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Abstract

We have produced a 5 year mean secular variation (SV) of the geomagnetic field for the period

2020-2025. We use the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the

NASA Goddard geodynamo model and ensemble Kalman filter (EnKF) with 512 ensemble members.

Geomagnetic field models are used as observations for the assimilation, including gufm1 (1590-1960),

CM4 (1961-2000) and CM6 (2001-2019). The forecast involves a bias correction scheme that assumes

that the model bias changes on timescales much longer than the forecast period, so that they can be

removed by successive forecasts. The algorithm was validated on the time period 2010-2015 by

comparing with the 2015 IGRF before being applied to the 2020-2025 time period. This forecast has

been submitted as a candidate model for IGRF 2025.
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1. Introduction

It has long been observed that the Earth’s main magnetic field changes slowly in time (Bullard et al

1950; Hide 1967; Bloxham & Gubbins 1985; Jackson et al 2000; Lund 2018). This change, called

the secular variation (SV) originates dominantly from the the Earth’s iron-rich fluid outer core that

is in vigorous convection, driven by thermo-chemical buoyancy released from Earth’s secular cooling

and differentiation (geodynamo) (e.g. Lund and Olson 1987; Braginsky and Roberts 1996). Over the

past 25 years, great progress has been made in numerically modeling the geodynamo (Glatzmaier and

Roberts, 1995; Kagyama and Sato 1997; Kuang and Bloxham, 1997; Christensen et al 2001; Jones et al

2011; Matsui et al 2016). These models can reproduce much of the qualitative aspects of the Earth’s

magnetic field, including dipole dominance, westward drift and occasional reversals. Although it remains

computationally prohibitive to simulate the geodynamo in the parameter regimes appropriate for the

Earth’s core, the asymptotic properties emerged from numerical solutions with wide range of dynamo

parameter values open the door for quantitative applications of numerical models to the geomagnetic

field (e.g. Christensen and Aubert 2006; Aubert et al 2017; Kuang et al 2017).
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One such application is to use a numerical model to predict geomagnetic SV on time scales of several years

and longer, if proper initialization is made using data assimilation techniques, as is done in numerical

weather prediction (NWP). Forecast results from this geomagnetic data assimilation approach have

already been used as predictive field candidates for previous IGRF models (Kuang, et al., 2010; Fournier,

et al., 2015).

Obviously, this approach is different from other SV forecasts made without utilization of dynamo models.

For example, Olsen, et al. (2010) modeled the time dependence of the Gauss coefficients with order

6 B-splines so that the predictive SV for 2010-2015 can be extrapolated from the coefficients derived

from observations prior to 2010. While utilization of geodynamo models can take advantage of adding

dynamically consistent motional induction in the outer core to make SV forecasts, it also carries additional

complications, such as model bias that results from the mismatch between the parameter values used in

the models and appropriate for the Earth’s core, and propagation of observational errors in both time and

space. These difficulties have been analyzed through assimilation experiments with simplified systems

(Sun et al 2007; Fournier et al 2007), observation system simulation experiments (OSSEs) (Liu et al

2007; Aubert and Fournier, 2011; Fournier, 2013). It is expected that improvements to both modeling

and assimilation techniques will make geomagnetic forecast a growing contributor of the IGRF candidate

models.

In this paper, we report our mean SV forecast for the period from 2020 to 2025. This effort differs from

our earlier work for IGRF candidate model (Kuang et al 2010) in two major areas: we assimilate the

observed gauss coefficients from a single geomagnetic field model (Sabaka et al in this special issue) for

the period from 1960 to 2019; and the error covariance in our assimilation is determined through a large

ensemble of assimilation solutions, and is updated in each analysis cycle. The two improvements can

help produce more accurate SV forecasts and uncertainty estimates, since, for example, the utilization

of a single field model can avoid any potential disagreement in different field models that may lead to

inconsistent observation error estimates, and because the time varying error covariance can provide more

consistent analysis for each cycle.

