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Abstract—Rapid advancements in Cyber-Physical System
(CPS) capabilities have motivated farmers to deploy this ecosys-
tem on their farms. However, there is a growing concern among
users regarding the security risks associated with CPS. Especially
with rising number of cyber-attacks on CPS, such as modifying
sensor readings, interrupting operations, etc. Therefore, this
paper describes a security surveillance framework to detect devi-
ations in the ecosystem by incorporating a digital twin supported
anomaly detection model. The reason for incorporating digital
twins is that they add value by enabling real-time monitoring of
connected smart farms. We pre-process the collected data from
sensors deployed on the smart farm setup. The pre-processed data
is fused with our smart farm ontology to populate a knowledge
graph. The generated graph is further queried to extract the
necessary sensor data. We utilize the extracted normal data
to train the anomaly detection model. Further, we tested our
model if it identifies abnormal values from sensors by simulating
anomalous use case scenarios specific to our ecosystem.

Index Terms—Security Surveillance, Cyber-Physical System,
Digital Twins, Knowledge Graphs, Artificial Intelligence

I. INTRODUCTION

Farmers are shifting towards smart farming techniques by
integrating modern Cyber-Physical Systems (CPS) with exist-
ing farming practices. In addition, efficient use of resources
and improved crop yield can be achieved with the current
technological advancements in the CPS-based Artificial Intel-
ligence (AI) applications [1], [2]. The role of AI applications is
to provide insights for increasing operational functionality and
product quality which is beneficial to the farmers. For example,
an agriculture drone named AGRAS MG-11 sprays fertilizers,
pesticides evenly over the agricultural land at a much faster
rate so as to achieve lower pesticide use. However, existing
frameworks focus more on the application possibilities of the
data collected from CPS, and less emphasis is laid on the
security of CPS. Gupta et al. [3] have elaborated multiple
cyber-attacks that the adversaries can perform on CPS in a
smart farm ecosystem. Therefore, protecting the CPS from
security attacks and risks in real-time is still a challenging
task [4], [5].

A critical step to address this challenge is utilizing digital
twins. In recent years, the integration of real-time data from
physical sensors and knowledge specific to the domain for
building a “Digital Twin” has gained much attention in the
global market. Fundamentally, digital twins are defined as a

1https://www.dji.com/mg-1

virtual copy of the physical sensors that connects both the
physical and virtual entity [6]. Moreover, digital twins aid
in surveillance and controlling the physical entity there by
improving operational efficiency, productivity, etc. To contin-
uously monitor real-time data generated by sensors present
on the smart farm we need to design a surveillance system.
Several fields, such as transportation, medical, military, etc.,
have developed surveillance applications. Surveillance for CPS
is considered as an important application [7] in order to protect
CPS from cyber-attacks and downtime. To achieve this in a
smart farm ecosystem, we integrate our digital twin and CPS
to detect abnormalities in sensors. Here, we perceive sensors
as an element of the CPS ecosystem.

In this paper, we present a security surveillance framework
for CPS in a smart farm environment that monitors sensor data
generated and issues security alerts to farm owners. Alerts gen-
erated can help farm owners take necessary action beforehand
to reduce failures or sensor downtime. We also describe our
collected data, smart farm ontology, and digital twin modules
present in our surveillance framework. First, we begin by
utilizing the collected data from the sensors deployed in the
smart farm setup [8]. In the next stage, we integrate the pre-
processed data with a smart farm ontology [9] for generating
knowledge graphs in RDF (Resource Description Framework)
format [10]. Our reason for incorporating an ontology and
knowledge graphs is that these enables knowledge reuse across
domains [11], [12]. Knowledge graphs are also known for
solving time sensitive data modelling problems. Using digital
twins, we extract information from the knowledge graph and
forward it to the anomaly detection model for training on
normal observations of sensor data. For creating an anomaly
detection model, we use Principal Component Analysis (PCA)
[13] as it is the most popular technique for multivariate data.
Later, the trained anomaly detection model is used on test
data which contains simulated abnormal conditions of sensors
to identify anomalous points that deviate from the normal
data. Finally, we show that our digital twin representation
based anomaly detection model can be used to identify various
anomalous conditions on the smart farm.

