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To answer a question about an image or to merely describe an object in an image

for answering, the current visual question answering systems have been augmented with

attention mechanisms. The visual question answering mechanisms before the advent of

attention mechanisms worked on the principle of training over a combination of image

feature vectors and question and answer embeddings. Attention mechanisms like stacked

attention networks and hierarchical co-attention attention mechanisms, help to figure out

which parts of the image to attend but hardly emphasize on correcting attention. We pro-

pose a mechanism for correcting visual attention by using the concept of saliency of parts

of the image being attended to. We primarily use a study of how the gaze of humans shifts

over an image can help us improving the attention generated by introducing an auxiliary

loss in a standard stacked attention network pipeline. For this mechanism, we use a dataset

known as the VQA HAT dataset which is a large-scale collection of images containing

regions explored by humans, and we use this dataset for further augmenting the work.
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Chapter 1

INTRODUCTION

1.1 Overview and Motivation

Recently, a lot of impetus has been put on understanding scenes through contexts pro-

vided by natural language in AI systems. Attention mechanisms are an attempt to do this

task. One may understand attention mechanisms as a replica of the steps taken by a human

brain to reason about an image step by step. Attention mechanisms have played a role

in improving AI tasks such as machine translation([Bahdanau, cho, & Bengio2016]), ob-

ject detection ([Ba, Mnih, & Kavukcuoglu.2015]) and image captioning ([Xu et al.2015])

being a few of them. These advances however also bring up the differences between ob-

ject detection and visual understanding. There has certainly been a marked improvement

in these systems through attention mechanisms, but due to lack of enough contexts about

the data for a system to learn the attention, the accuracies have a lot of scope of improve-

ment. One of the famous statements by Des et al. is that ”machine-generated attention

maps are either negatively correlated with human attention or have positive correlation

worse than task independent saliency”([Jabri, Joulin, & der Maaten.2016]). The ability of

a deep learning network to mimic human attention has been the most recent metric to im-

prove attention mechanisms. This work further delves into perfecting such systems through

learning dynamic weightings of input vectors using the human annotated attentions to act

1
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(a) Attention generated attention (b) Attention generated by the corrected model

FIG. 1.1: Attentions generated by two models

as an additional input to the attention mechanisms. In short, our work contributes to the

correction of visual attention which can be used to improve the quality of the answers gen-

erated by the AI system for the given question about the image. To illustrate this by an

example consider the figure 1.1 and the question asked about the given image being ”is it

Sunny?”.Figure 1.1(a) shows attention generated by a standard attention network and figure

1.1(b) shows where the attention of the network should be if it were accurately generating

attention maps.

1.2 Learning from human gaze data

Human gaze data has been collected in various ways to understand saliency, and there

have been a lot of ways in which this data is being interpreted. The major challenge posed

for a question answering system is when the question is based more on a semantic visual

attribute rather than an object detection or a scene classification. There can be many in-

terpretations about an image and recognizing such characteristics of data has been helped

by collecting human gaze data. An example of this is when a human is asked to draw a

boot, the general image would more or less have the same attributes, but when a human is

asked to draw or pick an attractive person from a set of actors, it can vary across different
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people.([Murrugarra-Llerena & Kovashka2017]).

For our experiments, we have used a dataset annotated by humans which is a set of

images emphasizing on the regions in the image important for answering a question about

the image. This dataset is known as the VQA-HAT(Human Attention) dataset. To improve

the currently existing attention networks for visual question answering systems, we use this

dataset for a corrective mechanism used to improve the efficiency of the currently existing

baseline models. There are various ways in which this dataset can be used to improve the

existing model.



Chapter 2

RELATED WORK

2.1 Visual Question Answering(VQA)

A visual question and answering system can be described as one which takes an image

and a question as input and answers a natural language question about it. The very nature

of such a system is multidisciplinary, as this system has to first understand the question

and classify the type of the question and then answer it, for example, the answer to a ”how

many” question has to be a number and the answer to an ”is this” question has to be a binary

”yes/no”([Jonathan Hui blog2017]). All of these questions query the image in a different

manner for example for a how many question, there needs to be a object detection and for

a binary ”yes/no” question needs to be a scene classification. This adds computer vision

to the system.This reasoning about the image is the most critical part of such a system

which adds knowledge representation reasoning (kr). A combination of computer vision,

and knowledge representation reasoning makes it a multidisciplinary system. Shown below

in Figure 2.1 ([Agrawal et al.2017]) are a few examples of visual question and answering.

2.1.1 Available datasets

Visual question answering datasets are hard to capture as there are many possibilities

of types of questions and a large range of real-world scenarios to represent. A large number

4
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FIG. 2.1: Visual question and answering given images and questions

of datasets are a part of Microsoft common objects in context(MSCOCO) dataset.

One of the very first datasets released for visual question answering is the DAQUAR

dataset which stands for ”DAtaset for Question Answering on Real-world images”. This

dataset has 6794 training question-answer pairs and 5674 test question-answer pairs. The

major drawback of this dataset is that it lacks the variety of different conditions of indoor

and outdoor scenes. Hence it lacks the complexity required for capturing different sce-

narios. The second dataset largely used is known as COCO-VQA dataset. This dataset

is significantly larger than the DAQUAR dataset as it contains 123,287 images from the

COCO dataset. The uniqueness of this dataset comes from the fact that the creators of

this dataset use an NLP algorithm to generate image captions. But just like any other NLP

based dataset, this has drawbacks like grammatical errors. The dataset which is relatively

larger than these is the VQA dataset. It has around 50,000 abstract images along with

204,721 images from the COCO dataset. This is the dataset we use for our experiments.
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This dataset has 3 questions per image and ten answers per question.