This paper is organized as follows: the algorithm of our forecasts is given in Section 2; testing and

validation are presented in Section 3, followed by the forecasts and discussion.
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2. Geodynamo model and data assimilation algorith

The geomagnetic data assimilation system used for our SV forecasts is the NASA Geomagnetic Ensemble

Modeling System (GEMS). It consists of a numerical geodynamo model (Kuang et al 1999, 2003), an

ensemble Kalman filter (Evensen, 2009; Sun and Kuang 2015). The model solves a set of nonlinear

magnetohydrodynamic equations in a spherical shell domain. Details of the model are given in Kuang

and Bloxham (1999), Kuang and Chao (2003) and Jiang and Kuang (2008). The core state in this model

is defined with the velocity v, the magnetic field B and the relative density anomaly ∆ρ. These state

variables are described by by spherical harmonic expansions in the co-latitude θ and the longitude φ

directions, with the spherical harmonic coefficients given on discrete radial grid points. If we denote by

x the vector of these coefficients, then the dynamo system can be symbolically represented as

∂x

∂t
= M(x) (1)

where M includes all linear and nonlinear model operators. The GEMS system employs a sequential

ensemble Kalman filter (EnKF), described below, which is the result of many years of development that

started with a simple one dimensional system (Sun et al., 2007) and an optimal interpolation (OI) system

(Kuang et al., 2008, 2009). These systems have shown how geomagnetic data assimilation can be used to

estimate geodynamo model parameters and geomagnetic field model uncertainty (Tangborn and Kuang,

2015, 2018).

The observations used for GEMS are the gauss coefficients {gml , hml } (where l and m are spherical

harmonic degrees and orders) from geomagnetic field models. They represent only the internally generated

magnetic field. In the outer core and electrically conducting lower mantle (called the D′′-layer), the

magnetic field can be decomposed into the toroidal (BT ) and the poloidal (BP components:

B = ∇× (TB)r̂ +∇×∇× (PB)r̂ = BT + BP (2)

where r̂ is the radial unit vector, and TB , PB are the toroidal and poloidal scalars and are described in

GEMS as Pb

Tb

 =

M∑
m=0

L∑
l=m

 bml (r, t)

jml (r, t)

 Y m
l (θ, φ) + C.C. , (3)

4



where {Y m
l } are the orthonormal spherical harmonic functions, and C.C. denotes the complex conjugate

part of the expansion (similar expansions are also made for v and ∆ρ). At the top of the D′′-layer, i.e.

at r = rd, the toroidal field vanishes, i.e. jml = 0; but the poloidal field coefficients bml can be matched

with the observations

bml (rd) =
r2s
2l

(
rs
rd

)l

(gml − ihml ) for m ≤ l ≤ Lobs, (4)

where rs is the mean Earth surface radius, and Lobs is the highest degree of the observed geomagnetic

field. In the rest of this paper, we denote the poloidal spectral coefficients in (4) that are derived from the

field models by (bml )o and the forecast coefficients (bml )f . The observations yo = [(bml )o] are assimilated

into the forecast (x)f at analysis time ta to produce the analysis xa:

xa(ta) = xf (ta) + K
[
yo −H · x(ta)f

]
(5)

where H is the observation operator matrix and K is the gain matrix, defined by:

K = PfHT
[
HPfHT + R

]−1
(6)

where Pf is the forecast error covariance and R is the observation error covariance. The analysis xa is

then used as the initial state of the dynamo system 1 for the next forecast. The forecast error covariance

is computed from an ensemble of forecasts with Nens members (Sun and Kuang 2015)

Pf =
〈
(xf − µf

x)(xf − µf
x)T )

〉
(7)

where µf
x is the ensemble mean forecast state. In our forecasts here, we take only the diagonal part of

the observation error covariance R and is defined simply as the estimated variance of the field models,

(σm
l )o. The time dependent model for the observation error standard deviation is

(σm
l )o = αbml (l)(l + 1)/2 (8)

where α = 0.1 before 1900, 0.001 ≤ α ≤ 0.1 with an exponential decrease from 1900 to 2000, and
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α = 0.001 afterwards. This observation error model accounts for the increased accuracy of geomagnetic

models at later times, as well as the higher relative errors for the higher degrees. It has been tested

through a number of numerical experiments with the goal of minimizing forecast errors, and is therefore

regarded as an appropriate estimate relative to our geodynamo forecasts.