The rest of the paper is organized as follows: Section II
contains related work. Section III explains our architecture,
while Section IV describes the experimental setup for our
use cases to demonstrate our anomaly detection model’s
effectiveness. Finally, we conclude and discuss the possible



future work in Section V.

II. RELATED WORK

In this section, we describe some related work on the role
of CPS in agriculture and digital twins. We also discuss appli-
cations of knowledge graphs and anomaly detection models.

A. Cyber-physical systems in agriculture

Driven by rapid technological advancements in cloud com-
puting, big data, machine learning, etc., the agriculture sector
started shifting towards smart farming. Multiple subsystems
deployed on the farm when integrated provide numerous
insights about condition monitoring, planning of farm oper-
ations, optimizing productivity, etc. For example, Jagannathan
et al. [14] described an automated agriculture task system.
Here the system sprayed the required water by monitoring the
existing soil water content. Rupanagudi et al. [15] developed
a framework to identify insects in tomatoes at an earlier phase
through continuous monitoring of smart farms. Another image
processing tool to detect diseases in plants right from the stage
of planting to harvesting was proposed by Jhuria et al. [16].
However, these applications impose new challenges to smart
farms in terms of security threats [3]. Sontowski et al. [8] also
showcased a real time attack on smart farms. Therefore, it is
essential to have security surveillance for smart farms.

B. Digital twin for cyber-physical systems

Digital Twins are known for simulating real-time behavior
of physical systems. The concept of using twins was first
introduced by NASA’s Apollo program, where a virtual replica
of a space vehicle was created to carry out flight operations.
Incorporation of digital twins by various CPS sectors can
help in real-time monitoring, identifying equipment failures,
etc. For example, in manufacturing [17], these models can be
utilized for quality management where continuous monitoring
of product data from various devices has an added advantage
over traditional inspection based techniques. In healthcare,
simulations play an essential role in medical surgery and
equipment design. Elayan et al. [18] designed a digital twin
based anomaly detection model that detects heart conditions
based on the data obtained from wearable devices. Xu et
al. [19] proposed a anomaly detection framework based on
digital twins where anomalous events were detected on critical
infrastructure testbeds. In the paper [20], digital twins for
smart farm has been described in order to identify soil moisture
content. However, their work was mainly investigative in
nature.

C. Knowledge graphs and their applications

Knowledge graphs store large amounts of data in the
form of triplets where Subject and Object represent head
and tail nodes, and the relation between them is represented
as Predicate. Moreover, knowledge graphs are known for
allowing easier querying of the required information as data
is interconnected. The querying is done by utilizing SPARQL
Protocol and RDF Query Language (SPARQL) [21] where

data is represented as instances of the knowledge graph. Some
of the widely used knowledge graphs that are supported by
semantic schemas include YAGO [22], DBpedia [23], NELL
[24], Google Knowledge Graph [25], etc. In the recent years,
knowledge graphs are widely being incorporated in multiple
domains such as healthcare [26], manufacturing [27], cyberse-
curity [28], [29], etc. Several knowledge graphs supported real-
world applications [30] for language representation learning,
question answering and recommendation systems have been
built to provide efficient services. For instance, in the manu-
facturing domain, an application was developed by Banerjee
et al. [31] where they extract and infer knowledge from large-
scale production line data to enhance process management
in manufacturing. Their paper described a semantic query
mechanism utilized to estimate the minimum response rate
and turnaround time for a non-defective product.

D. Security for cyber-physical systems

With the increasing connectivity of CPS, researchers face
new challenges regarding the recent exposure of CPS to several
cyber-attacks and threats. To combat this problem, multiple
CPS domains have incorporated anomaly detection models to
identify anomalous events and further keep their CPS secure
and reliable. Zeng et al. [32] introduced a machine learning
based intrusion detection method that detects malicious nodes
in vehicular ad-hoc networks. Dutta et al. [33] explained
a Hidden Markov Model (HMM) based anomaly detection
model that identifies and alerts the owner of a smart home
whenever an anomalous event is detected in the network
or behavioral data. In the paper [34], anomalous events in
clean water supply systems obtained from the testbed were
identified and evaluated by utilizing multiple machine learning
approaches such as support vector machines, k-nearest neigh-
bours, and random forest. Hao et al. [35] developed a statistical
machine learning approach to detect abnormal patterns that
have low false omission rates in industrial control systems
by utilizing Seasonal Auto-Regressive Integration Moving
Average (SARIMA) based dynamic threshold model.