2.2 Building blocks of VQA

2.2.1 Convolutional Neural Networks (CNN)

In the last few years, convolutional neural networks have been one of the most ef-

fective methods for visual recognition tasks like scene classification and object detec-

tion. There are many architectures based on CNNs which are used to extract features

from images. VGG architecture is one such architecture which we use in VQA tasks.

([Singh2016]).

2.2.2 Long Short Term Memory Networks (LSTM)

LSTM’s are a type of recurrent neural networks and facilitate in sequence based mod-

els by remembering the features inputs given in a sequence. Such models have been heavily

used in machine translation and speech recognition activities. Particularly in VQA, they are

used to comprehend the question. ([Singh2016]).

2.2.3 Word Embeddings

Word embeddings are dense word vectors used to represent words created by famous

word2vec models like Google word2vec or Glove. Generally, the word vectors are of fixed

length. Similar words have high cosine similarity.([Singh2016]).
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2.3 Famous VQA pipeline architectures

2.3.1 Convolutional Neural Networks and bag of words model (BOW)

In this model, the image is passed through the VGGnet and the extracted features

which are a 4096-dimensional vector are concatenated with the question vector which

is a summation of the vectors of all individual words in the question. A softmax layer

is attached at the end, and it gives us a probability distribution over the entire answer

space.([Singh2016]).

Fig 2.2 shows the architecture of this system.

FIG. 2.2: VQA bag of words model

2.3.2 Convolutional Neural Network and Long Short Term Memory Network

The BOW model ignores the sequence in which the words are occurring. An LSTM-

based question model captures the sequence by first converting the words into an embed-

ding and then passing them into an LSTM. The final output of this LSTM is used as the

question embedding which is concatenated with the image vector. Figure 2.3 shows how
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the different states of the LSTMs are generated according to the word sequence in a sen-

tence to get one final word embedding to represent the sentence.([Singh2016]).

FIG. 2.3: Word embedding generated by LSTM

Overall these baseline models consider a combination of image features and word

embeddings of questions and answers. The second category of baseline models includes

the contextual and spatial understanding of the image features as training features for the

VQA model that is spatial attention is taken into consideration when using image features

for training. For example, if the question is ”what is the color of the table” this mechanism

considers the visual elements around the table and suppresses others. These models are

called attention based models.
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2.4 Attention in VQA systems

2.4.1 What is attention?

In the previous section, attention-based VQA models were explained. The goal of

attention mechanisms is to focus on relevant areas of the image to answer a question. In the

last few years a number of attention models have been proposed for visual question and an-

swering that generate attention maps along with an answer to highlight the part of the image

that is relevant for answering the question about the image. Figure 2.4 ([Yang et al.2016])

shows an example of how attention looks in a VQA set up.

FIG. 2.4: Example of attention in a VQA system

To further understand attention we take an example of an image captioning system.

As described earlier, attention is a method to weigh spatial locations according to their

perceived importance. From the image in Figure 2.5 we eventually generate the caption.

A man holding a couple plastic containers is walking down an intersection towards me.

([Jonathan Hui blog2017])

The first word predicted for this image is ’A’ which is updated as a context.After that
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FIG. 2.5: Image for generating a caption

the word ’man’ is updated as the new context.”For the next prediction, our attention shifts

to what he is holding in his hands.

FIG. 2.6: Attention in an image captioning system

Hence, after a series of updated attentions on the image we are able to generate the

caption. Mathematically, the system is performing the following function.

nextword = f(image, lastword) (2.1)

where image is given as input ,the last word is the word predicted at step time step t-1 and

next word is the word predicted at time step t.
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This which can be translated as

ht = f(x, ht−1) (2.2)

where x is the image and ht is the hidden RNN state at time step t..

To introduce attention we are trying to replace the image x in LSTM model, with an

attention module:

ht = f(attention(x, ht−1), ht−1) (2.3)

The attention module generates the areas to importance in an image x.

Figure 2.7 shows how attention works in a caption generating system.

FIG. 2.7: Generating caption using attention module
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The attention module has two inputs

• context : Context implies a hidden state ht from the previous time step t. In an LSTM

the input is the feature of a fully connected layer of the CNN applied to an image.

But in an attention mechanism this we need spatial features too, so we choose the

features of a convolution layer as input.

• Image features in each localized areas.

FIG. 2.8: Spatial features in CNN model

As we can see in Figure 2.8 the feature maps in the second convolution layers are

divided into four regions which resemble the top right and left and the bottom right

and left of the original pictures. Replacing the ’x’ in the LSTM input with these four

spatial regions and the context ht−1 makes the attention module. Figure 2.9 shows

in more detail the inputs to the attention module which are different regions of the

image.

2.4.2 Types of attention mechanisms

There are two kinds of attention mechanisms-

Soft attention: As mentioned in equation 2.3 the attention, the term x can represent

an image. In soft attention, each state is a representation of what is learned about the
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FIG. 2.9: attention module with spatial inputs

image from the previous state in terms of image features. If we condense this idea in terms

of inputs, soft attention marks down the irrelevant image region features by getting them

closer to zero. A new feature map is created every time by darkening the irrelevant image

features. Hence in soft attention, instead of using the image x as an input to the LSTM, we

input weighted image features accounted for attention.

Hard attention: As discussed in the above section soft attention modulates the

value of the image features based on the importance of the corresponding image region.

