
Personalizing context-aware access control
on mobile platforms

Prajit Kumar Das, Anupam Joshi and Tim Finin
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
{prajit1, joshi, finin}@umbc.edu

Abstract—Context-sensitive access control has been a research
topic within mobile computing for more than a decade. Much
of the work has focused on modeling context and representing
policies. Choosing an appropriate policy for a user, however,
remains a challenging goal. Creating usable mobile access control
solutions have been researched from a users’ permission control
perspective. We present a study carried out with subjects using
their personal mobile devices that captures individualized policies
through an iterative user feedback process. Policy precision, also
referred to as ”Violation Metric” (VM), was used to decide when
all necessary policies had been captured. The feedback process
used a hierarchical context ontology to represent user-context
and gathered contextual-situations in which a policy would be
applicable. The study also investigated the feasibility of using the
VM measure to determine completion of the capture process for
the users’ personalized access control policies, that handles their
mobile privacy and security needs. Using an appropriate pre-
defined policy is shown to have lesser user impact when trying
to personalize access control policies for users.

I. INTRODUCTION

Mobile platforms were predicted to experience an escalation
of attacks by a 2014 McAfee Threats Report [1] due to openly
available mobile malicious source code. The spate of recent
mobile malware discoveries indicate that the prediction is
turning into a reality and leading mobile platform providers are
constantly fighting against such attacks [2]. Mobile malware
is not the only threat faced by users, however. A Google
taxonomy provides us with additional threats through Poten-
tially Harmful Apps (PHA) [3]. These threats include Billing
Frauds, Spyware, Hostile Downloaders, Privilege Escalators,
Ransomware and Rooting Apps.

To protect against PHA threats, mobile platforms use cer-
tain typical security features on user devices. In addition to
application scanning by market places, these security features
include the usage of application sandboxes for mobile apps
operations and a permission based security model to provide
access to system resources. Users are expected to decide which
of these access requests are to be allowed and which ones
should be denied. Unfortunately, it has been observed that
users do away with access control policy choices if there is
a perceived benefit to using an app [4]. In addition, access
control needs are not always a simple yes or no decision.
The current “permit once” permission model implemented by
most mobile operating systems is inadequate when it comes
to protecting user data in presence of apps that are intent upon
collecting and tracking users contextual data like location,

audio, environmental information, and nearby presence data.
Such data collection is common today due to the PHA threats
mentioned above. In light of such potential threats, we submit
that there is a need to create fine-grained, dynamic and
context-driven access control policies to protect the privacy
and security of a user and her data.

In this paper, we focus on developing a methodology of
personalizing a set of policy rules using an approach based
on a human-in-the-loop collaborative editing of an initial
default policy. The goal is to create a personalized user policy
that protects a user and her data, starting from the initial
default policy. It is possible that one may use a trusted entity
or security domain expert to create a set of policies for a
known target like corporate data. However, protecting users
against attacks from user-space apps requires capturing a user’s
personal preference with respect to such apps.

For this purpose, we have created the MITHRIL 1 frame-
work [5]. MITHRIL is an end-to-end context-dependent access
control framework that monitors the activities of applications
on a user’s mobile device in various contextual situations
and captures their access control preferences in that context.
We use a violation metric as the theoretical model for our
framework. It helps us to determine convergence of the policy
capture process. MITHRIL consists of two components: Mithri-
lAC and a back-end app analytics module. In this paper, we
describe the MithrilAC component, discuss its implementation,
and outline its evaluation through a user study to show the
feasibility of using a precision metric over the captured policy
to determine when the adaption process is complete.

This paper addresses the following research question. RQ1:
Given an initial policy P and user’s implicit desired goal
policy P’, can the violation metric be used to determine the
completion of the capture process?

MithrilAC is a component of the MITHRIL framework
and its mobile access control middleware. In MithrilAC 2 we
capture mobile application behavior along-with user-context
and compare them to currently known policy. Any deviation
from the known policy is then submitted for review by the

1MITHRIL is a precious, lightweight and extremely strong silver steel from
the Lord of the Rings which protected its wearer, Frodo, from life threatening
dangers

2MithrilAC requires certain operating system level privileges. Android
being open source allows us to make these changes so we have used it for
our prototype building but the concepts we have used applies to all mobile
platforms.

user and her feedback helps MITHRIL refine the policy, thus
capturing the user’s access control needs. The refinement
process is complete when no new deviations are observed or
the precision of the captured policy is above a predefined
threshold. We use the Semantic Web Rule Language [6]
(SWRL), to represent our access control policy rules. We
use the Platys ontology [7] that is represented using the Web
Ontology Language (OWL) [8] to model a hierarchical notion
of user context. MITHRIL combines information about users’
context, requested information and requester information as
antecedents in policy rules that allows us to express complex
rule conditions. We also show that using a curated initial
default policy, instead of a default deny policy, leads to a
reduction in user interactions required in the feedback process.

The main contribution of our work is the design and devel-
opment of the MithrilAC system that achieves the following
four objectives:
• Create a mobile-middleware that uses human-in-the-loop

collaborative editing of access control policies.
• Implement a middleware that displayed run time app

activity to user in order to assist them in edit their policy
preferences.

• Show the feasibility of using “Violation Metric” as a
way to determine completion of policy capture process
through a user study.

