This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative

Commons license, for uses protected by Copyright Law, contact the copyright holder or the
author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Building a Mobile Applications Knowledge Base
for the Linked Data Cloud

Primal Pappachan', Roberto Yus?, Prajit Kumar Das?,
Sharad Mehrotra!, Tim Finin®, and Anupam Joshi?

! University of California, Irvine, USA
{primal, sharad}@uci.edu,
2 University of Zaragoza, Zaragoza, Spain
ryus@unizar.es,
3 University of Maryland, Baltimore County, Baltimore, USA
{prajitl,finin, joshi}@umbc.edu

Abstract. The number of mobile applications (apps) in major app
stores exceeded one million in 2013. While app stores provide a central
point for storing app metadata, they often impose restrictions on the
access to this information thus limiting the potential to develop tools to
search, recommend, and analyze app information. A few projects have
circumvented these limitations and managed to create a dataset with
a substantial number of apps. However, accessing this information, es-
pecially for the purpose of an integrated view, is difficult as there is
no common standard for publishing data. We present Mobipedia, an
effort to gather this information from various sources and publish it as
RDF Linked Data. We describe the status of Mobipedia, which currently
has information on more than one million apps that has been extracted
from a number of unstructured and semi-structured sources. This paper
describes the ontology used to model information, the process for fact
extraction, and an overview of applications facilitated by Mobipedia.

Keywords: Semantic Web, Linked Data, SPARQL, Knowledge Base, Android

1 Introduction

The incredible penetration of mobile devices (e.g., smartphones and tablets) in
our lives in the last few years has been accompanied by an overwhelming growth
in the number of mobile applications (also called apps) available for various
platforms. The Google Play Store* and the Apple App Store®, which are the
main app stores currently, achieved the 1 million apps milestone in 2013, and,
as of May 2015, both stores offer more than 1.4 million apps. Therefore, today’s
users have an array of choices while installing apps of any kind for entertainment,
utility, or education. This has resulted in smart phones replacing other devices

4 https://play.google.com/store
5 https://www.apple.com/itunes/charts

14

as de facto medium for online browsing, social networking, and other activities,
and mobile apps replacing traditional desktop applications and web sites.

Most of the popular app stores, which are used for showcasing as well as
downloading apps, are proprietary and only offer a limited set of search func-
tionalities. Some of them also restrict crawlers from downloading the metadata
associated with apps and thus developers and researchers do not have access
to this huge data set. While there have been industrial and academic efforts to
gather information from app stores, the former is usually not freely available
and the latter is difficult to access as they use different methods to release the
datasets (e.g., websites, dumps, or databases) and various formats (from un-
structured to semi-structured data). As a result a new project in this domain
has to start either with a small data set of apps to analyze or repeat the process
of gathering information which might be already available.

If developers and researchers are able to access information about apps eas-
ily, it would facilitate interesting analyses. For instance, the information could
be used to warn users about malicious apps or apps that might request sensitive
data. Also, such information would be useful to help users in the difficult task of
selecting apps taking into account different parameters: from a purely technical
one (such as the version of the operating system supported, the device require-
ments, or the installation size), to app credibility (such as ratings, privacy grade),
among others. Therefore, we believe that having a centralized online knowledge
base (KB) integrating information about mobile apps from various datasets and
publishing it in an standard format would be very useful.

In this paper we present Mobipedia®, an evolving KB which integrates mo-
bile app information from different sources and publishes it following the prin-
ciples of Linked Data [1]. In its current version, Mobipedia contains metadata
of around 1 million Android apps, including permissions and libraries used, ex-
tracted from two research projects and the official Android website. The informa-
tion in Mobipedia, published in the standard Resource Description Framework
(RDF) language, can be accessed through web browsers, programs, and query
interfaces. To summarize, the major contributions presented in this paper are:

— Definition of an ontology to model app metadata information.

— Development of tools to extract facts from different sources and label the
information semantically with the Mobipedia ontology.

— Creation of multiple access methods for Mobipedia data (Linked Data inter-
face, SPARQL endpoint, and RDF dumps).

We present some example of interesting applications that can be developed
using Mobipedia focused on the domains of app recommendation and privacy
(based on our expertise). These applications can be developed agnostic of a
specific mobile platform as we are using Semantic Web technologies and stan-
dard languages for representation. In addition, it is also possible to access the
knowledge in Mobipedia locally on the device to draw inferences, for example,
suggesting apps to their users depending on their context.

