
Designing a Novice Programming Environment with

Children

Sureyya Tarkan, Vibha Sazawal, Allison Druin, Elizabeth Foss, Evan Golub, Leshell
Hatley, Tejas Khatri, Sheri Massey, Greg Walsh, and Germana Torres

Human-Computer Interaction Laboratory (HCIL)
University of Maryland Institute for Advanced Computing Studies (UMIACS)

University of Maryland
College Park, Maryland 20742

sureyya@cs.umd.edu

ABSTRACT
When children learn how to program, they gain problem-
solving skills useful to them all throughout life. How can
we attract more children in K-8 to learn about program-
ming and be excited about it? To answer this question, we
worked with a group of children aged 7-12 as our design
partners. By partnering with the children, we were able to
discover approaches to the topic that might appeal to our
target audience. Using the children’s input from one design
partnering session, we designed a prototype tangible pro-
gramming experience based upon the theme of cooking. The
children evaluated this prototype and gave us additional de-
sign ideas in a second session. We plan to use the children’s
design ideas to guide our future work.

1. INTRODUCTION
Programming allows children to explore creative topics

and learn problem-solving skills. Popular novice program-
ming tools include Scratch [6], Alice [1], and ToonTalk [5].

We want to reach children that may not be well-matched 
to popular novice programming tools. Of particular interest 
to us are children with kinaesthetic, auditory, and social 
learning styles. These children may not be well served by 
sitting alone silently in front of a computer for a long period 
of time.

One promising research area is tangible programming for 
novices. Tangible programming systems such as Tern [4], 
Electronic Blocks [8], and AlgoBlocks [7] reify programming 
constructs and objects as physical objects. Tangible pro-
gramming systems allow children to easily work together 
and move around as they program. However, these sys-
tems make many compromises; for example, Tern is very 
full-featured but rather complex, and Electronic Blocks are 
simple but o↵er very limited programming capability.

To maximize the potential for tangible programming, we 
need a tangible programming system that is fun, complete,

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee.

and age-appropriate in complexity. To accomplish this ob-
jective, we actively included children directly in the design
process. Using a technique known as design partnering,
adults and children worked together to uncover how tangible
programming could be both appealing and educational.

2. DESIGN PARTNERING
Design partnering [2] refers to a design process in which

children and adults are equal stakeholders. Children do not
merely use, test, or inform the design; they actively help
create it. As Druin notes, children “have special experiences
and viewpoints that can support the technology design pro-
cess ... With this role of design partner, the impact that
technology has on children may not be as significant as the
impact children can have on the technology design process.”

Allison Druin created the Kidsteam project in 1998 at the
University of Maryland as a vehicle for design partnering. In
each design session, 4 or more children (aged 7-12) and 6 or
more adults work together on a variety of design problems.
In August 2008, the Kidsteam spent two 2-hour sessions on
tangible programming.

Two adult members of Kidsteam jumpstarted the design
process with an initial prototype of a tangible programming
system. This prototype was not intended to be a solution,
but rather an example of what is possible.

Because we seek to attract children with kinaesthetic, au-
ditory, and social learning styles, we decided to build a ba-
sic collaborative programming environment that encouraged
moving around and making sounds. Using styrofoam and
embedded analog sensors [3], we created a set of tangible ob-
jects. Most of these objects (see Figure 1) were shaped like
musical instruments and musical notes, and children could
press them to programmatically create a song. A round ob-
ject enabled iteration, and an eraser-shaped object allowed
children to delete previously“written”code. An audio-based
tutorial assisted users as they interacted with the tangible
objects. The output of the tangible objects were both sounds
and on-the-fly generated Java-like code for programmati-
cally creating the corresponding sequence of sounds. Fig-
ure 2 shows an example of our generated code.