• Show that a curated initial default policy reduces the
amount of user interaction required.

The rest of the paper is organized as follows. We start with
a discussion of the related work in Section II. Following that,
we present our system’s overview in Section III. We describe
the user policy control process in Section IV. We present our
evaluation methodology and results in Section V followed by a
discussion about the user study results in Section VI. Finally,
we conclude the paper with a summary and discussion on
possible future directions for the work in Section VII.

II. RELATED WORK

The domain of access control is well researched. Role
Based Access Control (RBAC) [9] and Attribute Based Access
Control (ABAC) [10] are two popular models that have been
used for managing access control in various domains. In the
mobile domain, Ghosh et. al. [11] used a semantically rich
context model to manage data flow among applications and
filter them at a deeper granularity than it was possible using
available security mechanisms on smart phones. Kagal et.
al. [12] used distributed policy management as an alternative
to traditional authentication and access control schemes. Rei,
a policy language described in OWL and modeled on deontic
concepts of permissions, prohibitions, obligations and dispen-
sations [12], used Semantic Web technologies to express what
an entity can/cannot do and what it should/should not do.

In our work, we use Semantic Web technologies like a
hierarchical context ontology defined using OWL. Our rules
are defined using the Semantic Web Rule Language that allows
us to express rules that are more expressive than ones that can
be defined using OWL. We use ABAC as our access control

model. The MithrilAC mobile middleware connects context
data to a high-level abstraction of context and executes defined
rules to protect user data.

The state-of-the-art in research on policy capture stops at
determining generalized privacy profiles [13], [14], [15], [16].
These works concluded that it was possible to create privacy
“profiles” applicable to user categories on mobile devices with
reasonable accuracy. When it comes to defining their own
rules, Sadeh et.al. [14] observed that users were not good
judges of how well a rule meets their true needs or preferences.
However, in other work, Sadeh et.al. [17] showed that with
enough “privacy nudges” that explained how their location
was being shared, users could be guided to modify their
preferences. We argue that given a set of policy violations
and a hierarchical context model, users are able to define their
preferred policy. We focus on using context generalization and
specialization with assistance from our Platys ontology [7]
driven context model, combining that with user feedback to
reach an individual user’s preferred specific policy.

Context discovery on mobile devices [18] has shown sig-
nificant success with semantic location [19], [18], activity
recognition and complex activity recognition [20], [21], [22].
This work takes advantage of knowledge of context discovery
techniques from earlier projects and adds a preliminary pres-
ence context detection mechanism. In addition to the standard
context information of location and activity, we use Android
Nearby APIs and Bluetooth IDs to discover presence informa-
tion. In our previous work [23], we used the Nearby API [24]
from Android along with beacons to answer questions while
preserving privacy of the enterprise data. We incorporate those
techniques in the current work but reverse it to detect the
presence of actors relevant to our user.

III. SYSTEM OVERVIEW

In this section, we describe the system architecture for
MithrilAC mobile middleware system and how it enables the
capture of user personalized access control policy. MithrilAC
follows the Attribute-Based Access Control standard [25] as
shown in Figure 1. The important subcomponents of Mithri-
lAC are the Policy Decision, Policy Enforcement and User
Policy Control modules. The Policy Decision module uses a
context synthesizer sub-module that maintains a knowledge
graph of facts about the user context. It uses an OWL-DL
reasoner to infer additional relations, resulting in high-level
and semantically rich context. Rules for a access request are
provided by the policy storage module. Relevant policy rules
are selected using a tuple composed of a requester and a
resource and then filtered based on contextual conditions. Once
rules are obtained, using context and application facts from
the knowledge graph, a specific rule applicable is inferred by
an OWL-DL reasoner. The consequent of a chosen rule is
the applicable action. If action is deny, then a data request
is marked as a possible violation of current policy rules. The
Policy Enforcement module receives data requests from apps
and serves them with data as dictated by the “action” returned
by policy decision module.

Apps
Mobile Device

Android Framework

PossibleLpolicyLrule
violationLintimation

Rule
Update

DataLRequest

ContentLResponse

PolicyLStore

PolicyKB

InitialLDefaultLPolicies

ContextLSynthesizer
PolicyLDecision

UserLpolicyLcontrol PolicyLEnforcement

PolicyLDecision
RequestPolicyLDecision

PolicyLLookup

DataLRequest

ContentLResponse

DataLObfuscationLsub-module

Ontology

UserLpolicyLruleLcontrol

Mithril

Fig. 1. MithrilAC middleware architecture

MithrilAC has administrative privileges through our custom-
built ROM and uses context-dependent policy rules to manage
access control on the device. There are two operational modes
for the middleware; OBSERVER and ENFORCER. OBSERVER
mode corresponds to the phase where the system passively
observes events on a mobile device. ENFORCER mode refers
to the phase when our middleware actively blocks operations
on the device that are in violation of captured access control
policy rules.