The geomagnetic field models that are used to generate the gauss coefficients for our assimilation, and

their maximum degree assimilated (Lobs) are

Observations Period Lobs

gufm1 : 1590− 1960 4

CM4 : 1960− 2000 8

CM6 : 2000− 2019 13

(9)

Details of the first two models can be found in Jackson et. al. (2000) and Sabaka et al. (2004). Details

of the last field model can be found in Sabaka et al (2020). We only summarize here that this model

uses a ”comprehensive inversion” technique which co-estimates parameters for the Earth’s internal field,

using estimates of systematic and random errors, so as to produce an optimal separation of the internal

and external fields.

The ensemble is initialized in 1590 CE using a long free model run, and subsequent analyses are computed

every 20 years until 2000 CE, when the analysis cycle is reduced to one year (the start of the forecast

period using the CM6 model). Pf is updated with the forecasts at each analysis time ta, but H is

only updated if different Lobs is chosen for making the analysis. We use an ensemble of 512 for these

experiments, and we have found this size to be essentially converged relative to smaller ensembles of

256 or 400. This means that an ensemble larger than 512 is not expected to produce appreciably more

accurate forecasts.

Geomagnetic forecasts using a geodynamo model will naturally contain significant forecast errors due

to mismatches in the dynamo parameter values and numerical approximations, and these can grow

significantly during a multi-year forecast. But because these error sources vary on relatively long

timescales, we can assume that the model error itself varies on time scales much longer than, e.g. the

5-year forecast period. This assumption allows us to implement a bias correction scheme for the SV

prediction by producing a set of staggered forecasts, and then take differences between them to remove
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the bias (Kuang et al 2010). The forecast of the observed poloidal field is defined as the projection of the

state vector, xf onto the observation space:

yf = Hxf (10)

We define the forecast error, ε(t), as the difference between the forecast state, yf (t), and the true state,

yt(f):

yf (t) = yt(t) + ε(t). (11)

The forecast error is a combination of model error and the growth of initial state errors, but we assume

that model errors remain the largest component. Consider a forecast that is initialized from an analysis at

time ta and produces a forecast at time ta + δt. We estimate the SV from the change in the geomagnetic

field after time δt:

yf (ta + δt)− ya(ta) = y(ta + δt)− y(ta) + ε(ta + δt)− ε(ta) ≈ (ẏ + ε̇)δt (12)

where ẏ is the SV and ε̇ is the SV error growth rate. We can reduce this error term by making use of

the assumption of slowly varying model error and considering staggered forecasts that begin at analysis

times ta and t̃a, where |ta− t̃a| << δt. This gives us forecasts at times ta + δt and t̃a + δt in terms of the

true state:

yf (ta + δt) = yt(ta + δt) + ε(ta + δt)

yf (t̃a + δt) = yt(t̃a + δt) + ε(t̃a + δt)

(13)

The difference between these two sequences was shown to approximately remove the forecast error (Kuang

et al. 2010), because the change in model error between ta + δt and t̃a + δt is small compared to the SV.

So we can write an expression for the SV as

˜̇y
f
(t) =

1

τ a

[
Hxf (ta + δt)−Hxf (t̃a + δt)

]
(14)

where τa = |ta − t̃a|.

The details of the bias correction scheme can be found Kuang et al., 2010.
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3. Validation Experiments

We have validated the methodology by computing SV forecasts for the period 2009-2015. Two forecast

experiments were conducted using the analysis from 2000 CE carried forward with one year forecast and

analysis cycles. In the first experiment (E1), the assimilation is computed from 2000 to 2008; the analysis

in 2008 is then used to make forecasts for the period 2009-2014. The second experiment (E2) is similar,

but the assimilation is computed from 2000 to 2009; and the analysis in 2009 is used to make the forecast

for the period 2010-2015. The final SV forecasts are then made with these two staggered forecasts:

˜̇yAB(tf ) = [y2(tf + τa)− y1(tf )] /τa (15)

where τa = 1 year. The SV for the Gauss coefficients (gmn , h
m
n ) are then computed as follows. We show

the details for gmn , while hmn follow the same procedure. Note that this notation, traditionally used it

geomagnetic field modeling, is equivalent to (gml , h
m
l ) which is generally used in geodynamo modeling.