2.1 Kidsteam Session I
The adult kidsteam members first introduced the con-

cept of computer programming by programming a human
“robot.” One of the adult members of Kidsteam acted as a
robot and responded to a set of instructions – turn, walk,



Figure 1: Kidsteam Session II

Figure 2: The GUI for Music Game.

lift, push, and put – written on a sheet of paper. The
“robot”also understood the following keywords: right, left,
forward, a bit, number of steps, down, up, high, and low.
The Kidsteam then“programmed” the “robot” to move from
one side of a room to the other side without running into
obstacles. If an instruction was erroneous, the robot was
stopped and reset to the start of the obstacle course.

After successfully completing this step, the Kidsteam mapped
each keyword (turn, right, etc) to sounds such as clap, beep,
boop, snap, and buzz. The children reimplemented the pro-
gram using the sound-based instructions.

We then presented the prototype system to the children to
help them understand the possibilities in scope for a tangi-
ble programming system. We asked the children to identify
an idea of what they would like to program using tangible
objects such as these.

The Kidsteam generated three concrete ideas: (i) a com-
puter game, (ii) a robotic dog, and (iii) a robotic chef. To
further elaborate these ideas, the entire group was separated
into smaller groups of three to further flesh out their ideas.

Tangibly programming a computer game. This group
considered the functionality available in current games, such

as materials, players, options, rules, levels, characters, in-
puts, and outputs. They came up with a chocolate/strawberry
finding game, a racing game, and an adventure game. How-
ever, because the computer game was rather an abstract
idea, this group did not generate concrete ideas of how they
could program a game.

Tangibly programming a robotic dog. The second
group came up with commands to control a robot dog. Ex-
ample tasks were get (the paper), chase, guard (the house),
dust, and talk (I love you). Furthermore, they specified
the robotic dog’s implementation to include holders to carry
things around, audio speakers, a GPS device, a mother-
board, face recognition of owners’ pictures, and a dog house.

Tangibly programming a robotic chef. The third
group wrote a program that a robotic chef could execute in
order to prepare a dish. More specifically, the cook could
pull, get, put, pour, pull, turn, mix, close, stir, and
wait for (things). They also listed the kitchen utensils to
be supported: (spatula, pan, plate, bowl, oven) and ingre-
dients (oil, milk, egg). The robotic chef also understood
Repeat and time. The designed robot had a backpack to
hold things, a tray, a table, and an oven in its belly.

2.1.1 Results of Session I

After all of the sub-groups presented their ideas to the en-
tire Kidsteam, the adults held a debriefing session to decide
on the next course of action. We decided to implement the
programmatic cooking idea, because it was the most con-
crete design and it appealed to both males and females in
the group. Consequently, we added a simulation of a robotic
chef in Alice [1] to our prototype system. The tangible ob-
jects (still musically themed) now corresponded to cooking
instructions. A team member would “execute” the cooking
instructions on the chef simulation in a wizard-of-oz style by
manually updating the chef simulation according to which
tangible objects were pressed.

Figure 3 shows our robotic chef simulation. In addition to
“executing” the tangibly programmed instructions, the sim-
ulation also provided error messages for syntax and intent
errors.

Figure 3: The simulation of Cooking Game.



2.2 Kidsteam Session II
During our second session approximately one week later,

we asked our young design partners to create (simulated)
hot chocolate (similar to the recipe in Table 1) using the
tangible objects.

Heat(syrup)
Heat(milk)

for (int i = 0; i < 4; i++) {
Pour(syrup)
Pour(milk)
Mix

}

Table 1: Hot chocolate program. The keywords are
in bold; directions and ingredients are represented
starting with upper and lowercase letters, respec-
tively.

In our new system, the musical instruments were mapped
to milk and chocolate syrup. Musical note objects were
mapped to mixing, pouring, and heating. Moreover, we at-
tached written definitions to each tangible object for guid-
ance. Two children recorded sounds for mixing (“clink” of a
spoon in a cup), pouring (sound of water flowing), and heat-
ing (sound of sizzling). To represent the ingredients they
simply said the names of those ingredients, i.e. “chocolate
syrup” and “milk”. These sounds were mapped to the tangi-
ble notes so that pressing them generated the corresponding
sound.