Extensive work has been done in various domains that
utilize digital twins for anomaly detection. However, incor-
porating digital twins and knowledge graphs for anomaly
detection in a smart farm environment has not been done to
the best of our knowledge. As discussed earlier, we believe
that our digital twin supported anomaly detection approach
offers a new surveillance perspective to identify real-time
anomalous events from multiple sensors deployed in a smart
farm environment.

III. SYSTEM ARCHITECTURE

In this section, we explain our surveillance framework,
which contains a digital twin supported anomaly detection
model to automatically detect an abnormal value in a sensor
while thoroughly monitoring the captured data from sensors
deployed in a smart farm environment. The system architecture
of our proposed security surveillance framework for CPS to



Fig. 1. Architecture of our security surveillance framework for CPS.

tackle the security risks in the smart farm ecosystem is shown
in Figure 1.

Our framework consists of three modules that are interlinked
with each other :
• Data collection & pre-processing: This is the first step in

which physical sensors’ real-time data is read from the
data source. We pre-process the data, and further extract
the required features for our work.

• Smart farm ontology: In this phase, we utilize an existing
ontology [9] to provide information about entities and
relationships in the smart farm ecosystem.

• Digital twin: This is the final phase where the digital
twin contains two sub-modules: knowledge graph and
anomaly detection. We populate a knowledge graph by
linking the real time data and entities defined in our
smart farm ontology. Further, we extract the required data
from the knowledge graph through SPARQL Protocol and
RDF Query Language (SPARQL) [21] queries. The data
then serves as an input to generate an anomaly detection
model. Finally, we use the generated model to detect
abnormal measurements in sensors.

We elaborate on various components in the following sections.

A. Data collection & pre-processing

For this work, we have used the data collected by Sontowski
et al. [8]. The authors have deployed sensors in a smart farm
setup connected via Raspberry Pi that pushes data to the
cloud whenever there is a change in the observation. The data
given was captured for 10 days and contains information such
as the status of grove base hat, camera, and measurements
from sensors like barometer, grove light sensor, air quality
sensor, capacitive moisture sensor, and air quality sensor.
Changes in physical properties such as temperature, pressure,
humidity, light intensity and air quality of a sensor are updated
immediately.

The data collected from all the sensors, including their
timestamp, are combined and stored in the Microsoft Azure
cloud. A sample of measurements for each sensor and their
status are given in Table I. The data present had 9 features

Timestamp Sensor Measurement Status
29-07-2020 18:39:35 AirHumidity 40.7
29-07-2020 18:39:35 AirPressure 100.59
29-07-2020 18:39:35 AirTemperatureC 19.92
29-07-2020 18:39:35 AirTemperatureF 9.27
29-07-2020 18:39:35 Camera Not Installed
29-07-2020 18:39:35 GroveBase HAT Installed
29-07-2020 18:39:35 Light 26.84
29-07-2020 18:39:35 Soil Moisture 25.47
29-07-2020 18:40:49 AirHumidity 42.42
29-07-2020 18:40:49 AirPressure 98.73
29-07-2020 18:40:49 AirTemperatureC 19.84
29-07-2020 18:40:49 AirTemperatureF 9.27
29-07-2020 18:40:49 Camera Not Installed
29-07-2020 18:40:49 GroveBase HAT Installed
29-07-2020 18:40:49 Light 26.84
29-07-2020 18:40:49 Soil Moisture 25.47

TABLE I
OBSERVED DATA FOR EACH SENSOR.

such as Time, AirHumidity, AirPressure, AirTemperatureC,
AirTemperatureF, CameraStatus, GroveBaseHatStatus, Light,
and SoilMoisture1. Two distinct values, categorical and numer-
ical, are seen across the columns of the dataset. CameraStatus
and GroveBaseHatStatus columns are represented as categori-
cal nominal values, and the rest of the columns are represented
as numerical values.

Data pre-processing techniques were applied to the given
data set to eliminate null values and convert categorical
nominal data into numerical values using label encoding. As
label encoding takes less processing time and does not affect
the dimensions of the dataset.

B. Smart farm ontology

We re-use smart farm ontology created in our previous
work [9] as it contains all the general concepts related to the
smart farming ecosystem. The smart farm ontology developed
is based on various physical sensors, and their relationships
where the sensors are represented as classes and their relation-
ships are represented as properties. We explain below some of
the important classes and properties that we have used in our
implementation.



