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ABSTRACT
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The field of cost-effectiveness analysis (CEA) addresses the question of whether a
new treatment provides value for the money compared to a standard treatment. The rel-
evant statistical methodologies are based on outcomes of cost and effectiveness, typically
obtained from a clinical trial. These methodologies assist health policy-makers in deciding
if a new treatment should be assigned to patients, and what amount of investment can pro-
vide cost-effectiveness for the new treatment. There are several commonly used metrics to
quantify a new treatment’s cost-effectiveness. The most widely used metric is the incre-
mental cost-effectiveness ratio (ICER), which is the ratio of the average incremental costs
to the average incremental effectiveness between two competing treatments. Another pop-
ular metric for CEA is the incremental net benefit (INB), which is the difference between
the incremental effectiveness and the incremental cost, after multiplying the former with a
willingness-to-pay parameter, which is the maximum amount a policy-maker is willing to pay
for a unit of effectiveness gained under the new treatment. Yet another CEA metric is the
cost-effectiveness proportion (CEP), which is the proportion of patients for whom the new
treatment is less costly and more effective, up to specified margins of cost and effectiveness.
Sometimes net monetary benefits (NMBs) are also compared for CEA; the NMB for a treat-
ment is the difference between the effectiveness and the cost, after multiplying the former
with the willingness-to-pay parameter.

This thesis develops statistical methodologies for CEA that enable decision making
at the population and patient levels. Aggregate analysis carried out at the population
level aims to provide information of a new treatment’s value for an entire population of
patients. Such an analyses often omits the heterogeneity amongst patients. The realization
that between-patient variability can affect cost-effectiveness has underscored the need for
individualized CEA, new metrics and methods are necessary for such an investigation. In



addition, there has also been interest in developing cost-effectiveness metrics when there
are multiple effectiveness measures. The research reported herein deals with individualized
criteria for CEA, as well as aggregate criteria when there are multiple effectiveness measures.

For individualized cost-effectiveness analysis, the CEA literature currently recom-
mends subgroup analysis based on a stratification approach for constructing the subgroups.
However, these stratification methods are somewhat arbitrary, and there is no clear way
of constructing the subgroups in a well-defined fashion. In our work, we have considered
a multivariate regression model for incorporating the patient-level covariates, and covari-
ate specific CEA metrics are then defined and investigated. This appears to be a natural
approach for individualized CEA, and avoids the need to construct subgroups. The indi-
vidualized criteria that we have investigated include the INB, CEP and NMB. In terms of
comparing the NMBs at the population-level, we have explored the stochastic comparison
of the NMB distributions of the new treatment and the standard treatment.

In the presence of multiple effectiveness measures, the traditional approach, labelled
multi-criteria decision analysis, has been to combine the different effectiveness measures into
a single quantity by taking a weighted linear combination; however, the weighting is clearly
subjective. Our research on this topic has focused on the CEP metric, modified to take into
account the availability of multiple effectiveness measures.

This work deals with the case of only continuous cost and effectiveness random
variables. For the CEP metrics investigated, the major focus is interval estimation. Both
parametric and non-parametric approaches are investigated. The parametric set up assumes
a joint normal distribution for the cost and effectiveness, where the normality may hold only
after a monotone-transformation, notably a log-transformation for costs. In the parametric
set up, a fiducial approach, the delta method, and the bootstrap are all investigated and
compared for the interval estimation of the relevant CEA metrics. The non-parametric
method that has been investigated is based on U-statistics. Extensive numerical results are
reported in order to assess the accuracy of the confidence intervals, and the results are all
illustrated with examples.
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Chapter 1

Introduction

1.1 Background

Cost-effectiveness analysis (CEA) consists of statistical methodologies that compare

competing treatments for a given disease, relative to their cost and effectiveness. The field

of CEA has become increasingly relevant, as healthcare policy-makers, faced with increas-

ing health care expenditures, require evidence that treatments are cost-effective. Indeed,

cost-effectiveness analysis has been developed to assist in the decision making process for

resource allocation under budgetary constraints. Various criteria are utilized to quantify

cost-effectiveness; these include the incremental cost-effectiveness ratio (ICER), incremental

net benefit (INB), individual net monetary benefit (NMB), and cost-effectiveness proportion

(CEP). These will be defined in the next section. Cost is typically measured in monetary

terms, and the effectiveness measure is disease specific. Some examples of effectiveness mea-

sures are survival time, number of lives saved, response or no response (in the case of binary

effectiveness), and biomarkers of disease. A generic and popular measure of effectiveness

is Quality-Adjusted Life Years (QALYs), which is a function of various indicators of the

quality of life and length of life, combined into a single index. Other similar measures of

effectiveness include Disability-Adjusted Life Years (DALYs), Quality-Adjusted Life Weeks
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(QALWs), Health-Adjusted Life Years (HALYs), etc. Here we shall not go into the details

on the computation of these. In addition, this thesis deals with only continuous effectiveness

measures.

In the next section, we shall define the various criteria mentioned above for the

assessment of cost-effectiveness, as they are defined in current literature. Throughout the

thesis, we will be considering the comparison of only two treatments. It should be noted

that the criteria ICER, INB, NMB, and CEP are population level criteria. Recent literature

on CEA has brought up the issue of individualizing the criteria, i.e., defining the criteria

from the perspective of the individual patient. Such an individualized analysis is a major

topic taken up in this work. We address statistical inference problems associated with

various population level and individual level criteria for CEA. We want to point out that

the models and problems taken up here are for data obtained from clinical trials only, and

not from observational studies. We shall now provide a summary of the criteria and models

commonly used for CEA.

1.2 Criteria and models

In this section, we shall first define the various cost-effectiveness criteria mentioned in

the previous section, keeping in mind that we are comparing just two treatments: Treatment

1 (a standard treatment), and Treatment 2 (an existing treatment). We shall then mention

some of the statistical inference for CEA, available in the literature.

1.2.1 Criteria for CEA

Let (Ci, Ei) be a bivariate random variable denoting the cost and effectiveness for

patients on the ith treatment, i = 1, 2. Let (µCi, µEi) denote the mean of (Ci, Ei). The

incremental cost-effectiveness ratio (ICER) is defined as the ratio of the average incremental
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cost (denoted by ∆C) to the average incremental effectiveness (denoted by ∆E). That is,

ICER =
∆C

∆E

=
µC1 − µC2

µE1 − µE2

. (1.2.1)

We shall assume that the denominator of the ICER is positive; that is, the new treatment

(Treatment 1) is more effective than the standard treatment (Treatment 2), on average.

Thus, Treatment 1 is cost-effective compared to Treatment 2 if the ICER is not too large,

i.e., it is below a threshold. In view of this, cost-effectiveness can be assessed by computing

an upper confidence limit for the ICER, and verifying if the upper confidence limit is below

the specified threshold. The threshold is the willingness-to-pay (WTP) parameter, denoted

by the constant λ. The WTP, λ, is the maximum acceptable ICER, i.e. the maximum

acceptable amount to pay per unit of health gained. The health care policy-maker typically

decides the value of WTP. It should be noted that being a ratio metric, ICER presents

challenges when it comes to statistical inference.

Noting the difficulties associated with the ICER, another metric has been introduced

in the literature, referred to as the incremental net benefit (INB). The INB is defined as the

difference of the incremental effectiveness (multiplied by the WTP, λ) and the incremental

cost. That is,

INB = λ∆E −∆C = λ(µE1 − µE2)− (µC1 − µC2). (1.2.2)

We note that the INB is linear in (µE1 − µE2) and (µC1 − µC2). It is clear that Treatment

1 is cost-effective compared to Treatment 2 if INB > 0. Thus, the cost-effectiveness can

be assessed by computing a lower confidence limit for the INB and verifying if the lower

confidence limit is positive. We refer to Willan and Briggs (2006) for a book-length treatment

of the statistical methodologies used in CEA. In particular, statistical inference procedures

concerning the ICER and INB are discussed in detail in the book.

A probabilistic metric for the assessment of cost-effectiveness has recently been in-

troduced by Bebu, Mathew and Lachin (2016). The motivation for the criterion is as follows.
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For two subjects, one from each treatment group, the first treatment is cost-effective com-

pared to the second treatment if

C1 ≤ C2 & E1 ≥ E2.

In view of this, the authors defined a cost-effectiveness proportion (CEP ) as the probability

that Treatment 1 is cost-effective compared to Treatment 2. That is,

CEP = P (C1 ≤ C2, E1 ≥ E2) . (1.2.3)

Clearly, large values of the CEP are desirable. It turns out that CEP and its variants

offer considerable flexibility in the assessment of cost-effectiveness. For example, if the first

treatment is anticipated to be more effective, but also more costly, CEP can be modified as

CEP (δC) = P (C1 ≤ C2 + δC , E1 ≥ E2) , (1.2.4)

for a specified threshold δC for the cost. Cost-effectiveness can be concluded if CEP (δC) is

large. The quantity δC can be thought of as a willingness-to-pay parameter, i.e. the total

additional cost one is willing to pay for the new treatment over the standard treatment.

Conversely, one can also estimate the threshold δC after specifying a value for CEP (δC).

For example, suppose a health care policy-maker wants a more effective treatment to be

cost-effective for 80% of the patients. What willingness-to-pay quantity δC is necessary to

meet this requirement? Note that δC is now an unknown parameter. Thus, we want to do

statistical inference on δC satisfying CEP (δC) = 0.80. If there is reason to believe that the

value of δC satisfying such a requirement is too high, the cost-effectiveness of Treatment 1

becomes doubtful under the above 80% requirement.
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A further modification of the CEP is

CEP (δC , δE) = P (C1 ≤ C2 + δC , E1 ≥ E2 + δE) , (1.2.5)

which includes another threshold δE for the effectiveness. The motivation for including such

a threshold is that it may not be enough to have improved effectiveness; a minimum clinically

meaningful improved effectiveness is required, specified in terms of δE. Another possibility is

to consider conditional probabilities such as P (C1 ≤ C2 + δC |E1 ≥ E2), which can be used

for investigating how likely is it that the first treatment is less costly (up to a margin δC) for

a subject for whom the new treatment is more effective. An advantage of the CEP metric is

that it is invariant under monotone transformations of cost and effectiveness outcomes.

The criteria mentioned above do not take into account any covariates that could

affect the cost and effectiveness. A natural way to incorporate covariates is to model the

bivariate (cost, effectiveness) data using a linear regression model; see Willan, Briggs and

Hoch (2004). The criteria defined above can be extended to a regression context; however,

they have to be defined at a specified covariate value. An alternative approach that has been

tried in the literature consists of defining an individual level net monetary benefit, referred

to as the net monetary benefit, (NMB), and model it as a function of the covariates. For the

jth patient in the ith group, let (Cij, Eij) denote the cost and effectiveness, the net monetary

benefit, say NMBij, is defined as

NMBij = λEij − Cij, (1.2.6)

i = 1, 2, where λ is the willingness-to-pay parameter defined earlier. Note that the INB

defined in (1.2.2) is simply the mean ofNMB1j−NMB2k. In addition to inference concerning

such a mean, it appears reasonable to appropriately compare the distributions of NMB1j

and NMB2k for assessing cost-effectiveness. As already noted, an approach taken by several

authors in order to account for covariates consists of modelling NMBij as a function of
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the covariates, and then consider the mean of NMB1j − NMB2k at a specified covariate

value; see Hoch, Briggs and Willan (2002), Hoch and Dewa (2014), and Hounton and

Newlands (2012). However, we are of the opinion that when covariates influence the cost

and effectiveness of individual patients, they should be incorporated into the analysis via a

bivariate regression model for the (cost, effectiveness) random variable, and then the various

criteria should be extended to such a regression scenario.

1.2.2 The case of multiple effectiveness criteria

Cost-effectiveness studies sometimes have multiple measures of effectiveness when

assessing the cost-effectiveness of competing treatments. Thus far, cost-effectiveness analysis

literature has focused on combining the multiple measures of effectiveness into a single scalar

quantity. However, when combining multiple measures of effectiveness into a single quantity,

important information may be lost. Moreover the method of combining such measures is

subjective. The emerging field of multi-criteria decision analysis (MCDA) focuses on eval-

uating treatments based on multiple criteria (multiple effectiveness measures, for example).

As already noted, the recommendation in the literature is to combine the different effec-

tiveness measures into a single quantity by forming a weighted combination; see Thokala

and Duenas (2012) and Thokala et al. (2016). The weights can also be constructed so

as to reflect patient preferences; see Broekhuizen et al. (2017) . Alternatively, one can

think of performing cost-effectiveness analysis by appropriately modelling and analysing the

multivariate data resulting from multiple effectiveness measures. This is especially desirable

if there is no clearly defined approach for choosing the weights for combining the different

effectiveness measures. In our work, we shall take up such a multivariate modelling for CEA.
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1.2.3 A parametric model for CEA

We shall now specify a commonly used parametric model for CEA, when the cost

and effectiveness are both continuous random variables. We shall also give the expressions

for the ICER and INB under these models. Let Ci and Ei denote the cost and effectiveness

random variables for the patients in the ith group (i = 1, 2). It has been noted that cost

data often exhibit skewness, and the log-normal distribution is very often appropriate. In

other words, ln(Ci) follows a normal distribution. If the effectiveness measure also follows a

normal distribution, then we have the following bivariate model for (cost, effectiveness), in

the absence of covariates:ln(Ci)

Ei

 ∼ N2

µi =

µCi
µEi

 ,Σi =

σiCC σiCE

σiCE σiEE


 (1.2.7)

i = 1, 2, where the mean vectors and covariance matrices are unknown parameters. This

model is referred to as the lognormal-normal model. We note that µCi now refers to the

mean of the log-transformed cost; earlier (in (1.2.1) and (1.2.2), for example) we used the

same notation for the mean cost before making any transformation. We hope this does not

cause any confusion.

In view of the lognormality of the Ci, the mean of Ci is given by

E(Ci) = exp

(
µCi +

1

2
σiCC

)
,

where σiCC is the first diagonal element of the covariance matrix Σi, i = 1, 2. Under the

lognormal-normal model, we then have

ICER =

exp

{
µC1 + σ1CC

2

}
− exp

{
µC2 + σ2CC

2

}
µE1 − µE2

(1.2.8)
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and

INB = λ [µE1 − µE2]−
[
exp

{
µC1 +

σ1CC

2

}
− exp

{
µC2 +

σ2CC

2

}]
, (1.2.9)

where λ is the willingness-to-pay parameter.

Now suppose the effectiveness also follows a lognormal distribution, so that we have

the lognormal-lognormal model:

ln(Ci)

ln(Ei)

 ∼ N2

µi =

µCi
µEi

 ,Σi =

σiCC σiCE

σiCE σiEE


 (1.2.10)

Under the model (1.2.10), the ICER and INB are given by

ICER =

exp

{
µC1 + σ1CC

2

}
− exp

{
µC2 + σ2CC

2

}
exp

{
µE1 + σ1EE

2

}
− exp

{
µE2 + σ2EE

2

} (1.2.11)

and

INB = λ

[
exp

{
µE1 +

σ1EE

2

}
− exp

{
µE2 +

σ2EE

2

}]
−
[
exp

{
µC1 +

σ1CC

2

}
− exp

{
µC2 +

σ2CC

2

}]
,

(1.2.12)

When covariates are present, a natural approach consists of modelling the µCi and µEi as

linear functions of the covariates, i.e., we have a bivariate linear regression model. The ICER,

INB, CEP, and NMB can now be defined at a specified covariate value. We shall take this

up later in the thesis.

1.3 Statistical inference

The criteria ICER, INB, and CEP, have intuitive appeal and the calculation of

point estimates is straightforward. However, the computation of interval estimation can be

challenging. Being a ratio parameter, this is especially the case with the ICER. Various
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approaches are available in the literature in order to construct confidence intervals for ICER

and INB, and these include parametric and non-parametric methods. The parametric meth-

ods include delta-method based asymptotic procedures, parametric bootstrap methods, and

an application of Fieller’s Theorem (for the ICER); the assumed parametric model is the

lognormal-normal model.

The non-parametric method that has been utilized is the non-parametric boot-

strap. The implementation of the above parametric and non-parametric approaches is quite

straightforward, and we refer to the book by Willan and Briggs (2006) for more details.

We would also like to point out the recent work of Bebu et al. (2016a) where confidence

intervals are constructed using the fiducial approach (or the generalized pivotal quantity ap-

proach) for both the ICER and the INB (the fiducial approach is briefly explained shortly).

The authors note that the fiducial approach is very satisfactory in terms of maintaining the

coverage probability. The examples discussed in Bebu et al. (2016a) also show that different

approaches for the interval estimation of ICER and INB can yield drastically different solu-

tions when applied to real data; this is especially the case for the ICER. We would also like

to point out that for the CEP criterion, introduced in Bebu, Mathew and Lachin (2016),

the authors have once again derived satisfactory confidence limits following the fiducial ap-

proach. A non-parametric solution, based on U-statistics, is also proposed in Bebu, Mathew

and Lachin (2016) for the CEP criterion presented in (1.2.3).

It appears that the NMB criterion has not received as much attention in the litera-

ture. However, as already noted, a regression model for the NMB criterion is formulated in

Hoch, Briggs and Willan (2002) and Hoch and Dewa (2014). We want to once again em-

phasize that the authors have not investigated the NMB criterion under a regression model

for the data on cost and effectiveness. Rather, the regression models used in these works

model the NMB random variable directly as a function of covariates.
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1.3.1 Fiducial inference

Fiducial inference for a parameter is based on the percentiles of a fiducial quantity

(also referred to as a generalized pivotal quantity; see Weerahandi (1993)). The description

that follows is not in the most general framework; rather, we shall introduce the fiducial

methodology as it applies to our current research. We refer to Hannig (2009) for a very

general discussion of fiducial inference, including theoretical developments and numerous

applications. We also refer to Weerahandi (1993), where the concept was introduced, and

applications were explored, under the terminologies generalized pivotal quantity and gener-

alized inference.

To define a fiducial quantity, let FX(x, θ, δ) denote the CDF of a random variable

X, depending on a parameter of interest θ, and a nuisance parameter δ (where δ could be a

vector). Let X be a random sample from the distribution FX(x, θ, δ), and let x denote the

observed value of X. A fiducial quantity for θ is a function of X, x, θ and δ, and will be

denoted as θ̃ = G(X,x, θ), where we have suppressed the possible dependence on δ. The

quantity G(X,x, θ) is required to satisfy two conditions: (i) given the observed data x, the

distribution of G(X,x, θ) is free of any unknown parameters, and (ii) when X is replaced

with x, G(X,x, θ) simplifies to θ, the parameter of interest; i.e., G(x,x, θ) = θ. Under these

two conditions, the percentiles of the fiducial quantity θ̃ = G(X,x, θ) can be computed and

used as confidence limits for θ, when θ is a scalar. Such confidence intervals are referred to

as fiducial intervals.

In a series of papers, Hannig and co-authors have rigorously investigated the asymp-

totic performance of fiducial intervals. They have shown that fiducial intervals maintain the

coverage probability asymptotically. However, in practical applications where fiducial infer-

ence has been applied, the small sample performance of fiducial intervals must be investigated

numerically. In many situations fiducial intervals do provide satisfactory coverage probabil-

ities in small sample size scenarios. We refer to the article by Hannig et al. (2016) for a
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recent review along with several applications.

1.3.2 Percentile bootstrap

The percentile bootstrap is a simple numerical approach that can be used for com-

puting confidence limits for a parameter θ. Based on a random sample, let θ̂ denote a point

estimate of θ obtained in a parametric or non-parametric set up. Based on B bootstrap

samples (generated parametrically or non-parametrically), let θ̂∗b denote the point estimate

of θ obtained from the bth bootstrap sample, b = 1, 2, ...., B. The percentile bootstrap

method consists of using appropriate percentiles of θ̂∗b as confidence limits for θ.

1.3.3 Delta method

In some of the interval estimation problems that we have addressed, we shall also

consider large sample confidence limits derived using the asymptotic normality of appropriate

statistics, where the latter is obtained by applying the delta method.

1.3.4 Tolerance intervals and tolerance limits

A tolerance interval is an interval computed using a random sample, intended to

capture a specified proportion or more of a population, with a given confidence level. The

specified proportion is referred to as the content of the tolerance interval. We shall denote the

content by p, and the confidence level by 1−α. To provide a formal definition, let X denote

a scalar random variable, and suppose tolerance limits are required for the distribution of

X. Let X denote a random sample from the distribution of X. A lower tolerance limit, say

L(X), satisfies the following condition, stated in terms of the content p and the confidence

level by 1− α:

PX [PX(X ≥ L(X)|X) ≥ p] = PX [L(X) ≤ q1−p] = 1− α, (1.3.1)
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where q1−p is the (1− p)th quantile of X. Thus (L(X),∞) is a one-sided tolerance interval

having lower limit L(X), and L(X) is also a 100(1 − α)% lower confidence limit for q1−p.

An upper tolerance limit, and a two-sided tolerance interval can be similarly defined, and an

upper tolerance limit with content p and confidence level 1− α is also a 100(1− α)% upper

confidence limit for the pth quantile of X. However, a two-sided tolerance interval does not

reduce to a confidence interval for any parameter. A book-length discussion of tolerance

limits and regions is found in Krishnamoorthy and Mathew (2009).

1.3.5 Stochastic dominance

Let Ci and Ei denote the cost and effectiveness random variables for the patients

in the ith group (i = 1, 2). Then NMBi = λEi − Ci is the random variable representing

the net monetary benefit for the ith treatment. By definition, NMB1 is stochastically larger

than NMB2 if P (NMB1 ≥ t) ≥ P (NMB2 ≥ t) for all t. If so, the first treatment can be

deemed cost-effective. This is clearly a strong requirement compared to a comparison of the

means, which results in the INB criterion. However, in practice such a stochastic dominance

condition may not hold for all values of t. Furthermore, not all values of t will have practical

relevance. Consequently, it may be of interest to test if the stochastic dominance condition

holds for all values of t belonging to an interval that has practical relevance. This will be

addressed later in the thesis.

1.3.6 U-statistics

The theory of U-statistics provides a very versatile non-parametric approach for

inference in many practical problems, including CEA. In fact the work of Bebu, Mathew and

Lachin (2016) develops non-parametric inference for the CEP based on U-statistics. The

discussion given below is very brief, providing the definition and some basic results that will

be used in our application. We refer to the book by Kowalsk and Tu (2008) for a detailed
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treatment of the topic; see also Chapter 6 of Lehmann (1999).

We start with the definition of a U-statistic in the context of a single sample con-

sisting of the iid observations X1, X2, ..., Xn. A U-statistic with kernel h and order k is

defined as

U1 =
1(
n
k

)∑ · · ·
∑

i1,...,ik

h(Xi1 , Xi2 , ...., Xik),

where the function h is symmetric in its arguments, (i1, i2, ...ik) is a subset of (1, 2, ...., n),

and the summation is over all such subsets. If θ = E [h(X1, X2, ...., Xk)], then E(U1) = θ.

In order to write the variance of U1, let

hi(X1, X2, ...., Xi) = E [h(X1, X2, ...., Xk)|X1, X2, ...., Xi]

and σ2
i = V [hi(X1, X2, ...., Xi)] , i = 1, 2, ..., k

It can be shown that

σ2
i = Cov

[
h(X1, X2, ...., Xi, Xi+1, ...., Xk), h(X1, X2, ...., Xi, X

′
i+1, ...., X

′
k)
]
,

where the X ′i+1, ...., X ′k are independent, and independent of the Xi’s, having the same

distribution as that of the Xi’s. Then it is known that

V (U1) =
1(
n
k

) k∑
i=1

(
k

i

)(
n− k
k − i

)
σ2
i .

Also, V (U1) = k2σ2
1/n, asymptotically (provided all the σ2

i are finite). Furthermore, the

asymptotic distribution of
√
n (U1 − θ) is N(0, k2σ2

1).

The definition of U1 has been extended to a variety of practical scenarios; a two-

sample formulation is as follows. Consider two samples consisting of the iid observations

X11, X12, ..., X1n1 of size n1, and X21, X22, ..., X2n2 of size n2. Let (i1, i2, ...ik1) be a subset

of (1, 2, ...., n1), and (j1, j2, ...jk2) be a subset of (1, 2, ...., n2). A two-sample U-statistics with

13



kernel h can now be defined as

U12 =
1(
n1

k1

) 1(
n2

k2

)∑∑
h(X1i1 , X1i2 , ...., X1ik1

;X2j1 , X2j2 , ...., X2jk2
),

where the kernel h is assumed to be symmetric with respect to the arguments from each sam-

ple, and the summations in the definition are over all possible subsets of sizes k1 and k2, re-

spectively, from (1, 2, ...., n1) and (1, 2, ...., n2). If θ = E [h(X11, X12, ...., X1k1 ;X21, X22, ...., X2k2)],

then E(U12) = θ, and

V ar(U12) =

k1∑
i=0

k2∑
j=0

(
k1
i

)(
n1−k1
k1−i

)(
n1

k1

) (
k2
j

)(
n2−k2
k2−j

)(
n2

k2

) σ2
ij,

with

σ2
ij = Cov

[
h(X11, . . . , X1i, X1i+1, . . . , X1k1 ;X21, . . . , X2j, X2j+1, . . . , X2k2),

h(X11, . . . , X1i, X
′

1i+1, . . . , X
′

1k1
;X21, . . . , X2j, X

′

2j+1, . . . , X
′

2k2
)
]
,

where the X
′
1i+1, . . . , X

′

1k1
are independent and identically distributed as the X1i’s; and

X
′
2j+1, . . . , X

′

2k2
are independent and identically distributed as the X2j’s.

If n1

n1+n2
→ ρ as n1, n2 → ∞, then

√
N(U12 − θ) is asymptotically distributed as

N(0, σ2), where σ2 =
k21
ρ
σ2

10 +
k22

1−ρσ
2
01 and N = n1 + n2.

1.4 Summary of the thesis

The focus of the thesis is an investigation of the INB, CEP and NMB criteria for

aggregate level (i.e., population level) and patient level (i.e., individualized) CEA. The ICER

metric will not be considered in our work, given the acknowledged difficulties associated with

this criterion.

Chapter 2 is on individualized CEA to facilitate patient level comparison of treat-
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ments with respect to cost-effectiveness. A bivariate regression model is proposed to incorpo-

rate covariates, and the INB and CEP criteria are then defined at a specified covariate value.

In the parametric set up, i.e., lognormal-normal or lognormal-lognormal models, confidence

intervals are constructed for these individualized cost-effectiveness metrics using the fidu-

cial method. The proposed fiducial inference is straightforward to implement and provides

accurate confidence limits. Another problem addressed in this chapter is the estimation of

the thresholds δC and δE in (1.2.5) so that CEP (δC , δE) defined in (1.2.5) assumes a spec-

ified value. A Newton-Raphson algorithm is used to solve for the thresholds required to

obtain a desired value of CEP (δC , δE) for a particular patient. The methodologies are illus-

trated using an application where the problem of interest is to compare two treatments for

schizophrenia. The results indicate that cost-effectiveness for the new treatment varies con-

siderably among patients. Furthermore, estimated values of the thresholds δC and δE show

that differing amounts of investment are required for the new treatment to be cost-effective

for various patients, a result that is useful for policy-makers with limited budgets.

The topic of multi-criteria decision analysis (MCDA) for CEA has focused on meth-

ods to analyze and make inferences about the cost-effectiveness of treatments when there

are multiple effectiveness measures. The main focus of the MCDA literature thus far has

been on various weighting schemes used to consolidate multiple effectiveness measures into

a single scalar quantity. When there are multiple stake holders in the resource allocation de-

cision process, the differing preferences amongst the decision makers could result in different

weighting combinations leading to contradictory conclusions regarding treatment recommen-

dations. This subjectivity has been actively debated in the associated MCDA literature. In

order to circumvent this subjectivity, we develop two probabilistic criteria in Chapter 3,

which are adaptations of the usual CEP, and are free of weights. One criterion prioritizes

value for the money and the other prioritizes effectiveness of the treatment. In the para-

metric set up, we apply the fiducial approach and percentile bootstrap methods to construct

confidence limits for the criteria. In addition, a non-parametric approach is implemented
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using U-statistics. The methods are applied to data from a clinical trial on irritable bowel

syndrome (IBS). The results indicate that the parametric and non-parametric methods are

accurate for moderate and large sample sizes.

Chapter 4 and Chapter 5 explore the comparison of the distributions of the net

monetary benefit (NMB) random variables for the two treatment groups. We recall that the

NMB for a treatment group is the difference between the random variables representing the

effectiveness and cost for that group, after multiplying the effectiveness with a willingness-to-

pay parameter. The problem addressed in Chapter 4 is under a parametric set up assuming

a bivariate regression model, and we discuss the comparison of specific percentiles of the

NMB random variables for the two treatment groups at specified covariate values. We

have essentially compared lower tolerance limits of the two NMB distributions. A larger

lower tolerance limit for a specific patient (i.e., at a specified set of covariates) under the

new treatment indicates that the treatment is cost-effective. The results are applied to the

schizophrenia example mentioned earlier. The specific problem addressed in Chapter 5 is

the stochastic comparison of the NMB distribution of the new treatment with that of the

standard treatment. Under a parametric set up, we have developed procedures to assess the

stochastic dominance of the NMB for the new treatment compared to the standard treatment

within an interval of values deemed relevant. We have accomplished this using the fiducial

and percentile bootstrap methods for the interval estimation of an appropriate parameter.