For this a term representing a probability αi is multiplied to the corresponding image fea-

ture vector xi, for the ith image region feature. In hard attention only the probability value

αi is used as an input for the LSTM.Hence in hard attention we use a probability instead of

the weighted vectors of images as the input for attention. In our model we use the concept

of hard attention that is we generate a probability distribution to generate the new attention

mask for the image.

2.4.3 Current attention based VQA models

Stacked attention models (SAN) : Given the image feature matrix and the ques-

tion feature vector SAN predicts the answer using multi-step reasoning. In many

cases, an answer only related to a small region of an image. For example, in Fig.
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2.10([Yang et al.2016]), although there are multiple objects in the image namely bicycles,

baskets, window, street and dogs and the answer to the question only relates to dogs.

FIG. 2.10: Visualization of attention layers

Therefore, using the one global image feature vector to predict the answer could lead

to sub-optimal results due to the noise introduced from regions that are irrelevant to the

potential answer. Instead, reasoning via multiple attention layers progressively, the SAN

is able to gradually filter out noises and pinpoint regions that are highly relevant to the

answer. Given the image feature matrix vi and the question vector vQ, we first feed them

through a single layer neural network and then a softmax function to generate the attention

distribution over the regions of the image. The stacked attention network architecture is

shown in Figure 2.11 ([Yang et al.2016]).

Hierarchical Co attention model : This mechanism uses the fact that to correctly

answer a question about an image we need to look at both the question and the image.

Hence it uses both the question attention and the image attention in parallel. For example

give the following image if the question asked is ”how many apples are there in the image”

or ”how many apples can you see in the image” , the model should consider the first three
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FIG. 2.11: Stacked attention network

words in the question.

Hence a Co attention model jointly reasons about the visual attention and the question

attention.There are two co attention mechanisms namely Parallel co-attention and Alter-

nating co-attention.

2.5 Saliency

2.5.1 What is saliency?

To make progress in the field of attention mechanisms, there is a need to understand

how to look at an image given some information about it. Capturing human gaze on an im-

age largely fulfills this requirement. With the advent of neural networks and large annotated

datasets, saliency prediction techniques have successfully created feature maps very close

to the way a human would look at an image but mimicking the human gaze completely has

not been achieved yet.
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2.5.2 How has saliency been explored till now?

Saliency has been explored by carrying out various studies on the shifting of the

human gaze shifts over images and videos to capture context. The VQA-HAT (Human

attention) dataset.This dataset which consists of a total of 62,597 images which have

been explored by people to answer a question. They were given a blurred image to

mimic the intermediate layers generated by an attention mechanism and were asked to

deblur the portion of the image which, according to them, were relevant to answer the

question([Qiao, Dong, & Xu2017]).

These human-generated attention maps were used to conduct experiments which could

use these maps instead of an attention mechanism as a corrective mechanism. One such

experiment was based on the idea that these maps be directly given as the pool5 layer output

in the VQA pipeline.

Furthermore, to correct visual attention the VQA-HAT dataset was used to add su-

pervision to the VQA models. The human attention network first trains on the VQA-HAT

dataset. This trained model is then applied on the VQA version 2.0 dataset to produce the

human-like attention dataset(HLAT). As a final step, this new dataset is used the attention

networks to show improvement in the attention. The overall accuracy is said to have im-

proved by 0.15% utilizing this mechanism which further validates the intuition behind our

experiments([Qiao, Dong, & Xu2017]). The architecture for a human attention network

trained using the VQA-HAT dataset is given in Figure 2.12.

After creating the human attention network based on VQA-HAT data, this work gen-

erated human-like attention maps for the VQA dataset. This dramatically augments the

dataset which acts as ground truth for further training. Because there is a large base for

human attention maps or similar data this work further incorporates human in the loop

mechanism by adding a loss in a standard Multilinear Low-Rank Bilinear Attention Net-
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FIG. 2.12: Human attention network

work.

The complete pipeline of this work is given in Figure 2.13. The attention generated by

a standard attention network is compared with the human-like attention map for the same

image and question pair, and the model learns from the difference. This makes this process

close to a supervised learning process.

The interesting part of observing human gaze has been the fact that human gaze does

not focus on a particular object but also includes peripheral vision and a context to create a

sentence or a word for an object.

2.5.3 Systems using the concept of saliency

As mentioned in section 2.5.2, the concept of saliency has been used by many other

systems. One interesting use of the concept of saliency was done in image captioning

systems. Image captioning models attend to different areas of the image to generate words.
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FIG. 2.13: supervised attention model

To correct the generated maps human supervision and annotations were used as ground

truth to optimize the image captioning models.

The concept of attention correctness using saliency is also used with video captioning.

This dataset is known as VAS and has a set of clips of video with captions along with

human gaze data to generate those captions. This network is known as the Gaze Encoding

Attention Network which uses the human gaze tracking data for generating spatial and

temporal information([Kim2017]).

One very interesting work is based on evaluating a model based on the explanations

generated by it for answering a question. ([Park et al.2017]).

There has been work in the direction of correcting attention not only using visual

attention correction but also by evaluating the natural language explanations generated by

a system. Figure 2.14 shows the working of such a system. The AI system also generated

explanations or reasons about why it answered a particular question about the image. This

helps as a mechanism to adjust the attention according to the direct comparison that can be



19

made with the understanding of the system and the ground truth.