Because we are crossing between the two fields, we use these sets of notation interchangeably. In our

assimilation, we utilize the scaled coefficients

Gm
n = gmn /g

0
1 (16)

for the SV forecasts. We first compute Gm
n from our forecasts, and their time variation Ġm

n via (15). The

SV gauss coefficients can then be calculated via

ġmn = g01Ġ
m
n +Gm

n ġ
0
1 . (17)

We then approximate the axial dipole coefficient g01 in (17) with the values from the field models, e.g.

CM6 (Sabaka, et al., 2020) as follows:

ġ01 =
[
(g01)CM6(2010)− (g01)CM6(2009)

]
/(1year), g01(2009 + t) = (g01)CM6(2009) + tġ01 . (18)

The formulations (14)-(18) are the basis for the forecasts of the mean SV for the period 2010-2015 2015

SV which are then compared with the IGRF for each degree n and order m up to n = 8. In this case

the years in E1 correspond to τ̃ and those in E2 to τ . Some examples are shown in Figures 1-2 which
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indicates the forecast SV, ˜̇y
f
, for different n,m. The slope of each dashed line is the forecast while the

solid line is the SV computed from CM6 coefficients. The coefficients shown here are representative of

the range in accuracy obtained by the ensemble forecast and bias correction algorithm. The (n = m = 1)

and (n = m = 2) coefficients in Figure 1 are typical of coefficients that predict the CM6 field model

closely. The (n = 3,m = 2) in Figure 2(a) is the least accurate case (for gmn ), while (n = 5,m = 3) has a

typical mid-range accuracy for the SV forecasts.

These bias corrected SV forecasts are computed each year out to 2014, and the five year time average

SV can be computed them. This is then used to determine a five year forecast of the Gauss coefficients

in 2015 from

(gmn , h
m
n )2015 = (gmn , h

m
n )2010 + 5(ġmn , ḣ

m
n ). (19)

We compute the differences between this forecast and the CM6 coefficients in 2015 and plot them in

terms of mean square fields (dashed line)(MSF), along side the CM6 MSF (solid line) in Figure 3. We

also include the ensemble uncertainty from the 2015 forecast (dotted line). The relative differences are

seen to vary from 10−7 for n = 1 to 10−2 for n = 8. The ensemble uncertainty, which does not contain

information on forecast bias, slightly underestimates the errors for n = 1− 3, and is very close at higher

degrees. This is an indication that, after bias correction, most of the errors in the forecast that remain

are random rather from model bias.

4. Mean SV for 2020-2025

We repeat the same method to make the SV forecast for the period from 2020 to 2025, except that we

use three staggered forecasts. Starting from the analysis computed for 2000 CE, we have continued the

assimilation and forecast (with the annual analysis cycle) forward in time for three sets of experiments,

with final the analysis times in 2017, 2018 and 2019, and the forecasts are made in the next six years.

The experiments, labeled A, B and C; are summarized as:

ta tf1 tf2 tf3 tf4 tf5 tf6

Exp.A 2017 2018 2019 2020 2021 2022 2023

Exp.B 2018 2019 2020 2021 2022 2023 2024

Exp.C 2019 2020 2021 2022 2023 2024 2025

(20)
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Figure 1. SV validation forecasts (dashed line) and CM6 values (solid line) and for 2010-2015 for Gauss
coefficients n = 1,m = 1 (a) and n = 2,m = 2 (b).
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Figure 2. SV validation forecasts (dashed line) and CM6 values (solid line) for 2010-2015 for Gauss
coefficients L = n,m = 2 and n = 5,m = 3.
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With these three sets of forecasts, we can use up to the following three different combinations of the

differences between two staggered forecasts:

˜̇yBA = (yB − yA)/τa,

˜̇yCB = (yC − yB)/τa,

˜̇yCA = (yC − yA)/2(τa),

(21)

where again τa = 1 year and the AC experiments are 2 years apart. The SV for the forecast Gauss

coefficients computed as before, along with the SV for CM6.