5 http://mobipedia.link

15

The rest of the paper is organized as follows. In Section 2 we present Mo-
bipedia by explaining the ontology developed, the extraction of facts, and the
accessing mechanisms. In Section 3 we show some motivating applications that
can be developed using Mobipedia. Finally, in Section 4 we conclude and describe
the future directions we are planning to take.

2 The Mobipedia Knowledge Base

The Mobipedia project is composed of an ontology which models concepts related
to apps (see Section 2.1), an extraction module that generates facts from different
sources (see Section 2.2), and three mechanisms to access the information stored
(see Section 2.3). Figure 1 gives a high-level overview of the Mobipedia project
including its different modules and external libraries used.

Sources Extraction Accessing
Parser Semantic i
/7 PlayDrone JSON Labeling SPARQL Lg:tzd RDF
':, Goor -—Gson | 35| Concept endpoint Interface dumps
~—|PrivacyGrade | Mapper, /
Crawler Lt HTML ke 4\ I\ 4\
Android crawlerdj . I_V/‘rtuoso Pubby
: |eewieil] Triple Triole S
website Serializer riple Store

Fig. 1. Mobipedia overview.

2.1 Ontology

Mobile apps are programs designed to run on mobile devices (e.g., smartphones
and tablets) and, as any other program, have different versions and use external
libraries. Mobile devices are usually equipped with different sensors such as lo-
cation, accelerometer, or gyroscope. Apps can make use of these sensors to, for
example, offer personalized services depending on the user context. However, the
information generated by the sensors on mobile devices could be sensitive (e.g.,
the location of the user). Mobile operating systems have a permission system
which lets the user decide whether to grant an app request to access a specific
sensor information.

In Mobipedia’s ontology” we have modeled this information related to apps
which is independent of the mobile operating system. We considered using exist-
ing ontologies such as Dublin Core Metadata Initiative (DCMI) and Description
of a Project (DOAP) which are used to describe web resources and software
projects respectively. But as neither of them is focused on mobile development,

" http://mobipedia.link/ont/mobipedia.owl

16

the concepts and properties in those vocabularies do not match the require-
ments for modeling of mobile apps completely. Nevertheless, we linked some of
the terms in DCMI ontology with Mobipedia terms using owl:subClass0f. For
example, “DCMI:Creator” (http://dublincore.org/documents/2012/06/14/
dcmi-terms/?7v=terms#terms-creator) was linked to “Mobipedia:Developer”
(http://mobipedia.link/ontology/Developer).

Figure 2 shows an excerpt of the ontology including the most important
classes and the object properties that relate them®. The main classes in the ontol-
ogy are: mobipedia: App, which represents mobile apps; mobipedia:Version, for
the different versions of each app; mobipedia:Permission, for the permissions
that can be requested by apps; mobipedia:Library, for the libraries imported
by each version of an app; mobipedia:Developer, for the developers of each
app; mobipedia:Badge, for badges assigned to developers; mobipedia:Image,
for photos of the app or images of the badges; mobipedia:Category, for cate-
gories of apps, libraries, and permissions; and mobipedia:App_Rating, for the
rating which users gave to the app. Table 1 shows some of the data properties in
the Mobipedia ontology including a brief description, their domain, and range.
In total, the current Mobipedia ontology includes 12 classes, 9 object properties,

and 50 data properties.
P 4

hasPermission hasCategory
usesLibrary—""‘ hasCategory —» Category
b i

hasVersion hasCategory
App

asDeveIoper
hasimage . Developer
hasAppRating
hasBadge
App_Rating
haslmage

Fig. 2. Excerpt of the Mobipedia ontology.

2.2 Extraction Process

We focused on Android apps to populate the ontology and the current ver-
sion of the Mobipedia KB by incorporating information from datasets released