FIG. 2.14: Attentive Explanations

2.5.4 Multi-task Learning

To get optimal results, various approaches are used to train, either a single model or

an ensemble of models. After training a model sufficiently, we either fine-tune a model

or tweak its hyperparameters [Ruder2017].To understand multi-task learning we have to

understand the concept of related tasks. For example, two single tasks of detecting the

color of a flower and another of detecting the type of a flower can use the same network.

Two related tasks have a slight difference but basically, use the same subset of lower level

features to train on for different tasks. Based on the parameter sharing between two models,

the multi-task learning can be divided into two types. The first is hard parameter sharing

and the second is soft parameter sharing.

Hard parameter sharing: As the name suggests in hard parameter sharing the hid-

den layers are shared between tasks. Figure 2.15([BAXTER1997]), depicts hard parameter

sharing in a deep neural network between three tasks A,B, and C.Hard parameter intuitively

also has an advantage of reducing the risk of overfitting([Ruder2017]). It is proved that the
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risk of overfitting is in the order of N, where N is the number of tasks([BAXTER1997]).

In this work, we have used hard parameter sharing as we use commonly hidden layers for

both of our tasks.

FIG. 2.15: Hard parameter sharing(MTL)

Soft parameter sharing: In soft parameter sharing all tasks have separate models.

All the tasks have their own set of parameters, and the distance between them is regularized

to keep them similar. Figure 2.16 ([BAXTER1997]) shows such a system with each task

having its model but with regularizing the parameters as a form of sharing.

FIG. 2.16: Soft parameter sharing(MTL)
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Hence we can use a neural network which was trained for some other related task in

conjunction with one trained for a separate task, and this is a form of inductive transfer

which helps in improving generalization. Another example is a network trained to recog-

nize a specific object can be used for a task that doesn’t require us to categorize the objects

in the same way as the previous task but can still be very useful. For example, if we have

an object detection task in Figure 2.15,we can treat the detection of different objects as

separate tasks and use multi-task learning.

FIG. 2.17: Multitask Learning in object detection

In this image in the scenario of multitask learning instead of providing one label we

can have multiple labels for the same scenario.

In our work, we use the concept of multitask learning by learning from two tasks.

The first task is training on an { I, q, a } tuple where I is the image feature vector, q is

the question embedding and a is the answer embedding. The second task is training over

an { I, q , a , I’} where I, q and a mean the same as before with addition of I’ which is

the corresponding human attention map. This enables us not to lose information and helps

the model to generalize better at the original task. Multi-Task learning can be done in two

ways. To define the loss function for multi-task learning, we can use two mechanisms.

We can either define the two tasks and optimize them separately, or we can optimize them

jointly. In this work, we have optimized them individually by training them in alternate
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objects yi Binary (0/ 1)
Pedestrians 0

Cars 1
Stop Signs 1

Traffic Lights 0

Table 2.1: Multitask Learning in object detection

batches with two separate losses.



Chapter 3

DATASET

3.1 VQA

The Microsoft COCO dataset is a dataset commonly used for visual question answer-

ing and contains human annotated questions and answers. The dataset contains 265,016

images. (COCO and abstract scenes)([Agrawal et al.2017]).

3.1.1 Dataset Analysis

To further analyze the dataset we describe each component of the dataset namely,

images, questions, and answers. The images are categorized in two sets which are real

images and abstract scenes. The real images are images of multiple objects containing

rich contextual information. This accounts for a total of 123,287 training and validation

images and 81,434 test images. Next, we have a collection of 50k images which are known

as abstract scenes. These scenes were generated to help the model train for high-level

reasoning about the image.

As described earlier the dataset has 614,163 questions and 7,984,119 answers. The

questions can be clustered by the words with which they start. The figure below depicts the

distribution of the questions based on the first four words for both real images and abstract

scenes([Agrawal et al.2017]).

23
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FIG. 3.1: Clustering of questions

3.1.2 Data split

There are 248,349 training questions, 121,512 validation questions, 244,302 testing

questions, and a total of 6,141,630 question-answers pairs. There are three subcategories

according to answer types including yes/no, number, and other. Each question has 10 free-

response answers([Agrawal et al.2017]).

3.2 VQA-HAT

Many studies on ’human attention’ in Visual Question Answering (VQA) try to under-

stand where humans choose to look to answer questions about images. The study required

the subjects to sharpen regions of a blurred image to answer a question. Thus this dataset

is called the VQA-HAT (Human Attention) data set. The images used for this study are a

subset of the COCO data set. The training set has 58,475 attention maps, and the validation

set has 4,122 attention maps with multiple attention maps for a single image [?].

3.2.1 Dataset Analysis

This VQA-HAT dataset was collected in three scenarios :
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In the first scenario, the human subjects were given a blurred image and question.

They were then asked to sharpen the regions they felt were useful for answering the ques-

tion about the image. In this scenario, the humans were not given the answer. This helped in

the collection of exploratory attention on the images the relevant regions in the image were

sharpened by the subjects ([Das et al.2016]). Figure 3.2 ([Das et al.2016]) below shows

this experiment where the subject was given the question ”How many players are visible in

the image?”.

FIG. 3.2: First scenario

In the second scenario the human subjects were given a blurred image, a question

and also an answer in addition to the first scenario. They were then asked to sharpen pre-

cisely enough regions needed to answer the question by someone who is shown the blurred

image with the question[Das et al.2016]. Figure 3.2 ([Das et al.2016]) below shows this

experiment where the subject was given the question ”How many players are visible in the

image?” with the answer ’3’.

