3 SPDs:

MNIST:

Input layer: 4 (192x64) arrays

Output layer: 1 (256x10) array

CSlite:

Byte Decoder: 6 (8x256) arrays

Signature: 140 (64x16) arrays

SetHold: 125 (33x16) arrays

Detector 12 (512x32) arrays

AES-256:

MixAB: 8 (256x256) arrays

MixC: 16 (64x32) arrays

State Machine: 1 (16x16) array

SubBytes 1: 256 (16x16) arrays

SubBytes 2: 208 (256x16) arrays
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There are two different array sizes for the SubBytes component, because the indi-

vidual parts require very different array sizes. As you can see, the SPD array sizes

being used vary significantly (8x256) to (16x16) to (512x32). Using these array sizes,

and assuming direct connections are used (no NOC), we can estimate the T/W and

T/A for the three applications (Table 6.1). The MNIST T/W and T/A values are

so much higher than the other applications because there are 768 bits of input on

each cycle (vs. 8 bits for CSlite and 128 for AES-256).

Table 6.1: Calculation of metrics for the 3 SPD architectures

Application T/W (Gbps/W) T/A (Gbps/mm2) W/A (W/mm2)

SPD.MNIST 25818.1 6859.6 0.27
SPD.CSlite 17.2 5.6 0.33
SPD.AES256 129.7 33.8 0.26

6.4 Limited purpose designs and capabilities for

the three applications

The SPD are extremely specialized; we can also look at designs that are slightly

less specialized, or limited purpose designs (LPD) for the applications. For the LPD

we assume that each application uses a single array size for the whole application.

This will give us some insight into how much of the SPD T/W and T/A advantages

are due to the extreme specialization. The array size is chosen to use the maximum

input size and output size (or an integer fraction of the maximum output size). We
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will analyze the following designs:

MNIST:

LPD.MNIST.256X64: 5 (256x64) arrays

LPD.MNIST.256X16: 17 (256x16) arrays

CSlite:

LPD.CSlite.512x32: 186 (512x32) arrays

LPD.CSlite.512x16: 370 (512x16) arrays

AES-256:

LPD.AES256.256X16: 609 (256x16) arrays

We find the following: (Table 6.2)

Table 6.2: Calculation of metrics for the application-centric LPDs

Application T/W (Gbps/W) T/A (Gbps/mm2) W/A (W/mm2)

LPD.MNIST.256X64 18547.1 5009.7 0.27
LPD.MNIST.256X16 21599.8 4230.5 0.20
LPD.CSlite.512x32 6.6 1.5 0.23
LPD.CSlite.512x16 6.6 1.2 0.18
LPD.AES256.256X16 100.5 18.5 0.26

The CSlite SPD is much better (3X to 4X higher in T/W and T/A) than the

LPD; for the other applications, the difference is more modest (1.5X to 2X). The

highly specialized array selection clearly provides benefits.
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6.5 General purpose designs and capabilities

Finally, we can look at our general purpose designs. We will look at two dif-

ferent tile sizes (128x16 and 256x64), which represent the smallest and largest of

the tile sizes that were at the top of the Geomean tile rankings. We will also look

at two array sizes (512x32 and 512x16); these represent the best array sizes for the

applications assuming tiles had not been invented. Including this in our exploration

will help quantify the value of the tile feature. The Detector component in CSlite

is the limiting factor in selecting an array, and is best matched to a 512x32 array.

Since many of the other components are reasonably well-matched to x16 array sizes,

we also include this. We will also look at both the A2A switch and the 2D mesh

NOC options.

Our estimates for these general purpose designs using the A2A switch are

(Table 6.3):

and for the 2D Mesh (Table 6.4):

The T/W values are not much different for the A2A and 2D Mesh NOC op-

tions, but there is a significant difference in the T/A values (3X to 8X). The tile

feature shows a clear advantage when compared to the array, in both T/W (1.5X to

2X) and T/A (1.2X to 1.5X). The two tile options (128x16, 256x64) are fairly close

in T/W and T/A (within about 1.2X).
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Table 6.3: Calculation of metrics for the GP designs with the A2A switch

Application T/W (Gbps/W) T/A (Gbps/mm2) W/A (W/mm2)

GP.MNIST.128x16Tile 12629.5 795.3 0.06
GP.MNIST.256x64Tile 15479.1 1252.9 0.08
GP.MNIST.512x32Array 10947.7 998.5 0.09
GP.MNIST.512x16Array 11503.8 904.9 0.08
GP.CSlite.128x16Tile 10.3 0.47 0.05
GP.CSlite.256x64Tile 7.6 0.44 0.06
GP.CSlite.512x32Array 5.5 0.37 0.07
GP.CSlite.512x16Array 5.5 0.32 0.06
GP.AES256.128x16Tile 87.8 3.96 0.05
GP.AES256.256x64Tile 76.6 4.47 0.06
GP.AES256.512x32Array 52.6 3.49 0.07
GP.AES256.512x16Array 53.7 3.08 0.06