The bias corrected SV forecast for 2025 will be a combination of the different forecasts, BA, CB or CA

from (21). There are two main reasons for our last analysis ending at 2019: one is that the predictive

field from CM6 for 2020 will be used as the initial condition for our forecast calibration; the other is the

SV from CM6 for the period 2019-2020

( ˙gmn )CM6 =
[
(gmn )CM6(2020)− (gmn )CM6(2019)

]
/(1year) (22)

can be used to estimate our model bias. Some representative forecasts that demonstrate the bias

correction approach and comparison to the CM6 2020 forecast are shown in Figures 4 - 6. Each figure

consists of the three uncorrected forecasts for gmn and hmn , along with the 2017-2020 forecast from CM6,

on top (A,B and C) and the bias corrected forecasts below (BA, CB and CA). So the corrected forecasts

in each second set in each figure are combinations of the uncorrected forecasts, as described in (21). The

slope of each line is the SV time varying SV, and we confirm the consistancy of each of the experiments

with the CM6 SV in each case. For example, Figure 4(a) shows the forecasts for (n,m) = (1, 1), and the

SV for g11 requires a negligble correction since the three experiments have essentially the same SV. The

SV for h11 shows a small change from the bias correction and the AB correction is used since it’s slope is

closest to the CM6 estimate.

The final calibrated mean SV for the period 2020-2025 is computed as the following: first, the optimal

annual SV forecasts ġ
m(f)
n are made from our data assimilation system for 2020-2024, with the same

procedure discussed in the previous section. Then, the time varying gauss coefficients are computed via

gm(f)
n (2020 + k) = (gmn )CM6(2020) +

∑
n=0,k−1

ġm(f)
n (2020 + n), for k = 1, 2, ·, 5. (23)
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Finally, the mean annual SV gauss coefficients are determined via

ġ
m(f)
n =

[
gm(f)
n (2025)− gm(f)

n (2020)
]
/5. (24)

The uncertainties are determined by the standard deviation of the forecast ensemble. The final results

are given in Table 1 along with the associated uncertainties, which are the ensemble standard deviations

from the ensemble forecast.

5. Conclusions

We have used an EnKF to forecast the geomagnetic secular variation (Table 1) for the time period 2020-

2025, using 400 ensemble members. The development of ensemble forecasting techniques has contributed

to the SV forecasts, particularly due to the ability to estimate uncertainty, which is newly available with

this geomagnetic forecast. The validation forecast for 2015 shows that the uncertainty estimate is in line

with the differences with CM6 for that year, which also demonstrates that the bias correction scheme is

removing a significant part of the systematic errors. We also use the assimilation of field models as a

means to understand how estimates of field model errors impact the accuracy of geomagnetic forecasts

from a geodynamo model. The 2025 SV forecast includes uncertainty estimates derived from the forecast

ensemble spread. The large ensemble has placed a computational constraint on this forecast, because

at present it is not computational feasible to run the assimilation system for 7000 years, as was done in

[Kuang et al., 2010]. Future work will investigate the use of localization schemes that would enable the