The methods are then applied to a data set from a study on malnutrition.

The results obtained in Chapters 2−5 assume that we have data obtained from

a single randomized controlled trial, which is a typical scenario in CEA. However, there

are situations where cost-effectiveness data comes from multi-center trials, and this calls

for the development of cost-effectiveness methods based on such data. Under multi-center

trials between-center heterogeneity is to be expected, and must be accounted for in the data

analysis. Modelling the cost and effectiveness outcomes from such studies using a multilevel

model is one possible approach to account for such heterogeneity. We develop a multivariate
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multilevel model for cost and effectiveness outcomes of patients in multi-center trials. Data

analysis is then carried out under the model in order to assess the cost-effectiveness of

a new treatment for a specified patient using the patient-specific INB. Model parameters

are estimated using the restricted iterative generalized least squares (RIGLS). Confidence

intervals for the patient-specific INB are computed using the delta method. The analysis is

applied to the Canadian implantable defibrillator study. Our investigation in this chapter is

under a parametric set up.

We conclude this introductory chapter with the observation that even though we

have investigated different criteria for cost-effectiveness analysis, we are not in a position

to recommend one criterion over the other. This will require input from health economists

and other policy-makers. Consequently, we have refrained from advocating any particular

criterion. Our goal has been the development of accurate inference only, for the various CEA

metrics: aggregate as well as individualized.
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Chapter 2

Individualized cost-effectiveness

analysis

The need for an individualized analysis of cost-effectiveness data has recently been

emphasized in the health economics literature. A major motivation for this emphasis is the

observation that a treatment that is cost-effective for the whole population may not be so

for a subgroup. Conversely, a treatment that is not cost-effective at the population-level

may be cost-effective for a sub-population. In other words, the choice of treatment that

maximizes the population’s cost-effectiveness is not necessarily the best choice for an indi-

vidual. Cost-effectiveness analysis metrics traditionally used in practice have been at the

population/aggregate level. Clearly, population-level metrics cannot account for important

inter-individual differences that affect the values of such metrics for a particular treatment

intervention (Espinoza et al. (2018)). Thus, the literature on cost-effectiveness analysis has

been emphasizing the need to have metrics relevant for individualized decision making (Mi-

haylova et al. (2011)). Several strong reasons for individualized cost-effectiveness analysis

are noted in Ioannidis and Garber (2011). In spite of these observations, a well accepted

framework and criteria for individualized cost-effectiveness analysis are still lacking. This is

the main motivation for the work in this chapter.
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In the literature, one suggestion for individualizing CEA is to form subgroups of

patients, and then apply the traditional criteria to the subgroups. However, an obvious

drawback of this approach is that the construction of the subgroups could be somewhat

arbitrary. Secondly, such methods ignore information shared among patients belonging to

different stratum. Clearly, individualization of CEA amounts to the incorporation of covari-

ates into the analysis. An obvious way to do this is to use a regression model for the cost and

effectiveness data. The present work proposes such a model for performing individualized

CEA. In the case of skewed data where log-normality is often appropriate, we shall propose

the regression model for the log-transformed data. Thus we will have a bivariate normal

linear regression model for the cost and effectiveness data from each patient. For any spec-

ified covariate value, CEA metrics such as the incremental cost-effectiveness ratio (ICER),

incremental net benefit (INB), and cost-effectiveness proportion (CEP) can now be defined.

Thus what we propose to do is a covariate specific CEA, as opposed to a subgroup specific

CEA. We have focused on the INB and CEP criteria, and interval estimation is addressed

using the fiducial approach. As noted in the introductory chapter, the ICER criterion is not

taken up here due to the acknowledged difficulties and drawbacks associated with the ICER.

In Bebu et al. (2016b) the authors successfully applied the fiducial methodology

for the construction of confidence limits for the INB and ICER, and later extended it to

the CEP parameter in Bebu, Mathew and Lachin (2016). Both of these works employed

fiducial methods under bivariate models that did not include any covariates. Two problems

are addressed in this chapter: (i) an extension of the methods proposed in the above two

papers for individualized cost-effectiveness analysis, by incorporating covariates into the

model, and (ii) the determination of meaningful cost and effectiveness thresholds required

to obtain a desired CEP; these are the quantities δC and δE appearing in the definition of

CEP (δC , δE) given in (1.2.5). We recall that the threshold δC for the cost can be viewed as

the additional cost one is willing to pay for the new treatment over the standard treatment.

The threshold δE for the effectiveness refers to the minimum increase in effectiveness required
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for the new treatment to be deemed effective. Clearly, large values of CEP (δC , δE) indicate

that the proportion of patients for which the treatment is cost-effective is large. We aim to

answer the question of what thresholds are required to obtain a desired CEP. The solution

to this inverse problem aids health care policy-makers in determining which combination of

thresholds are necessary for cost-effectiveness to hold, as specified by a value of CEP (δC , δE).

2.1 Model for cost and effectiveness

In this section, we shall explore CEA under regression models for the (cost, effec-

tiveness) data, to accommodate individual level covariates. Let us start with the model.

Let Cij and Eij, respectively, denote the cost and effectiveness for the jth patient

assigned to the ith treatment intervention (i = 1, 2; j = 1, . . . , ni). Also let wij denote a

p × 1 vector of covariates associated with the jth individual belonging to the ith treatment

intervention. We shall assume the following lognormal-lognormal model:

Xij =

ln[Cij]

ln[Eij]

 ∼ N2

Biwij =

B′iC
B′iE

wij, Σi =

σiCC σiCE

σiCE σiEE


 , (2.1.1)

where Bi is a 2 × p parameter matrix, and the two rows of Bi, namely, B′iC and B′iE are

p−dimensional vectors. Write

Xi = (Xi1, Xi2, ...., Xini) and Wi = (wi1,wi2, ....,wini) , (2.1.2)

so that Xi and Wi are 2 × ni and p × ni matrices, respectively. We shall assume that

rank(Wi) = p. We then have

E(Xi) = WiBi and Cov[vec(Xi)] = Ini ⊗ Σi. (2.1.3)
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Under the above model, unbiased estimators of Bi and Σi are given by

B̂i = XiW
′
i [WiW

′
i ]
−1, and Σ̂i =

(Xi − B̂iWi)(Xi − B̂iWi)
′

ni − p
, (2.1.4)

i = 1, 2.

The various cost-effectiveness metrics can now be defined at a specified covariate

vector w0. For example, under the lognormal-lognormal model the INB for an individual

with covariate w0 is given by

INB(w0) = λ [exp{B′1Ew0 + σ1EE/2} − exp{B′2Ew0 + σ2EE/2}]

− [exp{B′1Cw0 + σ1CC/2} − exp{B′2Cw0 + σ2CC/2}] . (2.1.5)

The CEP parameter can also be similarly defined.

2.2 Fiducial inference

We shall now develop the fiducial approach for inference concerning the INB and

CEP parameters in the bivariate regression model. Fiducial quantities for a normal mean

vector and covariance matrix are derived on Bebu and Mathew (2008), and we shall simply

adopt these after making obvious modifications for the regression context. We first note that

with B̂i and Σ̂i defined in (2.1.4),

vec(B̂i) ∼ N
[
vec(Bi), (WiW

′
i )
−1 ⊗ Σi

]
(ni − pi)Σ̂i ∼ Wishart [Σi, ni − pi] , i = 1, 2.

(2.2.1)
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Let B̂io and Σ̂io denote the observed values of B̂i and Σ̂i, respectively, i = 1, 2. Then a set

of fiducial quantities for Σi and Bi, say Σ̃i and B̃i are given by

Σ̃i = H−1
i , where Hi ∼ W

({
(ni − p)Σ̂io

}−1

, ni − p
)

B̃i = B̂io − Σ̃
1/2
i Σ

−1/2
i (B̂i −Bi)(WiW

′
i )

1/2(WiW
′
i )
−1/2

= B̂io − Σ̃
1/2
i Zi(WiW

′
i )
−1/2, (2.2.2)

where Zi is a 2×p matrix whose elements are independent standard normal random variables.

A derivation of Σ̃i is given in Bebu and Mathew (2008).

The fiducial method can now be applied for the individualized INB and CEP metrics.

Since INB(w0) in (2.1.5) is a function of the Bis and Σis, a fiducial quantity for INB(w0)

can be obtained by replacing the Bis and Σis with the corresponding fiducial quantities

exhibited in (2.2.2). The 5th percentile of the fiducial quantity for INB(w0) provides a

95% lower confidence limit for INB(w0). The following algorithm provides the necessary

computational steps.
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Algorithm 1: Fiducial lower confidence limit for INB(w0)

1 From the sample of each treatment group compute the estimates B̂io and Σ̂io,

i = 1, 2, using (2.1.4).

2 For i = 1, 2, independently generate: Hi ∼ W

({
(ni − p)Σ̂io

}−1

, ni − p
)

and

Zi ∼ 2× p matrix of iid N(0, 1) random variates.

3 Compute Σ̃i = H−1
i and B̃i = B̂io − Σ̃

1/2
i Zi(WiW

′
i )
−1/2.

4 Compute the fiducial quantity ĨNB(w0) for INB(w0) by using its expression

in (2.1.5), and replacing the elements from Bi and Σi with the corresponding

elements from B̃i and Σ̃i.

5 Repeat steps 2-4 M times, obtaining M values of ĨNB(w0).

6 A lower 100(1− α)% confidence limit for INB(w0) corresponds to the αth

percentile of the M values of ĨNB(w0).

The development of the fiducial inference for the CEP is very similar to that of the

INB, and we shall describe it briefly. Thus consider cost-effectiveness data following the

regression model (2.1.1), and suppose we are interested in assessing the cost-effectiveness

through the CEP at a fixed covariate vector w0. Let (Ci0, Ei0)′ be a random variable denoting

the corresponding cost and effectiveness for a patient having covariate vector w0, assigned to

the ith treatment group (i = 1, 2). The CEP under the model (2.1.1), denoted by CEP (w0),

is given by

CEP (w0) = P [ln(C10) ≤ ln(C20), ln(E10) ≥ ln(E20)]

= Φ[0; (B1C −B2C)′w0, σ1CC + σ2CC ]− Φ2


0

0

 ;

B′1C −B′2C
B′1E −B′2E

w0,Σ1 + Σ2

 (2.2.3)

In (2.2.3), Φ(0;µ, σ2) denotes the cumulative distribution function (CDF) of N(µ, σ2) eval-

uated at zero, and Φ2((0 0)′;µ,Σ) denotes the CDF of N2(µ,Σ) evaluated at (0, 0)′. A

fiducial quantity for CEP (w0) can now be developed similar to that for the INB by simply
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replacing the unknown parameters with the corresponding fiducial quantities.

The accuracy of the fiducial approach for the individualized metrics will be assessed

by computation of coverage probabilities. The algorithm for the coverage probability compu-

tation is provided in the next algorithm for INB(w0); the algorithm is similar for CEP (w0).

Algorithm 2: Coverage probability of the fiducial lower confidence limit for

INB(w0)

1 Specify covariate vector w0 and the design matrices Wi, for i = 1, 2.

2 Specify values for the parameters Bi and Σi, and compute INB(w0).

3 Generate B̂io and Σ̂io using 2.2.1.

4 Implement steps 2-6 in algorithm 1.

5 Repeat the steps 2-4 given above M times, resulting in M lower limits for

INB(w0): ĨNB(w0)1L, . . . , ĨNB(w0)ML.

6 Compute the coverage probability as: 1
M

∑M
m=1 1

[
ĨNB(w0)mL < INB(w0)

]
.

An appeal of the CEP is it’s flexibility to incorporate the thresholds δc and δe. Thus

it maybe of interest to solve the converse problem: what values of δc and δe are required to

obtain a specified value of CEP? The solution to this question is clearly not unique; after

specifying one threshold, the other can be determined using a Newton-Raphson algorithm.

Since we shall work under the lognormal-lognormal model (2.1.1), multiplicative thresholds

are easier to handle. Thus we shall consider the Newton-Raphson root finding method to

find δc after fixing a value for δe.

Let ω be the pre-specified value of CEP (w0). Then

CEP (w0) = ω = P [ln(C10)− ln(C20)− ln(δc) ≤ 0, ln(E10)− ln(E20)− ln(δe) ≥ 0]

= Φ[ln(δc); (B1C −B2C)′w0, σ1CC + σ2CC ]− Φ2


ln(δc)

ln(δe)

 ;

B′1C −B′2C
B′1E −B′2E

w0,Σ1 + Σ2


(2.2.4)
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Now let

µδe = (B′1C −B′2C)w0, µδc = (B′1E −B′2E)w0

σδc =
√
σ1CC + σ2CC , σδe =

√
σ1EE + σ2EE

ρ = σ1CE+σ2CE
σδcσδe

Using the above notation the derivative of CEP (w0) with respect to δc is

dCEP (w0)

dδc
=

φ[ln(δc), µδc , σδc ]

dδc

{
1− Erfc

[
−ln(δe)σδc + µδeσδc − µδcρσδe + ρσδeln(δc)√

2− 2ρ2σδcσδe

]} (2.2.5)

such that Erfc[.] is the complementary error function defined as

Erfc[z] = 2Φ[−
√

2z] (2.2.6)

and Φ[.] is the CDF of the standard normal distribution. Now we can apply the algorithm

to solve for δc after fixing ω and δe. For illustration we set ln(δe) = 0. Let f denote the

function for which we want to find the root, and let f ′ denote the derivative of this function.

In this context f and f ′ are, respectively,

f(δc) = CEP (w0)− ω

f ′(δc) =
dCEP (w0)

dδc

(2.2.7)

Let δc,n denote the root at the nth iteration. The root δc,n is updated at iteration n as follows:

δc,n = δc,n−1 −
f(δc,n−1)

f ′(δc,n−1)
(2.2.8)

The steps in the algorithm are as follows.
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Algorithm 3: Newton-Raphson method for computing the margin δc

1 For each treatment group compute: B̂i0 and Σ̂i0; i = 1, 2.

2 Select value of δe, ω, and a tolerance a

3 Provide an initial guess for the root δc.

4 while D ≥ a do

5 δc,n = δc,n−1 − f(δc,n−1)

f ′(δc,n−1)

6 Dn =| δc,n − δc,n−1 |

7 end

8 The final solution of δc,n is the desired δc, and is achieved when

| δc,n − δc,n−1 |< a

Alternatively, one can simply take the derivative with respect to ln(δc) and repeat

the steps in algorithm 3, in which case the final result will need to be exponentiated. Notably,

as ω increases the denominator f ′(xn−1) becomes closer to zero. This indicates that for large

values of ω no root exist. In terms of cost-effectiveness this means that the CEP (w0) cannot

attain certain values of ω.

In light of this, it is also of interest to determine the maximum CEP that a person

can attain under the new treatment; this can be done analytically since CEP is monotone

in δe and δc. We note that

CEP (w0) = P [ln(C10)− ln(C20)− ln(δc) ≤ 0, ln(E10)− ln(E20)− ln(δe) ≥ 0]

= Φ[ln(δc);µδc , σδc ]− Φ2


ln(δc)

ln(δe)

 ;

µδc
µδe

 ,Σ1 + Σ2


≤ P [ln(E10)− ln(E20)− ln(δe) ≥ 0] ≤ 1− Φ[0;µδe , σδe ]

(2.2.9)

Hence, the maximum CEP (w0) is equal to (2.2.10) given below, which is attained
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when δc →∞ and ln(δe) = 0.

max[CEP (w0)] = 1− Φ[0; (B1E −B2E)′w0, σ1EE + σ2EE] (2.2.10)

In regards to decision making based on these methods, a range of values for δe should

be selected that are considered reasonable. Corresponding solutions of δc should be computed

so that policy-makers and health care experts can make decisions on which combination of

δe and δc is most appropriate and feasible.

2.3 An example

This example is taken from Tunis et al. (2006), and is on the cost-effectiveness

of treatments for schizophrenia. The same application was later taken up by Faries et al.

(2010). Here the cost-effectiveness is to be evaluated for a treatment that uses the anti-

psychotic drug Olanzapine versus a “fail-first approach” where conventional anti-psychotics

are first administered, followed by Olanzapine if necessary. We shall refer to the latter as the

standard treatment, and treatment using Olanzapine as the new treatment. For more details,

we refer to the original study reported in Tunis et al. (2006). In the the clinical trial for

this investigation, patients with schizophrenia or schizo-affective disorder were randomized

to the two groups. The new treatment group had 202 patients and the standard treatment

group had 174 patients. The subject specific covariates collected from the patients were age,

duration of psychiatric problems in years, duration (in months) of hospitalization before

study, baseline BPRS (brief psychiatric rating scale) level that indicates if a patient has

been diagnosed with schizophrenia. Other covariates were also included in the study, such

as gender and indicator of substance abuse; however, these were not found to be statistically

significant in modelling the bivariate outcomes. The outcomes are total one-year cost and the

effectiveness defined in terms of the number of “responder days” for a patient during a one-
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year period. The latter was calculated using a clinical response (based on the BPRS score)

and a social response (in terms of being highly satisfied with social relationships). Details

on the computation of such an effectiveness measure is given in Tunis et al. (2006, pg.

80). The authors have also noted that both the cost and effectiveness outcomes exhibited

positive skewness. The CEA reported in Faries et al. (2010) for the same application is

based on cost and effectiveness data simulated from the original data to obtain lognormal

costs and lognormal outcomes, respectively. We will first note that a traditional population-

level CEA leads to the conclusion that the new treatment is not cost-effective. However,

our individualized analysis does show that the new treatment is indeed cost-effective at the

individual level for certain covariate values.

We shall now consider an aggregate analysis which utilizes an aggregate version of

the INB, assuming a lognormal-lognormal model without covariates, i.e. (1.2.12). The esti-

mated mean vectors and covariance matrices for the two groups, based on the log-transformed

data, are

µ̂1 =

9.3289

4.1725

 ; Σ̂1 =

 1.1618 −0.1562

−0.1562 2.7015


µ̂2 =

9.2070

4.1644

 ; Σ̂2 =

 1.8630 −0.0166

−0.0166 2.7184


Under log-normality, the estimated mean costs Ê(Ci), and the estimated mean ef-

fectiveness Ê(Ei), i = 1, 2, are,

Ê(C1) = 20127.4000 , Ê(E1) = 250.4655

Ê(C2) = 25296.7400 , Ê(E2) = 250.5288

These numerical results indicate that the new treatment, consisting of treatment with Olan-

zapine, is less costly and somewhat less effective, compared to the standard treatment. This
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is also reflected in the values of the estimated INB: ÎNB = λ
[
Ê(E1)− Ê(E2)

]
−
[
Ê(C1)−

Ê(C2)
]
. Table 2.1 gives the estimated INBs corresponding to a few values of the willingness-

to-pay quantity λ (the λ− values in Table 2.1 are arbitrarily chosen). As expected, the

estimated INB lower limits are all negative (lower limits are obtained using 5000 bootstrap

samples). Clearly, from an aggregate perspective, the new treatment is not cost-effective.

Table 2.1 Aggregate level analysis:
Estimated INBs and 95% lower
confidence limits

λ ˆINB Lower limit

25 5167.745 −1921.690
50 5166.161 −3392.060

100 5162.993 −8510.540
200 5156.657 −20 364.240

2.3.1 INB for individualized cost-effectiveness analysis

We shall now perform an individualized analysis of the same data, taking into ac-

count the following covariates: age, psychological duration, baseline BPRS, and months

spent in hospital during the year prior to the study. Thus we have four covariates; however,

the regression model that we shall consider will also include an intercept term; thus p = 5 in

the notations of the model (1.2.10). We shall consider sixteen patients having the covariate

values provided in Table 2.2. Now the goal of the analysis is to assess the effect of the

covariates on the cost-effectiveness of the new treatment.
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Table 2.2 Covariate values for sixteen patients

Patient
ID Age Psyc duration Baseline BPRS Months in Hospital

1 40 0 0 0
2 40 0 1 0
3 40 0 0 0.25
4 40 0 1 0.25
5 40 5 1 0
6 40 5 1 0.25
7 40 5 1 0.50
8 40 5 1 0.75
9 60 0 0 0
10 60 0 1 0
11 60 0 0 0.25
12 60 0 1 0.25
13 60 15 1 0
14 60 15 1 0.25
15 60 15 1 0.50
16 60 15 1 0.75

Using the simulated lognormal-lognormal data, we fitted the multivariate regression

model (1.2.10) after log-transforming the data from the two groups. We note that the re-

gression matrix Bi is now a 2× 5 matrix, and its columns will correspond to the intercept,

and the four covariates age, psychological duration, baseline BPRS, and months spent in

hospital during the year prior to the study, respectively. The least squares estimates of Bi

and Σi are given by

B̂1 =

9.5580 −0.0089 0.0256 −0.4731 0.1345

5.6988 0.0235 −0.0357 −1.7997 −0.2062

,

B̂2 =

7.8333 4.0842e− 05 0.0332 0.7911 −0.0830

5.4350 −0.0064 0.0163 −1.3958 −0.1325

,

Σ̂1 =

 1.0721 −0.0721

−0.0721 2.3638

, Σ̂2 =

 1.6502 −0.0186

−0.0186 2.5081

.
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The estimated average incremental responder days ∆e and average incremental cost

∆c for the sixteen patients are provided in Table 2.3.

Table 2.3 Estimated average
incremental responder days and
incremental costs for the sixteen
patients

Patient

ID ∆̂e ∆̂c

1 1874.06 11 201.33
2 258.65 −2149.44
3 1768.92 11 899.91
4 242.93 −1526.75
5 178.03 −3005.02
6 166.13 −2285.78
7 154.93 −1558.82
8 144.38 −823.53
9 3450.38 8437.54

10 525.42 −3878.97
11 3267.37 9041.88
12 496.63 −3314.84
13 213.60 −7960.42
14 199.80 −7085.73
15 186.81 −6204.69
16 174.56 −5316.58

The results in Table 2.3 indicate that all patients have effectiveness that is, on aver-

age, larger under the new treatment than the standard treatment. However, the amount of

the incremental benefit in effectiveness varies drastically among the patients. Similarly, the

average cost of the new treatment compared to the standard treatment also varies signifi-

cantly amongst the patients, with some patients having large positive average incremental

costs and others having large negative incremental costs. All patients have less average costs

when using the new treatment as compared to the standard treatment, except for patients

having baseline BPRS equal to zero. Older patients tend to experience more benefit and

savings from the new treatment compared to younger patients, on average. In addition,

patients who have spent more time in hospital in the preceding year have higher average
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costs under the new treatment compared to those who have spent less time. These patients

also tend to benefit less on average from the new treatment.

The INB estimates for the sixteen patients are obtained using (2.1.5), and are pro-

vided in Table 2.4 for a few values of the willingness-to-pay parameter λ. Corresponding

95% lower confidence limits are given in Table 2.5.

Table 2.4 INB estimates for the sixteen patients for different values of λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 35 650.2 82 501.8 176 204.9 363 611.2
2 8615.6 15 081.7 28 013.9 53 878.4
3 32 323.2 76 546.3 164 992.4 341 884.7
4 7600.0 13 673.2 25 819.7 50 112.6
5 7455.7 11 906.4 20 807.9 38 610.7
6 6439.1 10 592.3 18 898.9 35 512.0
7 5432.0 9305.2 17 051.6 32 544.4
8 4433.0 8042.6 15 261.6 29 699.6
9 77 822.0 164 081.6 336 600.8 681 639.0

10 17 014.5 30 150.1 56 421.1 108 963.3
11 72 642.4 154 326.8 317 695.4 644 432.7
12 15 730.6 28 146.4 52 977.9 102 641.0
13 13 300.3 18 640.2 29 319.9 50 679.5
14 12 080.9 17 076.0 27 066.2 47 046.7
15 10 874.9 15 545.0 24 885.4 43 566.0
16 9680.5 14 044.5 22 772.4 40 228.2
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Table 2.5 95% lower confidence limits for the INB, using 5000 fiducial
quantities for different values of λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 −7936.7 −798.3 11 605.9 35 586.3
2 794.0 3548.3 7975.0 15 697.2
3 −9564.0 −3274.8 7558.2 28 793.8
4 −215.1 2159.6 5906.5 12 074.0
5 371.0 1988.9 3960.4 6952.8
6 −504.0 1090.9 2764.2 5409.2
7 −1423.6 18.6 1739.1 4067.6
8 −2340.1 −1018.1 608.6 2634.0
9 5063.1 21 273.0 52 348.7 114 904.0

10 2747.0 7187.0 14 252.3 27 330.2
11 3080.6 18 108.9 47 087.1 103 590.8
12 1679.1 6044.3 12 619.8 24 548.8
13 2248.2 3882.4 5168.2 6874.3
14 1159.0 2768.2 3913.9 4863.4
15 100.4 1674.6 2871.8 3121.3
16 −568.5 870.1 1982.1 2506.7

We now note that unlike in the case of the aggregate analysis, all the INB-estimates

are positive, indicating that for fixed subgroups of patients having certain covariate values,

the new treatment is cost-effective. A careful examination of the INB-estimates in Table

2.4 also suggests a pattern regarding which patients benefit the most (least). In particular

when comparing older patients to younger patients for a fixed willingness-to-pay value λ, and

having the other covariate values (i.e., other than age) being common, the older patients have

higher estimated values of INB, indicating that the new treatment is more cost-effective for

older patients than for younger patients.

Further analysis of affect of patient-level covariates on cost-effectiveness can be as-

sessed by analysing Table 2.5. After the covariate age, the covariate which appears to be

a dominating factor in the cost-effectiveness is the psychiatric duration. Patients having

psychiatric duration equal to zero have higher INB estimates than those with the same co-

variate values but having such history. Therefore, the new treatment is most likely to be
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value for the money for patients who have less history of psychiatric issues compared to those

with a longer history. We also notice that for younger patients the new treatment is more

cost-effective for patients who have baseline BPRS equal to one when λ is low, however as

λ increases those with BPRS equal to zero benefit more. In addition, we find that when all

other covariate values are kept fixed, those that have longer hospital stay in year prior to

study tend to have smaller INB values. Overall, we find that older patients benefit more, and

patients who have had less affliction from schizophrenia tend to have the largest cost-benefit

when using the new treatment, especially as λ increases. In order to visualize the differences

and trends in the INBs as certain covariate values are changed, we have plotted the estimated

INB values against a particular covariate, when the others are held fixed. These plots are

given in Appendix B.

The results in Table 2.5 show that even though the INB estimates are all positive,

such is not the case with the lower confidence limits. We can clearly see the influence of λ

in achieving cost-effectiveness for certain covariate values. The trends evident in the INB

estimates are also seen here, with older patients who are less affected by psychiatric issues

benefiting the most at any value of λ. For λ = 25 patients with age equal to 60 achieve cost-

effectiveness under the new treatment, except for the patient who has spent 0.75 months of

the past year in hospital. For λ = 50 all older patients have positive lower limits indicating

that the new treatment is cost-effective. In contrast, younger patients have negative lower

limits at λ = 25, with the exception of patients having baseline BPRS equal to one and

months in hospital equal to zero. However by λ = 50, most younger patients have positive

lower limits except patients with baseline BPRS equal to zero, as well as the patient having

months in hospital equal to 0.75. For λ = 100 and 200 all patients have positive lower limits.

It is clear that the different patients achieve cost-effectiveness under the new treatment for

different values of λ, thus underscoring the importance of individualizing cost-effectiveness

criteria.
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2.3.2 The delta method for the interval estimation of the INB

For assessing cost-effectiveness based on the INB at an individual level, the anal-

ysis reported so far uses the fiducial approach. One can clearly think of other standard

approaches, such as large sample solutions based on the delta method. The delta method is

briefly outlined in Appendix A, as it applies to our problem. The resulting lower confidence

limits are given in Table 2.6.

Table 2.6 95% lower confidence limits for the INB using the delta method for
different values of λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 −20 503.7 −27 974.3 −43 614.5 −75 251.7
2 303.5 2645.7 5785.2 10 908.8
3 −21 233.7 −28 568.7 −44 012.3 −75 295.4
4 −454.5 1774.3 4707.3 9406.9
5 166.8 1922.4 3951.7 6698.3
6 −630.4 1022.5 2888.8 5313.7
7 −1469.2 73.8 1755.8 3809.7
8 −2350.8 −922.1 559.5 2202.2
9 −28 310.3 −46 909.1 −84 523.1 −159 960.9

10 824.3 2691.8 4353.2 6400.6
11 −28 376.9 −46 335.4 −82 712.0 −155 697.1
12 119.7 1923.7 3446.5 5191.9
13 1410.3 3323.1 4754.3 5174.8
14 475.3 2275.9 3561.6 3708.4
15 −499.8 1184.8 2309.9 2146.1
16 −1515.6 51.2 1005.1 502.2

Comparing with the results in Table 2.5, we see that the delta method based lower

confidence limits are smaller than those resulting from the fiducial approach; in fact quite

a few of the lower confidence limits in Table 2.6 are negative, suggesting that the new

treatment is not cost-effective at the respective covariate values, when in fact we reach the

opposite conclusion from Table 2.5. In the next section, we shall see that the delta method

actually provides a very conservative lower confidence limit, leading to a conclusion against
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cost-effectiveness, when in fact cost-effectiveness holds. It is the fiducial method that we

recommend for the assessment of cost-effectiveness, and this conclusion is consistent with

what is noted in Bebu et al. (2016b) and Bebu, Mathew and Lachin (2016).