Table 6.4: Calculation of metrics for the GP designs with the 2D mesh router

Application T/W (Gbps/W) T/A (Gbps/mm2) W/A (W/mm2)

GP.MNIST.128x16Tile 12566.6 249.48 0.02
GP.MNIST.256x64Tile 15239.7 460.80 0.03
GP.MNIST.512x32Array 10880.6 389.61 0.04
GP.MNIST.512x16Array 11475.3 361.13 0.03
GP.CSlite.128x16Tile 10.3 0.07 0.01
GP.CSlite.256x64Tile 7.5 0.07 0.01
GP.CSlite.512x32Array 5.5 0.06 0.01
GP.CSlite.512x16Array 5.5 0.05 0.01
GP.AES256.128x16Tile 87.2 0.43 0.00
GP.AES256.256x64Tile 75.1 0.54 0.01
GP.AES256.512x32Array 52.1 0.44 0.01
GP.AES256.512x16Array 53.4 0.41 0.01
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6.6 Analysis

We will use the Geomean calculation, combining all 3 applications, to compare

the SPD and GP designs. The results are shown in Table 6.5.

Table 6.5: Combined Results using Geomean for the SPD (no NOC) and GP (A2A
and 2D mesh) designs

Design type T/W (Gbps/W) T/A (Gbps/mm2) W/A (W/mm2)

SPD 385.9 108.9 0.28
GP.128x16Tile.A2A 225.5 11.4 0.05
GP.256x64Tile.A2A 208.3 13.5 0.07
GP.512x32Array.A2A 147.2 10.8 0.07
GP.512x16Array.A2A 150.5 9.6 0.06
GP.128x16Tile.Mesh 224.0 1.9 0.01
GP.256x64Tile.Mesh 204.7 2.5 0.01
GP.512x32Array.Mesh 146.0 2.2 0.01
GP.512x16Array.Mesh 149.8 2.0 0.01

The SPD is 1.8X better in T/W than the GP designs using tiles, and 8X to 10X

better in T/A than the GP tile design with the A2A switch (40 - 50X better than the

GP tile design with the 2D mesh). The improvement in T/W for the SPD is largely

a result of having direct connections between neurons; a recent study shows that

designing convolutional neural networks for specific data movement characteristics

optimizes energy efficiency [84]. The T/W and T/A for the SPD are clearly better

than for the GP design, but the improvement is not overwhelming when considering

that the SPD is suitable for neural net inferencing on one application only. The GP

tile designs are useful across a range of applications. These results strongly indicate

that a GP tile design with an A2A switch is practical and worth building. The GP
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tile design with the 2D mesh is much more dependent on the specific communica-

tion patterns; for the worst-case analysis used here, it is clearly inferior to the A2A

switch option. These results are consistent with other studies that have explored

NOC designs [85–87]. The use of the tile feature provides clear benefits (1.5X in

T/W and 1.2X in T/A for the GP tile design versus the GP array design using the

A2A switch).
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Chapter 7: Conclusions

We have carefully explored a variety of details needed to build a general pur-

pose neural processor. Using a wider variety of applications than typically explored

(MNIST, CSlite, and AES-256), we developed a general purpose neural processor

that was shown to be very capable, even when compared to highly specialized de-

signs (application specific SPD). The GP processor has a T/W within 2X of the

SPD, and T/A within 10X; given the highly flexible application space of our GP

design, it is clearly worth building. Two communication networks (NOC) were ex-

plored: a traditional 2D mesh and a hierarchical all-to-all (A2A) high performance

switch. The A2A had clearly superior worst-case latency timing when compared

to the 2D mesh, which results in a 5X improvement in T/A. Leveraging sparsity of

communication helps to reduce the overall impact of either NOC on power and area.

This design incorporated a new feature, which we call a tile, to improve its

capabilities. The tile concept enables smaller arrays to be used by themselves for

an application, or they can be combined both horizontally (to increase the neurons)

or vertically (to increase the inputs). This makes the GP design much more flexi-

ble; clear improvements in both T/W (1.5X) and T/A (1.2X) were identified when
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compared to GP designs without the tile feature incorporated.

The tile design is enabled by the use of a compact (55 μm2), low power (15

μW), and fast (250 MHz) differential current comparator. This reduces the penalties

with using the tiles, and takes advantage of the 1/High Z differential architecture,

which is shown to reduce array power by 3-7X over other array architectures. The

comparator design included programmable memristors to minimize the effect of pa-

rameter and device mismatches, multiple controllable diodes to minimize power and

provide optimal operating range, Tstrobe controlled gates to increase performance,

and special bypass FETs to enable the tile concept.

We made a detailed examination of the potential limits on memristor cross-

bar array sizes, including parasitic effects on timing, voltage drops through devices

and parasitic resistances, and memristor programming precision. We identified pro-

cesses for adjusting the programmed conductance to account for these effects when

necessary. We provided general guidelines for mapping weights onto the array to

minimize these effects.

Finally, we suggested modest enhancements to the memristor model, and iden-

tified mechanisms for automating the inclusion of tiles in the Loom neural compiler.

- es ist vollbracht
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