The class Time is an essential class for our work as it
indicates the timestamp for every recorded observation of a
physical sensor deployed in the smart farm setup. For example,
the barometer sensor’s change in temperature at a particular
time is captured by this class. A MemberFarm class monitors
all the interactions happening in the farm, such as status
and readings of all the sensors deployed in the smart farm
setup. Farm Based Units (FBU) is an entity that refers to all
the physical sensors deployed in the farm. In our case, soil
moisture, barometer, light, air quality sensor are represented
as individuals of this Farm Based Units (FBU) class. The
Farm Based Units (FBU) class is a sub-class of the Sensor
class. Observation class is associated with two classes such
as SensorData and Time The SensorData class represents the
measurement value of the physical sensors deployed in the
smart farm and does not focus on the temporal aspect.

The property hasValue holds an instance of Farm Based
Units (FBU) class that contains a data value. This data
value represents the status or measurement of the physical
sensor. The subject entity belongs to the Observation class
and the object entity belongs to SensorData class. hasTime is
a relationship between Observation class and Time class which
provides the timestamp at which the data was recorded.

C. Digital twin

Our digital twin supports security surveillance of CPS by
continuously monitoring the data generated from physical
sensors. This is done by extracting real-time normal data
through a knowledge graph for training the detection model.
Later, we simulate the anomalous condition of sensors and add
it to the test data for validating our detection model. A detailed
explanation for each sub-module of digital twin is presented
below.

1) Knowledge graph: In this sub-module, we describe
our approach in populating a knowledge graph. We use the
knowledge graph to obtain structured knowledge from the
heterogeneous data generated by the physical sensors. Our ap-
proach integrates real-time data with our extended smart farm
ontology to populate the knowledge graph. In which real-time
data is obtained after pre-processing the raw data collected
from physical sensors containing a stream of numerical values,
including a timestamp. Furthermore, generated knowledge
graph present in the RDF (Resource Description Framework)
format [10] captures key information from structured data
required for integration and reasoning. For example, a light
sensor, an instance of FBU class records an observation. The
change in sensor data and the recorded time are shown in the
Observation class. Figure 2, shows a graphical representation
of light intensity measured by the light sensor which is 26.8
on 29th July 2020 at 18:39:35 PM. Here, the measured value
26.8 is an instance of SensorData class, and timestamp is an
individual of Time class.

We use the SPARQL Protocol and RDF Query Language
(SPARQL) [21], similar to Structured Query Language (SQL)
to run queries for extracting information from the knowledge
graph. The extracted knowledge is used for generating feature

Fig. 2. Representation of knowledge graph in Resource Description Frame-
work (RDF) for observations recorded by light sensor.

vectors which serves as an input to the anomaly detection
model. For example, we can get information about measure-
ments of soil moisture sensor on a particular day with the help
of a SPARQL Protocol and RDF Query Language (SPARQL)
query [21].

2) Anomaly detection: We utilize the data extracted from
the knowledge graph that provides us with sensor readings
for every timestamp. These readings represent the normal or
abnormal behaviors of sensors deployed in a smart farm setup.
Any deviation from the normal behavior of the data collected
is reported as an anomaly. Our focus is to develop an anomaly
detection model that continuously monitors the sensor data and
alerts the farm-owner whenever an anomalous state is detected.
However, anomaly detection models often find it challenging
to detect anomalies when presented with high-dimensional
data. Since the increase in number of features affect both
the performance and accuracy of the models. To address this
problem, we have chosen to use Principal Component Analysis
(PCA) method to create a model.

PCA, as described by Li et al. [13] is a multivariate statisti-
cal analysis algorithm where the original data is mapped onto
a lower-dimensional space by retaining most information from
the original data. In our work, we perform PCA based anomaly
detection by utilizing the above algorithm [13] and further
calculate the covariance matrix only on the normal conditions
of the dataset. To detect anomalies on the test data, we
compute mahalanobis distance between the normal data and
test data in principal component space. If the distance between
them exceeds a certain threshold, we classify the data point
as an anomaly. The threshold is determined by applying the
distance function on the normal data, and its distribution. We
used mahalanobis distance here instead of euclidean distance
as the former includes mean values, variance and covariance
of the variables.