In observer mode, the policy enforcement module does not
enforce access control on the mobile device. It simply passes
data request tuples consisting of a requested component name
or type of data and a requester name (henceforth referred to as
request metadata) to the policy decision module. In enforcer
mode, it passes on a request metadata but expects the policy
decision module to provide an “action”. If the action is to allow
access, it simply makes a request to the Android framework
for the data and returns the same to the requesting app. If
action is to deny access, it prohibits the request from going any
further. The User Policy Control module is of key importance
in this paper and will be discussed in detail in Section IV,
but we provide a brief overview here. As we have explained
before, MithrilAC starts with an initial policy. We collect
basic profile information that includes work location, home
location, supervisor, family, colleague information and other
facts (See Figure 2) as part of our context instantiation process.
Using the policy control module, we capture a user’s preferred
policy. We use an ontology to define contextual information
using a hierarchical context model. We use Location and
Activity generalization as described in [18] and discussed
further in Section IV.

A. Relevant Term Definitions

The following are some terms and definitions that we use
in this paper. In our work, a policy applies to a user and her
device and consists of a set of rules that control the behavior
of an application in a given context. Following, is a formal
definition of “rule” by Fuernkranz [26]:

Definition 1: [...] an expression of the form:

Fig. 2. User context instantiation

IF Conditions THEN c
where “c” is a class label, and “Conditions” are a conjunction
of simple logical tests describing properties that have to be
satisfied for the rule to ‘fire’.

Definition 2: CONTEXT has been defined by Dey and
Abowd [27] as: “[...] any information that can be used to
characterize the situation of an entity (i.e., identity, location,
activity, time). An entity is a person, place, or object that
is considered relevant to the interaction between a user and
application, including the user and applications themselves.”

We have used above-mentioned definition of context and
extended it further in our previous work [11] to generalize or
specialize location and activity context.

Definition 3: A POLICY, consists of a set of RULES (also
referred to as POLICY RULES in this paper), that define access
control for data. A policy is applicable for a USER-CATEGORY
or specific user.

Definition 4: A RULE, also called policy rule in our system,
is a Semantic Web Rule Language (SWRL) [6] rule repre-
sented as antecedent ⇒ consequent.

MithilAC uses context-sensitive access control policy rules
represented in SWRL to handle access control on mobile
devices. Sharma et.al. [28] created a system that showed how
to represent security rules using OWL and the ABAC model.

SWRL was a proposal for a rule extension for OWL (W3C
member submission) and therefore we use it for our access
control policy representation. The abstract syntax for SWRL
rules follow the Extended Backus-Naur Form notation which,
while useful for XML and RDF serializations, isn’t particularly
easy to read. For readability, we use the following informal for-
mat: antecedent ⇒ consequent. Antecedent(s) must
hold for a consequent to apply. Multiple antecedents in a rule
are defined as a conjunctions of atoms. The consequent atom
states whether the access is allowed or denied. Antecedents
in our rule specification consist of the context of a requesting
entity along with the entity type that is being requested. A
more abstract representation may be considered as a triple
(R, C, Q) which contains: R, that represents the requester’s
context, C is user’s context and Q is the query received by the
system. Context in MITHRIL is defined using a hierarchical
context model conceptualized in the Platys project [7]. The
Platys ontology (see Figure 3) allows us to define a high-
level abstraction of context. MithrilAC uses Semantic Web
technologies to specify high-level, declarative policies in the
form of SWRL rules. In this ontology, context is modeled to
include a semantic notion of a Place.

Fig. 3. Snapshot of Platys Ontology defining context hierarchy

Rule examples: Let us take a look at a rule from our policy
called GRADSTUDENTPOLICY for graduate students, called
SOCIALMEDIACAMERAACCESSRULE. The rule states that,
while the student is in a university building, social media apps
are not allowed to access the camera on her mobile device.
The rule is shown Figure 4.

Example of a higher granularity rule can be seen in Figure 5,

@pref ix p l a t y s :<h t t p s : / /www. e b i q u i t y . o rg / o n t o l o g i e s
/ p l a t y s / 1 . 0> .
p l a t y s : R e s o u r c e R e q u e s t e d (? r , “Camera′′) ∧
p l a t y s : r e q u e s t i n g A p p (? app) ∧
p l a t y s : h a s A p p T y p e (? app , “S o c i a l M e d i a ′′)∧
p l a t y s : U s e r (? u) ∧
p l a t y s : u s e r L o c a t i o n (? u , ? l) ∧
p l a t y s : h a s L o c a t i o n T y p e (? l , “U n i v e r s i t y Lab′′)
=⇒
p l a t y s : d e n y A c c e s s (“Camera′′)

Fig. 4. This simple rule for controlling social media camera access specifies
that while the student is in a university building, social media apps are not
allowed to access the camera on her mobile device.

which incorporates additional conditions. In plain terms, we
are now stating that the device should not allow camera access
to “Social Media” apps when the time of day is between
9:00am and 5:00pm and it is a weekday and the user is at
a university lab location in th presence of her advisor and has
a meeting scheduled with her advisor”.