The children wrote a program by interacting with the tan-
gible objects without any help from the adults. After a few
mistaken tries, the children successfully guided the simu-
lated chef to make four cups of hot chocolate. However,
they didn’t recognize that their program could be simplified
with a loop. The adult members of Kidsteam asked the chil-
dren to consider what the program should look like if there
were more mugs to fill, and then children and adults to-
gether designed a new program on paper. The children then
“wrote” the new loop-oriented program using the tangible
objects. The children shared the tangible objects amongst
each other.

2.2.1 Results of Session II

After this experience, the children then provided feedback
on the existing design and generated additional design ideas.
Children put their design ideas, what they liked, and what
they disliked on separate sticky notes. These sticky notes
were then organized into groups with the help of adult Kid-
steam members.

The children responded positively to the tangible objects
used to program and the simulation that executed their com-
mands. They also enjoyed working together to make hot
chocolate! However, there were many features of the pro-
totype that they wanted to improve. The system had too
many wires, some buttons were di�cult to press, and the
simulated graphics could be improved.

The children’s design ideas included many concrete ways
to improve the robotic chef simulation. They also empha-
sized flexibility: they wanted the freedom to assign tangible
objects to utensils at will, assign sounds of their own choos-
ing, and also choose their own recipes to implement. The
children also proposed that iteration be implemented with

two tangible objects: one for START (the set of instructions
to be iterated) and one for STOP.1

After this session, the adult members of Kidsteam met to
elaborate on session outcomes. During the second session,
children worked together to build a working computer pro-
gram. Cooking was an interesting activity even to boys in
the group. Sound generation, however, was not particularly
interesting to the children. We, therefore, decided to pursue
a cooking-based novice programming system using tangible
objects that are more appropriate for cooking.

3. CONCLUSIONS
Our goal is a tangible programming space that allows chil-

dren to collaboratively learn computer programming. We
included children in the design process for a tangible pro-
gramming system. The children in our design team steered
us towards cooking as a fun activity amenable to algorith-
mic thinking. In future work, we plan to implement a fuller-
featured tangible programming environment based on the
design ideas obtained and assessed with our child design
partners.

4. ACKNOWLEDGMENTS
We thank all the children who were our design partners.

5. REFERENCES
[1] M. J. Conway. Alice: Easy-to-Learn 3D Scripting for

Novices. PhD thesis, University of Virginia, 1997.
[2] A. Druin. The role of children in the design of new

technology. Behaviour and Information Technology,
21(1):1–25, 2002.

[3] S. Greenberg and C. Fitchett. Phidgets: easy
development of physical interfaces through physical
widgets. In UIST ’01: Proceedings of the 14th annual
ACM symposium on User interface software and
technology, pages 209–218, New York, NY, USA, 2001.
ACM.

[4] M. S. Horn and R. J. K. Jacob. Tangible programming
in the classroom with tern. In CHI ’07: CHI ’07
extended abstracts on Human factors in computing
systems, pages 1965–1970, New York, NY, USA, 2007.
ACM.

[5] K. Kahn. A Computer Game to Teach Programming.
In Proceedings of the National Educational Computing
Conference, pages 127–135, 1999.

[6] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: A Sneak Preview. In
Proceedings of the Second International Conference on
Creating, Connecting and Collaborating through
Computing, 2004., pages 104–109, 2004.

[7] H. Suzuki and H. Kato. Interaction-level support for
collaborative learning: Algoblock—an open
programming language. In CSCL ’95: The first
international conference on Computer support for
collaborative learning, pages 349–355, Hillsdale, NJ,
USA, 1995. L. Erlbaum Associates Inc.

[8] P. Wyeth and G. Wyeth. Electronic Blocks: Tangible
Programming Elements for Preschoolers. In Proceedings
of the Eighth IFIP TC13 Conference on
Human-Computer Interaction, pages 496–503, 2001.

1Not unlike loops in Ada!

View publication statsView publication stats