8 The figure has been generated using the Graffoo specification [4].

17

Data Property Description Domain |Range
apk_url URL to the APK Version xsd:anyURI
app-title Name of an app App xsd:string
badge_title Name of a developer badge Badge xsd:string
category_name Name of a category Category |xsd:string
comment_count Number of comments for an app|App-Rating [xsd:string
description html Description of an app App xsd:string
developer_email Email of a developer of an app |Developer |xsd:anyURI
developer name Name of a developer Developer |xsd:string
developer_website Website of a developer Developer |xsd:anyURI
downloads Number of downloads of an app|App xsd:int
formatted_amount Price of an app App xsd:string
image_url URL of an image Image xsd:anyURI
installation_size Size of an installed app Version xsd:int
library_description Description of a library Library xsd:string
library name Name of a library Library xsd:string
major_version number |Version number of an app Version xsd:int
package_name Name of the package of an app |App xsd:string
permission_description|Description of a permission Permission|xsd:string
permission_name Name of a permission Permission|xsd:string
permission_reference |URL of the permission Permission|xsd:anyURI
privacy_grade PrivacyGrade of an app Version xsd:string
recent_changes_html Change log of an app Version xsd:string
reviews_url URL with the reviews of an app|App xsd:anyURI
snapshot_date Date when PlayDrone crawled|App xsd:dateTime
the information of an app
star_rating User rating of an app App xsd:int

Table 1. Most important data properties in the Mobipedia ontology.

from two research projects as well as the Android website. Table 2 gives some
statistics about these data sets. As the information in these sources was mainly
unstructured or semi-structured (including HTML and JSON) we had to develop
modules to extract structured information from these sources and label it with
the Mobipedia ontology. As we had to filter out some of the information included
in the dataset in PlayDrone which was not relevant for Mobipedia, we decided
not to directly add a JSON-LD context. Instead, we developed ad hoc parsers
to determine the datatypes of the data extracted as well as associate them with
other entities in the dataset. For labeling the data we used the OWL API [6].
We have made crawlers and parsers available to help creating new tools for other
data sources®. Having the parser developed, extracting the app metadata and
converting it to RDF was easy.

PlayDrone. Google does not provide any mechanism to automatically extract
information about the apps available in the Google Play store. Instead Google

9 http://github.com/primalpop/MobipediaProject

18

Android Permissions|Number of Permissions 152
i Number of Apps 1,402,894
PlayDrone Number of Categories 24
. i Number of third party libraries used|246
PrivacyGrade Number of Apps 1,173,265

Table 2. Mobipedia Data Sources.

imposes restrictions to prevent the crawling of Google Play store data. However,
researchers from Columbia University built the PlayDrone, a scalable Google
Play store crawler which extracted information of over 1,100,000 apps [9]. The
PlayDrone project publishes dumps with the information extracted for different
dates!®. The format used for the information published is JSON (see Figure 2.2
for an example). In our case we downloaded the latest dump available (October
31, 2014) and developed a parser to translate the JSON format, using the Gson
library!!, to RDF.

{ 7app-id” :7com. google.android.youtube”,
"title” :”YouTube” ,
”developer_name” :” Google Inc.”
”category” : ”’MEDIA_AND_VIDEO” ,
?free” : true,

”version_code” :51405300,
”version_string”:”75.14.5”
”installation_size”:10191835,
”downloads” : 1000000000,
”star_rating” :4.08009,
”snapshot_-date” :72014—10-31",

?metadata_url” :” https://archive.org/download/playdrone—metadata—201
4—10—31—c9/com. google . android . youtube. json” ,
”apk_url” :” https://archive.org/download/playdrone—apk—c9/com. google

.android . youtube—51405300.apk” }

Fig. 3. Excerpt from PlayDrone dataset.

Android Permissions. We extracted information about the Android permission
model from the website of the operating system!? (see Figure 4). The website in-
cludes information about 152 official permissions that Android apps can request
to access information from the user. For each permission the website contains its
name (key), the code that has to be added to the manifest of the app (value), and
a brief description. For extracting the content we developed an HTML parser
using the jsoup library!s.

10 http://systems.cs.columbia.edu/projects/playdrone

" https://github.com/google/gson

12 http://developer.android.com/reference/android/Manifest.permission.html
'3 http://jsoup.org

19

Manifest.permission

L [

Summary

Wersion of the app
analyred

App was Lt analyzed
oy Privacy Grade o

Why does this app have

SENSITIVE PERMISSIONS LSED BY THES A% @

PrRMTEON WHAT

Fig. 4. Android permissions web site. Fig. 5. PrivacyGrade for an app.

PrivacyGrade. A team of researchers from Carnegie Mellon University developed
a method to grade Android apps based on the analysis of people’s expectations
of an app’s behavior and app’s actual behavior [7]. For this purpose, they used
static analysis of sensitive data usage by an app and crowdsourcing. At the end
of analysis, apps are given a grade based on a 4.0 scale where “A+4” means
apps have no privacy concerns. The privacy grade for each app, along with other
information such as the libraries used by the app, is published at their website!
(see Figure 5 for an example). To extract this information we developed a crawler
based on the crawler4j library'® and parsed the HTML obtained. In addition
to the Android permissions (152 in total) mentioned earlier, this dataset includes
custom permissions (e.g., permission to access Facebook data) which are created
by apps and used to restrict access to app data from other apps.

