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Introduction  

The supporting information contains five figures including:  (S1) NASA DC-8 camera frames 
showing two agricultural fires; (S2) time series of species in fire plumes measured by two types 
of transects; (S3) the evolution of ΔBC/ΔCO in 6 aged fire plumes; (S4) Simulated CO evolution 
along cross section; (S5) closure analysis of bap at 365 nm for agricultural fire plumes; (S6) the 
evolution of ΔOA/ΔCO in 7 aged fire plumes; and (S7) additional sensitivity test results of 
ΔPAN/ΔCO vs. smoke age. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. NASA DC-8 camera frames of two agricultural fires sampled: (a) Fire 1 at 18:57:18 
UTC on 6 September 2013, taken by front camera and (b) Fire 3 at 23:38:51 UTC on 9 
September 2013, taken by nadir camera. 

(a) 

(b) 
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Figure S2. Time series of CO, CO2, HCl, chloride, SO2, sulfate, particle light absorption 
coefficient at 532 nm, and radar altitude for two typical transects: (a) cross-plume transect of 
Fire 12 on 23 September 2013 and (b) source to downwind transect of Fire 4 on 11 September 
2013. 
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Figure S3. Changes of ΔBC/ΔCO in 6 aged plumes (not available for Fire 14). Vertical error bars 
are a result of measurement uncertainties. Only error bars of one fresh and one aged 
measurement are shown as examples for each fire. Horizontal error bars represent the 1σ 
uncertainty in the estimated age based on the variability of wind direction and wind speed.  
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Figure S4. Evolution of simulated CO mixing ratio along the cross section of the two plumes 
from Fire 4.  
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Figure S5. Closure analysis of bap at 365 nm for agricultural fire plumes via scatter plot of the 
sum of BrC absorption determined from liquid extracts plus estimated BC absorption based on 
PSAP measurements and an AAEBC of 1 versus total aerosol absorption based on PSAP data. 
Orthogonal distance regression fit result and the 1:1 line are shown. Measurement 
uncertainties of the various absorption coefficients are estimated to be ~19%-45%. 
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Figure S6. Changes of ΔOA/ΔCO in the 7 aged plumes. Vertical error bars are a result of 
measurement uncertainties. Only error bars of one fresh and one aged measurement are 
shown as examples for each fire. Horizontal error bars represent the 1σ uncertainty in the 
estimated age based on the variability of wind direction and wind speed. 
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Figure S7. Additional sensitivity test results of ΔPAN/ΔCO vs. smoke age for the 5 selected cases. 
Circles are the measured enhancement ratios, with the vertical error bars showing the uncertainty in 
the measurement. The uncertainty in the estimated age is not shown but is same as in Figure 9. The 
red, purple, blue, and green lines are the results of the base model, the base model with doubled 
acetaldehyde input, the base model with estimated methylglyoxal using EF(methylglyoxal) by 
[Stockwell et al., 2015], and the base model with estimated diacetyl, HONO, and methylglyoxal using 
EFs by [Stockwell et al., 2015], 
 
 
 
Reference 
Stockwell, C. E., P. R. Veres, J. Williams, and R. J. Yokelson (2015), Characterization of biomass burning 

emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-
transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15(2), 845-865, doi: 
10.5194/acp-15-845-2015. 
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