In the third scenario, the human subjects were given the question, the answer, and the

high-resolution image. The subjects were then asked to imagine a scenario where someone

has to answer the question without looking at the original image. This enables them to

provide accurate attention maps[Das et al.2016]. Figure 3.3 (citevqahat) below shows this
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FIG. 3.3: Second scenario

experiment where the subject was given the question ”How many players are visible in the

image?” with the answer ’3’.

FIG. 3.4: Third scenario

It was observed that the VQA accuracies of the answers given by human subjects

under the three scenarios had strikingly different values and the accuracy of the second

scenario was the best ([Das et al.2016]).

In order to map the questions with images, the names of the images include the ques-

tion ID they belong to in the VQA dataset for version 1. As described above there are

three scenarios for each image. The first scenario is denoted by adding a numeric 1 2,

or 3 depending on the scenario they belong to. Hence the image names are in the format

quesid 1.png/ quesid 2.png /quesid 3.png ([Das et al.2016]).
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Interface Type Human Accuracy
Blurred Image without Answer 75.2

Blurred Image with Answer 78.7
Blurred and Original Image with Answer 71.2

Original Image 80.0

Table 3.1: Accuracies given different scenarios

Just like in the VQA dataset the VQA-HAT datset questions have been clustered into

6 categories. The Figure 3.5 shows the clusters and examples of types of questions falling

into each category.

FIG. 3.5: Question Clustering

3.2.2 Data split

The dataset had human attention maps for 58475 training instances (out of 248349

total) and 1374 validation instances (out of 121512 total) question-image pairs in the VQA

dataset ([Das et al.2016]).



Chapter 4

ARCHITECTURE AND METHODOLOGY

This section explains the architecture and proposed methodology for improving at-

tention in stacked attention network for a visual question answering system. Before we

elaborate on the design and architecture of the proposed methodology, we review a few

concepts to understand their usage in our method.

4.1 Preliminaries

4.1.1 Kullback - leibler divergence

Kullback-leiber divergence, which is also known as relative entropy, is a measure of

difference between two probability distributions. Entropy for a probability distribution ’p’

is defined as

H(p) = −
N∑
i=1

pi.log(pi) (4.1)

where H denotes the entropy for discrete distributions over N outcomes.

If we have a second distribution q , then we can define KL divergence as: Let D(p||q)

denote the difference between the entropies of p then,

D(p||q) = H(p, q)−H(p) (4.2)

28
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D(p||q) = −
N∑
i=1

pi.(log(pi)− log(qi)) (4.3)

or

D(p||q) = −
N∑
i=1

pi.(log((pi)/(qi))) (4.4)

since log(a)-log(b)=log(a/b)

4.1.2 Normalization methods

Two common methods used to normalize a feature vector are the L1 norm and L2

norm. After applying L1, or least absolute deviation, the sum of the of the normalized

vector equal to 1.

It is basically minimizing the sum of absolute differences between the target value y

and the estimated value f(xi). In the equation below is represented by S:

S =
n∑

n=1

|y − f(xi)| (4.5)

Whereas, L2 or least squares, is basically minimizing the sum of square of differences

of the target value y and the estimated value f(xi). In the equation below is is represented

by S:

S =
n∑

n=1

(y − f(xi))2 (4.6)

Out of these two, L1 is more robust because it is affected less by outliers.

4.2 Proposed Architecture

Any attention mechanism outputs the attention on an image in terms of a probability

distribution. The current base model used for this experiment is a stacked attention network



30

architecture which outputs a probability distribution. A typical attention network architec-

ture works on the principle of creating a probability distribution over the image to indicate

the relevance of the part of the image being queried. This distribution is scaled up to the

image size and then treated as a mask on the original image. The attention mechanism

creates attention weights over the image. As we can see that different parts of the image

feature vectors are being queried sequentially instead of having one global image feature

vector. This architecture is shown in the figure 4.1([Yang et al.2016]):

FIG. 4.1: Stacked attention network

We propose modifying this mechanism by modifying attention weights more effec-

tively using the VQA-HAT dataset. The VQA-HAT dataset is a set of 3 channel png images

having attention in the form of pixel values of the brighter areas which are converted into a

probability distribution to denote attention.

To get the probability distributions from these values we use L1 normalization. After

getting a probability distribution of the map we now have two probability distributions. The

first distribution is the probability generated by the second attention layer in our pipeline

and the second distribution which we get by normalizing the VQA-HAT images. As we

have two distributions we use a popular method know as the Kullback-leibler divergence
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to take a difference between these two distributions to add as a new loss to the standard

cross-entropy. This mechanism is shown in the flowchart in figure 4.2 shows how the KL

divergence loss is being used to update the model.

FIG. 4.2: Workflow : illustrates how the KL loss is added to the standard architecture as a
new loss

4.2.1 Using multi - task learning for VQA task and VQA-HAT task

As described in section 2.5.4, for the model to generalize better it can learn from two

tasks. If we only use one of the models, there is a possibility of ignoring the information

learned from a large set of images and questions while refining the attentions using the

model using the new loss. Hence to optimize the model we train on the VQA images on

the oiginal stacked attention model and the new model which includes the loss calculated

from the VQA-HAT images as ground truth in alternates batches.



32

FIG. 4.3: Multitask Learning in an attention network:In the above diagram two tasks are
shown of a MTL pipeline. The first task learns from the (I,q,a) tuple which denotes the
image(I) , question(q) and answer(a) and the second task learns from the (I,q,a,I’) which
denotes the Image(I), question(q), answer(a) and the human annotation(I’)

As we can see in the figure 4.3 the two models are being used in alternate batches.