@pref ix p l a t y s :<h t t p s : / /www. e b i q u i t y . o rg / o n t o l o g i e s
/ p l a t y s / 1 . 0> .
p l a t y s : R e s o u r c e R e q u e s t e d (? r , “Camera′′) ∧
p l a t y s : r e q u e s t i n g A p p (? app) ∧
p l a t y s : h a s A p p T y p e (? app , “S o c i a l M e d i a ′′)∧
p l a t y s : U s e r (? u) ∧
p l a t y s : u s e r T i m e (? u , ? t) ∧
p l a t y s : t i m e A f t e r (? t , “0900′′) ∧
p l a t y s : t i m e B e f o r e (? t , “1700′′) ∧
p l a ty s :u se rDayOfWeek (? u , ? d) ∧
p l a t y s : h a s D a y T y p e (? d , “Weekday′′) ∧
p l a t y s : u s e r A c t i v i t y (? a) ∧
p l a t y s : h a s A c t i v i t y T y p e (? a , “Advi so r\ Meet ing ′′) ∧
p l a t y s : u s e r p r e s e n c e I n f o (? p) ∧
p l a t y s : h a s P r e s e n c e T y p e (? p , “Advi so r ′′)∧
p l a t y s : u s e r L o c a t i o n (? u , ? l) ∧
p l a t y s : h a s L o c a t i o n T y p e (? l , “U n i v e r s i t y Lab′′)
=⇒
p l a t y s : d e n y A c c e s s (“Camera′′)

Fig. 5. This policy rule for controlling social media camera access applies
in a more specific context.

IV. USER POLICY CONTROL

Although Android APIs capture a user’s location at the level
of position, i.e., geospatial (latitude-longitude) coordinates, it
can then be mapped to a Place or geographic entity, such
as a region, political division, populated place, locality, and
physical feature. A position while being valuable on its own,
from the standpoint of context, Place is a more inclusive and
a higher-level abstraction. Using the Platys ontology a User is
associated with a Device whose Position maps to a geographic
place (GeoPlace) such as “UMBC” and to a conceptual place
(Place) such as “At Work”. Some GeoPlaces are part of others
due to spatial containment and such relationship (part of) is
transitive. The mapping from Positions to GeoPlaces is many
to one and the mapping from Positions to Places is many-to-
many (the same Position may map to multiple Places, even
for the same User; and, many Positions map to the same
Place). Mapping from Positions to Places is done through
GeoPlaces (maps to is a transitive property). An Activity

involves Users under certain Roles, and occurs at a given Place
and Time. Activities have a compositional nature, i.e., fine-
grained activities make up more general ones. This approach
reflects the pragmatic philosophy that the meaning of a place
depends mainly upon the activities that occur there, especially
the patterns of lower-level activities. The idea applies at
both the individual and collaborative level. Such hierarchical
context enables generalization or specialization of conditions
that apply for a policy rule.

A. Presence context using Nearby

The Nearby APIs were created by Google for creating
interaction patterns with objects that are in a devices vicin-
ity [24]. For presence context detection, we have defined a
relationship in the Platys ontology as sitsIn. This relationship
allows us to define that a person has an office room assigned
to them in an organization. The subject of this relationship can
be a “Supervisor”, “Subordinate” or “Colleague”. The object
of the relationship can be a “Location Room”. In order to
obtain this information, we use nearby messaging API from
Google that allowed us to deploy a Physical Web of low
energy Bluetooth beacons. An example of the utility of such
a web or physical infrastructure is the Carlton project [23]
which was used to achieve privacy of the organization while
responding to natural language queries made about entities in
the organization. Using this technique we are able to generate
the notion of “User is in front of her Boss’s cabin”, which
then allows us to execute policies that contain antecedents
that represent presence constraints.

Definition 5: A policy rule VIOLATION, is recorded when
a rule defines an access restrictions for an application and a
behavior is observed that tries to defy such a restriction.

For the violation detection process, MithrilAC detects appli-
cation launches and actions performed by the app. Since policy
rules in our framework are written as a function of context,
the middleware is able to determine if an action performed
by an application in a semantic user context is allowed by
a currently active policy. If the action is not permitted, it
marks the action as a potential policy violation and presents
to the user information about the event. If the user feedback
is to block the action in question in the future, then we have
captured a “True Violation” (TV for short). On the other hand,
if the user wants to allow the action or wants to change the
currently active policy, a “False Violation”(FV for short) has
been captured. When we capture a false violation, the user is
allowed to add/delete/generalize or specialize the conditions
for a policy rule. The hierarchical context ontology enables the
generalization or specialization of rule conditions. Assuming
true violations as true positives and false violations as false
positives, we can then compute the precision of the current
policy as follows:

VM =
TV

FV + TV

.

We refer to policy precision as the “Violation Metric” (or
VM metric), throughout this work. The VM metric computes
the precision of the known policy, as in the ratio of true
positives and sum of true and false positives. Here, we are
defining true violations as true positives, which signifies that
the default policy P and the user’s preferred policy P’ were
the same and NO modifications to the original policy will
be required. On the other hand, false violations or false
positives are situations when the default policy P and the user’s
preferred policy P’ differ and we need to capture change in
current policy. A high value of the VM metric signifies we are
closer to a user’s “personalized” policy.

As discussed in section Section II, user driven policy capture
processes have shown some promise. However, they have also
faced challenges of user indecision, perhaps originating from
a lack of understanding about an application’s behavior [29].
Deciding that the system has indeed captured the access
control preferences of an individual user thus becomes a key
challenge. We present a violation detection driven process as a
way to determine when the policy capture process is complete.
Violations are actions performed by apps (due to user action
or otherwise) that are prohibited by current known policy. We
argue that when an such a violation is recorded in a specific
context, our current policy requires a modification in order
to correctly represent user’s preferred restrictions. A view of
the hierarchical choices presented to the user can be seen
in Figure 6.