2.3.3 CEP for individualized cost-effectiveness analysis

If we assume a lognormal-lognormal model without covariates, the CEP can be

estimated using the expression

CEP = P [C1 ≤ C2, E1 ≥ E2]

= Φ[0; (µ1C − µ2C), σ1CC + σ2CC ]− Φ2


0

0

 ;

µ1C − µ2C

µ1E − µ2E

 ,Σ1 + Σ2

 ,
where we recall that Φ and Φ2 denote the CDF of the univariate normal and bivariate

normal distributions for specified values of the mean and variance (respectively, mean vector

and covariance matrix). For our simulated data, the estimated CEP has the value ĈEP

= 0.2435, using the above expression. Now let’s see how the CEP depends on covariates.

Table 2.7 gives the estimated CEPs for the sixteen patients considered earlier, along with

the corresponding lower confidence limits, where the latter are obtained using the fiducial

approach, with 5000 fiducial quantities.
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Table 2.7 CEP estimates and
fiducial 95% lower confidence limits
for the sixteen patients

Patient CEP 95% lower
ID estimate confidence limit

1 0.154 0.067
2 0.328 0.236
3 0.147 0.063
4 0.318 0.228
5 0.314 0.240
6 0.304 0.233
7 0.294 0.225
8 0.285 0.216
9 0.196 0.071

10 0.404 0.237
11 0.187 0.067
12 0.392 0.228
13 0.361 0.257
14 0.350 0.249
15 0.340 0.240
16 0.330 0.232

Based on the results in Table 2.7, we can draw conclusions regarding the dependence

of the CEP on covariates (in particular by analysing the lower limits). As was the case with

the INB, age appears to be a dominating factor, with older patients having higher CEPs.

The second dominating factor is BPRS. Patients with BPRS equal to 1 (diagnosed with

schizophrenia disorder) tend to have higher cost-effectiveness. Patients who spent less time in

the hospital during the previous year have higher CEPs when fixing other covariates. Those

with longer history of psychological issues appear to benefit more from the new treatment,

compared to those with no such prior history.

2.3.4 Coverage probabilities

We shall now report estimated coverage probabilities of the lower confidence limits

for the INB, obtained using the fiducial approach and the delta method, and those for
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the CEP, obtained using the fiducial approach. All the coverage probabilities have been

estimated using 10,000 simulated samples, and the fiducial lower confidence limits have

been estimated using 1000 fiducial quantities. For the purpose of simulation, the parameter

estimates reported in the previous section, i.e., B̂1, B̂2, Σ̂1 and Σ̂2, will be taken as the true

values of B1, B2, Σ1 and Σ2, respectively. Furthermore, we carried out the simulations under

two sample sizes and covariate scenarios: (i) sample sizes and covariates corresponding to

the patients in the data that we analysed in the previous section, so that we have n1 = 202

and n2 = 174 patients in the two groups, and (ii) reduce the sample sizes to n1 = n2 = 50

in each group by randomly selecting 50 patients from each group, and use the corresponding

covariate values (these will be held fixed throughout the simulation).

Table 2.8 and Table 2.9 give the estimated coverage probabilities of the lower confi-

dence limits for the INB in the two scenarios mentioned above; Table 2.8 gives the coverage

probabilities under the sample sizes n1 = 202 and n2 = 174, and Table 2.9 provides the same

under the reduced sample sizes n1 = n2 = 50 mentioned earlier. The coverage probabilities

are reported corresponding to the covariate values for the same sixteen patients considered

in the previous section. It should be clear that the fiducial approach satisfactorily maintains

the coverage probabilities even under n1 = n2 = 50.
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Table 2.8 Coverage probabilities of the 95%
fiducial lower confidence limits for the INB
when n1 = 202; n2 = 174 for different values of
λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 0.957 0.957 0.956 0.956
2 0.948 0.949 0.949 0.951
3 0.959 0.957 0.956 0.956
4 0.950 0.952 0.954 0.955
5 0.952 0.951 0.951 0.953
6 0.951 0.950 0.951 0.953
7 0.950 0.951 0.951 0.952
8 0.950 0.950 0.952 0.953
9 0.958 0.957 0.956 0.956

10 0.946 0.952 0.957 0.960
11 0.957 0.956 0.957 0.957
12 0.946 0.951 0.956 0.959
13 0.944 0.947 0.950 0.953
14 0.945 0.947 0.950 0.954
15 0.945 0.947 0.950 0.953
16 0.946 0.949 0.949 0.953
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Table 2.9 Coverage probabilities of the 95%
fiducial lower confidence limits for the INB
when n1 = n2 = 50 for different values of λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 0.967 0.967 0.966 0.966
2 0.944 0.950 0.956 0.957
3 0.968 0.967 0.967 0.965
4 0.946 0.954 0.958 0.960
5 0.948 0.951 0.956 0.959
6 0.948 0.952 0.955 0.958
7 0.949 0.953 0.956 0.959
8 0.948 0.952 0.956 0.959
9 0.964 0.963 0.963 0.962

10 0.944 0.952 0.954 0.959
11 0.964 0.964 0.964 0.963
12 0.945 0.951 0.954 0.958
13 0.946 0.947 0.952 0.956
14 0.946 0.948 0.954 0.958
15 0.947 0.950 0.954 0.958
16 0.948 0.953 0.956 0.958

Table 2.10 gives the coverage probabilities for the delta method based lower confi-

dence limits for the INB when n1 = 202, n2 = 174. The results show that the delta method

is providing very conservative lower confidence limits, consistent with the numerical results

noted in the previous section. In other words, the delta method is likely to provide evidence

against cost-effectiveness in situations where cost-effectiveness holds. In view of the conser-

vatism of the delta method noted for the case n1 = 202, n2 = 174, we did not estimate the

coverage probabilities for the case n1 = n2 = 50.
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Table 2.10 Coverage probabilities of the 95%
delta method based lower confidence limits for
the INB when n1 = 202; n2 = 174 for different
values of λ

Patient
ID λ = 25 λ = 50 λ = 100 λ = 200

1 1.000 1.000 1.000 1.000
2 0.973 0.977 0.982 0.984
3 1.000 1.000 1.000 1.000
4 0.973 0.977 0.984 0.985
5 0.973 0.971 0.977 0.977
6 0.971 0.970 0.975 0.979
7 0.970 0.971 0.975 0.978
8 0.967 0.969 0.974 0.978
9 1.000 1.000 1.000 1.000

10 0.992 0.997 0.998 0.999
11 1.000 1.000 1.000 1.000
12 0.992 0.997 0.998 0.999
13 0.981 0.978 0.982 0.985
14 0.980 0.977 0.981 0.985
15 0.978 0.977 0.982 0.985
16 0.978 0.976 0.981 0.985

Table 2.11 gives the estimated coverage probabilities of the fiducial lower confidence

limits for the CEP for the sample sizes n1 = 202, n2 = 174 and n1 = n2 = 50. The coverage

probabilities are satisfactory for the case n1 = 202, n2 = 174, but some conservatism is noted

for the case n1 = n2 = 50.
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Table 2.11 Coverage probabilities of the
95% fiducial lower confidence limits for the
CEP when n1 = 202; n2 = 174 and n1 = n2

= 50

Patient Coverage probability
ID n1 = 202, n2 = 174 n1 = n2 = 50

1 0.959 0.970
2 0.958 0.973
3 0.958 0.970
4 0.957 0.971
5 0.956 0.968
6 0.955 0.968
7 0.954 0.967
8 0.955 0.967
9 0.961 0.975

10 0.965 0.982
11 0.962 0.976
12 0.965 0.983
13 0.962 0.974
14 0.962 0.973
15 0.963 0.972
16 0.962 0.972

The overall picture that emerges from the simulations is that the fiducial approach is

quite satisfactory for the interval estimation of the individualized cost-effectiveness metrics

considered herein. In the next section, the results of the analysis for cost and effectiveness

thresholds of the CEP are reported.

2.3.5 Estimation of the thresholds δc and δe

We shall now explain the determination of the cost threshold δc that provides a

desired value of CEP (w0), denoted by ω, for a fixed effectiveness threshold, denoted by δe.

We apply algorithm 3 using δe = 1 (i.e. ln(δe) = 0), and for a few values of ω. In addition, we

complement this analysis by determining the maximum CEP (w0) that each of the sixteen

patients can obtain. The maximum CEP (w0) is determined analytically using (2.2.10). The
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results of the analysis are provided in Table 2.12.

Table 2.12 Maximum CEP (w0) and δc values for different values of ω when ln(δe) = 0

Patient
ID Max[CEP(w0)] ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω=0.8
1 0.746 0.621 1.391 2.564 4.483 7.982 15.865 49.006
2 0.684 0.441 0.842 1.546 2.999 7.371
3 0.743 0.658 1.476 2.724 4.771 8.520 17.043 54.219
4 0.681 0.468 0.896 1.650 3.217 8.030
5 0.641 0.465 0.913 1.756 3.728 12.847
6 0.638 0.494 0.974 1.879 4.021 14.432
7 0.635 0.525 1.038 2.011 4.339 16.290
8 0.632 0.558 1.106 2.152 4.684 18.490
9 0.825 0.472 1.025 1.826 3.050 5.063 8.809 17.787 72.345

10 0.773 0.571 0.981 1.698 3.190 7.940
11 0.823 0.499 1.086 1.936 3.237 5.382 9.389 19.077 81.447
12 0.771 0.606 1.043 1.810 3.415 8.631
13 0.654 0.682 1.291 2.655 7.965
14 0.651 0.372 0.726 1.380 2.858 8.821
15 0.648 0.395 0.773 1.475 3.077 9.796
16 0.645 0.420 0.824 1.577 3.315 10.911

The first column of Table 2.12 shows the maximum attainable CEP (w0) for each

patient. The remaining columns are the values of δc determined by the Newton-Raphson

algorithm. Values of ω that a given patient cannot obtain are empty. The empty cells

indicate that the specified value of ω of CEP (w0) is unattainable in the corresponding set

up, and they correspond to relatively small or relatively large values of ω. For some patients

the relatively low values of ω cannot be obtained due to the constraint on the effectiveness

threshold, ln(δe) ≥ 0. For large values of ω the denominator of dCEP (w0)
dδc

in (2.2.5) becomes

close to zero, indicating that a patient’s CEP (w0) increases as δc increases and reaches a

maximum, after which point increasing δc results in no added benefit. We recall that we are

in a lognormal-lognormal set up. Thus the threshold δc is for the ratio of the costs in the

original scale.

From the results of Table 2.12 it is clear that different patients require differing

values of δc to attain a desired value of ω. The Max[CEP(w0)] values show that older
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patients attain higher cost-effectiveness compared to younger patients. Those with baseline

BPRS equal to zero tend to have larger Max[CEP(w0)]. Also, larger time spent in hospital

prior to study result in lower possible cost-effectiveness.

With respect to the trends of ω, patients with lower psychological duration, less

time spent in hospital in year prior to study, and those with BPRS at baseline tend to have

lower values for the threshold δc. Age also affects the value of the threshold; in particular,

older patients require small values of δc for a fixed ω. In addition to the numerical analysis

presented in this section, plots of δc as a function of δe are provided in Appendix C.

2.4 Discussion

Cost-effectiveness analysis (CEA) is a topic that has considerable contemporary

relevance and significance, and continues to be an active area of research due to its im-

plications for health care policy-making. Within the area of cost-effectiveness analysis, an

emerging topic of practical interest is that of individualized cost-effectiveness analysis. Tra-

ditional CEA based on various aggregate metrics is a well-developed topic having widely

accepted practical guidelines and criteria. However, this is not the case with individual-

ized CEA. In the present work, we have developed a framework for individualized CEA,

suggesting appropriate criteria and developing the relevant inference. The application dis-

cussed clearly demonstrates that in many situations, traditional CEA may not demonstrate

cost-effectiveness; however, individualizing it based on covariates does identify the covariate

values at which cost-effectiveness holds. This should be of considerable practical relevance

for targeted application of new treatments.

When cost and effectiveness responses are affected by covariates, a natural approach

is to consider a regression model that will incorporate the covariates. This is the approach

we have pursued in the present work; we have proposed a bivariate regression model. We

believe that this approach avoids the subjective formulation of subgroups within the pop-
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ulation. Furthermore, once the bivariate model has been estimated, it is possible to assess

the influence of the covariate values on the CEA criteria, such as the incremental net benefit

and the cost-effectiveness probability. Appropriate plots can give quick visual guidance on

this, and this can be followed up with a more formal analysis, as we have carried out in this

chapter. It maybe possible to effectively use the regression model and the covariate values

to construct subgroups. We have not taken this up in the present work, but should be a

topic of interest for future research.

Some of the literature on individualized CEA have proposed regression models for

certain criteria such as the net monetary benefit. We believe that the original cost and

effectiveness data should be modelled using a regression model, and the dependence of various

criteria on the covariates should be investigated in the framework of such a model. In

addition to the investigation of the regression model for individualized CEA, we also want

to emphasize that our proposed inference under the regression model is based on the fiducial

idea. As already noted in this chapter, the fiducial approach has already been fruitfully

employed by Bebu et al. (2016b) and Bebu, Mathew and Lachin (2016) for aggregate

level CEA in the absence of covariates. Our analysis shows that the fiducial approach is

remarkably accurate for addressing interval estimation problems relevant to individualized

CEA.

In addition to individualizing this cost-effectiveness criteria, we have also developed

a method to estimate the thresholds for the cost and effectiveness (δc and δe, respectively) to

obtain a desired value of the CEP for a specified patient. We believe that the determination

of δc and δe could be of importance for individualized CEA as it can aid policy-makers decide

on the values of the thresholds that can provide desired values of CEP, and if such desired

values are feasible.

Thus our contribution is three-fold: the formulation of the regression framework

for individualized CEA, the development of accurate inference for both the INB and CEP

criteria, employing the fiducial idea, and the determination of thresholds for the cost and
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effectiveness required to achieve a desired cost-effectiveness level in terms of the CEP. It is

hoped that this work will stimulate further research on individualized CEA.

2.5 Appendix

2.5.1 Appendix A: The delta method

If β̂ is an estimator of a vector parameter β based on a sample of size n, and if

√
n
[
β̂−β

]
→ N

[
0,Σ∗

]
then, by the delta method,

√
n
[
h(β̂)−h(β)

]
→ N

[
0,∇hT (β)Σ∗∇h(β)

]
where ∇h denotes the gradient of h.

In our application in this chapter, we have β = [vec(B1)′, vec(Σ1)′, vec(B2)′, vec(Σ2)′]′.

With B̂i and Σ̂i, i= 1, 2, given in (2.1.4), we have β̂ =
[
vec(B̂1)′, vec((Σ̂1)′, vec((B̂2)′, vec((Σ̂2)′

]′
.

Then β̂ has an asymptotic normal distribution with mean β and covariance matrix Σ∗ given

by

Σ∗ = diag
[
(W1W

′
1)−1 ⊗ Σ1,

Ω1

n1 − p
, (W2W

′
2)−1 ⊗ Σ2,

Ω2

n2 − p

]
. (2.5.1)

We note that the multivariate normal distribution associated with vec(B̂1) and vec(B̂2) are

exact. We shall now give the expressions for Ω1 and Ω2, For this, let K22 be the commutation

matrix defined as

K22 =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(2.5.2)

Then Ωi =
[
Σi ⊗ Σi

]
[K22 + I4], i = 1, 2.

We note that the INB given in (2.1.5) is an explicit function of β. Thus let’s

write INB = h(β), so that the estimated INB is given by h(β̂). By the delta method, we

can thus conclude that h(β̂) has an asymptotic normal distribution with mean h(β) and

variance ∇h′(β)Σ∗∇h(β) where ∇h denotes the gradient of h, which has been determined
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analytically.

2.5.2 Appendix B: INB plots

In this Appendix, we shall give the plots of the INB estimates against various co-

variate values, keeping the other covariate values fixed. This will allow us to visualize the

trends and patterns in the INB, as a function of the covariates.

In Figure 2.1, estimated INBs are plotted for four patients having the following com-

binations of the covariates: baseline BPRS equal to 0 and 1, and months in hospitalization

during the year preceding the study having the values 0 months and 0.5 months. All patients

have age 50 years and the plots correspond to λ = 50, and 200. The estimated INBs are

plotted against the single covariate “duration of psychiatric problems prior to the start of

the study”.

From the plot corresponding to λ = 50, we may conclude the following. The INBs

show a decreasing trend as a function of the duration of psychiatric problems. Those with

BPRS equal to 0 have much higher values of the INB when psychiatric duration is low.

Increased psychiatric duration results in drastically lower INBs for patients with BPRS

equal to 0, compared to those with BPRS equal to 1. Starting around 22 years of psychiatric

duration, patients with BPRS equal to 1 have higher INBs than those with BPRS equal to

0. In addition, those with BPRS equal to 1 have positive INBs for all years of psychiatric

duration. Furthermore, those with no months of hospitalization tend to have higher INBs

than those who have been hospitalized.

The plot corresponding to λ = 200 follows a similar pattern as the one for λ = 50.

However, the INB values are considerably higher for those with BPRS equal to 0 compared

to those with BPRS equal to 1, indicating that spending more for such patients results in

greater cost-effectiveness than those diagnosed with schizophrenia.
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Figure 2.1: Estimated INB as function of duration of psychiatric problems for patients aged
50 for a few combinations of Baseline BPRS and months in hospital during year preceding
the study

Next, Figure 2.2 gives some plots of the estimated INB as a function of months spent

in hospitalization in the year preceding the study. The four patients used in Figure 2.2 are

also 50 years old and correspond to combinations of BPRS equal to 0, 1, and duration of

psychiatric problems equal to 0 and 10 years .

The plot corresponding to λ = 50 shows that patients with BPRS equal to 0 have

higher INB values when months spent in hospitalization are lower. However, for individuals

who have spent almost a year in hospitalization, those with BPRS equal to 1 have slightly

higher INB values compared with those having BPRS equal to zero. In addition, those with

psychiatric duration equal to 0 tend to benefit more than those with psychiatric duration

equal to 10. The plot corresponding to λ = 200 also shows a similar pattern. However, the

INB values are greatly increased for patients with BPRS equal to 0 when going from λ = 50

to λ = 200.
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Figure 2.2: Estimated INB as function of months in hospital in year preceding the study
for patients aged 50 for various combinations of Baseline BPRS and psychological duration

2.5.3 Appendix C: Plots of cost and effectiveness thresholds

In this Appendix we continue the analysis of patient-specific cost and effectiveness

thresholds required to obtain desired levels of CEP. Plots of the cost threshold, δc, against

the effectiveness threshold, δe, for eight patients are provided. The plots corresponding to

patients 1, 3, 5, and 7 are shown in Figure 2.3. For patients 9, 11, 13, and 15, the plots are

shown in Figure 2.4. Similar analysis can be conducted for the remaining eight patients in

Table 2.2.

The plot for each patient includes various values of desired ω = CEP , corresponding

to the possible values attainable for that patient (see Table 2.12). As noted earlier, different

combinations of the cost and effectiveness thresholds can be utilized to obtain a desired

CEP value. Further, graphical representations of possible choices for the thresholds δe and

δc could be of practical use to decision makers.
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Figure 2.3: Plots of CEP as a function of δc and δe for patients aged 40

As noticed in Table 2.12, patients who have not been diagnosed with schizophrenia

at the start of the study are able to attain higher values of CEP; however, for fixed δe the

required δc tends to be higher for such patients. In addition, upon close examination we

notice that for fixed δe and ω, months spent in hospital during the year preceding the study

increase δc. Comparing the plots for patients 1 and 3 with patients 5 and 7, we observe that
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the latter two patients have lower δc for a fixed δe in order to achieve the same value of CEP.

Thus, patients who are more severely affected by the disorder can obtain the same CEP

value for the same minimum effectiveness and the lower investment, compared to healthier

patients. Results for patients 9, 11, 13, and 15 are provided in the next figure.
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Figure 2.4: Plots of CEP as a function of δc and δe for patients aged 60

The same trends noted from Figure 2.3 are present in the above figure for older
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patients. The covariate age has a decreasing relationship with δc for a fixed δe. That

is, in order to attain the same cost-effectiveness under a fixed minimum effectiveness, the

total investment decreases as patients get older. In addition, the effect of months spent

in hospital during the year preceding the study appears to affect older patients more than

younger patients.

The above graphical analyses show the trend of δc as a function of δe. Increasing the

effectiveness threshold increases the cost threshold as a convex function until a saturation

level is reached, indicating that beyond a certain minimum effectiveness threshold, there

is practically no impact on δc. In addition, fixing the δe and increasing the desired CEP

results in a higher δc. In other words, the required amount of increased investment under

the new treatment increases for a fixed minimum effectiveness in order to obtain an increase

in cost-effectiveness.
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Chapter 3

Multi-criteria decision analysis: A

probabilistic approach

Applications of multi-criteria decision analysis (MCDA) have become increasingly

important in aiding decision making in health economics. Health care economics studies

often have multiple measures of effectiveness when assessing the cost-effectiveness of com-

peting treatments. Thus far relevant literature on the topic has focused on combining these

multiple measures of effectiveness into scalar quantities such as QALYs. However, when

combining multiple measures of effectiveness into a single quantity, important information

may be lost. Moreover, this method of combining measures is subjective. The emerging field

of MCDA focuses on evaluating treatments based on multiple criteria (e.g. multiple effec-

tiveness measures). The number of MCDA-related publications has increased at an annual

rate of 83.23% from 2006 to 2017, see Wu et al. (2018), demonstrating the need for accurate

and precise inference methods.

Generally, the recommendation is to combine the different criteria into a single

criterion by forming a weighted combination; see Thokala and Duenas (2012) and Thokala

et al. (2016). In the latter article, the authors note:

Weighting involves eliciting stakeholders’ preferences between criteria. Weights rep-
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resent trade-offs between criteria and are used to combine the scores on individual

criterion into a measure of total value. Thokala et al. (2016, pg. 9).

Additionally, weights can be constructed as to reflect patient preferences; see Broekhuizen

et al. (2017). Different weighting schemes have been discussed extensively in Schey et al.

(2017). The authors noted the prevalence of thirteen commonly used weighting procedures.

They concluded that disease severity is one criteria that health experts recommend priori-

tizing, while healthcare policy-makers prioritize value for the money.

In their work, Thokala et al. (2016) highlight the importance of MCDA in the process

of choosing between competing treatments. The authors note that selecting a procedure for

weighting is not obvious, especially when considering differing preferences of decision makers.

However, Thokala and Duenas (2012) have made recommendations regarding the assessment

of which criteria and weights should be utilized. The authors recommend choosing weights

that are robust and perform well using a sensitivity analysis. Based on their analysis, Wen,

Zhang and Yang (2014) recommend MCDA methods that account for correlation between

criteria. A Bayesian approach is considered in O Meachair and Walsh (2014). Clearly,

there is an abundance of MCDA methods; however, no clear consensus has been reached on

selection of criteria and relative weights to be used.

Alternatively, one can think of performing cost-effectiveness analysis by appropri-

ately modelling and analysing the multivariate data resulting from multiple effectiveness

measures. This is especially desirable if there is no clearly defined methodology for choosing

the weights utilized in combining the different effectiveness measures. In this chapter, we

shall take up such a multivariate modelling. We propose two new metrics which are adapta-

tions of the cost-effectiveness probability (CEP) metric, and they avoid the use of weights.

To account for the different preferences of decision makers, we formulate two probabilistic

measures, one which prioritizes effectiveness, the other prioritizing value for the money. Our

proposed approach is then applied to a motivating example involving two effectiveness mea-

sures where (ln(Cost), Effect1, Effect2) follows a multivariate normal distribution. A fiducial
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approach will be pursued for the interval estimation, and it will be noted that the fiducial

methodology provides accurate inference. In addition, a non-parametric solution is provided

based on U-statistics, and its accuracy will also be assessed.

3.1 The MCDA set-up

In this section, we shall first review various weighting schemes proposed in the

MCDA literature. Then, we define our cost-effectiveness proportion (CEP) cost-effectiveness

criteria keeping in mind that we are comparing just two treatments: Treatment 1 (a new

treatment), and Treatment 2 (an existing treatment).

3.1.1 MCDA weighting schemes

The MCDA literature has thus far relied on weighting schemes to assess the perfor-

mance of competing treatments. Criteria are numerical measures of performance by which

treatments are evaluated, and are often scores from experts. These criteria are selected as

relevant properties from the decision maker’s point-of-view. This means that when compar-

ing the same treatments two decision makers may select different criteria. Suppose we have

g criteria, and eik is the kth criterion for the ith treatment with an associated weight wk,

where these have been decided by a policy-maker, a “value” for the ith treatment, say Vi, is

defined as

Vi =

g∑
k=1

wkeik (3.1.1)

, i = 1, 2. Treatment T1 is preferred to treatment T2 if V1 > V2. This synthesizing approach

has numerous variations in the MCDA literature. The brief outline provided above is sum-

marized in Baltussen and Niessen (2006). In Thokala and Duenas (2012) the authors use

performance scores that are between 0 to 1. The authors then assign weights independently

of the performance scores. They also note that the weighting combinations need not sum to
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one. Huang, Keisler and Linkov (2011) state:

These approaches share common mathematical elements, i.e., values for alternatives

[treatments] are assigned for a number of dimensions [preference scores], and then

multiplied by weights and finally combined to produce a total score. The approaches

differ significantly in the details of how values are assigned and combined, meaning

that the processes have different information - and knowledge -requirements and the

calculated scores have different mathematical properties and thus slightly different

meanings. (p. 3579)

From the brief overview of this widely used method, the issues associated with the

method should be clear: subjectivity of the weights and the criteria. This could affect

the conclusion on which treatment is to be preferred; later we shall give an example that

illustrates this. We develop two metrics that do not use any weighting of criteria; these

metrics are probabilistic. In addition, we only use actual effectiveness outcomes as criteria.

This is an important distinction from the current MCDA framework.

3.2 A model for cost and effectiveness

We shall now specify a parametric model for CEA; the model is a lognormal-normal

model, similar to the parametric model used in the previous chapter, except that we are now

considering two effectiveness measures. The case of more than two effectiveness measures

can be handled similarly.

Let Cij, E1ij and E2ij, respectively, denote the cost, and the two effectiveness mea-

sures for the jth patient in the ith treatment group; j = 1, 2, ...., ni, i = 1, 2. In the absence

of covariates, we shall consider the following “lognormal-normal-normal” model:

Xij =


ln(Cij)

E1ij

E2ij

 ∼ N

µi =


µiC

µE1i

µE2i

 ,Σi

 , i = 1, 2 (3.2.1)
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For later use, we shall denote the elements of the covariance matrix in (3.2.1) as

Σi =


σCi σCi,E1i

σCi,E2i

σCi,E1i
σE1i

σE1i,E2i

σCi,E2i
σE1i,E2i

σE2i

 (3.2.2)

Next, we introduce two probabilistic criteria. As noted by other authors, there tends

to be differing preferences amongst stake holders. Therefore, to account for such differing

preferences, we construct two probabilistic metrics, one that prioritizes effectiveness and the

other that prioritizes cost. The two metrics are conditional probabilities, modifying the CEP

parameter defined in (1.2.3). For simplicity of notation, let

µ∆ =


µ1C − µ2C

µE12 − µE11

µE22 − µE21

 =


µ∆C

µ∆E1

µ∆E2

 (3.2.3)

Σ∆ = Σ1 + Σ2 =

 σ∆C
Σ∆C ,(∆E1

,∆E2)

Σ∆C ,(∆E1
,∆E2)

Σ∆E1
,∆E2

 =


σ1C + σ2C

(
σC1,E11 + σC2,E12 σC1,E21 + σC2,E22

)
σC1,E11 + σC2,E12

σC1,E21 + σC2,E22


 σE11 + σE12 σE12,E12 + σE11,E21

σE12,E12 + σE11,E21 σE22 + σE21




(3.2.4)

The first conditional probability metric we shall define is conditional on those individuals

for whom the new treatment is less costly than the standard treatment (3.2.5). The second

metric is conditional on those individuals for whom the new treatment is more effective than

the standard treatment (3.2.6). In terms of the lognormal-normal-normal model, the two
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metrics can be written as

CEP1 = P [E11 − E12 ≥ 0, E21 − E22 ≥ 0| ln(C1)− ln(C2) ≤ 0]

=
Φ3(0;µ∆,Σ∆)

Φ(0, µ∆C
, σ∆C

)

(3.2.5)

CEP2 = P [ln(C1)− ln(C2) ≤ 0|E11 − E12 ≥ 0, E21 − E22 ≥ 0] =

Φ3(0;µ∆,Σ∆)

Φ2

[0

0

 ;

µ∆E1

µ∆E2

 ,Σ∆E1
,∆E2

] , (3.2.6)

where the various quantities are defined in (3.2.3) and (3.2.4), Φ3(0;µ,Σ) denotes the CDF

of the trivariate normal distribution with mean µ and covariance matrix Σ, where the CDF

is evaluated at (0, 0, 0)
′
, and Φ2 denotes the CDF for the bivariate normal distribution.