The dataset used by the first model is VQA version 1 and the dataset used by the second

model is VQA-HAT, dataset which is a subset of the VQA version 1 dataset along with the

corresponding human annotations. Figure 4.3 also shows the difference in losses between

the two tasks. The task which uses only the VQA data has a only a cross entropy loss. Let

p’ be the predicted probablity and p be the probability of the class. The cross entropy can

be mathematically written as:

H(p, p′) = −
n∑

i=1

pi.log(p
′
i) (4.7)
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and the KL loss when q is the second probability which is calculated from the VQA-

HAT dataset for the corresponding question ID is denoted by equation 4.4. We also multiply

a parameter to boost the KL loss for our experiments. We have chosen this number to be a

positive number and a randomply chosen number for this experiment is 25.

Hence for the first task where we only have the VQA dataset, the loss is described by

equation 4.6 and for the second task the loss is given as :

D(p||q) +H(p, p′) (4.8)

or

(α ∗ (−
N∑
i=1

pi.(log(pi/qi))) + (−
N∑
i=1

pi.log(p
′
i)) (4.9)

As we discussed in section 2.5.4 we can multi-task in two ways, hard parameter sharing

and soft parameter sharing. In this work we are basically implementing hard parameter

sharing which means that most of the layers of the model are being shared and the two

types of tasks are shown in Figure 4.4.

4.2.2 Preprocessing

The VQA-HAT images are converted into probability distributions using L1 normal-

ization as explained in section 4.1.2. For each question ID that is present in the VQA-HAT

dataset, we create the dataset which contains the image feature , question and answer vector

along with the VQA-HAT image converted into probability distribution. THe VQA-HAT

image is first averaged across the third channel as there are three channels , then we resize

it into a (7,7) numpy array. Then we reshape in into a one dimensional array of size 49 be-

fore we carry out the L1 normalization. This process is done because these steps are done

in the opposite manner when the network generates the attention. So to get an equivalent

probability distribution we carry out these steps.
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4.2.3 Postprocessing

After getting the probability distribution we need to process the result to create a mask

that can be overlayed on the original image to show the attention areas on the image. There

are two attention layers in the pipeline and the attention calculated is in the form of a list

of size 49, which is then reshaped into a (7,7) numpy array, this is further resized into the

original image dimensions and overlayed on the original image to get the an image which

depicts the attention regions.
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FIG. 4.4: Hard parameter sharing in multi-task in a stacked attention network pipeline: In
learning.Two attention layers and an RNN layer are shared by the two tasks with only the
output of attentions as the difference in the two tasks.



Chapter 5

EXPERIMENTS AND ANALYSIS

In the previous chapter, we described our system architecture to generate new attention

maps from an ensemble of models using a multi-task learning pipeline. Here we discuss

evaluation metrics and results. Evaluation of this pipeline is a complicated process as in

many cases the quality of answers is greatly affected by the category of questions and

images used in the VQA-HAT images. The test set of the VQA version 1 dataset has a

variety of images and questions. The questions are categorized into 64 categories based

on the words they start with. The codebase for the base model has been referred from

([TingAnChien2016]).

5.1 Processing before Evaluation

Before we evaluate we need to do some processing of the questions and answers. In

order to recognize all of the characters regardless of their case we make them all lower

case. Then all periods are removed except when they are decimals. All the number words

are converted into digits, all the articles such as ’a’, ’an’ and ’the’ are removed.Numbers

like 100,978 are converted to 100978 . After this processing we use the evaluation tools

provided by the VQA website which provides the original dataset. The VQA evaluation

tool accepts the results in following form,

36
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results = [result]

result{

”question id” : int,

”answer” : str

}

where ’int’ stands for integer and ’str’ stands for string format([TingAnChien2016]).

To decide the ground truth answer, the hypothesis used is that a minimum of 3 people

should have answered the same answer for it to be considered as the ground truth.Hence

the equation takes the minimum of 1 and an average of total number of humans saying an

answer as the accuracy of that answer to be correct. The following equation depicts the

described equation:

The first set of experiments are done based on the multi-task model. There are two

sets of experiments, quantitative and qualitative. The quantitative experiment is done on

the validation set of VQA for to determine overall changes in language attention and to test

the visual attention we take a set of 3000 question ids which are a subset of VQA-HAT

dataset used as the test set.

5.2 Model trained with multi-task learning

5.3 Quantitative Evaluation

The quantitative evaluation was done on the complete validation set of the VQA 1.0

for three models. The first model is model based on a stacked attention network, the second
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model is the model trained with multitask learning pipeline and the third model being the

finetuned model with VQA-HAT dataset. There are two parts to this analysis.

5.3.1 Visual attention

The training with VQA-HAT dataset was carried out excluding a set of 3000 images

which we use in the analysis on the improvement of visual attention. The mechanism used

to evaluate the improvement in visual attention is called intersection over union (IOU).

Since we have the 3000 VQA-HAT images which are human annotations, we treat them

as the ground truth. We also have the generated attention maps from both the initial base

model and the new model.

Let ’X’ be the attention mask generated by any of the models, and the ground truth is

’G’ , then the measure of performance of the map generated the model can be written as:

IOU = X ∩G/X ∪G (5.1)

Mathematically the intersection operation is a logical ’and’ operation, and the union

is a logical ’or’ operation. To be able to use these operations the attention mask which is

a probability distribution has to be converted into 0 or 1 depending on a threshold.Let the

attention generated by the base model be ’A’, the attention generated by the new model be

’B’.