use of a much smaller ensemble that could be run for longer time periods.
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Figure 4. Forecasts of Gauss coefficients from analyses in 2017 (dashed line), 2018 (dash-dot) and 2019
(dotted), in the upper two plots. The grey line shows the 2020 forecast from the Goddard candidate
model for IGRF-2025. Panel (a) shows the coefficients for n = 1 and m = 1, while panel (b) shows the
coefficients for n = 2, m = 1. In each panel the upper figures show the raw (uncorrected) forecasts,
while the lower panel shows the bias corrected forecasts from Eq. 21.
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Figure 5. Forecasts of Gauss coefficients from analyses in 2017 (dashed line), 2018 (dash dot) and 2019
(dotted). The grey line shows the 2020 forecast from the Goddard candidate model for IGRF-2025.
Panel (a) shows the coefficients for n = 3 and m = 2, while panel (b) shows the coefficients for n = 3,
m = 3. In each panel the upper figures show the raw (uncorrected) forecasts, while the lower panel
shows the bias corrected forecasts from Eq. 21.
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Figure 6. Forecasts of Gauss coefficients from analyses in 2017 (dashed line), 2018 (dash-dot) and 2019
(dotted). The grey line shows the 2020 forecast from the Goddard candidate model for IGRF-2025.
Panel (a) shows the coefficients for n = 6 and m = 4, while panel (b) shows the coefficients for n = 6,
m = 5. In each panel the upper figures show the raw (uncorrected) forecasts, while the lower panel
shows the bias corrected forecasts from Eq. 21.
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Table 1. Table of the mean SV gauss coefficients for gmn , h
m
n (with the unit nT/year). The axial dipole

SV ġ01 is given by Sabaka et al (2020).

n m ġ ḣ ġ uncert ḣ uncert

1 0 4.78 0.00 0.0056 0.0000
1 1 8.18 -32.26 0.0053 0.0084
2 0 -5.84 0.00 0.0054 0.0000
2 1 -0.50 -33.51 0.0073 0.0076
2 2 -3.87 -18.41 0.0042 0.0063
3 0 6.49 0.00 0.0057 0.0000
3 1 3.41 6.05 0.0038 0.0029
3 2 4.72 0.44 0.0042 0.0040
3 3 -10.90 -0.87 0.0034 0.0033
4 0 -1.17 0.00 0.0023 0.0000
4 1 -1.31 0.30 0.0029 0.0033
4 2 -6.34 6.82 0.0016 0.0022
4 3 4.91 4.66 0.0031 0.0030
4 4 -4.07 -5.10 0.0019 0.0018
5 0 -0.31 0.00 0.0028 0.0000
5 1 -0.17 0.42 0.0014 0.0013
5 2 -0.78 3.19 0.0016 0.0019
5 3 -0.08 0.46 0.0013 0.0012
5 4 2.57 3.20 0.0020 0.0012
5 5 1.24 -0.30 0.0010 0.0011
6 0 -0.60 0.00 0.0007 0.0000
6 1 -0.22 0.18 0.0010 0.0010
6 2 -0.94 -1.70 0.0008 0.0007
6 3 2.22 -0.65 0.0011 0.0010
6 4 -1.63 0.95 0.0008 0.0007
6 5 -0.11 0.08 0.0007 0.0006
6 6 0.87 0.82 0.0007 0.0007
7 0 -0.09 0.00 0.0006 0.0000
7 1 0.20 0.45 0.0005 0.0004
7 2 -0.28 0.49 0.0006 0.0005
7 3 0.91 -0.81 0.0004 0.0004
7 4 -0.55 0.05 0.0008 0.0006
7 5 -0.61 -1.01 0.0003 0.0003
7 6 -0.84 0.25 0.0004 0.0005
7 7 0.83 0.33 0.0004 0.0003
8 0 0.05 0.00 0.0003 0.0000
8 1 0.15 -0.36 0.0003 0.0003
8 2 -0.30 0.47 0.0003 0.0002
8 3 0.57 -0.02 0.0003 0.0004
8 4 -0.21 0.64 0.0003 0.0003
8 5 0.52 0.19 0.0003 0.0003
8 6 0.09 -0.32 0.0002 0.0002
8 7 -0.46 0.56 0.0003 0.0003
8 8 0.38 -0.08 0.0002 0.0002
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List of abbreviations

CM4 - Comprehensive Model version 4

CM6 - Comprehensive Model version 6

EnKF - Ensemble Kalman Filter

GEMS - Geomagnetic Ensemble Modeling System
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NWP - Numerical Weather Prediction

OSSE - Observing System Simulation Experiment

SV - Secular variation
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