The formula for computing mahalanobis distance (D) for
normal data and it’s distribution is:



D =

√
(x−m)>T−1(x−m) (1)

Here x is the observed data, mean values of the independent
variables is represented by the vector m, and their covariance
matrix inverse is denoted as T−1.

IV. USE CASE SCENARIO

We tested the effectiveness of our system described in
Section III with multiple use cases in a real-time environment.
In this section, we describe our experimental setup and steps
taken to generate abnormal conditions that can happen with
sensors deployed in the smart farm setup. Further, we also
explain the implementation process and evaluate our model’s
ability to identify an abnormal condition.

A. Experimental setup

As described in Section III-A, sensors deployed in the
smart farm setup generate data for every timestamp. We have
integrated the data collected from sensors for 10 days with our
smart farm ontology described in Section III-B to generate a
knowledge graph. Then our digital twin model that supports
anomaly detection continuously extracts the vital information
from the knowledge graph as explained in Section III-C1,
which contains only numerical values of sensors and time at
which a change in observation is recorded. Further, we utilize
PCA based anomaly detection model described in Section
III-C2 to monitor the data generated from sensors and alert
the farm owner whenever there is an anomaly observed in the
operational condition of the sensors. We have chosen to use
digital twin in our work to observe data generated from sensors
in real-time and simulate anomalous conditions of sensors.
In this way, digital twin also supports anomaly detection
function by helping evaluate the model’s performance during
abnormal operating conditions of the sensors. An example
of a simulated anomalous scenario is when soil moisture
sensor had a sudden spike in its value and continued for few
days caused by inducing anomalous data to the actual data
in the digital twin. In this case, a sudden spike in the soil
moisture sensor is considered abnormal and needs immediate
attention as it could damage the crop. Another scenario is
when the temperature sensor readings are varied drastically
by simulating a temperature drop around the smart farm.
Likewise, we have simulated anomalous sensor readings for
about 900 observations out of 2281 in the test data.

B. Abnormal scenario detection

We ran the digital twin supported PCA based anomaly de-
tection model described in Section III-C to evaluate our model.
We started our experiment by extracting data from knowledge
graph and normalize the obtained input features with the help
of the min-max function [36]. Further, we split our data into
training and test data. The training data consists of data points
collected from sensors during normal conditions. This data
is used to train the PCA based anomaly detection model
and estimate the threshold score of acceptance. The test data
contains the data points from simulated anomalous scenarios

Fig. 3. Distribution of mahalanobis distance for normal observations.

described in Section IV-A. In our next step, we trained the
PCA based anomaly detection model on training data where
the number of principal components is 2. Simultaneously,
the threshold score is set to 3.2 based on the distribution of
mahalanobis distance for normal conditions of sensor data as
shown in Figure 3. Any new data point whose mahalanobis
distance exceeds this threshold is flagged as an anomaly.
We validate our work by running our test data on the PCA
based anomaly detection model in our final step. We detected
837 anomalous observations in the sensor, and simultaneously
alerts were issued out of 900 simulated anomalous readings of
the sensors. We also noticed that all the detected anomalous
data points exceeded way above our threshold score.

V. CONCLUSION AND FUTURE WORK

The adoption of CPS in the agriculture sector has provided
significant benefits to the farmers but led to the rise of security
threats and vulnerabilities. In this paper, we describe our
security surveillance framework where a digital twin supported
anomaly detection model addresses security problems CPS
ecosystem faces in the agriculture sector. We utilize real-time
data from multiple sensors deployed in a farm setting and
our existing smart farm ontology to populate a knowledge
graph. Our digital twin setup supports the generation, pop-
ulation, querying of the knowledge graph and further aids in
building an anomaly detection model. Therefore, the generated
knowledge graph is queried to obtain normal data as an input
to train the PCA based anomaly detection model. The trained
model is used to detect any deviations in data generated by
the physical sensors. To verify the efficacy of our model, we
also simulated abnormal scenarios in our digital twin that the
sensors might measure. Our initial results show that the model
was able to identify deviations in the sensors. In the future, we
plan to extend our work by applying other anomaly detection
models on more extensive smart farm data. We would also like
to analyze more real-time anomalous use case scenarios in the
smart farming ecosystem while fully utilizing the benefits of
the digital twin.
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