The conditional CEP in (3.2.5), CEP1, is of interest to decision makers whom prioritize

treatments based on total cost. The second CEP, CEP2 in (3.2.6), is of primary interest

to decision makers prioritizing the effectiveness of treatment. In the next section, we shall

implement the fiducial approach and the percentile bootstrap for the interval estimation of

the proposed metrics.

3.3 Parametric inference

We shall now explore the fiducial approach and the parametric bootstrap for infer-

ence concerning the CEP parameters under the model (3.2.1). The aim is to construct lower

confidence limits for each CEP metric. Fiducial quantities for a normal mean vector and

covariance matrix are derived in Bebu and Mathew (2008), and we modify their results for

the multiple effectiveness model.

With Xijs as defined in (3.2.1), unbiased estimates of µi and Σi, say µ̂i and Σ̂i,
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respectively, are given by

µ̂i =
1

ni

ni∑
j=1

Xij ∼ N

[
µi,

Σi

ni

]

Σ̂i =
1

ni − 1

ni∑
j=1

(Xij − µ̂i)(Xij − µ̂i)
′ ∼ Wishart [Σi, ni − 1] ,

(3.3.1)

i = 1, 2. Let µ̂io and Σ̂io denote the observed values of µ̂i and Σ̂i, respectively, for i = 1, 2.

Then a set of fiducial quantities for Σi and µi, say Σ̃i and µ̃i are given by

Σ̃i = H−1
i , where Hi ∼ W

({
(ni − 1)Σ̂io

}−1

, ni − 1

)
µ̃i = µ̂io − Σ̃

1/2
i Zi

1
√
ni
, (3.3.2)

where Zi is a 3×1 vector whose elements are independent standard normal random variables.

A derivation of the above fiducial quantities is given in Bebu and Mathew (2008).

Since CEP1 and CEP2 are functions of the elements of µis and Σis, a fiducial

quantity for each can be obtained by replacing µis and Σis with the corresponding fiducial

quantities exhibited in (3.3.2). The 5th percentile of the fiducial quantity of each probabilistic

metric provides a 95% lower confidence limit for that metric. Next, we present the algorithm

that provides the necessary computational steps. The algorithm 4 shows the required steps

to obtain fiducial limits for CEP1; the algorithm is similar for CEP2.
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Algorithm 4: Fiducial lower confidence limit for CEP1

1 From the sample of each treatment group compute the estimates µ̂i0 and Σ̂i0,

i = 1, 2, using the trivariate model (3.2.1).

2 For i = 1, 2, independently generate: Hi ∼ W

({
(ni − 1)Σ̂i0

}−1

, ni − 1

)
and

Zi ∼ 3× 1 matrix of N(0, 1) random variates.

3 Compute Σ̃i = H−1
i and µ̃i = µ̂io − Σ̃

1/2
i Zi

1√
ni

.

4 Compute the fiducial quantity C̃EP1 for CEP1 by replacing the elements from

µi and Σi with the corresponding elements from µ̃i and Σ̃i using expression

(3.2.5).

5 Repeat steps 2-4 M times, obtaining M values of C̃EP1.

6 A lower 100(1− α)% confidence limit for CEP1 corresponds to the αth

percentile of the M values of C̃EP1 .

In addition to the fiducial approach, we will also use the percentile bootstrap method

for confidence interval construction, the algorithm for this is provided next.

Algorithm 5: Percentile bootstrap lower confidence limit for CEP1

1 From the sample of each treatment group compute the estimates µ̂i0 and Σ̂i0,

i = 1, 2, using the trivariate model (3.2.1).

2 For i = 1, 2, independently generate: µ̂i ∼ N
[
µ̂i0,

Σ̂i0
ni

]
and

Σ̂i ∼ 1
ni−1

W [Σ̂io, ni − 1] random variates.

3 Compute the bootstrap quantity ĈEP1 for CEP1 by replacing the elements

from µi and Σi with the corresponding elements from µ̂i and Σ̂i using

expression (3.2.5).

4 Repeat steps 2-3 M times, obtaining M values of ĈEP1.

5 A lower 100(1− α)% confidence limit for CEP1 corresponds to the αth

percentile of the M values of ĈEP1 .

We will now present the U-statistics approach next.
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3.4 Non-parametric inference

In this section we formulate the U-statistics approach that will be used to obtain non-

parametric lower confidence limits for CEP1 and CEP2. A general discussion of multivariate

U-statistics is presented in Yu et al. (2018). We shall first exhibit bivariate U-statistics such

that estimates of CEP1 and CEP2 are ratios of the two components of the bivariate U-

statistics. Then we utilize the asymptotic normality of the bivariate U-statistics along with

the delta method to obtain approximate lower confidence limits for CEP1 and CEP2.

Let the U-statistic corresponding to the numerator of CEP1 defined in (3.2.5) (and

also CEP2 defined in (3.2.6)) be denoted by Un, and the U-statistics in the denominator of

CEP1 and CEP2 be denoted by U1d and U2d, respectively. We shall shortly define Un, U1d

and U2d. Before doing so, let

UCEP1 =
Un
Ud1

(3.4.1)

and

UCEP2 =
Un
Ud2

(3.4.2)

so that UCEP1 and UCEP2 are estimates of CEP1 and CEP2, respectively. Here are the

expressions for Un, U1d and U2d:

Un =
1

n1n2

n1∑
j=1

n2∑
k=1

h1 [(C1j, E11j, E21j); (C2k, E12k, E22k)] (3.4.3)

Ud1 =
1

n1n2

n1∑
j=1

n2∑
k=1

h2 [(C1j); (C2k)] (3.4.4)

Ud2 =
1

n1n2

n1∑
j=1

n2∑
k=1

h3 [(E11j, E21j); (E12k, E22k)] (3.4.5)
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, where the kernels h1, h2 and h3 are given by

h1 [(C1j, E11j, E21j); (C2k, E12k, E22k)] =

 1 if C1j − C2k ≤ 0;E11j − E12k ≥ 0;E21j − E22k ≥ 0

0 otherwise

(3.4.6)

h2 [(C1j); (C2k)] =

 1 if C1j − C2k ≤ 0

0 otherwise
(3.4.7)

h3 [(E11j, E21j); (E12k, E22k)] =

 1 if E11j − E12k ≥ 0;E21j − E22k ≥ 0

0 otherwise
(3.4.8)

Let

U1 =

Un

Ud1

 , and E(U1) = θ1. (3.4.9)

We note that the bivariate vector θ1 consists of the numerator and denominator of CEP1

defined in (3.2.5) If N = n1 + n2, then

√
N [U1 − θ1] ∼ N2 [0,ΣU1 ] , asymptotically. (3.4.10)

We shall write

ΣU1 =

 σ2
Un

σUn,Ud1

σUn,Ud1 σ2
Ud1

 (3.4.11)

Similarly, let

U2 =

Un

Ud2

 , and E(U2) = θ2, (3.4.12)

where θ2 consists of the numerator and denominator of CEP2 defined in (3.2.6). We then

have
√
N [U2 − θ2] ∼ N2 [0,ΣU2 ] , asymptotically. (3.4.13)
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We shall write

ΣU2 =

 σ2
Un

σUn,Ud2

σUn,Ud2 σ2
Ud2

 (3.4.14)

We will invoke the above asymptotic results to obtain lower confidence limits for

CEP1 and CEP2. The estimates of the covariance matrices, ΣU1 and ΣU2 will now be given.

First we will consider the estimation of σ2
Un

. Standard theory of U-statistics give

σ2
Un =

N

n1

ε10,n +
N

n2

ε01,n +
N

n1n2

ε11,n,

where

ε10,n = Cov[h1(X1, Y1);h1(X1, Y
′

1 )]

ε01,n = Cov[h1(X1, Y1);h1(X
′

1, Y1)]

ε11,n = Cov[h1(X1, Y1);h1(X1, Y1)]

(3.4.15)

where X1 = (C1j, E11j, E21j) and X
′
1 refer to values of cost and effectiveness for two different

subjects from the first group, and likewise Y1, Y
′

1 from the second group, all independent.

Let X � Y denote the event that subject X has lower cost and higher effectiveness measures

than subject Y. Then, we can write

ε10,n = P [X1 � Y1 & X1 � Y
′

1 ]− P 2
1 (X1 � Y1)

ε01,n = P [X1 � Y1 & X
′

1 � Y1]− P 2
1 (X1 � Y1)

ε11,n = P [X1 � Y1 & X1 � Y1]− P 2
1 (X1 � Y1)

(3.4.16)

Let Sjk = h1(Xj, Yk); Sj. =
∑n2

k=1 Sjk ; S.k =
∑n1

j=1 Sjk. The estimates of the quantities in

(3.4.16) are as follows.

P̂ (X1 � Y1) =
1

n1n2

n1∑
j=1

n2∑
k=1

Sjk = Un (3.4.17)
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P̂ (X1 � Y1 & X1 � Y
′

1 ) =
1

n1n2(n2 − 1)

n1∑
j=1

Sj.(Sj. − 1) (3.4.18)

P̂ (X1 � Y1 & X
′

1 � Y1) =
1

n1n2(n1 − 1)

n2∑
k=1

S.k(S.k − 1) (3.4.19)

P̂ (X1 � Y1 & X1 � Y1) = Un (3.4.20)

The above estimates provide us with an estimate of σ2
Un

= N
n1
ε10,n + N

n2
ε01,n + N

n1n2
ε11,n.

Now we will show how to estimate σ2
Ud1

. For this we use the observation

σ2
Ud1

= N
n1
ε10,d1 + N

n2
ε01,d1 + N

n1n2
ε11,d1, where

ε10,d1 = Cov[h2(X1, Y1);h2(X1, Y
′

1 )]

ε01,d1 = Cov[h2(X1, Y1);h2(X
′

1, Y1)]

ε11,d1 = Cov[h2(X1, Y1);h2(X1, Y1)]

(3.4.21)

which can be expressed as

ε10,d1 = P [X1 � Y1 & X1 � Y
′

1 ]− P 2
2 (X1 � Y1)

ε01,d1 = P [X1 � Y1 & X
′

1 � Y1]− P 2
2 (X1 � Y1)

ε11,d1 = P [X1 � Y1 & X1 � Y1]− P 2
2 (X1 � Y1)

(3.4.22)

Let Rjk = h2(Xj, Yk); Rj. =
∑n2

k=1Rjk ; R.k =
∑n1

j=1Rjk. The estimates of the terms in

(3.4.22) are as follows

P̂ (X1 � Y1) =
1

n1n2

n1∑
j=1

n2∑
k=1

Rjk = Ud1 (3.4.23)

P̂ (X1 � Y1 & X1 � Y
′

1 ) =
1

n1n2(n2 − 1)

n1∑
j=1

Rj.(Rj. − 1) (3.4.24)

P̂ (X1 � Y1 & X
′

1 � Y1) =
1

n1n2(n1 − 1)

n2∑
k=1

R.k(R.k − 1) (3.4.25)
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P̂ (X1 � Y1 & X1 � Y1) = Ud1 (3.4.26)

We will now determine the covariance term σUn1,Ud1 . Note that

σUn1,Ud1 = N
n1
δ10 + N

n2
δ01 + N

n1n2
δ11, where

δ10 = Cov[h1(X1, Y1) & h2(X1, Y
′

1 )]

δ01 = Cov[h1(X1, Y1) & h2(X
′

1, Y1)]

δ11 = Cov[h1(X1, Y1) & h2(X1, Y1)].

(3.4.27)

The above can be expressed as

δ10 = P [X1 � Y1 & X1 � Y
′

1 ]− P1[X1 � Y1]P2[X1 � Y1]

δ01 = P [X1 � Y1 & X
′

1 � Y1]− P1[X1 � Y1]P2[X1 � Y1]

δ11 = P [X1 � Y1 & X1 � Y1]− P1[X1 � Y1]P2[X1 � Y1].

(3.4.28)

Equivalently,

δ10 = P [X1 � Y1 & X1 � Y
′

1 ]− UnUd1

δ01 = P [X1 � Y1 & X
′

1 � Y1]− UnUd1

δ11 = P [X1 � Y1 & X1 � Y1]− UnUd1

(3.4.29)

Estimates of the terms in (3.4.29) are as follows.

P̂ (X1 � Y1 & X1 � Y
′

1 ) =
1

n1n2(n2 − 1)

n1∑
j=1

Rj.(Sj. − 1) (3.4.30)

P̂ (X1 � Y1 & X
′

1 � Y1) =
1

n1n2(n1 − 1)

n2∑
k=1

R.k(S.k − 1) (3.4.31)

P̂ (X1 � Y1 & X1 � Y1) = Un (3.4.32)
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The results for the elements of ΣU2 follow similarly to those of ΣU1 . Let’s start with

σ2
Ud2

. Note that σ2
Ud2

= N
n1
ε10,d2 + N

n2
ε01,d2 + N

n1n2
ε11,d2, where

ε10,d2 = Cov[h3(X1, Y1);h3(X1, Y
′

1 )]

ε01,d2 = Cov[h3(X1, Y1);h3(X
′

1, Y1)]

ε11,d2 = Cov[h3(X1, Y1);h3(X1, Y1)]

(3.4.33)

These can be expressed as

ε10,d2 = P [X1 � Y1 & X1 � Y
′

1 ]− P 2
3 (X1 � Y1)

ε01,d2 = P [X1 � Y1 & X
′

1 � Y1]− P 2
3 (X1 � Y1)

ε11,d2 = P [X1 � Y1 & X1 � Y1]− P 2
3 (X1 � Y1)

(3.4.34)

Let Tjk = h3(Xj, Yk); Tj. =
∑n2

k=1 Tjk ; T.k =
∑n1

j=1 Tjk. The estimates of the terms

in (3.4.34) are as follows.

P̂ (X1 � Y1) =
1

n1n2

n1∑
j=1

n2∑
k=1

Tjk = Ud2 (3.4.35)

P̂ (X1 � Y1 & X1 � Y
′

1 ) =
1

n1n2(n2 − 1)

n1∑
j=1

Tj.(Tj. − 1) (3.4.36)

P̂ (X1 � Y1 & X
′

1 � Y1) =
1

n1n2(n1 − 1)

n2∑
k=1

T.k(T.k − 1) (3.4.37)

P̂ (X1 � Y1 & X
′

1 � Y1) = Ud2 (3.4.38)
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Next we note that σUn,Ud2 = N
n1
η10 + N

n2
η01 + N

n1n2
η11, where

η10 = Cov[h1(X1, Y1) & h3(X1, Y
′

1 )]

η01 = Cov[h1(X1, Y1) & h3(X
′

1, Y1)]

η11 = Cov[h1(X1, Y1) & h3(X1, Y1)]

(3.4.39)

The above can be expressed as

η10 = P [X1 � Y1 & X1 � Y
′

1 ]− P1[X1 � Y1]P3[X1 � Y1]

η01 = P [X1 � Y1 & X
′

1 � Y1]− P1[X1 � Y1]P3[X1 � Y1]

η11 = P [X1 � Y1 & X1 � Y1]− P1[X1 � Y1]P3[X1 � Y1]

(3.4.40)

Equivalently,

η10 = P [X1 � Y1 & X1 � Y
′

1 ]− UnUd2

η01 = P [X1 � Y1 & X
′

1 � Y1]− UnUd2

η11 = P [X1 � Y1 & X1 � Y1]− UnUd2

(3.4.41)

The estimates of terms in (3.4.41) are

P̂ (X1 � Y1 & X1 � Y
′

1 ) =
1

n1n2(n2 − 1)

n1∑
j=1

Tj.(Sj. − 1) (3.4.42)

P̂ (X1 � Y1 & X
′

1 � Y1) =
1

n1n2(n1 − 1)

n2∑
k=1

T.k(S.k − 1) (3.4.43)

P̂ (X1 � Y1 & X1 � Y1) = Un (3.4.44)

We point out that all estimates of the elements in the covariance matrices, ΣU1 and

ΣU2 include three terms (for example, the terms ε10,n, ε01,n and ε11,n in the expression for

σ2
Un

). It is readily seen that the last term approaches zero asymptotically. However, the
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inclusion of the third term improves the accuracy for moderate samples.

An approximate 100(1-α)% lower confidence limit for CEP1 can be obtained by

using the delta method, noting the asymptotic normality of U1. This gives

√
N [UCEP1 − CEP1] ∼ N2

[
0,

(
1

Ud1
,− Un

Ud1

)T
ΣU1

(
1

Ud1
,− Un

Ud1

)]
. (3.4.45)

Therefore a lower 100(1− α)% confidence limit for CEP1 is given by

UCEP1 − z1−α

√(
1

Ud1
,− Un

Ud1

)T
ΣU1

(
1

Ud1
,− Un

Ud1

)
, (3.4.46)

where z1−α is the (1 − α)th percentile of the standard normal distribution. Similarly, an

approximate 100(1− α)% lower confidence limit for CEP2 is given by

UCEP2 − z1−α

√(
1

Ud2
,− Un

Ud2

)T
ΣU2

(
1

Ud2
,− Un

Ud2

)
, (3.4.47)

The following algorithm gives the steps necessary for computing the 100(1-α)% lower

confidence limit for CEP1; the algorithm is similar for CEP2.
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Algorithm 6: Lower confidence limits for CEP1 based on U-statistics

1 For j = 1, . . . , n1 and k = 1, . . . , n2 compute:

Sjk =

{
1 if Cj − Ck ≤ 0 & E1j − E1k ≥ 0 & E2j − E2k ≥ 0

0 otherwise

Rjk =

{
1 if Cj − Ck ≤ 0

0 otherwise

2 Now compute the quantities in Steps 3−10:

3 Sj. =
∑n2

k=1 Sjk and S.k =
∑n1

j=1 Sjk

4 Rj. =
∑n2

k=1 Rjk and R.k =
∑n1

j=1Rjk

5 UN =
∑n1
j=1

∑n2
k=1 Sjk

n1n2

6 Ud1 =
∑n1
j=1

∑n2
k=1Rjk

n1n2

7 UCEP1 = UN
Ud1

8 σ2
Un

= N
n1

(∑n1
j=1 Sj.(Sj.−1)

n1n2(n2−1)
− U2

n

)
+ N

n2

(∑n2
k=1 S.k(S.k−1)

n1n2(n1−1)
− U2

n

)
+ N

n1n2
(Un − U2

n)

9 σ2
Ud1

= N
n1

(∑n1
j=1Rj.(Rj.−1)

n1n2(n2−1)
− U2

d1

)
+ N

n2

(∑n2
k=1R.k(R.k−1)

n1n2(n1−1)
− U2

d1

)
+ N

n1n2

(
Ud1 − U2

d1

)
10 σUn1,Ud1=(

N
n1

∑n1
j=1Rj.(Sj.−1)

n1n2(n2−1)
− UnUd1

)
+ N

n2

(∑n2
k=1R.k(S.k−1)

n1n2(n1−1)
− UnUd1

)
+ N

n1n2
(Un − UnUd1)

11 Plug-in results from steps 8-10 into ΣU1 : ΣU1 =

 σ2
Un

σUn,Ud1

σUn,Ud1 σ2
Ud1


12 The 100(1− α)% lower confidence limit for CEP1 is:

UCEP1 − z1−α

√(
1
Ud1

,− Un
Ud1

)T
ΣU1

(
1
Ud1

,− Un
Ud1

)
In the next section, the parametric methods developed in the previous section and

non-parametric methods developed above will be applied to data obtained from a trial on

irritable bowel syndrome.
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3.5 An example

This example uses data from Creed et al. (2003). The authors compare the cost-

effectiveness of three competing treatments for patients suffering from severe irritable bowel

syndrome (IBS). The three treatments are the drug Paroxetine, psychotherapy, and a usual

standard care. In our analysis we assess cost-effectiveness of the new treatment Paroxetine

against the usual standard care. Several effects on participants in the study have been

recorded using a survey questionnaire. Two of the effect measures collected are ‘SF-36

physical component score’ and ‘SF-36 mental component score’; the random variables E1

and E2, respectively, will denote these effectiveness measures. These are the change from

baseline to 15 months. The authors provide summary data shown in Table 3.1. In our

analysis, the new treatment is Paroxetine and the standard treatment is usual care, referred

to as treatment one and treatment two, respectively.

Table 3.1 Summary data from the IBS trial

Treatment Paroxetine (new) Usual Treatment (standard)
Sample size 72 61

E(E1) 5.8 -0.3
SE(E1 ) 1.00 1.17
E(E2) 2.2 3.8

SE(E2 ) 1.55 1.57
E(Cost) 1252 1663

SD(Cost) 1616 3177

Based on the summary results, we note that the average effectiveness measure corre-

sponding to E1 (i.e., changes from baseline in the SF-36 physical component score) appears

to be higher for patients taking Paroxetine compared to patients under the standard care.

However, the average effectiveness measure for E2 (i.e., changes from baseline in the SF-36

mental component score) appears to be higher for patients under the standard care compared

to that for patients taking Paroxetine.

Earlier, we mentioned the weighting scheme often used in the MCDA framework,

70



and noted that the method is subjective and may result in different conclusions on the cost-

effectiveness of competing treatments. We shall demonstrate this for the present example.

The weights are assigned to the mean cost and the two mean effectiveness measures based

on scores assigned by experts. A set of scores and the resulting weights are given in Table

3.2.

Table 3.2 A set of performance scores and
weights

Treatment \Criteria E(Cost) E(E1) E(E2)
Paroxetine 1 1 0
Standard 0 0 2

Total 1 1 2
Weight 1/4 1/4 2/4

The scores in Table 3.2 are based on expert opinion as follows: E(E1) < 0 receives

a score of 0, E(E1) > 0 receives 1; E(E2) < 2.5 receives 0, 2.5 < E(E2) < 3 receives 1,

E(E2) > 3 receives 2; E(Cost) > 1550 receives 0 , and E(Cost) < 1550 receives 1. The

weights in Table 3.2 are used to obtain estimates of the values V1 and V2 for treatment one

and treatment two, respectively; see (3.1.1).

Consider another expert’s opinion that uses the same scores as in Table 3.2 for

E(Cost) and E(E1) and a different scoring scheme for E(E2). The scoring based on this

expert is: E(E2) < 3 receives 0, E(E2) > 3 receives 1. This gives the scores and weights in

Table 3.3.

Table 3.3 A second set of performance scores
and weights

Treatment \Criteria E(Cost) E(E1) E(E2)
Paroxetine 1 1 0
Standard 0 0 1

Total 1 1 1
Weight 1/3 1/3 1/3

The estimated values for each treatment based on the two different weighting com-
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binations (Tables 3.2 and 3.3), are provided in Table 3.4.

Table 3.4 Overall performance scores based on two weighting
combinations

Weighting Scheme \Treatment Score V̂1 V̂2 Preferred Treatment

1 1/2 1 Standard
2 2/3 1/3 Paroxetine

Table 3.4 reports the overall values for the two treatments based on the two sets of

expert scores. The scores defined by each only differ with regards to E(E2). Even this slight

difference in scoring results in contradictory conclusions regarding treatment recommenda-

tion. The first weighting scheme indicates that the standard treatment should be preferred

because V̂2 > V̂1. In contrast, the scoring by the second expert concludes that V̂1 > V̂2,

indicating that Paroxetine treatment is preferred. Now we turn to our probabilistic criteria.

In Creed et al. (2003, pg. 305) the authors note that the cost data are “highly

skewed”. However, we don’t have the original data to obtain estimates of the lognormal

parameters, and we approximate these based on the summary statistics in Table 3.1. The

mean and standard deviation of the log(cost) for treatment one is computed to be 6.642 and

0.990, respectively. The mean and standard deviation of the log(cost) for treatment two is

similarly obtained as 6.648 and 1.239, respectively. In addition, we also need the estimated

correlations among log(cost), E1 and E2. For this, we simulated data using the model (3.2.1)

with correlation values supplemented by those provided in Table 3.5. We have considered

eighteen correlation combinations for each treatment group, which are denoted by ‘cases’

in Table 3.5. The means and standard deviations used to simulate the data are the values

mentioned earlier in this paragraph. Estimates for CEP1 and CEP2 are calculated for each

case and also reported in the table.
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Table 3.5 Correlations and the corresponding
estimated CEPs based on simulated data under the
model (3.2.1)

Case

ID ρe1,e2 ρe1,c ρe2,c ĈEP1 ĈEP2

1 0.100 0.100 0.100 0.299 0.450
2 −0.500 0.100 0.100 0.208 0.424
3 0.100 0.100 −0.100 0.343 0.515
4 −0.500 0.100 −0.100 0.252 0.513
5 0.500 0.100 −0.100 0.404 0.518
6 0.100 −0.100 0.100 0.324 0.488
7 −0.500 −0.100 0.100 0.240 0.490
8 0.100 −0.100 −0.100 0.368 0.553
9 −0.500 −0.100 −0.100 0.284 0.579

10 0.500 −0.100 −0.100 0.424 0.543
11 0.100 −0.500 −0.500 0.514 0.773
12 0.100 −0.500 0.500 0.278 0.418
13 −0.100 −0.500 −0.500 0.492 0.808
14 −0.100 −0.500 0.500 0.259 0.425
15 −0.100 0.500 −0.500 0.352 0.578
16 0.500 −0.500 −0.500 0.563 0.722
17 −0.500 0.500 −0.500 0.279 0.569
18 −0.500 −0.500 0.500 0.213 0.434

Based on the results of Table 3.5, we note that the different combinations of the

correlations ρe1,e2 , ρe1,c , and ρe2,c result in different cost-effectiveness probabilities: CEP1

ranges from 0.208 to 0.563, and CEP2 ranges from 0.418 to 0.808. The new treatment,

Paroxetine, is deemed cost-effective when the probabilities can be considered ‘large’. We

recall that the probability CEP1 is of interest to decision makers who prioritize cost. Based

on our results, we note that among patients who incur less cost when taking the new treat-

ment Paroxetine, over the standard treatment, the probability of improved effectiveness with

respect to both E1 and E2 is mostly less than 0.5, often by a significant margin. On the

other hand, among patients form whom the new treatment Paroxetine is more effective,

the probability of incurring a lower cost is mostly more than 0.5. The probabilities clearly

depend on the correlations.
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The effect of the correlations on the estimated CEP1 and CEP2 values is not clear

cut. However, both metrics result in largest values under the cases 11, 13, and 16 in Table

3.5. These cases all have ρe1,c = -0.5 and ρe2,c = -0.5. This indicates that, when these

correlations are negative and large in magnitude, cost-effectiveness is higher for such patients.

Comparing the corresponding estimates (fixing the case ID) of CEP1 and CEP2 in Table

3.5, the estimates of CEP2 are considerably larger.

3.5.1 Parametric confidence intervals

We now present the results of the fiducial approach for the interval estimation of

CEP1 and CEP2. The 95% lower limits are obtained using algorithm 4 based on 5000

fiducial quantities. The confidence limits are reported in Table 3.6 for one set of simulated

data using the parameter combinations (including the correlations) mentioned earlier. In

addition, we also estimated the coverage probabilities of our confidence limits using 5000

simulated samples, and 1000 fiducial quantities. The coverage probabilities and the expected

values of the confidence limits are also reported in Table 3.6.
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Table 3.6 Fiducial 95% lower confidence limits with corresponding coverage probabilities and
expected lower limits

Case Lower conf. Lower conf. Coverage prob. Coverage prob. Expected Expected
ID limit CEP1 limit CEP2 CEP1 CEP2 limit CEP1 limit CEP2

1 0.224 0.350 0.964 0.958 0.222 0.349
2 0.150 0.323 0.968 0.953 0.151 0.324
3 0.263 0.412 0.961 0.959 0.263 0.413
4 0.189 0.413 0.968 0.955 0.189 0.409
5 0.315 0.419 0.959 0.955 0.316 0.418
6 0.243 0.388 0.958 0.950 0.246 0.387
7 0.179 0.388 0.965 0.957 0.179 0.387
8 0.284 0.456 0.958 0.958 0.285 0.451
9 0.217 0.479 0.971 0.956 0.216 0.475

10 0.335 0.445 0.965 0.957 0.333 0.444
11 0.398 0.664 0.963 0.950 0.399 0.659
12 0.193 0.289 0.959 0.953 0.193 0.291
13 0.377 0.698 0.958 0.956 0.376 0.693
14 0.179 0.295 0.958 0.955 0.180 0.299
15 0.268 0.444 0.972 0.956 0.267 0.440
16 0.450 0.614 0.960 0.948 0.449 0.611
17 0.209 0.435 0.974 0.955 0.209 0.434
18 0.148 0.307 0.962 0.953 0.147 0.307

Comparing the coverage probabilities of Table 3.6, we note the coverage tends to be

conservative for CEP1, while those for CEP2 tend to be closer to nominal. For each case

ID (combination of correlation values) the coverage is larger for CEP1 than for CEP2, with

exception of case ID 10. Overall, the coverage probabilities appear to be satisfactory as they

are close to nominal or slightly larger than nominal.