Linking Mobipedia with other Knowledge Bases. One of the requirements of
Linked Data is to interlink the different knowledge bases available!®. Based on
this, we have interlinked Mobipedia with DBpedia [2], which is the nucleus of
the Linked Data cloud. To achieve this, we executed queries against the DB-
pedia SPARQL endpoint to obtain entities which are already in Mobipedia.
We analyzed the DBpedia category hierarchy and found two categories related
to mobile apps. In this way, we obtained instances of the DBpedia categories
Android_(operating_system)_software and Mobile_software, 409 and 221, respec-
tively. After filtering for duplicates, we checked the names of the 600 remaining
DBpedia entities against entities in Mobipedia and linked them by using the
owl:sameAs property (for each entity we automatically obtained a list of possi-
ble links based on the name and manually selected the most appropriate ones).

' http://privacygrade.org
15 https://github.com/yasserg/crawlerdj
16 http://www.w3.org/DesignIssues/LinkedData.html

20

2.3 Accessing Mobipedia

Access to Mobipedia is royalty-free under the terms of GNU free documentation
license. Similarly to DBpedia [2], we provide three mechanism of accessing the
Mobipedia dataset:

Linked Data. It uses HT'TP protocol to retrieve entity information which con-
tains all the triples associated with the entity. This can be accessed using web
browsers, Semantic Web browsers, and crawlers. We generated the Linked Data
interface for the SPARQL endpoint by using the Pubby project'”. Pubby is a
Java web application which translates URIs which are not dereferenceable to
dereferenceable URIs by connecting to the SPARQL endpoint. For example,
Figure 6 shows the web page created by Pubby for one of the entities in the
Mobipedia KB (an app called “Xmas 3D Live Wallpapers Free”!8).

xmas_tree livewallpaper.free a mobipedialink

hitp-/mobipedia link:8080/ontology/xmas tree livewallpaper free dg
Property Value
:app_id = xmas.tree livewallpaper free ()

7:app_title
?-descripticn_html

Xmas 3D Live Wallpapers Free ()

Enjoy this Christmas with 3D live wallpaper

Christmas Tree 3D Live Wallpaper is an awesome Live Wallpaper to make your android cocl.
You can create your own scene to feel the festival holiness.

You can also share about this awesome tree to your friends.

Use it to put your phone in a festive mode and to celebrate your Christmas season
Settings:

touch : enabled/disabled Star on touch the screen

select your Christmas Tree - Red, Green and Golden

Christmas Bells - Silver, Golden and

Snow - quantity

Christmas Tree - Speed

Christmas Gifts - Multicolored Packing . Red Packing and Blue Packing.

Sparkling - Quantity

Christmas tones - enable/disable on tap specific decorations.

Christmas Tree 3D Live Wallpaper is the fully customizable Android Live Wallpaper
Merry Christrnas to you alll!

This application is breught to you tetally free with the help of varicus ad netwerk monetization. | have cpted to
use this to be able to keep creating more free apps for you. Please note that with this app you will receive a few
search points on your device, all are easily deleted or replaced. Thank you for your understanding. ()

?details_url = details?doc=xmas.tree livewallpaper free ()

?:downloads = 10000.0 ()

?-formatted_amount = Free()

?"hasAppPlayRating = <http://mebipedia.link:8080/cntolegy/App_Play_Rating362>
?:hasCategory = <http://mobipedia.link: 8080/cntology/Category PERSOMNALIZATION=
7 hasDeveloper = <http://mebipedia.link:8080/cntolegy/Developer_-1742120965>
?-hasType = <http://mobipedia. link:8080/cntology/Type_PERSONALIZATION=
?-hasVersion = <http://mobipedia.link:8080/cntology/Version 1936525029
?:num_downloads = 10000.0 ()

Fig. 6. Linked Data interface of Mobipedia as seen in a web browser.

SPARQL Endpoint. We have also setup a SPARQL endpoint at http://mobipedia.
link/sparql which can be used for querying the Mobipedia dataset. This end-
point is hosted using open source edition of Virtuoso server!®.