Then the IOU for the base model and the ground truth can be written as :

A ∩G/A ∪G (5.2)
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FIG. 5.1: The X- axis depicts the various thresholds taken in order to convert the probability
distribution into a binary format from the generated attention masks in increasing order and
the Y-axis denotes the accuracy in percentage of the intersection over union for the models.
The color red represents the base model and the color blue represents the new model

and the IOU of the multi-task model and the ground truth can be written as:

B ∩G/B ∪G (5.3)

The results from equations 5.2 and 5.3 have been plotted in the bar graph given in the

figure 5.4 for 5 different thresholds used to convert probability distribution into a binary

format.

As we can see in figure 5.1 there is a clear difference between the IOU calculated

using the attention maps generated by the multi-task model(denoted by blue color) and

the IOU calculated using the attention maps generated by the base-task model(denoted by

red color) . The difference also increases as we increase the threshold. The overlap of the

generated probability with the ground truth generated by the multi-task model is better than

the overlap of the generated probability with the ground truth generated by the base model.

Hence there is a clear improvement in the visual attention.
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Model Type Binary (Yes/ No) Questions Number Questions Other Overall
SAN Multitask model 78.08 % 32.56% 40.03% 53.33%

SAN Base Model 78.38% 33.46% 41.70% 54.39%

Table 5.1: Accuracies of models based on question types and Overall

5.3.2 Overall language attention

The next part is the overall quantitative evaluation over the complete VQA test set

with the two models shown in table 5.2. There are three categories of questions for which

the accuracy has been calculated namely ”Binary(Yes/No)” , the ”number questions” and

the ”other” category which are basically the Multiple choice answers.

These accuracies are taken over the test set of the VQA dataset and consider the ground

truth as explained in section 5.1 to find the confidence in a candidate answer.

5.3.3 Qualitative Evaluation

The multitask trained model has been evaluated based on the accuracy in percentage

of the type of question being answered based on the first 3-4 words in the questions. Fig

5.4 shows a plot of the such accuracies where the labels on the x-axis denote a number

that represents a specific type of a question. The table 5.2 below gives a mapping of the

numbers and the actual question type to give further clarity.

We can see in figure 5.2 the accuracies of the two models where the black color rep-

resents the accuracy of the new model and the orange color represents the accuracy of the

base model.

Figure 5.3 shows the categories of questions where our model has performed better

which are [0, 3, 13, 26, 28, 29, 34, 40, 41, 47, 48, 50, 53 and 61 in the table 5.2. Here

also the orange color represents the base accuracies and the black color represents the new
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X-LABEL QUESTION X-LABEL QUESTION
0 are there 27 what is on the
1 what brand 28 has
2 what room is 29 was
3 what color is 30 what type of
4 is 31 is this an
5 are they 32 do
6 what number is 33 what is the man
7 what sport is 34 which
8 are 35 are these
9 is the 36 what are

10 what is the person 37 what is the
11 how many 38 where are the
12 does this 39 is this a
13 is there a 40 can you
14 is he 41 what time
15 what 42 what are the
16 does the 43 are there any
17 is the person 44 what color are the
18 where is the 45 why
19 what animal is 46 what is this
20 how 47 how many people are in
21 what is the woman 48 do you
22 none of the above 49 is this
23 who is 50 why is the
24 is the woman 51 what is the color of the
25 are the 52 what is
26 how many people are 53 could
54 is that a 55 what is in the
56 what does the 57 what kind of
58 is it 59 is the man
60 what is the name 61 is there
62 what color is the 63 what color
64 is this person

Table 5.2: Mapping of x- labels and question types
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FIG. 5.2: Question vs Accuracy

model accuracies.

Statistical significance In order to see how well the new model has performed over

some categories we take confidence scores for answers generated by the base model and

the new model and perform a randomization test. In this test we take lists of scores per

question for each category and calculate the difference in the confidence values in noth

the lists and sum those values. After this we calculate the difference 100000 times in a

randomized manner assuming that score is equally likely to come from either models and

create another list of differences. Then we basically calculate number of elements in the

list which are greater than the sum of differences of the confidence scores from the new and

the original list.We are essentially trying to calculate if we can reject the null hypothesis

that there is no difference between the algorithms. The result is the percentage of samples

for which the difference of confidence values is smaller as compared to the sum of all the
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FIG. 5.3: Question vs Accuracy

differences for that category.

Figures 5.4 and 5.5 show some examples of the generated attention for images and

questions from the VQA test set.

FIG. 5.4

Fig 5.4 shows that there is a marked improvement in attentions although the quality of

the answer remains unaffected. The model visualizations on samples shows improvement



44

Category Accuracy(Base model) Accuracy(New model) %samples
are there 82.23% 82.422% 33.000%

what color is 53.291% 53.319% 49.000%
is there a 88.133% 88.468% 8.000%

how many people are in 39.435% 39.566% 43.000%
has 75.388% 75.939% 29.000%
was 77.515% 77.912% 32.000%

which 39.408% 39.824% 26.000%
can you 74.371% 74.556% 43.000%

what time 19.712% 20.069% 19.000%
how many people are in 31.577% 33.901% 5.000%

do you 81.777% 82.444% 27.000%
why is the 15.734% 16.109% 33.0000%

is there 81.751% 82.782% 0.0%
could 87.448% 88.486% 11.0%

Table 5.3: Percentage of samples as a result of randomization test

FIG. 5.5

in attentions but the quality of answers doesn’t improve overall because of the following

reasons. There is an evident change in the visual attentions but the overall accuracy of an-

swering doesn’t improve, hence it shows that improvement of attentions in images does not

create a difference in reasoning by the model. The model learns to attend to more accurate

regions in the image but the same shift of focus is not observed in the answering hence

pointing to a hypothesis that the reasoning capability of a model is not directly correlated

with the improvement in visual attention.
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CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this paper, we explore new methods of using a human annotated dataset for improv-

ing a stacked attention network used as a baseline for visual question answering systems.