An alternative to the fiducial methodology for obtaining lower parametric confidence

limits is to implement the percentile bootstrap method. The corresponding results are shown

in Table 3.7.
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Table 3.7 Percentile bootstrap 95% lower confidence limits with corresponding coverage
probabilities and expected limits

Case Lower conf. Lower conf. Coverage prob. Coverage prob. Expected Expected
ID limit CEP1 limit CEP2 CEP1 CEP2 limit CEP1 limit CEP2

1 0.227 0.351 0.958 0.949 0.224 0.351
2 0.151 0.325 0.960 0.944 0.152 0.325
3 0.267 0.417 0.953 0.951 0.264 0.412
4 0.192 0.411 0.949 0.950 0.192 0.412
5 0.316 0.418 0.953 0.947 0.317 0.420
6 0.246 0.383 0.959 0.947 0.247 0.387
7 0.182 0.390 0.960 0.953 0.180 0.387
8 0.283 0.451 0.952 0.948 0.287 0.452
9 0.218 0.477 0.955 0.956 0.219 0.475

10 0.337 0.445 0.953 0.955 0.335 0.444
11 0.397 0.663 0.957 0.946 0.399 0.657
12 0.194 0.289 0.950 0.945 0.194 0.292
13 0.375 0.691 0.956 0.956 0.376 0.689
14 0.180 0.297 0.957 0.948 0.180 0.298
15 0.272 0.442 0.962 0.948 0.269 0.442
16 0.443 0.611 0.955 0.954 0.450 0.608
17 0.214 0.437 0.961 0.952 0.212 0.436
18 0.148 0.306 0.956 0.946 0.148 0.307

The lower limits using the percentile bootstrap method for the eighteen cases in

Table 3.5 are provided in Table 3.7 and appear to be similar to those obtained by the

fiducial method for CEP1. The coverage probabilities are obtained using 5000 simulated

samples with 1000 parametric bootstrap estimates under each simulated sample. Both the

fiducial and percentile bootstrap methods tend to have larger coverage for CEP1 compared

to CEP2. The percentile bootstrap method for CEP1 is also conservative. The coverage

probabilities from the two methods are comparable for CEP2, and are less conservative

under both methods. Comparing the coverage probabilities of the fiducial and percentile

bootstrap methodologies reveals that the fiducial approach tends to be more conservative.

The expected lower limits for the fiducial and percentile bootstrap methods are comparable

for cases in which the two methods have similar coverage probabilities.

For comparing the two approaches, we also calculated 95% two-sided confidence
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limits, even though this won’t be of practical interest in the context of our probability

metrics. The results for the two-sided interval are provided in Table 3.8 for the fiducial

methodology, and in Table 3.9 for the percentile bootstrap method.

Table 3.8 Fiducial 95% two-sided confidence limits with corresponding coverage probabilities and
expected lengths

Case Two-sided conf. Two-sided conf. Cov. prob. Cov.prob. Expected Expected
ID limit CEP1 limit CEP2 CEP1 CEP2 Length CEP1 Length CEP2

1 (0.210, 0.392) (0.330, 0.568) 0.956 0.956 0.183 0.239
2 (0.139, 0.280) (0.303, 0.543) 0.959 0.955 0.138 0.241
3 (0.250, 0.440) (0.394, 0.635) 0.957 0.960 0.191 0.241
4 (0.179, 0.328) (0.395, 0.636) 0.954 0.954 0.149 0.244
5 (0.299, 0.515) (0.400, 0.637) 0.957 0.957 0.209 0.238
6 (0.230, 0.422) (0.369, 0.608) 0.955 0.954 0.189 0.241
7 (0.168, 0.314) (0.369, 0.610) 0.958 0.958 0.148 0.243
8 (0.267, 0.471) (0.437, 0.669) 0.955 0.954 0.199 0.239
9 (0.206, 0.368) (0.461, 0.697) 0.959 0.956 0.162 0.241

10 (0.319, 0.534) (0.424, 0.660) 0.958 0.953 0.213 0.235
11 (0.379, 0.654) (0.637, 0.885) 0.955 0.952 0.271 0.242
12 (0.177, 0.383) (0.266, 0.589) 0.953 0.953 0.204 0.317
13 (0.355, 0.635) (0.675, 0.914) 0.953 0.957 0.274 0.238
14 (0.164, 0.357) (0.265, 0.587) 0.953 0.960 0.190 0.315
15 (0.254, 0.440) (0.423, 0.724) 0.953 0.955 0.190 0.314
16 (0.430, 0.696) (0.592, 0.839) 0.953 0.953 0.264 0.247
17 (0.198, 0.357) (0.413, 0.718) 0.953 0.954 0.159 0.312
18 (0.136, 0.294) (0.282, 0.593) 0.949 0.955 0.156 0.312
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Table 3.9 Percentile bootstrap 95% two-sided confidence limits with corresponding coverage
probabilities and expected lengths

Case Two-sided conf. Two-sided conf. Cov. prob. Cov. prob. Expected Expected
ID limit CEP1 limit CEP2 CEP1 CEP2 Length CEP1 Length CEP2

1 (0.210, 0.392) (0.334, 0.565) 0.949 0.949 0.183 0.237
2 (0.141, 0.279) (0.307, 0.549) 0.949 0.951 0.138 0.239
3 (0.252, 0.439) (0.398, 0.634) 0.946 0.946 0.190 0.239
4 (0.182, 0.331) (0.391, 0.637) 0.946 0.951 0.148 0.241
5 (0.302, 0.507) (0.398, 0.633) 0.947 0.945 0.208 0.236
6 (0.231, 0.421) (0.368, 0.611) 0.949 0.943 0.188 0.239
7 (0.172, 0.319) (0.373, 0.608) 0.944 0.951 0.147 0.241
8 (0.269, 0.468) (0.433, 0.673) 0.941 0.952 0.198 0.237
9 (0.207, 0.370) (0.455, 0.694) 0.948 0.950 0.161 0.239

10 (0.316, 0.531) (0.427, 0.661) 0.948 0.951 0.213 0.233
11 (0.376, 0.649) (0.641, 0.882) 0.942 0.946 0.270 0.243
12 (0.178, 0.387) (0.261, 0.588) 0.946 0.946 0.204 0.315
13 (0.355, 0.633) (0.666, 0.911) 0.946 0.951 0.273 0.239
14 (0.165, 0.360) (0.274, 0.594) 0.951 0.942 0.190 0.313
15 (0.258, 0.445) (0.414, 0.737) 0.952 0.949 0.190 0.312
16 (0.422, 0.696) (0.591, 0.838) 0.949 0.953 0.264 0.247
17 (0.202, 0.360) (0.413, 0.726) 0.946 0.948 0.158 0.310
18 (0.136, 0.295) (0.281, 0.590) 0.949 0.945 0.156 0.311

The two-sided coverage probabilities corresponding to both the methods appear

satisfactory, as most are near nominal 0.95. Based on the numerical results, we note that

there is no substantial difference between the two approaches.

We also utilized the delta method for the interval estimation of CEP1 and CEP2.

We implemented the delta method with the original sample sizes as well as the larger sample

sizes n1 = n2 = 500 and n1 = n2 = 1000. Even under these larger sample sizes the expected

lower limits for CEP1 and CEP2 were negative. The corresponding coverage probabilities

under these various sample sizes resulted in coverage probabilities equal to one. However,

when the sample sizes were increased the lower limits did increase as one would expect. Our

conclusion based on these results is that the delta method is too conservative to be useful in

our context. The details of the delta method are outlined in the Appendix to this chapter.
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3.5.2 Coverage probabilities of U-statistics based confidence in-

tervals

Now, we present estimated coverage probabilities of the U-statistics based confi-

dence intervals corresponding to the parameter combinations used in the previous subsec-

tion. However, two sample size scenarios will be considered: the sample sizes corresponding

to the example, i.e., n1 = 72, n2 = 61 and the somewhat larger sample size combination

n1 = n2 = 250. The coverage probabilities are estimated using 5000 simulations. For

n1 = 72, n2 = 61, estimated coverage probabilities of the 95% lower confidence limits are

provided in Table 3.10. In the same set up, estimated coverage probabilities of the 95%

two-sided confidence intervals are provided in Table 3.11

Table 3.10 Estimated coverage probabilities and expected values
of the U-statistics based 95% lower confidence limits when n1 = 72,
n2 = 61

Case Coverage prob. Coverage prob. Expected Expected
ID CEP1 CEP2 limit CEP1 limit CEP2

1 0.970 0.961 0.215 0.339
2 0.974 0.963 0.142 0.310
3 0.964 0.959 0.253 0.402
4 0.972 0.957 0.180 0.397
5 0.962 0.952 0.307 0.410
6 0.966 0.954 0.236 0.376
7 0.968 0.958 0.168 0.372
8 0.965 0.953 0.276 0.440
9 0.970 0.955 0.207 0.463

10 0.957 0.954 0.327 0.436
11 0.957 0.937 0.423 0.689
12 0.970 0.958 0.196 0.316
13 0.958 0.940 0.404 0.730
14 0.972 0.963 0.178 0.318
15 0.968 0.953 0.264 0.471
16 0.960 0.940 0.467 0.633
17 0.968 0.954 0.203 0.456
18 0.974 0.958 0.144 0.322
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Based on the results in the above table, we note that the confidence limits are

conservative, especially for CEP1. The results also indicate that the correlation has some

affect on the accuracy of the results, however no clear trends are evident.

Table 3.11 Estimated coverage probabilities and expected lengths of
the U-statistics based 95% two-sided confidence intervals when
n1 = 72, n2 = 61

Case Coverage prob. Coverage prob. Expected Expected
ID CEP1 CEP2 length CEP1 length CEP2

1 0.953 0.954 0.204 0.266
2 0.955 0.960 0.159 0.276
3 0.955 0.953 0.214 0.267
4 0.959 0.959 0.174 0.281
5 0.961 0.952 0.230 0.259
6 0.957 0.952 0.211 0.268
7 0.954 0.957 0.174 0.282
8 0.958 0.955 0.219 0.266
9 0.957 0.959 0.184 0.276

10 0.956 0.954 0.232 0.258
11 0.959 0.955 0.216 0.197
12 0.959 0.958 0.201 0.247
13 0.957 0.956 0.208 0.180
14 0.954 0.957 0.192 0.256
15 0.956 0.956 0.211 0.255
16 0.961 0.955 0.225 0.214
17 0.957 0.957 0.183 0.271
18 0.952 0.958 0.167 0.271

The coverage probabilities tend to be closer to nominal for the two-sided confidence

limits compared to the one-sided limits.
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Table 3.12 Estimated coverage probabilities and expected values
of the U-statistics based 95% lower confidence limits when
n1 = n2 = 250

Case Coverage prob. Coverage prob. Expected Expected
ID CEP1 CEP2 limit CEP1 limit CEP2

1 0.961 0.953 0.258 0.396
2 0.964 0.955 0.176 0.369
3 0.956 0.952 0.299 0.462
4 0.960 0.955 0.217 0.457
5 0.955 0.949 0.357 0.466
6 0.961 0.956 0.281 0.433
7 0.961 0.952 0.206 0.434
8 0.957 0.950 0.323 0.499
9 0.959 0.947 0.247 0.524

10 0.953 0.953 0.376 0.491
11 0.953 0.941 0.470 0.734
12 0.965 0.957 0.237 0.369
13 0.953 0.943 0.450 0.773
14 0.959 0.959 0.220 0.375
15 0.960 0.952 0.308 0.527
16 0.950 0.949 0.517 0.678
17 0.962 0.948 0.243 0.516
18 0.964 0.957 0.179 0.380

The results of Table 3.12 indicate that an increase in sample size provides coverage

probabilities that are closer to nominal compared to using smaller sample sizes. However,

there is still some level of conservatism.
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Table 3.13 Estimated coverage probabilities and expected lengths of
the U-statistics based 95% two-sided confidence intervals when
n1 = n2 = 250

Case Coverage prob. Coverage prob. Expected Expected
ID CEP1 CEP2 length CEP1 length CEP2

1 0.954 0.952 0.099 0.129
2 0.951 0.952 0.076 0.131
3 0.951 0.956 0.104 0.130
4 0.956 0.956 0.084 0.134
5 0.956 0.952 0.113 0.126
6 0.948 0.951 0.103 0.130
7 0.952 0.954 0.083 0.134
8 0.953 0.949 0.107 0.128
9 0.950 0.957 0.088 0.131

10 0.951 0.955 0.114 0.125
11 0.949 0.950 0.104 0.093
12 0.953 0.954 0.098 0.119
13 0.950 0.955 0.100 0.083
14 0.954 0.958 0.093 0.122
15 0.952 0.955 0.103 0.122
16 0.951 0.953 0.109 0.102
17 0.952 0.953 0.087 0.129
18 0.953 0.953 0.080 0.128

These results also indicate that the level of conservatism of the coverage probabilities

has decreased and the results are closer to nominal coverage with an increase in sample sizes,

as expected. We also note that the increase in the sample size also improved the expected

value of the lower confidence limit, and the expected width of the two-sided interval, once

again, as expected. We also estimated the coverage probabilities when n1 = n2 = 500, and

further improvement was noted in the coverage probabilities; these results are not reported

here.

In regards to inclusion of the third term for the covariance and variance elements of

the multivariate U-statistics, simulation results obtained by not including this term indicate

that the inclusion of the third term improves the coverage probability. These simulation

results are not reported here.
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3.6 Discussion and conclusions

The literature on multi-decision criteria analysis (MCDA) has highlighted the im-

portance and the complexities of making inferences regarding the effectiveness of treatments

under the presence of multiple effectiveness measures. Previous MCDA metrics have been

based on weighting schemes that combine outcome measures into a scalar quantity. The vary-

ing preferences of various decision makers, including patients and health care policy-makers,

have sparked a debate among experts regarding the appropriate effectiveness measures and

the weights to be used. The subjectivity of the approach is clearly cause for concern, espe-

cially since conclusions can be reversed simply by a slight change in the weighting scheme.

We have proposed two metrics to meet the preferences of decision makers who pri-

oritize effectiveness, and those who prioritize cost. Our metrics are probabilistic and are

straightforward to interpret. We believe that our metrics are objective, in that they avoid

the use of any weights. Even though we have investigated the case of only two effectiveness

measures, our metrics can be extended to include more than two effectiveness measures. It

is also possible to incorporate thresholds such as δC for the cost, and similar thresholds for

the effectiveness measures. In short, our metrics appear to be versatile and objective.

A fiducial approach has been utilized to construct accurate lower confidence limits

for each proposed metric, assuming the normal distribution (perhaps after an appropriate

transformation). The percentile bootstrap method has also been implemented in the para-

metric framework. Both approaches produce coverage probabilities close to nominal even

under relatively small sample sizes, such as those corresponding to the example in this chap-

ter. The proposed probabilistic metrics can be easily extended for individualized inference

under the regression framework of Chapter 2. A non-parametric U-statistics based approach

is also developed in this chapter. Overall, such an approach provided satisfactory confidence

limits, as evidenced by the estimated coverage probabilities.
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3.7 Appendix: The delta method

The delta method used in this chapter is very similar to that explained in Appendix

A of Chapter 2.

For the application in this chapter, we have n = n1+n2, β = [vec(µ1)′, vec((Σ1)′, vec(µ2)′, vec((Σ2)′]′,

and β̂ is the unbiased estimator of β. Furthermore, the matrix Σ∗ is defined as:

Σ∗ = diag

(
Σ1

n1

,
Ω1

n1 − 1
,
Σ2

n2

,
Ω2

n2 − 1

)
, (3.7.1)

where the matrices Ω1 and Ω2 will now be defined. For this, let K33 be the commutation

matrix defined as:

K33 =



1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1



(3.7.2)

Then Ωi =
[
Σi⊗Σi

]
[K33 + I9]. Since CEP1 and CEP2 are functions of β, the delta method

can be applied to conclude the asymptotic normality of the estimators ĈEP 1 and ĈEP 2,

where these estimators are obtained by replacing β with β̂. However, the gradients required

to compute the asymptotic variance of these estimators have no analytic expressions. In

view of this, we calculated the gradients numerically by using the gradient function in R.
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Chapter 4

Individualized net monetary benefit:

A tolerance limits approach

The net-benefit framework for cost-effectiveness analysis was first proposed by Stin-

nett and Mullahy (1998), and has gained some popularity since then. The ‘net monetary

benefit’ (NMB) for a particular patient is defined as the difference between the patient’s

effectiveness and cost, after multiplying the former with the willingness-to-pay parameter λ.

For the jth patient in the ith group the net monetary benefit is defined in (1.2.6). To account

for covariates, the associated literature has incorporated patient characteristics through a re-

gression analysis carried out directly on the NMB random variable defined in (1.2.6). This is

the approach adopted in the works Hoch, Briggs and Willan (2002), Hoch and Dewa (2014),

and Hounton and Newlands (2012). In Hoch, Briggs and Willan (2002) the authors pro-

pose three net-benefit regression approaches. The first includes a treatment indicator only,

whereas, the second and third utilize a treatment indicator and incorporate patient-level co-

variates. The third approach incorporates an interaction of patient-level covariates and the

treatment indicator. Later we shall comment on this approach of carrying out a regression

analysis directly on the NMB random variable. In their work, the above authors utilize the

cost-effectiveness acceptability curve (CEAC) to assess a new treatment’s cost-effectiveness.
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In fact the inference related to the NMB has been dominated by the use of the CEAC. The

CEAC is a common method for illustrating the value of competing interventions. It shows

the probability that a new treatment is cost-effective relative to a competing treatment, for

a range of willingness-to-pay values. Briggs, O‘Brien and Blackhouse (2002) note that the

use of the CEAC in the net-benefit framework is useful when performing stratified analy-

sis. Hounton and Newlands (2012) also highlight that use of the net-benefit framework is

advantageous because it allows for subgroup analysis and enables utilizing the CEACs as a

graphical approach towards this aim. Our approach differs from the typical NMB analysis

in two ways: (i) we do not use a stratified approach; and (ii) we do not rely on graphical

methods such as the CEAC for inference.

Difficulties associated with the stratification approach are already noted in Chapter

2. Secondly, reliance on the CEAC for determination of treatment allocation has been under

scrutiny in recent literature. In an article by Barton, Briggs and Fenwick (2008), the authors

note a common misinterpretation often associated with analysis of the CEAC:

With regard to the claim that the CEAC shows the probability that one option domi-

nates another option, it can be seen that this is untrue because the CEAC is determined

by the net benefit of each option and it is possible for an option to have a higher net

benefit without dominating another option. (p. 888)

Furthermore, in Koerkamp (2009, ch. 5), the author devotes an entire chapter

to the limitations of the CEAC. One major criticism of the CEAC is that since it plots

the probability of cost-effectiveness directly, it does not adequately account for precision

of estimates. An alternative approach suggested by the author involves using confidence

intervals to provide the decision maker with information about the precision and magnitude

of an estimate.

In our research, we model the cost and effectiveness outcomes directly using a bivari-

ate regression model, as done earlier in the thesis. The NMB for an individual patient under

a specified treatment can then be computed at the specified covariate value. Because treat-
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ment allocation for a specified patient is of interest, we compare the NMBs for this patient

under the new and standard treatment. The new treatment is determined to be cost-effective

if the resulting NMB is ‘larger’. Since the NMB is a random variable, an approach that can

be adopted for the NMB comparison is to use specific scalar quantities associated with the

NMB distributions. For example, a comparison of the means of the NMB distributions leads

to the INB parameter. In this chapter we shall explore another comparison: the lower tail

percentiles and their lower confidence limits. Such lower confidence limits are referred to as

lower tolerance limits of the distribution. We shall thus address a comparison of the lower

tolerance limits of the NMB distributions for patients having the same covariate values un-

der the new treatment and under the standard treatment. The choice of the percentile is

at the discretion of the policy-maker. If the lower tolerance limit associated with the new

treatment is larger than that of the standard treatment then the new treatment is considered

cost-effective.

Let NMB1(w0) and NMB2(w0) denote the net monetary benefit of a patient having

covariate vector w0 under the new treatment and standard treatment, respectively. A model

that has been predominately used to incorporate covariates into the NMB has been proposed

by Hoch, Briggs and Willan (2002). The model is given by

NMBi(w0) = α + β′iw0 + δkj + εj, (4.0.1)

In the model (4.0.1), α is an intercept term, βi is a p× 1 vector of regression coefficients, w0 is

a p× 1 vector of covariates, and εj is an error term. Furthermore, kj is an indicator function

for the treatment (kj = 1 corresponds to the jth patient allocated to the new treatment,

i.e., i = 1, and kj = 0, otherwise). Note that in a lognormal-normal scenario, the NMB

is a linear combination of a normally distributed quantity (namely, the effectiveness) and a

lognormally distributed quantity (namely, the cost). Formulating a linear regression model

for such a random variable, especially, assuming a normal distribution for the error term εj,
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appears to be difficult to justify. The same can be said in the lognormal-lognormal scenario

also. We are of the opinion that when covariates influence the cost and effectiveness of

individual patients, they should be incorporated into the analysis via a bivariate regression

model for the (cost,effectiveness) random variable, and then the various criteria should be

extended to such a regression scenario. This is what we propose to do this chapter, as was

done earlier in the thesis. We propose a comparison of NMB1(w0) and NMB2(w0) based

on lower tolerance limits, assuming a regression model for the cost and effectiveness data,

after a log transformation if necessary.

4.1 The computation of lower tolerance limits

Let Cij and Eij, respectively, denote the cost and effectiveness for the jth individ-

ual belonging to the ith treatment intervention (i = 1, 2; j = 1, . . . , ni). We shall use the

lognormal-lognormal model in (2.1.1). The unknown parameters are the regression coeffi-

cient matrices Bi and the covariance matrices Σi, i = 1, 2. Let Ci and Ei be the cost and

effectiveness for a patient having covariate vector w0 and belonging to the ith treatment

group. Under the lognormal-lognormal model, we then have the distribution

ln[Ci]

ln[Ei]

 ∼ N2

[
Biw0, Σi

]
,

i = 1, 2. Thus the NMB for a patient from the ith treatment group and having covariate w0,

denoted by NMBi(w0), is given by

NMBi(w0) = λEi − Ci. (4.1.1)

We recall that our aim is to compute lower tolerance limits for the distributions ofNMBi(w0),

i = 1, 2. That is, we wish to compute lower confidence limits for the left-tail percentiles
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of these distributions. Thus suppose we want to compute a 100(1 − α)% lower confidence

limit for the (1 − p)th percentile of NMBi(w0) (typically, 1 − p is 0.10, 0.05, 0.01). Recall

the lower tolerance limit is defined by content, p, and confidence level, 1− α. In particular,

we will be computing the 95% lower confidence limit for the 10th percentile of NMBi(w0)

which is equivalent to a lower (p = 0.9, 1 − α = 0.95) tolerance limit. Note that the per-

centiles do not have an analytical expression. However, both the fiducial approach and a

parametric bootstrap approach can be applied for a numerical result. We shall now explain

this computation.

Under the assumed model, let B̂i and Σ̂i denote the unbiased estimators of Bi and

Σi, respectively, based on samples of n1 patients and n2 patients assigned to the first and

second treatments, respectively. Furthermore, let B̃i and Σ̃i denote the corresponding fiducial

quantities. The expressions for these quantities are given in Chapter 2, and are not repeated

here. A fiducial quantity for the (1−p)th percentile of NMBi(w0) can be implicitly computed

as follows. Generate data under the assumed bivariate regression model corresponding to

the covariate vector w0, with Bi and Σi replaced by the corresponding fiducial quantities

B̃i and Σ̃i, respectively. Based on the data generated, compute the value of NMBi(w0),

say ÑMBi(w0). Repeat these steps C1 times, resulting in C1 values of ÑMBi(w0), say

ÑMBik(w0), k = 1, 2, ..., C1. The (1 − p)th percentile of these C1 values is a fiducial

quantity for the (1 − p)th percentile of NMBi(w0). Repeating this procedure, we generate

the fiducial quantity for the (1− p)th percentile of NMBi(w0) C2 times. The αth percentile

of these C2 fiducial quantities give a 100(1 − α)% lower confidence limit for the (1 − p)th

percentile of NMBi(w0), which is the required lower tolerance limit.

The above computational steps are summarized in algorithm 7.
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Algorithm 7: Fiducial approach for the construction of a lower tolerance

limit for NMBi(w0)

1 From the sample of each treatment group compute the observed values B̂io and

Σ̂io of the estimates B̂i and Σ̂i, i = 1, 2.

2 For i = 1, 2, independently generate: Hi ∼ W

({
(ni − p)Σ̂io

}−1

, ni − p
)

and

Zi ∼ 2× p matrix of N(0, 1) random variates.

3 Compute Σ̃i = H−1
i and B̃i = B̂io − Σ̃

1/2
i Zi(WiW

′
i )
−1/2.

4 For each i = 1, 2 generate C1 samples:ln[C̃ik]

ln[Ẽik]

 ∼ N2

[
B̃iw0, Σ̃i

]
, k = 1, . . . C1

5 For each combination of i and k compute ÑMBik(w0) = λẼik − C̃ik

6 Compute the (1− p)th percentile of the C1 values of ÑMBik(w0) computed in

step 5. Denote this as ÑMBik(w0; 1− p)

7 Repeat steps 2-6 C2 times obtaining C2 values of ÑMBik(w0; 1− p).

8 Compute the αth percentile of the C2 values of ÑMBik(w0; 1− p). This is a

100(1− α)% lower tolerance limit for NMBi(w0) having content p.

In addition to the fiducial approach outlined in algorithm 7, we also implemented a

percentile bootstrap method. The necessary steps for the percentile bootstrap approach are

provided in algorithm 8.
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Algorithm 8: Percentile Bootstrap approach for the construction of a lower

tolerance limit for NMBi(w0)

1 From the sample of each treatment group compute the observed values B̂io and

Σ̂io of the estimates B̂i and Σ̂i, i = 1, 2.

2 For i = 1, 2, independently generate: vec(B̂i
∗
) ∼ N

[
vec(B̂io), (WiW

′
i )
−1 ⊗ Σ̂io

]
and Σ̂∗i ∼ 1

ni−pW [Σ̂io, ni − p] random variates.

3 For each i = 1, 2 generate C1 samples:ln[C∗ik]

ln[E∗ik]

 ∼ N2

[
B̂∗i w0, Σ̂∗i

]
, k = 1, . . . C1

4 For each combination of i and k compute N̂MB
∗
ik(w0) = λE∗ik − C∗ik

5 Compute the (1− p)th percentile of the C1 values of N̂MB
∗
ik(w0), computed in

step 4. Denote this as N̂MB
∗
ik(w0; 1− p)

6 Repeat steps 2-5 C2 times obtaining C2 values of N̂MB
∗
ik(w0; 1− p).

7 Compute the αth percentile of the C2 values of N̂MB
∗
ik(w0; 1− p). This is a

lower 100(1− α)% lower tolerance limit for NMBi(w0) with content p.

Later it will be necessary to estimate the percentiles of NMBi(w0). While this

estimation is fairly straightforward, we shall give an algorithm to do so; the algorithm is

given below.
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Algorithm 9: Estimation of the (1− p)th percentile of NMBi(w0)

1 From the sample of each treatment group compute the estimates B̂i and Σ̂i,

i = 1, 2.

2 For each i = 1, 2, independently generate:

ln[Ĉi]

ln[Êi]

 ∼ N2

[
B̂iw0, Σ̂i

]

3 Compute N̂MBi(w0) = λÊi − Ĉi

4 Repeat steps 2-3 M times, obtaining M values of N̂MBi(w0).

5 For each i = 1, 2 compute the (1− p)th percentile of the M values of

N̂MBi(w0)s.

Later we shall assess the accuracy of the fiducial and percentile bootstrap approaches

based on their respective coverage probabilities.

4.2 An example

We shall now apply our proposed individualized cost-effectiveness analysis to the

schizophrenia effectiveness study mentioned in Chapter 2 (see Section 2.3). We will evaluate

the cost-effectiveness of the new treatment consisting of the anti-psychotic drug Olanzap-

ine as compared to that of the standard treatment where conventional anti-psychotics are

first administered, followed by Olanzapine if necessary. Details of the study, including a

description of the covariates, are given in Section 2.3. We shall apply the tolerance limit

methods in the previous section to twelve specified patients for an individualized analysis.