17 http://wifo5-03.informatik.uni-mannheim.de/pubby
18 http://mobipedia.link:8080/ontology/xmas.tree.livewallpaper.free
!9 https://github.com/openlink/virtuoso-opensource

21

RDF Dumps. Larger versions of the Mobipedia dataset in the form of serialized
triples can be downloaded from the Mobipedia website as well. These dumps can
be used as annotated datasets in research or for the purpose of running various
analyses locally.

3 Mobipedia Application Usecases

In this section we present some of the applications that can benefit from Mobi-
pedia’s data and its standard format for representing it. As Mobipedia provides
an easy access point for various app data, it could be useful for facilitating app
development as well as mobile computing research.

3.1 For Application Development

As today’s app stores are densely populated its not an easy task for either users
to find the right app or the developers to compare their app with what’s out
there already. We propose different applications to tackle this problem.

Semantic Search. With Linked Data in Mobipedia, it is possible to perform a
semantic search making it easier to find the right set of apps. In the case of users,
currently they are limited to keyword search in order to find the application they
are looking for. This makes it difficult to find applications for a unique set of
users (e.g., superhero games with parental control) or applications with special
features (e.g., todo list with location reminder) or an application which does
not collect unnecessary user data (e.g., the flash light app requesting the less
number of permissions). Developers have only the category information provided
by app stores to discover apps which are similar to theirs and. They have to
rely on external agencies or organizations (e.g., 42matters®’) to have detailed
information about app markets. A semantic search engine for apps could be
developed, for example as a website, translating the user/developer queries to
SPARQL and executing them against the Mobipedia endpoint. For example,
Figure 7 shows the SPARQL query needed to extract the list of flash light apps
and the number of permissions they request.

App Recommendation. Mobipedia can also facilitate development of an app
recommendation system. By using simple distance measures and user history of
apps installed and rating, an app recommender could suggest which one of the
app should be installed for a particular requirement based on comparison with
apps with similar properties in Mobipedia. Also the user context could be used
to infer apps that might be interesting for her. For example, a user visiting a new
country could be presented with tourist apps for such a place. For that, it would
be possible to develop a semantic mobile app which uses a reasoner locally on
the device [10], an ontology defining the user context, and Mobipedia.

20 https://42matters.com/api

22

PREFIX mobipedia: <http://mobipedia.link/ontology/>

SELECT DISTINCT ?App, (COUNT (?permission) AS 7numPerm)
WHERE {
7App mobipedia:description_html ?Desc.
FILTER(contains(?Desc,"flashlight")).
?App mobipedia:hasVersion ?Vers.
?Vers mobipedia:hasPermission ?permission
}
GROUP BY 7App
ORDER BY ASC(7numPerm)

Fig. 7. An example of SPARQL query to return the list of flashlight apps and their
number of permissions requested.

Permission Suggestion. Similar to the app recommender, we can also develop a
permission chooser which helps developers to make an informed decision about
the permissions to be used in the app so that it would be compliant with reg-
ulations and user expectations. While building an app, a developer can verify
what permissions and external libraries data are typically used by other apps
in the similar category by using Mobipedia and make an informed decision on
what permissions/data to ask from the user. We hope that this would result in
evolution of a privacy guideline for developing apps of different categories and
not adhering to it would mean that app would be ranked lower in the suggestions
given by the previously mentioned app recommender.

3.2 For Research

Data from apps would be useful in many domains of mobile computing research
for privacy studies, application recommendation, and various statistical analyses.
For this purpose, researchers would have to comb through websites and papers
to find out datasets (if publicly available) and develop tools for data transforma-
tion. With Mobipedia, researchers can focus on building their system without
worrying about accessing data from different sources as well as linking them to
real world entities. Similar to DBpedia Query builder, we intend to provide var-
ious such examples of ready-made SPARQL query snippets for accessing various
kinds of information from Mobipedia in the form of a query builder. It will also
consist of queries written by Semantic Web researchers thus making it easier
for developers to find information inside Mobipedia without the prerequisite of
learning SPARQL.

Linking application user experiences. The information of user experiences while
using an application is fragmented across various sources such as app ratings,
reviews, blog articles, forums and so on. We intend to develop a mobile app
library which developers could embed in their applications for capturing various
user experiences in a systematic manner. These user experiences data can be
pushed to Mobipedia and linked to app information which we already have in

23

the KB and further the relevance of recommendations possible in the sample
applications given above.

Mining app reviews. In app stores, the user feedback is captured using reviews
which can help developers to improve user satisfaction. Previous work [3] has
been done in mining these reviews and visualizing them. By adding more classes
to Mobipedia, we can directly link the concepts from app reviews to apps itself
thus capturing the user sentiment in the knowledge base.