B. User Feedback Algorithm

The USER FEEDBACK ALGORITHM (see Algorithm 1)
helps us capture modifications to the initial policy. It uses
the hierarchical contextual options encoded using the Platys
ontology to capture the afore-mentioned modified policy P’.
Through this algorithm, we enable the user to accept current
rules or modify them by adding, deleting or changing contex-
tual conditions in which they apply.

C. Challenges for detecting app activity

There are two different ways that can be used to detect
mobile activity on an Android device. Method one requires
root privileges and reads the system log to detect the launch
of an activity by monitoring the ActivityManager class using
the following command through a shell:
logcat -d ActivityManager:I *:S
We used the second method, which analyzes the device’s

usage history and statistics obtained through Android’s Usage
Stats API. However, getting the information about what ac-
tivity an application performed is still not accessible through
this API. For that reason, we had to use the AppOps API.
It is important to note that although using the AppOps API
we may control the mobile device, getting access to this
API is challenging. Moreover, the AppOps API also does not
implement context-dependent access control.

The AppOps API is a hidden API and unavailable in the
standard Android SDK, Which means our first challenge was
that our code for the MithrilAC middleware would not even

DynamicGPolicyGRuleGConditions

To

9:00GAM

5:00GPM

PublicGMeeting
DepartmentGColloquiumG
ResearchGGroupGMeeting
AdvisorGMeeting

Country
City/State
UniversityGCampus
UniversityGBuilding
UniversityGLab

Everyday
Weekday
Weekend
Monday

Academicians
Professors
Advisor

EnvironmentGConditions
ActivityGConditions
PresenceGConditions
ShareGFake
ShareGInaccurate
RespondGdataGunavailable

ActivityGrelatedGconditions

ConditionGnotGapplicableGatGtheGmoment
ClickGhereGtoGenable

ConditionGnotGapplicableGatGtheGmoment
ClickGhereGtoGenable

ConditionGnotGapplicableGatGtheGmoment
ClickGhereGtoGenable

ConditionGnotGapplicableGatGtheGmoment
ClickGhereGtoGenable

ConditionGnotGapplicableGatGtheGmoment
ClickGhereGtoGenable

PresenceGofGindividualGrelatedGconditions

AddGadditionalGconditions

LocationGrelatedGconditions

TimeGperiodGrelatedGconditions

AddGobfuscationGconditions

Fig. 6. Ontology-driven hierarchical options for rule modification

compile, if we used the public SDK. To access these hidden
APIs one may use Java reflection API but that can slow down
the application [30]. There are alternative solutions to using
Java reflection, the simplest which is to extract the Android
framework JAR file from a real device using the command:
adb pull /system/framework/framework.jar

The framework.jar is the runtime archive containing all the
classes that are used in the android.jar in the SDK. However,
the jar contains the runtime optimized version DEX format
files. So we have to use dex2jar [31] to convert them to class
files by using the command:
dev2jar classes.dex

Next, we extract everything from our target SDK (in our
case API version 25) version’s android.jar file from the path
ANDROID_SDK/platforms/android-25/ to a folder
and overwrite it with the classes from the framework.jar file
folder. Finally we compress the modified classes into a jar
file to obtain our “hacked” Android SDK android.jar file with
access to the hidden AppOps API.

The second challenge was to detect application actions, as in
what resources the application used. Android’s documentation
does not explain this, but we were able to discover that we
can use the AppOps API to detect application actions. Hidden
APIs in Java are often accessed using reflection. However,
reflection can be tedious and slow [30]. As an alternate

Algorithm 1 “User Feedback Algorithm” - Capture user-
specific access control policies

1: appsOnMobileDevice=get apps on mobile device
2: for each appsOnMobileDevice do
3: Observe application launches.
4: Capture resource requested by app.
5: Collect snapshot of context.
6: Find out policy rules that deny resource access to application

in current context.
7: Store potential violations in for deferred user feedback.
8: end for
9: for each recordedV iolations do

10: if User denoted as false violation then
11: Ask user to modify rule.
12: if User wants to add a condition to the rule then
13: Let user choose one of the conditions to add.
14: else if User wants to delete a condition from the rule then
15: Let user choose one of the conditions to delete.
16: else
17: if User wants to generalize a condition then
18: Provide user with a more generic condition as

defined by the Platys ontology.
19: else
20: Provide user with a more specific condition as

defined by the Platys ontology.
21: end if
22: end if
23: else
24: User denoted as a true violation.
25: end if
26: end for

solution, we were able to use the above-mentioned “hacked”
SDK and root privileges to gain access to application actions.

V. EXPERIMENTAL RESULTS

Evaluation of the MithilAC system and the feasibility of
using it for capturing personalized access control policies was
carried out through a user study conducted over six weeks.
During this period rooted mobile devices running a custom
LineageOS Android ROM were provided to users. The study
was conducted with 24 subjects and each used the system
for a period lasting at least seven days and at most 30 days.
To detect an app’s launch and resource consumed by the
application requires special privileges and access to certain
Android APIs that are unavailable on official versions of
Android. This is why we had to use LineageOS, which can
be used to enable access to APIs that are inaccessible on an
official Android build from Google.