The covariates of the twelve patients are provided in Table 4.1.
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Table 4.1 Covariate values of twelve
patients

Patient ID Age Pysc. Duration Months

1 40 0 0.25
2 40 0 0
3 40 5 0.25
4 40 5 0
5 40 10 0.25
6 40 10 0
7 60 0 0.25
8 60 0 0
9 60 10 0.25
10 60 10 0
11 60 15 0.25
12 60 15 0

Based on a set of simulated lognormal-lognormal data under the assumed model,

the estimates of the unknown parameters are given by

B̂1 =

9.1197 −0.0091 0.0259 0.1303

4.0311 0.0225 −0.0344 −0.222


B̂2 =

8.5866 −0.0025 0.03619 −0.06789

4.0106 −0.0019 0.0111 −0.1591


Σ̂1 =

 1.0793 −0.0233

−0.0233 2.5358


Σ̂2 =

 1.6956 −0.1157

−0.1157 2.6649


Next, we will explain the computation of the lower tolerance limit with content p

= 0.90 and confidence level 1− α = 0.95. That is, we will compute a 95% lower confidence

limit for the (1 − p)th = 10th percentiles of NMB1(w0) and NMB2(w0) corresponding to

the covariate vectors w0 specified in Table 4.1. Before doing so, we shall give estimates of
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the 10th percentiles of NMB1(w0) and NMB2(w0), obtained using algorithm 9, and based

on 10,00,000 simulations. These are provided in Table 4.2 and Table 4.3, respectively.

Table 4.2 Estimates of the 10th percentiles of NMB1(w0) for the twelve
patients for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 8145.1 16 712.3 33 852.5 68 100.0
2 8635.8 17 743.8 35 947.4 72 365.0
3 6892.0 14 121.2 28 621.1 57 612.5
4 7222.3 14 824.9 30 045.2 60 476.1
5 5762.1 11 831.2 23 975.7 48 249.8
6 6077.0 12 471.1 25 250.8 50 845.5
7 8144.5 16 704.2 33 840.9 68 120.8
8 13 458.6 27 605.2 55 911.0 112 563.7
9 9068.2 18 610.8 37 717.2 75 933.3

10 9594.8 19 668.6 39 830.4 80 176.7
11 7629.3 15 648.5 31 695.2 63 796.5
12 8109.4 16 654.1 33 721.3 67 885.4

Based on the results in Table 4.2, we can assess the effects of the covariates on the

10th percentiles of the NMBi distribution for the twelve patients in Table 4.1, when they are

assigned to the new treatment. Older patients tend to have higher percentile values compared

to younger patients, especially as the willingness-to-pay, λ, increases. The exception to this

trend is patient one. Patients with shorter history of psychological duration attain higher

percentile values for any given λ. In addition, patients who have spent less time in hospital

in the year prior to the study have higher percentile values. Increasing the willingness-to-pay

parameter results in larger 10th percentile values, indicating that the increased investment

results in an increased benefit for all twelve patients being analysed. Next, we present the

estimates of the 10th percentiles for the twelve patients in Table 4.1 when they are under the

second treatment, i.e. the standard treatment.
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Table 4.3 Estimates of the 10th percentiles of NMB2(w0) for
the twelve patients for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 3206.9 6637.8 13 486.1 27 180.0
2 3325.9 6887.2 13 985.5 28 186.1
3 3385.3 7013.0 14 245.2 28 718.1
4 3524.0 7282.8 14 795.3 29 812.7
5 3596.0 7433.2 15 102.6 30 445.2
6 3722.6 7695.8 15 634.1 31 523.7
7 3202.6 6624.0 13 456.5 27 113.4
8 3219.3 6660.9 13 540.6 27 290.2
9 3448.5 7130.4 14 481.7 29 172.5

10 3607.3 7447.3 15 141.9 30 509.6
11 3633.9 7525.8 15 294.2 30 832.7
12 3760.4 7775.4 15 804.1 31 852.4

From Table 4.3, we once again notice that older patients have higher percentile

values than the younger patients, with exception of patients one and two. However, the

effect of age is noticeably less compared to what we observed under the new treatment. In

contrast to the effect of psychological duration on the percentile values for patients under the

new treatment, patients under the standard treatment with longer psychological duration

benefit more compared to those with shorter history. However, with regards to months

spent in hospital in year prior to the study, both treatments provide greater benefit for

patients that have spent less time in the hospital the year preceding the study. Comparing

the 10th percentiles of the twelve patients in Table 4.2 and Table 4.3, it is clear that the

values are larger for patients under treatment one as compared to those under treatment

two. Therefore, it is anticipated that the lower tolerance limits will follow a similar trend.

The lower (p = 0.9, 1 − α = 0.95) tolerance limits are computed for each treatment using

the fiducial methodology provided in algorithm 7, and the results for the first and second

treatments are provided in Table 4.4 and Table 4.5, respectively. The results are obtained

using algorithm 7 with C1 = 1000 and C2 = 2000.
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Table 4.4 Fiducial lower (p = 0.90, 1− α = 0.95) tolerance limits
for the twelve patients under treatment one for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 4750.8 9827.8 19 936.3 40 168.2
2 4892.5 10 131.7 20 646.4 41 866.5
3 4359.1 8956.9 18 265.8 36 874.9
4 4646.9 9628.4 19 424.1 39 232.8
5 4031.4 8349.4 16 890.6 34 192.4
6 4263.5 8816.6 17 884.5 36 061.1
7 4773.1 9722.7 19 695.4 39 549.9
8 5851.6 11 954.4 24 238.6 48 786.7
9 4662.3 9645.2 19 617.3 39 298.3

10 5081.1 10 387.9 21 005.7 42 296.5
11 4316.9 8873.1 18 188.6 36 449.8
12 4574.7 9385.2 19 068.8 38 401.0

Table 4.5 Fiducial lower (p = 0.90, 1− α = 0.95) tolerance
limits for the twelve patients under treatment two for different
values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 1904.1 3950.3 7960.9 16 079.7
2 1947.7 4043.8 8209.3 16 563.7
3 2215.7 4627.9 9379.6 18 922.3
4 2249.4 4729.2 9583.7 19 410.7
5 2434.8 5097.7 10 411.1 20 834.4
6 2542.3 5316.8 10 833.4 21 861.6
7 1872.1 3878.8 7880.1 15 899.4
8 1267.8 2646.0 5387.1 10 814.4
9 1746.9 3652.9 7441.7 15 009.9

10 1782.6 3676.0 7460.1 15 086.1
11 1961.5 4042.8 8213.6 16 567.9
12 2047.0 4300.7 8766.3 17 588.6

Regarding the effects of the covariates on the lower limits, the trends are similar to

those described in reference to Table 4.2 and Table 4.3. As expected, an increasing λ results

in larger lower limits. Using the percentile bootstrap method (i.e., algorithm 8), similar

results on the lower (p = 0.9, 1− α = 0.95) are provided in Table 4.6 and Table 4.7. These
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lower limits are also computed using algorithm 8 with C1 = 1000 and C2 = 2000.

Table 4.6 Percentile bootstrap lower (p = 0.90, 1− α = 0.95)
tolerance limits for the twelve patients under treatment one for
different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 5030.9 10 309.7 21 109.9 42 391.8
2 5319.8 10 902.2 22 165.8 44 750.1
3 4671.4 9693.7 19 579.1 39 292.1
4 4866.1 10 000.9 20 324.1 41 026.4
5 4152.0 8551.8 17 426.0 35 326.8
6 4405.5 9039.2 18 392.8 36 984.9
7 5081.9 10 512.7 21 233.6 42 772.6
8 5908.1 12 164.3 24 597.9 49 442.3
9 4775.8 9756.3 19 991.2 40 268.8

10 5017.9 10 538.5 21 119.2 42 575.9
11 4415.0 9060.7 18 546.6 37 206.7
12 4631.9 9509.4 19 183.1 38 576.6

Table 4.7 Percentile bootstrap lower (p = 0.90, 1− α = 0.95)
tolerance limits for the twelve patients under treatment two for
different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 1916.4 3977.8 8086.3 16 278.7
2 2021.0 4177.2 8482.5 17 044.0
3 2226.4 4637.2 9329.8 18 840.5
4 2278.3 4726.6 9595.7 19 363.7
5 2515.4 5278.2 10 755.8 21 600.3
6 2594.9 5409.0 10 995.3 22 297.9
7 1909.7 3915.6 7940.9 15 947.8
8 1361.9 2828.9 5736.7 11 506.9
9 1764.6 3619.1 7341.2 14 778.2

10 1858.7 3848.9 7913.0 15 885.6
11 2061.6 4292.8 8699.8 17 591.1
12 2132.9 4448.6 9087.5 18 311.7

Comparing the lower limits in Table 4.4 and Table 4.6, and those in Table 4.5 and

Table 4.7, it is clear that the percentile bootstrap approach results in larger limits. There are

two cases in which the lower limits in Table 4.4 and Table 4.5 are larger than those in Table
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4.6 and Table 4.7, respectively; specifically, when λ = 250 for patients 3 and 10. Comparing

the resulting limits from Table 4.5 with those in Table 4.7, the percentile bootstrap approach

generally provides larger lower limits. However, there are four exceptions which occur when

λ = 2000 for patients 3, 4, and 9; and also for patient 4 when λ = 500. Overall, these

differences do not appear to be large, indicating that the fiducial and percentile bootstrap

approaches provide similar results.

Additionally, the cost-effectiveness of the new treatment is also assessed using the

cost-effectiveness acceptability curve (CEAC). Figure 4.1 shows the CEAC curve for patient

one, and the plots for the other eleven patients are nearly identical. What is plotted is the

probability P [NMB11(w0) − NMB21(w0) > 0], estimated using 10,000 simulated samples.

The plot is given for λ ranging from 0 to 50; the probabilities appear to plateau at λ = 50.

The maximum probability that the new treatment is cost effective occurs at the largest λ

= 2000, around 0.61 for all patients (not shown in the plot). However, based on the results

in Table 4.4 , Table 4.5, Table 4.6 , and Table 4.7; the lower limits for the patients indicate

that the new treatment is cost-effective; as the lower limits are always greater for the new

treatment. In addition, the results we have obtained demonstrate that the cost-effectiveness

of the new treatment increases as a function of λ.
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Figure 4.1: CEAC for patient one

An approach to complement the tolerance limit analysis is to consider a plot of the

estimated CDF of the NMBs for fixed willingness-to-pay values. The results for the twelve

patients were computed using 10,000 simulated samples. As the results for all patients are

very similar, we provide only the results for patient one in Figure 4.2.
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Figure 4.2: ECDF plots for patient one

Figure 4.2 displays the CDFs for patients under the new treatment, treatment one,

and standard treatment, treatment two. A close-up is provided for values around the 10th

percentile. The 10th percentile is denoted by a horizontal line and the results of the plots

are in agreement with the results in Table 4.2 and Table 4.3. A noted criticism of the CEAC

is that it is often misinterpreted, i.e. probability of cost-effectiveness for a new treatment

implies that it dominates the standard treatment. To investigate the stochastic dominance

of the new treatment to the standard treatment four separate plots are shown in Figure 4.3,

each for a given λ value, corresponding to patient one. The remaining eleven patients exhibit

similar trends.
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Figure 4.3: Stochastic dominance comparison for patient one

From Figure 4.3 it is clear that the new treatment is not stochastically dominant for

all values of NMB. The results indicate that the new treatment is stochastically dominant

for small and moderate NMB values, however as the NMB increases to large values the

standard treatment becomes dominant. In addition, as λ increases, the point at which the

standard treatment becomes stochastically dominant increases. That is, as the amount of
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investment in both treatments increases, the stochastic dominance of the new treatment

holds for more NMB values. This means that increased investment in the new treatment

results in cost-effectiveness for more patients under the new treatment than compared to the

standard treatment. Finally, as noted in the related literature, we have demonstrated that

the comparison of the CDFs is more fruitful in treatment allocation compared to the CEAC.

Next, we will further compare the fiducial and percentile bootstrap approaches based on

coverage probabilities and expected lower limits, reported in the next section.

4.2.1 Coverage probabilities and expected lower limits

We estimated the coverage probabilities associated with the lower tolerance limits

using 5000 simulated samples, when the tolerance limits are computed using the fiducial

approach and the percentile bootstrap approach, for 1 − p = 0.10 and 1 − α = 0.95. The

samples were simulated by choosing the estimates of the parameters obtained in the previous

subsection as the true values. To begin with, we used the sample sizes corresponding to the

example; that is, n1 = 202 for the first treatment group, and n2 = 174 for the second

treatment group. Furthermore, the covariate values used (i.e., the matrices W1 and W2)

were the same as those for the example. For each simulated sample, we used algorithm 7 to

compute the lower tolerance limit with C1 = 1000 and C2 = 2000. In order to estimate the

coverage probability, we also need the true value of the corresponding parameter, namely

the 10th percentile (since 1− p = 0.10). The true value of the 10th percentile was computed

using algorithm 9. The coverage probability results for the fiducial lower tolerance limit

of the first treatment group are reported in Table 4.8 and those pertaining to the second

treatment group are reported in Table 4.9.
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Table 4.8 Coverage probabilities of the fiducial lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment
one under n1 = 202 and n2 = 174 for different values
of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.951 0.950 0.950 0.950
2 0.953 0.953 0.952 0.951
3 0.957 0.955 0.955 0.954
4 0.954 0.955 0.954 0.952
5 0.955 0.956 0.955 0.954
6 0.956 0.955 0.954 0.954
7 0.951 0.950 0.949 0.949
8 0.953 0.952 0.952 0.951
9 0.949 0.949 0.948 0.949

10 0.954 0.953 0.952 0.952
11 0.953 0.954 0.953 0.953
12 0.956 0.956 0.956 0.957

Table 4.9 Coverage probabilities of the fiducial lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment
two under n1 = 202 and n2 = 174 for different values
of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.949 0.949 0.948 0.948
2 0.949 0.949 0.948 0.947
3 0.951 0.950 0.949 0.949
4 0.950 0.949 0.948 0.947
5 0.958 0.957 0.957 0.956
6 0.956 0.955 0.955 0.955
7 0.949 0.948 0.947 0.948
8 0.953 0.951 0.950 0.951
9 0.953 0.952 0.951 0.951

10 0.953 0.952 0.952 0.952
11 0.955 0.954 0.953 0.953
12 0.954 0.954 0.953 0.952

The results in Table 4.8 and Table 4.9 indicate that the coverage probabilities under

the fiducial method are satisfactory under the sample sizes n1 = 202 and n2 = 174.

We shall now report the estimated coverage probabilities for the percentile bootstrap
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approach. The set up is the same as that used for Table 4.8 and Table 4.9. We used 5000

simulated samples, and also used C1 = 1000 and C2 = 2000 while applying (algorithm 8)

in order to compute the lower tolerance limit. The results for the new and the standard

treatment are provided in Table 4.10 and Table 4.11.

Table 4.10 Coverage probabilities of the percentile
bootstrap lower tolerance limits (p = 0.90, 1− α =
0.95) for treatment one under n1 = 202 and n2 = 174
for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.948 0.948 0.947 0.947
2 0.947 0.947 0.947 0.946
3 0.952 0.951 0.951 0.951
4 0.947 0.947 0.948 0.948
5 0.954 0.955 0.954 0.955
6 0.952 0.951 0.951 0.951
7 0.948 0.948 0.948 0.947
8 0.945 0.944 0.943 0.944
9 0.944 0.944 0.944 0.944

10 0.946 0.946 0.946 0.946
11 0.946 0.947 0.947 0.947
12 0.949 0.948 0.947 0.947
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Table 4.11 Coverage probabilities of the percentile
bootstrap lower tolerance limits (p = 0.90, 1− α =
0.95) for treatment two under n1 = 202 and n2 = 174
for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.948 0.948 0.947 0.948
2 0.947 0.947 0.947 0.946
3 0.950 0.950 0.950 0.949
4 0.951 0.949 0.948 0.947
5 0.953 0.952 0.951 0.952
6 0.950 0.949 0.949 0.949
7 0.948 0.947 0.947 0.947
8 0.945 0.946 0.946 0.945
9 0.947 0.946 0.946 0.945

10 0.947 0.947 0.947 0.946
11 0.947 0.946 0.946 0.945
12 0.946 0.944 0.944 0.944

The percentile bootstrap coverage probabilities are also close to the nominal 0.95.

The overall pattern seems to be that the fiducial approach provides coverages that are slightly

larger than the nominal level, and the percentile bootstrap approach provides coverages that

are slightly smaller than the nominal level. However, we can conclude that both the fiducial

and percentile bootstrap approaches provide satisfactory coverage probabilities under the

sample sizes n1 = 202 and n2 = 174. Thus it of interest to compare the expected values of the

lower limits obtained using the two approaches. The expected values of lower tolerance limits

obtained using the fiducial approach are provided in Table 4.12 and Table 4.13, corresponding

to the new treatment and standard treatment, respectively.

105



Table 4.12 Expected values of the fiducial lower tolerance limits (p
= 0.90, 1− α = 0.95) for treatment one under n1 = 202 and
n2 = 174 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 5256.6 10 826.2 21 977.1 44 293.1
2 5540.6 11 409.9 23 164.9 46 682.2
3 4731.9 9750.7 19 802.6 39 916.5
4 4984.6 10 270.1 20 856.8 42 040.5
5 4223.2 8709.0 17 693.4 35 673.4
6 4445.2 9165.8 18 622.4 37 546.5
7 5254.3 10 820.8 21 967.6 44 275.4
8 6944.1 14 287.0 28 987.1 58 402.7
9 5300.5 10 908.6 22 137.1 44 611.0

10 5591.6 11 510.4 23 359.6 47 077.5
11 4738.4 9755.1 19 798.9 39 900.0
12 5000.9 10 296.8 20 900.0 42 115.1

Table 4.13 Expected values of the fiducial lower tolerance limits
(p = 0.90, 1− α = 0.95) for treatment two under n1 = 202 and
n2 = 174 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 1968.7 4095.5 8348.3 16 850.6
2 2039.3 4241.8 8646.2 17 453.7
3 2241.6 4667.4 9516.3 19 214.4
4 2321.3 4832.6 9853.0 19 895.5
5 2528.7 5269.9 10 749.5 21 712.1
6 2615.9 5451.4 11 120.4 22 457.5
7 1968.9 4095.8 8348.4 16 852.7
8 1545.5 3211.4 6541.7 13 199.2
9 1913.5 3978.0 8105.3 16 359.1

10 1985.8 4127.8 8411.3 16 972.4
11 2164.4 4501.4 9173.9 18 517.6
12 2246.8 4672.9 9522.7 19 220.5

We note that since we are computing a lower tolerance limit, the larger the expected

value, the better (provided the coverage probability is satisfactory). Comparing the expected

lower tolerance limits in Table 4.12 and Table 4.13 with the lower limit results obtained in

Table 4.4 and Table 4.5, respectively, the expected limits are larger. However, the difference
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is minimal considering the magnitude of the limits.

Since the lower limits and coverage probabilities from the percentile bootstrap and

fiducial methods were similar, we anticipate that the expected lower limits under the per-

centile bootstrap will exhibit behaviour similar to that under the fiducial approach. The

expected lower limits obtained using the percentile bootstrap method are provided in Table

4.14 and Table 4.15, corresponding to the new and standard treatment, respectively.

Table 4.14 Expected values of the percentile bootstrap lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment one under
n1 = 202 and n2 = 174 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 5310.2 10 925.2 22 167.6 44 666.0
2 5600.7 11 523.3 23 379.1 47 103.4
3 4786.4 9852.9 19 998.3 40 298.4
4 5044.2 10 384.0 21 075.6 42 469.8
5 4275.5 8807.8 17 884.1 36 045.5
6 4504.1 9278.6 18 838.5 37 971.5
7 5310.2 10 924.2 22 165.0 44 655.8
8 7047.5 14 486.9 29 378.1 59 183.7
9 5376.3 11 053.6 22 420.8 45 169.0

10 5682.7 11 684.0 23 700.5 47 742.3
11 4812.8 9899.2 20 082.7 40 462.6
12 5086.6 10 461.6 21 224.4 42 759.0
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Table 4.15 Expected values of the percentile bootstrap lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment two under
n1 = 202 and n2 = 174 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 2008.7 4170.0 8491.8 17 132.0
2 2080.7 4321.0 8797.9 17 752.8
3 2285.9 4751.0 9678.3 19 529.1
4 2368.3 4920.5 10 022.5 20 224.6
5 2578.5 5363.8 10 931.4 22 064.5
6 2668.3 5549.9 11 311.1 22 831.7
7 2007.7 4169.0 8489.5 17 129.9
8 1582.7 3282.1 6677.8 13 467.4
9 1960.0 4066.3 8276.2 16 694.2

10 2033.7 4219.2 8589.2 17 327.1
11 2216.3 4600.2 9365.6 18 895.6
12 2299.9 4774.4 9720.8 19 611.2

The expected lower tolerance limits are slightly larger than those obtained by the

fiducial methodology. This is expected, since the coverage probabilities under the percentile

bootstrap approach were slightly less than those obtained when utilizing the fiducial ap-

proach. The differences in the expected lower limits do not appear to be significant between

the two methods.

For further comparison between the two approaches for small sample sizes, we shall

now consider n1 = n2 = 50. The estimated coverage probabilities are given in Table 4.16,

Table 4.17, Table 4.18, and Table 4.19.
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Table 4.16 Coverage probabilities of the fiducial lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment
one under n1 = n2 = 50 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.954 0.954 0.953 0.952
2 0.957 0.955 0.955 0.954
3 0.958 0.955 0.955 0.955
4 0.957 0.956 0.955 0.955
5 0.959 0.957 0.956 0.956
6 0.959 0.958 0.958 0.957
7 0.955 0.954 0.952 0.952
8 0.956 0.956 0.955 0.955
9 0.955 0.954 0.954 0.953

10 0.955 0.954 0.954 0.953
11 0.958 0.957 0.956 0.955
12 0.958 0.958 0.957 0.957

Table 4.17 Coverage probabilities of the fiducial lower
tolerance limits (p = 0.90, 1− α = 0.95) for treatment
two under n1 = n2 = 50 for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.960 0.959 0.958 0.958
2 0.960 0.959 0.957 0.957
3 0.961 0.960 0.958 0.958
4 0.961 0.958 0.958 0.957
5 0.963 0.961 0.960 0.960
6 0.963 0.960 0.959 0.958
7 0.960 0.959 0.957 0.957
8 0.960 0.959 0.959 0.959
9 0.958 0.957 0.957 0.956

10 0.958 0.957 0.957 0.957
11 0.958 0.956 0.956 0.956
12 0.957 0.957 0.956 0.956

We note that when n1 = n2 = 50, the fiducial approach gives accurate coverages,

though slightly more conservative compared to the large sample results.

Next, we present the coverage probability results under small sample sizes for the

percentile bootstrap procedure.
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Table 4.18 Coverage probabilities of the percentile
bootstrap lower tolerance limits (p = 0.90, 1− α =
0.95) for treatment one under n1 = n2 = 50 for
different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.933 0.933 0.933 0.933
2 0.933 0.933 0.933 0.933
3 0.932 0.932 0.932 0.932
4 0.931 0.930 0.931 0.931
5 0.929 0.929 0.929 0.929
6 0.931 0.930 0.930 0.929
7 0.933 0.933 0.932 0.933
8 0.934 0.933 0.933 0.933
9 0.930 0.931 0.931 0.931

10 0.930 0.931 0.930 0.931
11 0.932 0.931 0.931 0.931
12 0.933 0.934 0.934 0.934

Table 4.19 Coverage probabilities of the percentile
bootstrap lower tolerance limits (p = 0.90, 1− α =
0.95) for treatment two under n1 = n2 = 50 for
different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 2000

1 0.937 0.937 0.937 0.937
2 0.936 0.936 0.936 0.936
3 0.935 0.935 0.934 0.934
4 0.937 0.936 0.935 0.935
5 0.938 0.936 0.936 0.936
6 0.937 0.936 0.937 0.936
7 0.936 0.936 0.936 0.936
8 0.944 0.944 0.944 0.943
9 0.941 0.941 0.941 0.941

10 0.942 0.941 0.942 0.941
11 0.937 0.938 0.937 0.938
12 0.939 0.937 0.937 0.937

The coverage probabilities in Table 4.18 and Table 4.19 are generally below the

nominal level. From the above four tables it is clear that the fiducial method is to be preferred

for small sample sizes. Thus our overall recommendation is the fiducial methodology. We
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also note that the computational effort is essentially the same for both approaches.

4.3 Discussion and conclusions

In this chapter we have developed methods for individualized inference using the

distribution of the NMB random variable for a patient. Lower tolerance limits are constructed

using the fiducial approach and a percentile bootstrap approach. As expected, the lower

tolerance limits are affected by the patient level covariates. The choice of the percentile

to be used (i.e., the value of p) is clearly subjective. The treatment with a larger lower

tolerance limit is recommended over its competitor. Under the choice 1 − p = 0.10, if the

new treatment shows a larger lower tolerance limit for the new treatment for a particular

patient, we conclude with 95% confidence that among such patients, 90% or more have

a larger NMB, compared to the standard treatment. We want to emphasize again that

as was the case in Chapter 2, we are not modelling the NMB random variable directly;

rather, we model the cost and effectiveness data using a bivariate regression model, where

log-transformation can be first applied when necessary, and then consider the distribution

of the NMB under such a model. This appears more appropriate to us, especially when

the cost and/or effectiveness is lognormally distributed. Lastly, we have also demonstrated

through the example that the numerical analysis presented can be complemented by graphical

analysis, our recommendation is to use CDFs over CEAC.
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Chapter 5

Aggregate net monetary benefit: A

stochastic dominance approach

In the previous chapter, we considered a comparison of the distributions of the NMB

random variables based on a specified percentile, in terms of lower tolerance limits. In this

chapter we explore a stronger comparison of the NMB distributions using stochastic ordering.

Clearly, if the NMB distribution corresponding to the new treatment is stochastically larger

compared to that for the standard treatment, we have a strong reason to conclude the

cost-effectiveness of the new treatment. This approach has not been explored in the CEA

literature. In Stinnett and Mullahy (1998) the authors note that stochastic dominance is

an approach to consider in the net-benefit framework. The authors note that stochastic

dominance assessed graphically can complement other analyses; for example, confidence

limits for various criteria that are functions of the parameters of the NMB distribution (we

note that both the INB and ICER are functions of the means of the NMB distributions

for the new treatment and the standard treatment). In addition, the authors highlight the

usefulness of first-order and second-order stochastic dominance in health economics:

Stochastic dominance is a powerful analytic tool because it allows one to identify cases

in which a decision maker should unambiguously prefer one alternative over another

despite the presence of uncertainty, with only very general assumptions required re-
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garding the decision maker’s utility function. (p. S75)

In a paper by Leshno and Levy (2004), the authors assess competing health care

options using stochastic dominance (of first and second order) utilizing empirical distribution

functions. Multivariate first-order dominance analysis is presented in Hussain, Jørgensen

and Østerdal (2016). In this work, the authors investigate dominance comparisons between

population groups based on a comparison of empirical distribution functions that account for

patient-level characteristics. Most approaches (in economics literature) utilizing stochastic

dominance seek testing procedures to accompany their methods or rely solely on graphical

analysis of the CDFs. In this chapter, we propose to develop a methodological framework to

assess the stochastic dominance of the NMB for the new treatment compared to the standard

treatment. However, our analysis will only be an aggregate level analysis, even though the

methodology can be individualized.

5.1 The stochastic dominance criterion

We shall consider the lognormal-normal model for the cost Ci and effectiveness Ei

for a patient in the ith treatment group:

Xi =

 ln(Ci)

Ei

 ∼ N

µi =

 µiC

µiE

 ,Σi =

 σ2
iC ρσiCσiE

ρσiCσiE σ2
iE


 , (5.1.1)

i = 1, 2. Let µ̂i and Σ̂i denote the unbiased estimators of the respective parameters; see

Section 3.3. If Ci and Ei, respectively, denote the cost and effectiveness for a randomly

chosen patient from the ith treatment group, the corresponding NMB, say NMBi, is the

random variable given by

NMBi = λEi − Ci. (5.1.2)

We are interested in comparing the distributions of NMB1 and NMB2 in terms of
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stochastic dominance. We recall that NMB1 is stochastically larger than NMB2 if

P (NMB1 ≥ t) ≥ P (NMB2 ≥ t),

for all t. Before we proceed with this definition, we note that requiring the above to hold for

all t maybe unrealistic. Furthermore, from a practical point of view, all values of t may not

be of interest; for example, very large values of the NMB may not be possible in practice,

and negative values of t may not be of interest. Thus we shall require the above to hold for

all t in an interval (t1, t2), where t1 and t2 are known bounds. Clearly, a decision maker has

to decide what is a reasonable interval. We shall proceed under the assumption that t1 and

t2 are known bounds. Thus our criterion is

P (NMB1 ≥ t)− P (NMB2 ≥ t) ≥ 0, for all t ∈ (t1, t2). (5.1.3)

We note that the condition (5.1.3) is equivalent to

min
t∈(t1,t2)

[P (NMB1 ≥ t)− P (NMB2 ≥ t)] ≥ 0. (5.1.4)

We shall be working with the condition (5.1.4). Note that the left hand side of (5.1.4) involves

unknown parameters; thus we shall compute a lower confidence limit for the left hand side

of (5.1.4), and conclude stochastic dominance if the lower confidence limit is positive. The

fiducial approach as well as the percentile bootstrap approach will be pursued for computing

the required lower confidence limit.