Policy Representation. Semantic Web technologies have been used significantly
in context-aware systems for security purposes [8]. Rule languages such as Se-
mantic Web Rule Language (SWRL) has been used to represent policies which
capture user preferences on sensitive data access to context-aware services or
apps. The Mobipedia ontology can be used to represent concepts related to
apps. Also, researchers can leverage various meta-data (e.g., privacy grade, de-
veloper rating, permissions requested, etc.) about apps in the KB to augment
their context-aware policies.

4 Discussion and Next Steps

Mobipedia is an effort to store information related to mobile apps from mul-
tiple sources and present it in a structured format accessible by humans and
machines. In the current version of Mobipedia we focused on Android apps and
incorporated three important data sources which contain information for more
than 1 million apps: PlayDrone, PrivacyGrade, and the Android permissions
website. We enabled three mechanisms to access the information in Mobipedia:
Linked Data interface, SPARQL endpoint, and RDF dumps. Therefore, users
can access Mobipedia from web browsers, query interfaces, or their own applica-
tions. We also interlinked the KB with DBpedia to fulfill the good practices for
publishing Linked Data?!'. This allows users to access information about apps
which is not available in DBpedia (e.g., Android permissions requested by an
app). Finally, we have shown several applications that can benefit from using the
content in Mobipedia and the standard representation format used (RDF). Until
now, developing such applications would require an effort to find and integrate
the information which is split in different sources and published with different
formats. Some of the applications are mobile semantic apps which would benefit
from accessing the knowledge in the Mobipedia KB locally.

Mobipedia is an evolving project due to the dynamic nature of mobile apps:
New apps or versions of existing apps are published every day. The next steps of
the project involve the integration of other published data sets such as the An-
droid Malware Genome Project [11], which contains information about malware
apps in the Android Play store, and the BlueSeal project [5], which analyzed
the flow of malicious apps. Second, we want to incorporate data from other app
stores such as the Amazon.com or GetJar and possibly app stores with different

2! http://www.w3.org/TR/1d-bp

24

permission model such as Apple App store. We are also hoping over time we
would be able to incorporate apps portals in other languages (e.g., Baidu store,
Tencent App Gem in China) as well. Currently contributions to Mobipedia can
be only approved by the developers. However, to tackle ever growing app stores
community participation would be essential. We are hoping to open for commu-
nity contributions. For this to be a reality, we need to develop mechanisms to
vet the quality of information submitted as well as make it easy to contribute
without relying on users knowledge of RDF and SPARQL.

Acknowledgments. This research work has been supported by RADICLE
project CNS-1059436, CNS-1212943, CNS-1118127 and CNS-1450768, CICYT
project TIN2013-46238-C4-4-R and DGA FSE, U.S. National Science Founda-
tion awards 0910838 and 1228198.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Semantic Ser-
vices, Interoperability and Web Applications: Emerging Concepts pp. 205-227
(2009)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3), 154-165 (2009)

3. Chen, N., Lin, J., Hoi, S.C.H., Xijao, X., Zhang, B.: Ar-miner: Mining informa-
tive reviews for developers from mobile app marketplace. In: 36th International
Conference on Software Engineering (ICSE). pp. 767-778 (2014)

4. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL on-
tologies with Graffoo. In: 11th Extended Semantic Web Conference (ESWC). pp.
320-325 (2014)

5. Holavanalli, S., Manuel, D., Nanjundaswamy, V., Rosenberg, B., Shen, F., Ko, S.,
Ziarek, L.: Flow permissions for Android. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE). pp. 652-657 (2013)

6. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies.
Semantic Web 2(1), 11-21 (2011)

7. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy pref-
erences: Restoring usability in a sea of permission settings. In: Symposium On
Usable Privacy and Security (SOUPS). pp. 199-212 (2014)

8. Truong, H.L., Dustdar, S.: A survey on context-aware web service systems. Inter-
national Journal of Web Information Systems 5(1), 5-31 (2009)

9. Viennot, N., Garcia, E., Nieh, J.: A measurement study of Google Play. In: The
2014 ACM International Conference on Measurement and Modeling of Computer
Systems. pp. 221-233. SIGMETRICS (2014)

10. Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic:
DL reasoners on smartphones. In: 2nd International Workshop on OWL Reasoner
Evaluation (ORE). pp. 46-52 (2013)

11. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy. pp. 95-109 (2012)

25

	BlanksCover.pdf
	paper2