A. User study: round 1 results

In the user study, we ran our experiments on mobile devices
with LineageOS 14.1.1, which is equivalent to Android 7.1.1.
The study was done in two phases. One of the challenges
we faced while carrying out the user study was the wide gap
between the number of violations that required user input and
the actual number of inputs we received. This issue occurred
due to the fact that we used a default deny initial policy.
Understandably, this caused a large number of violations.
Our argument behind using a default deny policy was that

if the system did not have any policy rules at all, a safe,
but not necessarily good policy, would be to block events
by default. We also wanted to test the feasibility of using
the violation detection based approach to capture rules from
scratch. Figure 8 shows variation of the VM metric for ten
users over a period of several days. We conclude from the
first round of the user study that a quasi-safe “deny by default”
policy is actually not a good policy from the perspective of
usable privacy and security.

Fig. 7. Average number of policy changes made per user in round 1 of the
user study

Fig. 8. Average “Violation Metric” per user across multiple iterations in round
1 of the user study

B. User study: round 2 results

Following the conclusions of round one of the user study, we
modified our methodology to include a crowdsourced policy.
Our crowdsourced policy was originally collected by the
Xprivacy open-source app [32]. The data can be found at the
link https://crowd.xprivacy.eu/. We downloaded
approximately 21 million rules for 17k applications and then
used category-wise majority voting process to create an initial

default policy for the second round of our study. The crowd-
sourced policy is obtained by the MithrilAC middleware by
querying the back-end server. The results of the second round
of the user study are shown in Figure 9.

Fig. 9. Average “Violation Metric” per user across multiple iterations in round
2 of the user study

A comparison of the number of violations and the number
of feedback inputs from the user can be seen in Figure 7.
This graph shows that when using a default deny policy, the
number of violations captured were high and the number of
times users did not respond to such violations in the feedback
loop was also high. However, as soon as we started using the
crowdsourced policy as our initial policy generation technique,
we saw a drop in number of violations and the number of times
users did not respond to our queries were negligible.

C. Reduction in user interaction required

We did the user study in two rounds with a total of 24 users,
all of whom were graduate students from UMBC’s Computer
Science and Electrical Engineering department. The maximum
number of policies that were created in round 1 for a user
was 3200 and that number came down to 800 in round 2.
The average number of applications per user in the study was
48. Table I shows the number of users, violations, true and
false violations for the two rounds of user study. From the
table we can observe that there is a drop in the number of
violations occurring in round 2 of the user study. At the same
time we also observe a favorable value for the “Violation
Metric” in round 2. We discuss the significance of these results
in Section V-D.

Round #Users #True violations #False violations
1 14 228 550
2 10 300 47

TABLE I
USER STUDY VIOLATION STATISTICS

In round 1 we used a default deny initial policy. This led to a
lot of violations and user fatigue. As can be seen in Figure 10,
“no-response” count in round 1 was relatively high. As a result,
we used a curated initial policy based on data from the the
Xprivacy crowdsourced dataset. We use normalized frequency
counts for our comparison because the two different phases
had varying number of users. The first round ended on July
13 on this chart. The second round of the user study thus
shows lower number of violations as well as lower number of
“no-response” situation from users. The second round of the
user study also show a higher number of users with high value
of “Violation Metric”. This shows that starting with a curated
initial policy leads to fewer situations where a user disagrees
with the policy defined. Whereas if a default deny policy
is used, even legitimate usage of applications get blocked,
leading to a larger number of users disagreeing with the policy
and hence results in a lower value of “Violation Metric”.

Fig. 10. Comparing user no-response and violations over time

D. Statistical significance of user study results

We have presented our results for the user study and
application analytics. We next discuss the significance of our
results under varying conditions. We performed the user study
under two different treatments. Under the first, we used a
default deny policy and under the second we used a curated
policy generated using crowd-sourced data. Since these two
treatments were performed on different sets of users, a paired
sample test cannot be performed. We performed an unpaired
T-test with the null hypothesis that the two different treatments
had the same mean violations and non-responsive situation for
users. We were able to reject the null hypothesis through our
test, since the computed p value was 0.0033.

VI. USER STUDY DISCUSSION

A. Default deny policy

We performed the user study in two rounds, the first of
which did not use a curated policy and assumed a default
deny action. As one might guess, this caused a problem for the
users who were participating in our study. Upon installation,
the MithrilAC middleware started detecting many “violations.”

These violations were not necessarily true violations as per
our definition from Section III. It quickly became evident that
a user would find it difficult to provide feedback to all the
scenarios that our middleware was presenting to them.

Fig. 11. Comparing #violations and #no-response in user study round 1

B. Crowd-sourced policy

Following the issues of round 1 of the user study, we
decided to use our crowd-sourced data to generate an initial
default policy. We restricted the initial policy generation for
just a few contextual situations. Essentially we wanted to show
through the second round of our user study that it is feasible
to use the violation detection methodology to determine policy
deviations for specific users.

Fig. 12. Comparing #violations and #no-response in user study round 2

The crowdsourced policy lead to a smaller number of
violations. A comparison of two rounds of the user study
shows that the number of violations went down in the second
round when a curated policy was used. In contrast, the first
round of user study caused many more violations to occur.
At the end of the user study, participants were allowed to
respond to a series of questions. A Likert-type scale was used
for the questionnaire in order to understand the following
questions/issues:

• Do mobile applications take too many permissions and
the purpose unclear for a requested permission?