5.2 The assessment of stochastic dominance

We shall first develop a fiducial-based numerical approach for the assessment of

stochastic dominance using the condition (5.1.4). We shall assume that µ̃i and Σ̃i are the
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fiducial quantities for µi and Σi, respectively, i = 1, 2. These fiducial quantities are exhibited

in Section 3.3 of Chapter 3.

Since we are in the lognormal-normal scenario, let Y1i = ln(Ci) and Y2i = Ei. Then

P (NMBi ≥ t) = P (λY2i − eY1i ≥ t) = P
(
Y2i ≥

t+ eY1i

λ

)
(5.2.1)

Since

Y2i|Y1i = y1i ∼ N
[
µiE + ρi

σiE
σiC

(y1i − µCi);
√

(1− ρ2
i )σ

2
iE

]
, (5.2.2)

we have

P (NMBi ≥ t) = 1− EY1i
{

Φ

[
( t+e

y1i

λ
)− µiE − ρi σiEσiC (y1i − µiC)√

(1− ρ2
i )σ

2
iE

]}
(5.2.3)

Our goal is to construct a 100(1-α)% lower confidence limit for

P (NMB1 ≥ t∗)− P (NMB2 ≥ t∗) where t∗ is the value of t that minimizes

P (NMB1 ≥ t)−P (NMB2 ≥ t). Note that t is a function of unknown parameters, and there

is no analytic form for t. Nevertheless, the fiducial approach can be numerically implemented

to compute the required lower confidence limit. The required steps are given in algorithm 10.

In the algorithm, µ̃i and Σ̃i will denote the fiducial quantities for µi and Σi, respectively.

Furthermore, the elements of µ̃i and Σ̃i will be denoted accordingly. For example, with

µi = (µiC , µiE)′, we will write µ̃i = (µ̃iC , µ̃iE)′.
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Algorithm 10: Fiducial lower confidence limits for

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)]

1 Compute the observed values µ̂io and Σ̂io of the estimates µ̂i and Σ̂i, i = 1, 2.

2 For i = 1, 2, independently generate: Hi ∼ W

({
(ni − 1)Σ̂io

}−1

, ni − 1

)
and

Zi ∼ 2× 1 matrix of N(0, 1) random variates.

3 Compute Σ̃i = H−1
i and µ̃i = µ̂io − Σ̃

1/2
i

Zi√
ni

.

4 Generate K random variates Ỹ1ik ∼ N(µ̃iC , σ̃
2
iC), i = 1, 2; k = 1, 2, ...., K.

5 Referring to (5.2.3), compute

Rik = Φ

[
( t+e

ỹ1ik

λ
)− µ̃iE − ρ̃i σ̃iEσ̃iC (ỹ1ik − µ̃iC)√

(1− ρ̃2
i )σ̃

2
iE

]
,

i = 1, 2; k = 1, 2, ...., K.

6 Referring once again to (5.2.3), we see that for a fixed t, a fiducial quantity for

P (NMBi ≥ t) is now given by 1− 1
K

∑K
k=1Rik.

7 For a grid of values of t ∈ (t1, t2), repeat steps 2-6 and compute the fiducial

quantities for P (NMB1 ≥ t) and for P (NMB2 ≥ t), and hence for the

difference P (NMB1 ≥ t)− P (NMB2 ≥ t).

8 Take the minimum of the fiducial quantities of P (NMB1 ≥ t)− P (NMB2 ≥ t)

over the chosen grid of values of t ∈ (t1, t2). This gives a fiducial quantity for

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)].

9 Repeat steps 2-8 M times

10 A lower 100(1− α)% lower confidence limit for

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)] corresponds to the αth percentile

of the M fiducial quantities of mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)].

The steps required to implement the percentile bootstrap approach are identical,

except that instead of using the fiducial quantities for µi and Σi, we shall use parametric

bootstrap samples based on the distributions of µ̂i and Σ̂i. For completeness, the steps are
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given in algorithm 11.

Algorithm 11: Percentile bootstrap lower confidence limits for

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)]

1 Compute the the estimates µ̂i and Σ̂i, i = 1, 2.

2 For i = 1, 2, independently generate: µ̂i∗ ∼ N
[
µ̂i,

1
ni

Σ̂
]

and

Σ̂i∗ ∼ 1
ni−1

W
[
Σ̂i, ni − 1

]
.

3 Generate K random variates Y ∗1ik ∼ N(µ̂iC∗, σ̂
2
iC∗), i = 1, 2; k = 1, 2, ...., K.

4 Referring to (5.2.3), compute

R∗ik = Φ

[
( t+e

y∗1ik
λ

)− µiE∗ − ρi∗ σiE∗σiC∗
(y∗1ik − µiC∗)√

(1− ρ2
i∗)σ

2
iE∗

]

i = 1, 2; k = 1, 2, ...., K.

5 A parametric bootstrap version of P (NMBi ≥ t) is given by 1− 1
K

∑K
k=1R

∗
ik.

6 For a grid of values of t ∈ (t1, t2), repeat the above steps and compute the

parametric bootstrap versions of P (NMB1 ≥ t) and for P (NMB2 ≥ t), and

hence for the difference P (NMB1 ≥ t)− P (NMB2 ≥ t).

7 Take the minimum of the parametric bootstrap versions of

P (NMB1 ≥ t)− P (NMB2 ≥ t) over the chosen grid of values of t ∈ (t1, t2).

This gives a parametric bootstrap version of

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)].

8 Repeat steps 2-7 M times

9 A lower 100(1− α)% lower confidence limit for

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)] corresponds to the αth percentile

of the M parametric bootstrap versions of

mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)].

We will be assessing the accuracy of the proposed methods by estimating cover-
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age probabilities attained from each method. The true values will be computed using a

parametric bootstrap approach, the steps are provided in the next algorithm.

Algorithm 12: Computing mint∈(t1,t2) [P (NMB1 ≥ t)− P (NMB2 ≥ t)]

via parametric bootstrap

1 From the sample of each treatment group compute the estimates µ̂io and Σ̂io,

i = 1, 2.

2 For each i = 1, 2, generate B bootstrap samples:ln[C∗ib]

E∗ib

 ∼ N2

[
µ̂io , Σ̂io

]
, b = 1, . . . , B

3 Compute NMB∗ib = λE∗ib − C∗ib

4 For each t ∈ (t1, t2) compute: γ(t) = 1
B

∑B
b=1

([
NMB∗1b ≥ t

]
−
[
NMB∗2b ≥ t

])
5 Compute mint∈(t1,t2) γ(t) = δNMB

We note that even though our methodology is developed for the lognormal-normal

model, it can be adopted to the lognormal-lognormal model, or to any model under which

the cost and the effectiveness can be individually transformed so that we have bivariate

normality for the transformed random variables.

Remark It is clear that for a fixed t, the quantity P (NMB1 ≥ t) − P (NMB2 ≥ t)

is a function of parameters in the model (5.1.1). Consequently, fiducial inference concerning

P (NMB1 ≥ t) − P (NMB2 ≥ t) is straightforward to develop. Here we would like to note

that even without the bivariate normality assumption in (5.1.1), it is possible to develop confi-

dence limits for P (NMB1 ≥ t)−P (NMB2 ≥ t) using the binomial distribution, provided the

sample NMBs for the first treatment, namely NMB1j = λE1j−C1j, j = 1, . . . , n1, are iid, and

the same assumption can be made for the samples NMBs for the second treatment, namely

NMB2k = λE2k − C2k, k = 1, . . . , n2. Let p1 = P (NMB1 ≥ t) and p2 = P (NMB2 ≥ t), so

that the parameter of interest is p1 − p2. If B1 = # (NMB1 ≥ t) and B2 = # (NMB2 ≥ t),

then under the iid condition, we have B1 ∼ Binomial(n1, p1) and B2 ∼ Binomial(n2, p2).
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Furthermore, we also have the estimates p̂1 = B1

n1
and p̂2 = B2

n2
. Thus confidence limits for

p1 − p2 can be constructed using a normal approximation for p1 − p2. It is also possible to

develop fiducial inference for p1−p2 using fiducial quantities for p1 and p2; see Krishnamoor-

thy and Lee (2010) and Bebu, Mathew, Lachin and Agan (2016). Here we shall not explore

this further.

5.3 An example

The following example is obtained from Kruizenga et al. (2005), in which well-

nourished and malnourished patients were placed under a new treatment and standard

intervention. The aim of the study was the early recognition of malnourishment in hos-

pitalized patients. The study took place from February to June 2003. The new treatment

was a ‘Short Nutritional Assessment Questionnaire’ (‘SNAQ’) malnutrition screening tool

commonly utilized during hospital admissions. The standard treatment was defined as stan-

dardized nutritional care protocol. The two effectiveness outcomes are weight gained and

number of days in hospital. Positive percentage of weight gain and lower hospital days are

associated with the effectiveness of a treatment. Costs are measured in euros (e).

The authors provided summary results for the malnourished patients in the control

and intervention group. The summary statistics obtained prior to transformation are re-

ported in Table 5.1. The summary statistics pertaining to the outcomes of percent weight

change and cost of dietitian for the new and standard intervention are also provided.

119



Table 5.1 Raw summary statistics from the malnutrition trial

Outcome New treatment Standard treatment

E[Cost of Dietitian (e)] 118.2 104.7
SD[Cost of Dietitian (e)] 136.3 174.7

E[Weight change %] -0.1 -0.3
SD[Weight change %] 7.9 5.9

Sample size n1 = 297 n2 = 291

The authors note that costs were ‘skewed to the right’; see Kruizenga et al. (2005,

pg. 1084 ). Therefore, to illustrate the developed methods, we model cost as lognormal and

percent weight change as normal. The mean and standard deviation for the lognormal cost

are computed and reported in the following table. The correlation of the cost and effective-

ness outcomes were not provided in the paper. However, we used a correlation of ρ = 0.1

within our analysis.

Table 5.2 Summary statistics for the malnutrition
trial based on the log-transformed cost

Outcome Intervention Control

E[ln(Cost of Dietitian)] 4.349 3.320
SD[ln(Cost of Dietitian)] 0.920 1.154

E[Weight change %] -0.1 -0.3
SD[Weight change %] 7.9 5.9

Sample size n1 = 297 n2 = 291
Correlation ρ1 = 0.1 ρ2 = 0.1

We begin with a visual analysis of the ECDFs under three values of λ. The resulting

ECDFs are obtained using using 10000 simulated samples and are provided in Figure 5.1.
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Figure 5.1: ECDFs for the malnutrition trial under different values of λ

Based on these ECDFs, there are clear points at which the stochastic dominance

changes from standard treatment to the new intervention. As the willingness-to-pay in-

creases, the distance between the two distribution functions increases. The density functions

are plotted in Figure 5.2 and are also computed using 10000 simulated samples.
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Figure 5.2: Empirical densities for the malnutrition trial under different values of λ

We will now implement the method developed earlier in this chapter to assess if the

new treatment, SNAQ screening, is stochastically dominant over the usual care. The plots

indicate that stochastic dominance is likely to hold for a certain range of values, denoted by

t.
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5.3.1 Lower confidence limits

For each willingness-to-pay value, we used three intervals for t that correspond to

patients having low, midrange, and high NMB values. Along with the three values of λ, this

results in nine cases for the analysis. Using algorithm 10 and algorithm 11, we estimated

the lower confidence limits for the confidence levels 0.95 and 0.90. In order to compute the

required minimum over the range for t, we chose 50 values in the range t, and evaluated

the difference of the NMB tail probabilities for the two treatment groups. Estimates of the

minimum difference between the two probabilities, (5.1.3), obtained using algorithm 12, are

provided in Table 5.3.

Table 5.3 Estimated minimum differences for the malnutrition
trial for different intervals (t1, t2) and for λ = 500, 3000 and 7500

Case ID (t1, t2) λ ST Estimated Min. Diff.

1 (-10000, -2500) 500 2 0.006
2 (1250, 2500) 500 1 0.049
3 (2500, 5000) 500 1 0.056
4 (-45000, -12000) 3000 2 0.024
5 (7500, 15000) 3000 1 0.053
6 (15000, 32500) 3000 1 0.053
7 (-75000, -37500) 7500 2 0.055
8 (18750, 37500) 7500 1 0.053
9 (37500, 87500) 7500 1 0.047

In Table 5.3 the column ‘ST’ denotes the treatment which appears dominant for a

specified interval based on the graphical results of Figure 5.1, such that 1 is the new treatment

and 2 is the standard treatment. The estimated differences are positive for all nine cases.

The smallest difference occurs for patients with a low NMB range when λ = 500, and the

largest difference occurs for patients with the high NMB range under the same willingness-

to-pay value. Overall, these differences appear to be close to zero. To determine if the

stochastic ordering holds, the lower confidence limits were computed and are given in Table

5.4. We have used the values M = 2500 and K = 5000 in algorithm 10 and algorithm 11.
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In the table, the superscripts F and B denote fiducial method and parametric bootstrap,

respectively. Furthermore, QF
0.05 denotes the required 95% lower confidence limit computed

by the fiducial approach, and so on.

Table 5.4 Fiducial & percentile bootstrap lower confidence limits for stochastic dominance
for the malnutrition trial

Case ID (t1, t2) λ ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 (-10000, -2500) 500 2 0.0029 0.0035 0.0028 0.0035
2 (1250, 2500) 500 1 −0.0038 0.0089 −0.0026 0.0089
3 (2500, 5000) 500 1 0.0233 0.0319 0.0239 0.0324
4 (-45000, -12000) 3000 2 −0.0043 0.0078 −0.0036 0.0073
5 (7500, 15000) 3000 1 0.0023 0.0137 0.0023 0.0140
6 (15000, 32500) 3000 1 0.0286 0.0344 0.0263 0.0333
7 (-75000, -37500) 7500 2 0.0076 0.0188 0.0093 0.0183
8 (18750, 37500) 7500 1 0.0001 0.0115 0.0021 0.0126
9 (37500, 87500) 7500 1 0.0245 0.0304 0.0246 0.0305

Based on the results in Table 5.4, it appears that the fiducial and percentile boot-

strap lower limits are close. The standard treatment, denoted by ‘ST= 2’, is stochastically

dominant for cases 1, 4, and 7, when using confidence level 0.90. For the smallest and largest

λ the stochastic dominance also holds when the confidence level is 0.95. For case 2, the new

treatment is not cost-effective at 95% confidence but is cost-effective at 90% confidence. Ex-

cept for cases 1, 2, 4, and 7, the new treatment is cost-effective, as the lower limits for the

minimum difference of stochastic dominance are positive. In particular, these results permit

the conclusion that all patients with large NMB values benefit using treatment one instead

of treatment two. The results also indicate that patients with lower NMB values tend to

benefit more when taking the standard treatment as compared to the new treatment.

In addition, the new treatment tends to be cost-effective for patients in the middle

range as well. From Figure 5.1 and Figure 5.2, we notice that as λ increases, the distance

between the ECDFs and empirical density functions appear to be increasing as well. The

results in Table 5.4 support this observation, as comparison of the 90% lower confidence

limits from the percentile bootstrap approach for each type of patient (low, mid-range, and
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large NMBs) has increasing limits as a function of λ (with exception of patients with larger

NMB values). This result cannot be stated as strongly for the other three lower limits, as

some decrease for certain values of λ, depending on the range of the NMB.

5.3.2 Coverage probabilities and expected lower limits

In order to assess the accuracy of the lower confidence limits obtained using the

fiducial and percentile bootstrap approaches, we estimated the coverage probabilities using

5000 simulated samples. We also chose M = 1000, K = 5000 in the algorithms. The

lognormal-normal model was used to generate the data, and the parameter estimates given

in Table 5.2 were used as the true values.

Table 5.5 Coverage probabilities of the lower
confidence limits obtained by the fiducial &
percentile bootstrap methods;
n1 = 297, n2 = 291

Case ID QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 0.960 0.914 0.962 0.910
2 0.947 0.900 0.945 0.893
3 0.959 0.915 0.960 0.916
4 0.969 0.931 0.971 0.933
5 0.946 0.900 0.945 0.893
6 0.959 0.916 0.960 0.915
7 0.968 0.934 0.969 0.935
8 0.946 0.901 0.945 0.893
9 0.959 0.914 0.961 0.917

The coverage probability results are mostly similar for both approaches; however,

the fiducial method appears to provide coverage probabilities closer to the nominal level,

compared to the percentile bootstrap method. The cases under analysis also have an ef-

fect on the resulting coverage probabilities, with some cases having conservative coverage

probabilities. For example, coverage probabilities for cases 4 and 7 tend to be the most

conservative compared to other cases. These two cases correspond to patients with lower
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NMB values when standard treatment is stochastically dominant.

The two methods can be further compared based on the expected lower limits. The

results of are provided in Table 5.6. Larger lower limits indicate higher precision.

Table 5.6 Expected values of the lower confidence
limits using fiducial & percentile bootstrap methods;
n1 = 297, n2 = 291

Case ID QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 −0.0045 −0.0008 −0.0045 −0.0008
2 −0.0031 0.0082 −0.0025 0.0088
3 0.0208 0.0289 0.0213 0.0294
4 −0.0080 0.0000 −0.0082 −0.0001
5 0.0006 0.0120 0.0012 0.0126
6 0.0219 0.0293 0.0223 0.0297
7 0.0071 0.0168 0.0068 0.0166
8 0.0011 0.0124 0.0017 0.0130
9 0.0198 0.0264 0.0202 0.0268

The results in Table 5.6 indicate that the expected lower limits tend to be larger

under the percentile bootstrap approach. However, the differences between the expected

lower limits appear slight. To further investigate the accuracy between the two methods we

provide results for small sample sizes, n1 = n2 = 50.

Table 5.7 Coverage probabilities of the lower
confidence limits obtained by the fiducial &
percentile bootstrap methods; n1 = n2 = 50

Case ID QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 0.972 0.940 0.987 0.959
2 0.953 0.909 0.954 0.907
3 0.967 0.933 0.977 0.941
4 0.980 0.952 0.986 0.963
5 0.952 0.908 0.955 0.908
6 0.969 0.934 0.978 0.946
7 0.972 0.937 0.972 0.940
8 0.952 0.908 0.955 0.908
9 0.971 0.936 0.979 0.949
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Table 5.8 Expected values of the lower confidence
limits using fiducial & percentile bootstrap methods;
n1 = n2 = 50

Case ID QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 −0.0660 −0.0466 −0.0623 −0.0439
2 −0.0753 −0.0482 −0.0780 −0.0509
3 −0.0431 −0.0212 −0.0440 −0.0228
4 −0.0804 −0.0574 −0.0771 −0.0546
5 −0.0720 −0.0448 −0.0748 −0.0475
6 −0.0414 −0.0201 −0.0425 −0.0218
7 −0.0632 −0.0395 −0.0590 −0.0359
8 −0.0716 −0.0444 −0.0744 −0.0471
9 −0.0421 −0.0214 −0.0432 −0.0232

Based on the small sample size results presented in Table 5.7 and Table 5.8 it is

clear that the coverage probabilities are generally conservative when using the fiducial and

percentile bootstrap methodologies. However, under these sample sizes the fiducial approach

does appear to be slightly less conservative than the percentile bootstrap approach. An

important point to note is that all of the expected lower confidence limits are negative

under these small sample sizes, when they were previously largely positive when utilizing

the larger sample sizes (original sample sizes n1 = 297, n2 = 291). Therefore, it is clear that

our methodology performs satisfactorily for larger sample sizes, but not for small sample size

scenarios.

5.4 Discussion

Decision making based on stochastic dominance has been under-utilized in the CEA

literature. In this chapter, we have develop a framework for doing so, by considering the

stochastic dominance of the distributions of NMBs from competing treatments. The method-

ology is developed and illustrated under a lognormal-normal model. As already noted, the

methodology can be modified for other distributions that can be transformed to normality,
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at least approximately. For example, if the cost data are distributed as gamma, a cube-root

transformation can be used to achieve approximate normality (referred to as the Wilson-

Hilferty transformation). Application of our methodology does require the specification of a

range over which stochastic domination of the NMB is required to hold.

The analysis we have carried out is under a model without covariates; that is, it is

an aggregate level analysis. The approach can be individualized by considering the bivariate

regression model that was investigated elsewhere in the thesis.

5.5 Appendix- Further simulation results

In this Appendix, we shall demonstrate our approach by considering six cases of

cost and effectiveness outcomes where transformations have to be applied in order to achieve

normality or approximate normality. The parameters used for the simulation analysis are

provided in Table 5.9. The parameter values reported are for the parameters of the bi-

variate normal distribution after applying transformations (if necessary) to the cost and/or

effectiveness.

Table 5.9 Treatment parameters for simulation
analysis

Treatment µiC µiE σiC σiE ρ

1 11.439 4.996 0.097 0.022 0.100
2 10.618 4.598 0.083 0.018 0.100

The six cases considered for this analysis are provided in Table 5.10, sample sizes

used are n1 = n2 = 200.

128



Table 5.10 The six cases for
simulation analysis

Case ID Cost Dist. Effect. Dist.

1 Gamma Lognormal
2 Gamma Gamma
3 Gamma Normal
4 Lognormal Lognormal
5 Lognormal Gamma
6 Lognormal Normal

A set of data corresponding to each of the six cases in Table 5.10 were simulated

using a bivariate normal model similar to (5.1.1), with modification to account for the specific

transformations used. In particular, we point out that the transformation of the outcomes

with marginal gamma distributions is the cube-root transformation. For the six cases of

the cost and effectiveness outcomes, the following are the expressions for the NMB tail

probabilities computed in accordance with (5.2.3).

Case 1 :

Y1 = C1/3;Y2 = ln(E)

P (NMB ≥ t) = 1− EY1
{

Φ

[
ln
[
t+y31
λ

]
− µE − ρσEσC (y1 − µC)√

(1− ρ2)σ2
E

]} (5.5.1)

Case 2:

Y1 = C1/3;Y2 = E1/3

P (NMB ≥ t) = 1− EY1
{

Φ

[[ t+y31
λ

]1/3

− µE − ρσEσC (y1 − µC)√
(1− ρ2)σ2

E

]} (5.5.2)
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Case 3 :

Y1 = C1/3;Y2 = E

P (NMB ≥ t) = 1− EY1
{

Φ

[
[
t+y31
λ

]− µE − ρσEσC (y1 − µC)√
(1− ρ2)σ2

E

]} (5.5.3)

Case 4:

Y1 = ln(C);Y2 = ln(E)

P (NMB ≥ t) = 1− EY1
{

Φ

[
ln
[
t+ey1
λ

]
− µE − ρσEσC (y1 − µC)√

(1− ρ2)σ2
E

]} (5.5.4)

Case 5 :

Y1 = ln(C);Y2 = E1/3

P (NMB ≥ t) = 1− EY1
{

Φ

[[ t+ey1
λ

]1/3

− µE − ρσEσC (y1 − µC)√
(1− ρ2)σ2

E

]} (5.5.5)

Case 6:

Y1 = ln(C);Y2 = E

P (NMB ≥ t) = 1− EY1
{

Φ

[
[ t+e

y1

λ
]− µE − ρσEσC (y1 − µC)√

(1− ρ2)σ2
E

]} (5.5.6)

We apply algorithm 10 and algorithm 11 to the six cases in Table 5.10. For each

of the six cases, there will be nine estimates of the lower confidence limits corresponding to

three values of λ and three intervals specified for t. The three intervals for t represent low,

mid-range, and high NMB values, and were selected based on ECDFs. The ECDFs plotted

in this section are based on 10000 simulations.

All the cases demonstrate that as the willingness-to-pay parameter increases the

stochastic dominance shifts from the second treatment to the first treatment. Each case in
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Table 5.10 is evaluated for cost-effectiveness using three values of λ. The values of λ were

chosen on a case by case basis to determine when the stochastic dominance changes from

the second treatment to the first treatment.

Each table in this section corresponds to one of the six cases provided in Table 5.10.

The analysis of these cases indicates that overall the percentile bootstrap and fiducial meth-

ods provide lower confidence limits for stochastic dominance that are similar. Each table

contains the following columns: Interval, λ, Increment, ST, QF
0.05, QF

0.10, QB
0.05, and QB

0.10.

The Interval column indicates the interval of NMB values of interest. The distance between

consecutive t values is denoted by ‘Increment’. The stochastically dominant treatment is

denoted by ‘ST’ (based on ECDFs). The 95% and 90% lower confidence limits obtained by

the fiducial method are denoted as QF
0.05 and QF

0.10, respectively. The 95% and 90% lower

confidence limits obtained by the percentile bootstrap method are denoted as QB
0.05 and QB

0.10,

respectively.
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Figure 5.3: ECDFs for case 1 under different values of λ
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Table 5.11 Fiducial & percentile bootstrap lower limits for case 1 for different
intervals (t1, t2) and for λ = 8, 10 and 25

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

1 (-500, -333) 8 25 1 0.008 0.019 0.009 0.020
1 (-333, -167) 8 25 1 0.156 0.165 0.154 0.165
1 (-167, 0.00) 8 25 1 0.057 0.063 0.056 0.062
1 (-300, -67) 10 25 1 0.105 0.115 0.103 0.115
1 (-67, 167) 10 25 1 0.184 0.192 0.182 0.190
1 (167, 400) 10 25 1 0.041 0.045 0.039 0.043
1 (10007, 1667) 25 50 1 0.147 0.154 0.144 0.153
1 (1667, 2333) 25 50 1 0.365 0.374 0.363 0.372
1 (2333, 3000) 25 50 1 0.072 0.077 0.071 0.071

The results for Table 5.11 pertain to the case in which the cost has a gamma dis-

tribution and the effectiveness is lognormally distributed. Based on the ECDF results in

Figure 5.3, one expects that lower limits should be positive for all interval and λ combina-

tions. The results in the above table are in agreement with this visual assessment. Hence,

for this analysis the first treatment is stochastically dominant for all patients under the given

values of λ.
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Figure 5.4: ECDFs for case 2 under different values of λ
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Table 5.12 Fiducial & percentile bootstrap lower limits for case 2 for different
intervals (t1, t2) and for λ = 8, 10 and 25

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

2 (-600, -533) 8 10 2 0.138 0.147 0.138 0.148
2 (-533, -467) 8 10 2 0.185 0.197 0.182 0.196
2 (-467, -400) 8 10 2 0.131 0.146 0.135 0.151
2 (-500, -375) 10 25 2 0.022 0.027 0.022 0.027
2 (-375, -250) 10 25 2 0.013 0.027 0.015 0.030
2 (-50, 50) 10 25 1 −0.011 −0.004 −0.013 −0.005
2 (1000, 1333) 25 50 1 0.101 0.108 0.099 0.105
2 (1333, 1667) 25 50 1 0.386 0.397 0.386 0.397
2 (16677, 2000) 25 50 1 0.095 0.101 0.093 0.098

Case 2 is the scenario where the cost and effectiveness outcomes each follow a gamma

distribution. The ECDFs in Figure 5.4 corresponding to this case indicate that the second

treatment group is stochastically dominant for most NMB values when λ = 8, 10. The

results in the proceeding table indicate that this dominance holds. For the interval (-50, 50)

and λ = 10 the lower limits are negative, indicating that treatment one is not stochastically

dominant. Inspecting the ECDFs it is clear that the distance between the distribution

functions for this interval is small. The stochastic dominance of treatment one for the largest

λ value holds, as one would anticipate from a visual inspection of the ECDFs. Hence, the

second treatment is recommended for all patients when using the lower values of λ. The first

treatment is recommended for all patients when the value of λ is increased to 25.

The ECDF for case 3, under three values of λ are provided in the next figure.
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Figure 5.5: ECDFs for case 3 under different values of λ

The results obtained for case 3 are reported in Table 5.13.
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Table 5.13 Fiducial & percentile bootstrap lower limits for case 3 for different intervals
(t1, t2) and for λ = 500, 750 and 1000

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

3 (800, 942) 500 25 2 0.050 0.054 0.048 0.053
3 (942, 1083) 500 25 2 0.200 0.209 0.199 0.209
3 (1083, 1225) 500 25 2 0.067 0.076 0.068 0.076
3 (2000, 2075) 750 10 2 0.001 0.008 −0.001 0.007
3 (2075, 2150) 750 10 2 −0.017 −0.004 −0.016 −0.003
3 (2400, 2550) 750 10 1 −0.010 −0.000 −0.011 0.000
3 (3200, 3400) 1000 50 1 0.017 0.024 0.016 0.024
3 (3400, 3600) 1000 50 1 0.127 0.138 0.127 0.139
3 (3600, 3800) 1000 50 1 0.026 0.028 0.024 0.028

In all cases in Table 5.13, the fiducial and percentile bootstrap lower limits are

relatively close. For case 3 and λ = 500, the standard treatment is stochastically dominant

for low, mid-range, and high NMB values. This indicates that this treatment is cost-effective

for all patients.