We first experimented with training an attention networks with only the human annotations.

This experiment showed us that a relatively smaller dataset with human annotations as the

ground truth gives accuracies for different categories close to the dataset that is thrice as

large hence validating the idea of human annotations being a very effective mechanism.

Deriving from this idea we try to perform the second experiment which is fine-tuning the

pre-trained stacked attention model trained on VQA dataset version 1. The fine-tuned

model gave new insights about using human attention maps. Because of fine-tuning on the

previous data, the new model’s performance deprecated a little bit because of losing the

generality. In short, we end up ignoring information which might help us do better.

After the above experiments, we come to the conclusion of preferring an ensemble

learning method called multitask learning. We share the weights/information between the

two models and train on the models and we observe an improvement in the category of

”other” type questions which brings us to the conclusion that multi-task method of training

was effective in bringing up the performance of the model for questions which were largely
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uncategorized and helped in overall contextual understanding of the scene by the model.

We accomplish this with human attention maps for 1/3rd of the total vqa dataset as

compared to the human-like attention model which utilized the human annotations to bring

up the performance by making it a supervised task.

We can augment this work by experimentation with other baseline models and creating

a similar pipeline for them. There a lot of scope of using similar mechanisms in other type

of AI tasks also which can help avoid the need of a large number of human attention maps

[Ren, Kiros, & Zeme2015].



REFERENCES

[Agrawal et al.2017] Agrawal, A.; Lu, J.; Antol, S.; Mitchell, M.; Zitnick, C. L.; Batra,

D.; and Parikh, D. 2017. Vqa: Visual question answering. In Facebook AI Research,

Menlo Park, CA 94025, USA, 1–6.

[Ba, Mnih, & Kavukcuoglu.2015] Ba, J.; Mnih, V.; and Kavukcuoglu., K. 2015. Multiple

object recognition with visual attention. In In ICLR, 1–8.

[Bahdanau, cho, & Bengio2016] Bahdanau, D.; cho, K.; and Bengio, Y. 2016. Neural

machine translation by jointly learning to align and translate. In Accepted at ICLR 2015

as oral presentation, 1–9.

[BAXTER1997] BAXTER, J. 1997. A bayesian/information theoretic model of learning

to learn via multiple task sampling. In Department of Mathematics, London School of

Economics and Department of Computer Science, Royal Holloway College, University

of London.

[Das et al.2016] Das, A.; Agrawal, H.; Zitnick, C. L.; Parikh, D.; and Batra, D. 2016.

Human attention in visual question answering: Do humans and deep networks look at

the same regions? In Facebook AI Research, Menlo Park, CA 94025, USA, 1–9.

[Jabri, Joulin, & der Maaten.2016] Jabri, A.; Joulin, A.; and der Maaten., L. v. 2016. Re-

visiting visual question answering baselines. In Facebook AI Research, 1–11.

[Jonathan Hui blog2017] Jonathan Hui blog. 2017. Soft hard attention. https://

jhui.github.io/2017/03/15/Soft-and-hard-attention/.

[Kim2017] Kim, Y. Y. J. C. Y. K. K. Y. S.-H. L. G. 2017. Supervising neural attention

47



48

models for video captioning by human gaze data. In Facebook AI Research, Menlo Park,

CA 94025, USA, 1–26.

[Murrugarra-Llerena & Kovashka2017] Murrugarra-Llerena, N., and Kovashka, A. 2017.

Learning attributes from human gaze. In Department of Computer Science University

of Pittsburgh.

[Park et al.2017] Park, D. H.; Hendricks, L. A.; Akata, Z.; Schiele, B.; Darrell, T.; and

Rohrbach, M. 2017. Attentive explanations: Justifying decisions and pointing to the ev-

idence. In UC Berkeley EECS, CA, United States 2Max Planck Institute for Informatics,

Saarland Informatics Campus, Saarbrucken, Germany, 1–16.

[Qiao, Dong, & Xu2017] Qiao, T.; Dong, J.; and Xu, D. 2017. Exploring human-like

attention supervision in visual question answering. In arXiv:1709.06308v1 [cs.CV],

1–10.

[Ren, Kiros, & Zeme2015] Ren, M.; Kiros, R.; and Zeme, R. S. 2015. Exploring models

and data for image question answering. In University of Toronto, Canadian Institute for

Advanced Research.

[Ruder2017] Ruder, S. 2017. An overview of multi-task learning in deep neural networks.

In arXiv:1706.05098 [cs.LG], 1–14.

[Singh2016] Singh, A. 2016. Deep learning for visual question answering. In Facebook

AI Research, Menlo Park, CA 94025, USA, 1–6.

[TingAnChien2016] TingAnChien. 2016. san-vqa-tensorflow. https://github.

com/TingAnChien/san-vqa-tensorflow.

[Xu et al.2015] Xu, K.; Ba, J.; Kiros, R.; Courville, A.; Salakhutdinov, R.; Zemel, R.; and



49

Bengio, Y. 2015. Show, attend and tell: Neural image caption generation with visual

attention. In In ICM, 1–8.

[Yang et al.2016] Yang, Z.; He, X.; Gao, J.; Deng, L.; and Smola, A. 2016. Stacked atten-

tion networks for image question answering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 1–8.