• Are mobile operating system security and privacy settings
difficult to find?

• Are application knowledge and ratings useful in making
my sharing decision?

• Are user confident in their ability to manage mobile
privacy and security settings?

• Does knowledge that an application used a resource in
a specific context makes it easy to allow or deny such
access?

• Are user privacy and security needs context dependent,
for example, allowing social media access at home, but
not at work?

• Did the final captured policy better represent? Was using
MITHRIL worth the effort given the benefits?

Users were also allowed to provide feedback using the form.
Two example responses are shown below:

User 1: “As a naive android user, I did not understand all the
meanings of the names of the permissions. Its hard to assess
the impact of denying the permission to an application too.
The option for whats allowed and what is blocked in custom
controls is unclear. Semantics of the privacy setting can be
more clear. There is a difficulty understanding the time of old
notification. Permissions requested in prior day can no longer
be configured since the exact time unclear. What does allowed
ignore and running mean? All in all its a good starting effort
and the setting requires more explanation and further ease to
configure.”

User 2: “MITHRIL is great application and has allowed me
to understand my privacy requirements better. I was surprised
by the permissions, by the number of permissions that were
asked by apps. For example, I am not sure why Wikipedia
needs my contacts, call log and calendar details. I was happy
that MITHRIL allows context modeling. It is more useful for
some applications than others. For example, I would not mind
if Waze asks for contact information and call log access when I
am driving. But, I would not want it to access that information
otherwise. Having context is helpful. I also like that number
of feedbacks asked by MITHRIL reduced over time. Following
are few things that will make application more helpful: 1.
It should have more contexts like ‘Driving’. 2. Rather than
having separate context window, I would prefer to add context
whenever needed in customize button. It would be nice to
have everything in same window, rather than having separate
window for customization.”

Responses to the feedback questions show that users do
feel applications are intrusive and controlling while they are
unsure why they have requested a permission while finding
permission settings seems difficult to them. 44% of the users
were neutral towards application ratings to decide access
decisions while most of them were confident in making such
decisions. Context plays a role in their access decisions and
knowledge of application activity helps in making allow/deny
decisions for users. Finally, users felt the final policy was

representative of their needs and using the system was worth
the effort given the benefits.

Fig. 13. User feedback to questionnaire

VII. CONCLUSIONS

We have presented the MithrilAC middleware system, a
component of MITHRIL, an end-to-end context-dependent
access control framework that monitors mobile application
activities on a user’s mobile device in various contextual
situations and captures their access control preferences in that
context. We have presented the implementation of MithrilAC
and a user study that proves the feasibility of using precision of
captured policy to determine completion of user policy capture
process. The main contributions of our work is the design
and development of the MithrilAC system that achieves the
following goals:
• Create mobile-middleware that uses human-in-the-loop

collaborative editing of access control policies.
• Develop middleware that displayed run time app activity

to user in order to assist them in edit their policy
preferences.

• Evaluate the feasibility of using “Violation Metric” as a
way to determine completion of policy capture process
through a User Study.

• Show that a curated initial default policy reduced user
interaction required.

Through our user study experiments we can conclude that
using a default deny policy creates too many policy violations
and causes user fatigue leading to low number of responses.
However, if a curated initial default policy is used, we see
a reduction in user burden for policy customization. This
happens because the user does not have to make too many
changes for such a policy if it is collected from an appropriate
source. In our previous work [5], we show how to create such a
policy. A discussion on the creation of such a policy is beyond
the scope of the current paper.

One of the most difficult task, that we had to perform was to
get a working system that captures actual events on a mobile
device and feedback from real users about those events. Given
our collected data, an obvious future work is to use pattern

recognition and machine learning algorithms to predict a user’s
preference choices. Improvements to the behavior classifica-
tion process is an important goal that we hope to pursue in the
future. Since static features improved classification accuracies
combining them with dynamic and network features could
lead to better application behavior classifications. Some of the
suggestions made by users in our study could further improve
the usability of the system. We hope to incorporate these in
the future. Another potential future work includes building a
policy that blocks applications that are determined to be “too
unsafe” through the risk computation. Finally, we would like
to perform study of things that were allowed in policy and
blocked by the operating system.

VIII. ACKNOWLEDGMENT

Support for this work was provided by NSF grants 0910838
and 1228198.

REFERENCES

[1] I. Security, “Mcafee lbs: Threats report,” November 2014.
[Online]. Available: http://www.mcafee.com/us/resources/reports/rp-
quarterly-threat-q3-2014.pdf

[2] E. Root, A. Polkovnichenko, and B. Melnykov, “Expensive-
wall: A dangerous packed malware on google play that
will hit your wallet,” September 2017. [Online]. Avail-
able: https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-
packed-malware-google-play-will-hit-wallet/

[3] Google, “The google android security teams classifications for
potentially harmful applications,” April 2016. [Online]. Available:
https://goo.gl/Ez1ojF

[4] P. Kumaraguru and L. F. Cranor, “Privacy indexes: a survey of westin’s
studies,” School of Computer Science, Carnegie Mellon University,
Pittsburgh, 2005.

[5] P. K. Das, “Context-dependent privacy and security management on
mobile devices,” 2017.

[6] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean et al., “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member submission, 2004.

[7] P. Jagtap, A. Joshi, T. Finin, and L. Zavala, “Privacy preservation in
context aware geosocial networking applications,” organization, 2011.

[8] M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Stein, “Owl web ontology language reference,” W3C Recommendation
February, vol. 10, 2004.

[9] S. Aich, S. Mondal, S. Sural, and A. K. Majumdar, “Role Based
Access Control with Spatiotemporal Context for Mobile Applications,”
Transactions on Computational Science, vol. 4, pp. 177–199, 2009.

[10] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST Special Publication, vol. 800, no. 162, 2013.

[11] D. Ghosh, A. Joshi, T. Finin, and P. Jagtap, “Privacy control in smart
phones using semantically rich reasoning and context modeling,” in
Security and Privacy Workshops (SPW), 2012 IEEE Symposium on,
2012, pp. 82–85.

[12] L. Kagal, T. Finin, and A. Joshi, “A policy language for a pervasive
computing environment,” in IEEE 4th International Workshop on Poli-
cies for Distributed Systems and Networks. IEEE, 2003, pp. 63–74.

[13] M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor, “Capturing
location-privacy preferences: Quantifying accuracy and user-burden
tradeoffs,” Personal and Ubiquitous Computing, vol. 15, no. 7, pp. 679–
694, 2011.

[14] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker, and
J. Rao, “Understanding and capturing people’s privacy policies in a
mobile social networking application,” Personal Ubiquitous Comput.,
vol. 13, no. 6, pp. 401–412, Aug. 2009.

[15] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Symposium On Usable Privacy and Security. Menlo Park, CA:
USENIX Association, Jul. 2014, pp. 199–212.

[16] B. Liu, J. Lin, and N. Sadeh, “Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?” in Pro-
ceedings of the 23rd International Conference on World Wide Web, ser.
WWW ’14. New York, NY, USA: ACM, 2014, pp. 201–212.

[17] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. Zhang, N. Sadeh,
A. Acquisti, Y. Agarwal, B. Liu, M. S. Andersen, F. Schaub, H. Al-
muhimedi, S. Zhang, N. Sadeh, A. Acquisti, and Y. Agarwal, “Follow
My Recommendations : A Personalized Privacy Assistant for Mobile
App Permissions,” in Symposium on Usable Privacy and Security, 2016.

[18] L. Zavala, R. Dharurkar, P. Jagtap, T. Finin, and A. Joshi, “Mobile, col-
laborative, context-aware systems,” in Proc. AAAI Workshop on Activity
Context Representation: Techniques and Languages, AAAI. AAAI Press,
2011.

[19] K. Lee, J. Lee, and M.-P. Kwan, “Location-based service using ontology-
based semantic queries: A study with a focus on indoor activities in
a university context,” Computers, Environment and Urban Systems,
vol. 62, pp. 41 – 52, 2017.

[20] H. Chen, T. Finin, and A. Joshi, “The SOUPA Ontology for Pervasive
Computing,” Computing Systems, pp. 233–258, 2005.

[21] D. Ferreira, V. Kostakos, and A. K. Dey, “Aware: mobile context
instrumentation framework,” Frontiers in ICT, vol. 2, p. 6, 2015.

[22] S. Saguna, A. Zaslavsky, and D. Chakraborty, “Complex activity recog-
nition using context-driven activity theory and activity signatures,” ACM
Trans. Comput.-Hum. Interact., vol. 20, no. 6, pp. 32:1–32:34, Dec.
2013.

[23] P. K. Das, A. Kashyap, G. Singh, C. Matuszek, T. Finin, and A. Joshi,
“Semantic Knowledge and Privacy in the Physical Web,” 4th Workshop
on Society, Privacy and the Semantic Web - Policy and Technology, co-
located with the 15th Int. Semantic Web Conf., 2016.

[24] Google, “Nearby messages api,” May 2017. [Online]. Available:
https://developers.google.com/nearby/messages/overview

[25] B. Parducci, H. Lockhart, and E. Rissanen, “Extensible access control
markup language (XACML) version 3.0,” OASIS Standard, pp. 1–154,
2013.

[26] J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of rule learn-
ing. Springer, 2012.

[27] A. K. Dey and G. D. Abowd, “Towards a better understanding of
context and context-awareness,” in First Int. symposium on Handheld
and Ubiquitous Computing (HUC), 1999.

[28] N. K. Sharma and A. Joshi, “Representing attribute based access control
policies in owl,” in 2016 IEEE Tenth International Conference on
Semantic Computing (ICSC). IEEE, 2016, pp. 333–336.

[29] J. Lin, J. I. Hong, B. Liu, N. Sadeh, and J. I. Hong, “Modeling Users
’ Mobile App Privacy Preferences : Restoring Usability in a Sea of
Permission Settings,” Proceedings of the tenth Symposium on Usable
Privacy and Security, vol. 1, pp. 1–14, 2014.

[30] S. Chiba, “Load-time structural reflection in java,” in European Confer-
ence on Object-Oriented Programming. Springer, 2000, pp. 313–336.

[31] B. Pan, “dex2jar,” 2015. [Online]. Available: https://github.com/-
pxb1988/dex2jar

[32] M. Bokhorst(M66B), “Xprivacy,” June 2013. [Online]. Available:
https://github.com/M66B/XPrivacy