For λ = 750, treatment two is stochastically dominant for patients with lower NMB

values, when using the fiducial approach, but not so for the percentile bootstrap results. In

particular, the lower 95% confidence limit is slightly greater than 0, 0.001, while the percentile

bootstrap approach is slightly negative, -0.001. However, the 90% lower confidence limits

are positive for both approaches. The lower limits for patients with mid-range NMB values

are negative for both methods and confidence levels, indicating the second treatment is not

cost-effective for these patients. The lower limits for patients with high values of NMB at

λ = 750 are negative when using a confidence level of 0.95 and almost equal zero under a

confidence level of 0.90.

When λ = 1000, the new treatment dominates as the lower limits are positive.

Analysing the results for this case leads to the following conclusions: (i) what visually

appears to be stochastically dominant based on ECDFs may not be statistically so; and (ii)

choice of confidence level may influence the results.
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Next we consider case 4.
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Figure 5.6: ECDFs for case 4 under different values of λ
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Table 5.14 Fiducial & percentile bootstrap lower limits for case 4 for different intervals (t1, t2)
and for λ = 1100, 1500 and 2500

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

4 (0, 25000) 1100 500 2 0.030 0.033 0.029 0.032
4 (25000, 50000) 1100 500 2 0.077 0.086 0.075 0.084
4 (75000, 112000) 1100 500 1 0.026 0.041 0.027 0.040
4 (40000, 65000) 1500 200 2 0.015 0.017 0.014 0.016
4 (100000, 145000) 1500 200 1 0.053 0.066 0.051 0.064
4 (145000, 190000) 1500 200 1 0.049 0.053 0.046 0.051
4 (175000, 241667) 2500 200 1 0.090 0.099 0.089 0.097
4 (241667, 308333) 2500 200 1 0.241 0.249 0.236 0.246
4 (308333, 375000) 2500 200 1 0.042 0.044 0.039 0.044

The results of Table 5.14 are based on cost and effectiveness measures that are each

lognormally distributed. Based on the ECDFs in Figure 5.6 it appears that the second treat-

ment is stochastically dominant for patients with lower NMB values when λ = 1100, 1500.

Patients with mid-range NMB values attain cost-effectiveness under the second treatment

when λ = 1100, and achieve cost-effectiveness under the first treatment when λ = 1500, 2500.

For λ = 2500 the first treatment appears to be stochastically dominant for all patients. All

of the lower limits are positive in Table 5.14 confirming the visual inspection.
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Figure 5.7: ECDFs for case 5 under different values of λ
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Table 5.15 Fiducial & percentile bootstrap lower limits for case 5 for different intervals (t1, t2)
and for λ = 1500, 2500 and 5000

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

5 (37500, 68750) 1500 200 2 0.049 0.053 0.048 0.052
5 (68750, 100000) 1500 200 2 0.116 0.134 0.120 0.132
5 (131250, 140000) 1500 200 1 0.014 0.020 0.013 0.019
5 (137500, 167000) 2500 200 2 0.001 0.010 0.001 0.010
5 (200000, 231000) 2500 200 1 0.085 0.101 0.087 0.103
5 (231000, 262000) 2500 200 1 0.075 0.081 0.075 0.081
5 (400000, 466667) 5000 400 1 0.100 0.106 0.096 0.103
5 (466667, 533333) 5000 400 1 0.387 0.398 0.387 0.398
5 (533333, 600000) 5000 400 1 0.091 0.097 0.089 0.096

Case 5 corresponds to the scenario where the cost is lognormally distributed and

the effectiveness is gamma distributed. The resulting ECDFs in Figure 5.7 indicate that the

second treatment is stochastically dominant when λ = 1500 and the NMB values are not

high. For λ = 2500 the first treatment is stochastically dominant for all patients, except

those with low NMB values. When λ = 5000 the first treatment is stochastically dominant

for all patients. Because the resulting lower limits in Table 5.15 are all positive the preceding

visual assessment holds.
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Figure 5.8: ECDFs for case 6 under different values of λ
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Table 5.16 Fiducial & percentile bootstrap lower limits for case 6 for different intervals (t1, t2) and for
λ = 100000, 150000 and 250000

Case ID (t1, t2) λ Increment ST QF
0.05 QF

0.10 QB
0.05 QB

0.10

6 (350000, 381250) 100 000 200 2 0.049 0.053 0.047 0.051
6 (381250, 412500) 100 000 200 2 0.143 0.158 0.145 0.158
6 (440000, 460000) 100 000 200 1 −0.020 −0.012 −0.021 −0.013
6 (575000, 612500) 150 000 200 2 0.016 0.019 0.015 0.018
6 (662000, 681000) 150 000 100 1 0.093 0.104 0.093 0.104
6 (681000, 700000) 150 000 100 1 0.047 0.051 0.045 0.050
6 (1080000, 1120000) 250 000 200 1 0.109 0.118 0.108 0.118
6 (1120000, 1160000) 250 000 200 1 0.320 0.332 0.324 0.335
6 (1160000, 1200000) 250 000 200 1 0.109 0.115 0.106 0.112

The last case for the simulation analysis occurs when the cost and effectiveness

outcomes follow a lognormal and normal distribution, respectively. The visual analysis of the

ECDFs in Figure 5.8 indicates that when λ = 100000 the second treatment is stochastically

dominant for all patients, with the exception of those with very high NMB values. For

λ = 150000 the first treatment dominates when the NMB values are midrange and large, in

contrast, lower NMB values result in the second treatment dominating. When λ is increased

to 250000 the first treatment is stochastically dominant or all patients. The fiducial and

percentile bootstrap results in Table 5.16 are in agreement regarding dominance for all

intervals and values of λ. The visual analysis discussed for this case appears to hold as all

lower confidence limits are positive, with one exception. When λ = 100000 the patients with

the highest NMB values, corresponding to the interval, (440000, 460000), do not achieve

cost-effectiveness under treatment one. For this interval Figure 5.8 shows that the distance

between the ECDFs is very slight, hence the resulting lack of dominance is not surprising.
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Chapter 6

Individualized cost-effectiveness

analysis for multi-center trials

The literature on cost-effectiveness analysis has been dominated by methods that

focus on randomized controlled trials (RCTs). However, outcomes from multi-center tri-

als and cluster-randomized trials have also been considered. This chapter focuses on cost-

effectiveness methods for data obtained from multi-center trials. Such trials are clinical trials

conducted over multiple centers, where patients in a particular center are randomized to one

of two treatments. Therefore, multi-center trials have a hierarchical structure, and patients

within the same center could have correlated outcomes. Thus, multi-center trials have two

types of variabilities: (i) between-patient variability within a center, and (ii) between-center

variability. The first variability is a measure of heterogeneity amongst patients. Similarly, the

latter is a measure of heterogeneity amongst centers. Accordingly, analysis of multi-center

trial data must account for both types of variations.

The variation amongst centers may stem from multiple sources. Petri, M., et al.

(2005) point out that in the context of health economics analysis such trials often exhibit

heterogeneity of cost outcomes across centers. Particularly, the authors highlight that even

though protocol surrounding treatment administration can be standardized across centers,
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costs often vary depending on location of centers and organizational aspects. In addition,

Manju, Candel and Berger (2015) note that costs and medical resources associated with

treatments may vary across centers. In essence, the distribution among outcomes may differ

across centers and such differences should be accounted for.

We note that related literature on multi-center trials include analysis of correlated

and clustered data. In particular, some literature refer to centers as clusters. However,

cluster-randomized trials and multi-center trials differ in the randomization unit, an im-

portant distinction. Cluster-randomized trials (CRTs) most often refer to clinical trials in

which the randomization of treatment occurs at the cluster-level. In contrast, in multi-center

trials the randomization of treatment occurs at the patient-level. Therefore, in CRTs pa-

tients in the same cluster all receive the same treatment; whereas, in multi-center trials,

patients within the same center may receive different treatments. To highlight this distinc-

tion, throughout this work we refer to this effect as center-effect instead of cluster-effect.

The differences and similarities between these two trial designs are noted in Moerbeek, van

Breukelen and Berger (2003) and Manca et al. (2005). In particular, Manca et al. (2005)

note:

In trials that randomise by location rather than by patient (i.e. cluster-randomised tri-

als), the hierarchical nature of the data available for economic analysis is an inevitable

implication of the design of the study. However, at least for economic analysis, some

degree of clustering is also likely to exist in trials where the patient is the ‘unit of ran-

domisation’ due to variation between locations in clinical and economic parameters.

(p.474)

Numerous models and methods have been proposed for inference based on multi-

center data, highlighting the importance of accounting for between-center heterogeneity.

Ignoring this source of variation may have several consequences, one being that results may

indicate more substantial differences between treatments than what truly exist (Petri, M.,

et al. (2005)). The approach used in the literature consists regression models of various

varieties to model the outcomes. One approach involves synthesizing summary statistics
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from the centers to obtain information about each treatment. This analysis can be classified

as an aggregate meta-analysis approach. Our work focuses on assessment of treatments using

patient-level and center-level information, which may be classified as an individual patient

data meta-analysis. Two general approaches are utilized to model outcomes associated

with multi-center trials: (i) fixed-effects model, and (ii) mixed-linear models that include

random-effect(s) at the center-level. Associated literature has compared such methods, their

advantages and limitations. Such comparisons are included in Kahan and Harhay (2015),

Basagana et al. (2018), and Moerbeek, van Breukelen and Berger (2003). Bayesian

approaches have also been adopted; see Thompson, Turner and Warn (2001).

The simplest models are fixed effect regression models that incorporate both patient-

level and center-level characteristics through covariates. Typically, a single center-effect is

incorporated in the model using a dummy variable. These models are straightforward to

analyze as they only utilize sampling error at the patient-level. However, analysis under

the fixed-effects regression framework omits center-specific random effects. In Manca et al.

(2005) the authors note how such models ignore important correlation amongst trials:

The key implication of clustering in economic data in multi-centre and multinational

trials is that the cost-effectiveness of the interventions of interest may vary between

locations. Most trial- based economic studies of this type, however, ignore this potential

source of variability. (p.472)

In the context of multi-center trials, models that include center-level random effects

are referred to as multi-level models (MLMs) or hierarchical linear models. One advantage of

MLMs is that these models utilize within and between center information. In particular, the

analysis accounts for the dependence of outcomes from patients nested within the same center

while treating the patient as the unit of analysis. The inclusion of a center-level random effect

allows for generalizability of results to similar centers that are not included in the analysis.

Under this general framework of MLMs, authors have proposed univariate and multi-variate

models. The net monetary benefit (NMB), considered earlier in the thesis, is modelled

directly using an MLM approach in Manca et al. (2005). Their regression model utilizes
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random-slopes and random-intercepts to account for center-level heterogeneity, and models

the NMB directly. The approach presented in this chapter utilizes the MLM framework in

which we model patient-level outcomes directly, as we have done earlier in the thesis.

In addition to proposing models for outcomes from multi-center trials, authors have

also compared various estimation procedures for such models. These methods include or-

dinary least squares (OLS), full maximum likelihood (MLE), and restricted maximum like-

lihood (REML). Of these three estimation methods, the REML is utilized in our work as

it provides estimates that have reduced bias compared to that of the MLE approach. In

Goldstein (1986) the author shows that the iterative generalised least squares procedure

(IGLS) results in estimates that are equivalent to the maximum likelihood estimates for

normal outcomes. In Goldstein (1989) and Goldstein (2011) the author demonstrates that

using the restricted iterative generalized least squares procedure (RIGLS) results in esti-

mates equivalent to the restricted maximum likelihood estimates for normally distributed

outcomes. The RIGLS procedure only requires a simple modification to the residuals. A

book-length discussion on MLMs and the associated estimation procedures is available in

Goldstein (2011) .

6.1 Multi-level model and estimation

Suppose bivariate data on the cost and effectiveness are available on two treatments

from g centers, and let njk denote the number of patients assigned to the kth treatment at

the gth center; k = 1, 2, j = 1, . . . , g; and i = 1, . . . njk. Let Ci
jk and Ei

jk, respectively,

denote the cost and effectiveness measures for the ith patient assigned to the kth treatment

at the jth center. We shall use the lognormal-lognormal model. The bivariate outcome,
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X i
jk = (ln(Ci

jk), ln(Ei
jk))

′, is modelled as

X i
jk =

ln(Ci
jk)

ln(Ei
jk)

 = γj +BT
k w

i
jk + εijk + uj; k = 1, 2, j = 1, . . . , g; i = 1, . . . njk (6.1.1)

where γj = (γCj , γ
E
j )T is a center-specific intercept, wijk is a subject-level p × 1 fixed effects

vector (covariates), Bk is a p× 2 matrix of unknown parameters, uj is a center-level random

effect, and εijk is the subject-specific random error. We shall denote the number of patients

in center j as nj., and n.k will denote the number of subjects assigned to treatment k among

all the centers. In addition, we shall write N =
∑2

k=1

∑g
j=1 njk = n.1 + n.2.

Model (6.1.1) differs from other cited MLMs in two key aspects: (i) inclusion of

treatment-specific regression parameters, and (ii) specification of the covariance structure.

Typically, MLMs in the literature have simply included treatment as a fixed effect dummy

variable and patient-level covariates are incorporated to estimate average outcomes at the

center-level. However, our model avoids the assumption that patient characteristics affect

outcomes of differing treatments in the same manner. Further, as seen in (6.1.2) we also

do not assume that subject-level error covariance matrix is the same across centers or treat-

ments. Our distributional assumptions are as follows:

εijk ∼ N2


0

0

 , Σjk

 ,Σjk =

σjkCC σjkCE

σjkCE σjkEE


uj ∼ N2


0

0

 , Ψ

 ,Ψ =

τCC τCE

τCE τEE


(6.1.2)

The heterogeneity amongst the centers is represented by Ψ. The cost and effectiveness

outcomes within a center share a common random effect uj, which accounts for correlation

among these outcomes.

Let Xjk denote the 2 × njk matrix of bivariate outcomes of cost and effectiveness
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from all njk subjects belonging to center j and treatment group k. Let wjk and εjk be defined

similarly. The regression model for Xjk is

Xjk = γj1
T
njk

+BT
k wjk + εjk + uj1

T
njk

; k = 1, 2; j = 1, . . . , g, (6.1.3)

where 1m denotes an m× 1 vector of ones.

If we consider the case in which there are only two centers, j = 1, 2, then we can

express the outcomes of all patients in each center using the models

X1 =

(
X11 X12

)
=

(
γ1 γ2 BT

1 BT
2

)
D1 + u111×n1 +

(
ε11 ε12

)
X2 =

(
X21 X22

)
=

(
γ1 γ2 BT

1 BT
2

)
D2 + u211×n2 +

(
ε21 ε22

)
,

(6.1.4)

where D1 and D2 are defined as:

D1 =



11×n11 11×n12

01×n11 01×n12

w11 0

0 w12


, D2 =



01×n21 01×n22

11×n21 11×n22

w21 0

0 w22


(6.1.5)

In (6.1.4) X1 is the (2 ×n1.) matrix of the cost and effectiveness outcomes from all the

patients in center one, and X2 is the (2 ×n2.) matrix of the cost and effectiveness outcomes

from all the patients in center two.
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Now let rj = uj1
T
(nj.×1) + (εj1, εj2) . Then rj has the following distribution:

rj ∼ N2


0

0

 , Vj


Vj = J(nj×nj) ⊗Ψ +

I(nj1×nj1) 0

0 0

⊗ Σj1 +

0 0

0 I(nj2×nj2)

⊗ Σj2

Vj(2nj×2nj)
=


Σj1 + Ψ . . . Ψ

...
. . .

...

Ψ . . . Σj2 + Ψ



(6.1.6)

An iterative generalized least squares (IGLS) estimation approach will now be dis-

cussed for estimating parameters in the model (6.1.1). This approach has been shown to

produce consistent estimators (Goldstein (1986)). The method estimates the covariance

parameters and regression parameters together in an iterative fashion. In presenting the

IGLS methodology of estimation for the multivariate multilevel model (6.1.1), we utilize the

notation presented in Veiga, Smith and Brown (2014). In doing so, we will express Vj in

(6.1.6) as a linear function of the covariance parameters. The elements of the vector θ are

the distinct parameters in the covariance matrices Vj. Since the matrices Ψ, Σj1, and Σj2,

are each 2 × 2, there is a total of 3 + 3g + 3g = 3 + 6g parameters to be estimated for the

covariance matrices when there are g centers. Write

Ψ =

τCC τCE

τCE τEE

 , Σj1 =

σj1CC σj1CE

σj1CE σj1EE

 and Σj2 =

σj2CC σj2CE

σj2CE σj2EE


Let θ be the vector of unknown covariance parameters. In order to have a convenient

notation for θ, let
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θ̃0 = (θ1, θ2, θ3)T = (τCC , τCE, τEE)T

θ̃j = (θj4, θj5, θj6, θj7, θj8, θj9)T =

(σj1CC , σj1CE, σj1EE, σj2CC , σj2CE, σj2EE)T ,

θj = (θ̃T0 , θ̃
T
j )T

(6.1.7)

j = 1, 2, ...., g, so that

θ = (θ̃T0 , θ̃
T
1 , θ̃

T
2 , ...., θ̃

T
g )T . (6.1.8)

The covariance matrix Vj in (6.1.6) can be written as

Vj =
3∑
s=1

θsGsj +
9∑
s=4

θjsGjs

Gjs = J(nj×nj) ⊗Hjs +

I(nj1×nj1) 0

0 0


nj×nj

⊗∆js +

0 0

0 I(nj2×nj2)


nj×nj

⊗ Γjs

Hj1 =

1 0

0 0

 , Hj2 =

0 1

1 0

 , Hj3 =

0 0

0 1

 , Hjs =

0 0

0 0

 , for s= 4, 5, 6, 7, 8, 9

∆j4 =

1 0

0 0

 ,∆j5 =

0 1

1 0

 ,∆j6 =

0 0

0 1

 ,∆js =

0 0

0 0

 , for s = 1, 2, 3, 7, 8, 9

Γj7 =

1 0

0 0

 ,Γj8 =

0 1

1 0

 ,Γj9 =

0 0

0 1

 ,Γjs =

0 0

0 0

 , for s = 1, 2, 3, 4, 5, 6

(6.1.9)

The IGLS methodology iterates between estimation of B̂ (stage 1) and θ̂ (stage

2) until convergence is reached. Here B is the matrix consisting of all the fixed effect

parameter vectors in the model (6.1.3). Let superscript r denote the rth iteration, where r =
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0 corresponds to the initial values. The IGLS algorithm for multivariate multilevel models

will now be outlined. Vectorized notation will be used for computational purposes. The

vectorized model for center j is given by:

X̃j = D̃jβ + (1nj×1 ⊗ I2)uj + ε̃j, (6.1.10)

where

β =



γC1

γE1
...

γCg

γEg

vec(BT
1 )2p×1

vec(BT
2 )2p×1


(4p+2g)×1

; D̃j = (DT
j ⊗ I2); ε̃j = vec

[
(εj1, εj2)

]
, (6.1.11)

where Dj is defined similar to D1 and D2 given in (6.1.5).

Next, we provide the estimates and the steps used in the IGLS algorithm. To begin,

let the vectorized residuals for patients in center j be denoted by r̃j:

r̃j = X̃j − D̃jβ, r
∗
j = r̃j r̃

T
j , E(r∗j ) = Vj =

3∑
s=1

θsGsj +
9∑
s=4

θjsGjs (6.1.12)

Now define

V ∗j = Vj ⊗ Vj, r∗∗j = vec(r∗j ), E(r∗∗j ) = E[vec(r∗j )] = Hjθj. (6.1.13)

In (6.1.13) Hj is a 4n2
j.× 9 matrix and θj is the 9× 1 vector defined in (6.1.7). These will be
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used to express the expected value of the vectorized residuals. Hj can be expressed as

Hj =
(
Hj0

...Hj1

)
Hj0 = [vec(Gj1), vec(Gj2), vec(Gj3)]

Hj1 = [vec(Gj4), vec(Gj5), vec(Gj6), vec(Gj7), vec(Gj8), vec(Gj9)]

(6.1.14)

Using (6.1.14) and (6.1.7), the expectation of r∗∗j can be expressed as

E(r∗∗j ) = E[vec(r∗j )] = Hjθj = Hj0θ̃0 +Hj1θ̃j. (6.1.15)

We note that r∗∗j = vec(r∗j ) = vec(r̃j r̃
T
j ) = r̃j ⊗ r̃j. We now introduce r∗∗ = (r∗∗1 , . . . , r

∗∗
g )T ,

which is the vectorized form of all residuals. It follows that the expectation of r∗∗ is given

by

E(r∗∗) = Hθ

H =



H10 H11 0 0 . . . 0

H20 0 H21 . . . 0

... 0 0 0 0

Hg0 0 0 0 . . . Hg1


4
∑g
j=1 n

2
j×3(1+2g)

V ∗∗ =



V ∗1 0 . . . 0

0 V ∗2 . . . 0

... 0
. . .

...

0 0 . . . V ∗g


4
∑g
j=1 n

2
j×4

∑g
j=1 n

2
j

,

(6.1.16)

where θ is defined in (6.1.7), and contains all of the variance-covariance parameters estimated

from all g centers in the multi-center trial, namely the 3+6g unknown parameters. The IGLS
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estimate of θ is given by

θ̂ = R−1S,R = HTV ∗∗
−1

H,S = HTV ∗∗
−1

r∗∗ (6.1.17)

Under the multivariate normal model, the maximum likelihood estimates are equiv-

alent to the estimates obtained using the iterative generalized least squares method. The

resulting estimates are biased, because the sampling variation of β̂ is unaccounted for in the

estimation process. Specifically, we have the following result concerning the bias:

α̃j = X̃j − D̃jβ̂

E(α̃jα̃
T
j ) = E[(X̃j − D̃jβ̂)(X̃j − D̃jβ̂)T ] = Vj − D̃jCov(β̂)D̃T

j

= Vj − D̃j(

g∑
j=1

D̃T
j V
−1
j D̃j)

−1D̃T
j

(6.1.18)

The result (6.1.18) shows that the estimation of Vj based on estimated residuals α̃j, leads

to an underestimation. To correct for such a bias one can implement a restricted iterative

generalized least squares (RIGLS) approach. The RIGLS estimates will be equivalent to the

restricted maximum likelihood estimates under normality (Goldstein (2011)). Rather than

using the residuals in (6.1.18) the residuals defined in (6.1.19) will be used. These residuals

correct for the bias and therefore, yield a bias corrected estimate of Vj.

R∗j = (X̃j − D̃jβ̂)(X̃j − D̃jβ̂)T + D̃j(

g∑
j=1

D̃T
j V
−1
j D̃j)

−1D̃T
j

E(R∗j ) = Vj

(6.1.19)

Let R∗∗j = vec(R∗j ) and define R∗∗ = (R∗∗1 , . . . , R
∗∗
g )T .

At each iteration of the algorithm, we must check for positive-definiteness of Vj. We

do so by checking that the eigenvalues of matrices Σjk are positive, for j = 1, . . . , g and
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k = 1, 2, and the eigenvalues of Aj are also positive, where

Aj =

Σj1 + nj1Ψ
√
nj1nj2Ψ

√
nj1nj2Ψ Σj2 + nj2Ψ


4×4

, (6.1.20)

j = 1, . . . , g. The matrix Aj is determined by applying an orthogonal and permutation

transformation to Vj, details of which are developed in Appendix B. The multivariate RIGLS

algorithm is provided in algorithm 13. The iteration is initialized using the ordinary least

squares (OLS) estimates of β and Σjks, as noted in Goldstein (1986).

Algorithm 13: RIGLS algorithm for estimating the parameters of the MLM

1 Initialization stage (r = 0): Initialize estimates of β and θ.

Use OLS for the initial estimate of β: β̂T (0) =
[∑g

j=1 D̃
T
j D̃j

]−1[∑g
j=1 D̃jX̃j

]
2 Initialize θ̂ and set Ψ̂(0) to the zero matrix.

The residuals are calculated as follows:

ε̂i(0) = X i
jk −BT

k w
i
jk − γj, ε̂(0) =

∑njk
i=1

1
njk
ε̂i(0)

for each j = 1, . . . , g and k = 1, 2.

3 The initial estimate of Σ̂j1 and Σ̂j2 are: Σ̂jk =
∑njk

i=1
(ε̂i(0)−ε̂(0))(ε̂i(0)−ε̂(0))T

njk−p−1

for each combination of j = 1, . . . , g, and k = 1, 2.

4 Iteration rth stage 1: At this stage β̂(r) is calculated as follows:

β̂(r) = P (r)−1
Q(r), where P (r) =

∑g
j=1 D̃

T
j [V −1

j (θ̂(r−1))]D̃j

Q(r) =
∑g

j=1 D̃
T
j [V −1

j (θ̂(r−1))]X̃j

5 Iteration rth stage 2: At this stage θ̂(r) is calculated as follows:

θ̂(r) = R(r)−1
S(r) R(r) = HTV ∗∗

−1
H,S(r) = HTV ∗∗

−1
R∗∗

6 Check that eigenvalues of Aj and Σjks are positive for j = 1, . . . , g and k = 1, 2.

7 Repeat stages one and two until convergence is reached. Convergence is defined

as:
∥∥∥β̂(r) − β̂(r−1)

∥∥∥ ≤ ε and
∥∥∥θ̂(r) − θ̂(r−1)

∥∥∥ ≤ ε.
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When we implemented the above algorithm, we noticed that the estimates of Σjk and

Aj are positive definite, j = 1 . . . g and k = 1, 2, where Aj is defined in (6.1.20). However, the

resulting estimate of Ψ may not necessarily be non-negative definite. This result is typical

for multilevel models, as Ψ is not a variance-covariance matrix in the typical sense. In our

approach, we decided not to add extra computational steps to force Ψ to be non-negative

definite, since the algorithm produced positive definite estimates of Vj, which is satisfactory.

Further discussion on this is provided in Appendix B.

6.2 Interval estimation of the INB

Under the model (6.1.1), we have

E[Ci
jk] = µCjk = exp

[σjkCC + τCC
2

+ γCj + (BC
k )TwiCjk

]
E[Ei

jk] = µEjk = exp
[σjkEE + τEE

2
+ γEj + (BE

k )TwiEjk

] (6.2.1)

We shall now define the incremental net benefit (INB) for a patient with covariate vector

w0. Let C0
jk and E0

jk, respectively, denote the patient’s cost and effectiveness if the patient

is assigned to the treatment k at the jth center. The mean cost and effectiveness are given

by

E[Ci
jk] = µCjk0 = exp

[σjkCC + τCC
2

+ γCj + (BC
k )Tw0

]
E[Ei

jk] = µEjk0 = exp
[σjkEE + τEE

2
+ γEj + (BE

k )Tw0

] (6.2.2)

Note that the means given in (6.2.2) are center-dependent. In order to formulate a patient-

specific INB, we shall average the means in (6.2.2) across centers. Thus let

µCk0 =
1

g

g∑
j=1

µCjk0, µ
E
k0 =

1

g

g∑
j=1

µEjk0 (6.2.3)
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The average incremental cost and effectiveness are defined as:

∆E = µE10 − µE20, ∆C = µC10 − µC20. (6.2.4)

Using the above average incremental differences, the INB for patients with covariate vector

w0 is defined by:

INB(w0) = λ∆E −∆C (6.2.5)

For the assessment of cost-effectiveness, we will construct a lower confidence limit

for INB(w0) using the delta method. The asymptotic distribution of the parameters in the

model (6.1.1) is 
β̂
θ̂

−
β
θ


 D−→ N

0,

Cov(β̂) 0

0 Cov(θ̂)


 , (6.2.6)

where

Cov[β̂] =

(
g∑
j=1

D̃T
j V
−1
j D̃j

)−1

(6.2.7)

Cov[θ̂] = 2

(
HT (V ∗∗)−1H

)−1

(6.2.8)

The covariance matrices in (6.2.7) and (6.2.8) are derived in the Appendix A. We note that

this derivation is based on the full maximum likelihood rather than the restricted maximum

likelihood approach. However, the estimates of β and θ remain bias corrected, as noted in

Goldstein (2011). Applying the delta method the asymptotic distribution of INB(w0) =
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INB(β, θ) is given by

[
INB(β̂, θ̂)− INB(β, θ)

]
D−→N

0,∇T INB(β, θ)

Cov(β̂) 0

0 Cov(θ̂)

∇INB(β, θ)


= N

[
0, σ2

INB

]
(6.2.9)

The resulting 100(1− α)% asymptotic lower confidence limit is:

INB(β̂, θ̂)− z1−ασ̂INB, (6.2.10)

where z1−α denotes the (1 − α) quantile of the standard normal. If the lower confidence

limit is positive then the new treatment is considered cost-effective for the individual with

covariate vector w0.

6.3 An example

We apply our proposed model and methods to the Canadian implantable defibrillator

study (CIDS). The study randomized patients at risk of cardiac arrest to two treatment

groups: implantable cardioverter-defibrillator and amiodarone between October 1990 and

January 1997. The primary effectiveness outcome is all-cause mortality. Number of response

days is another effectiveness outcome that we will utilize in our analysis. Response days are

defined as the number of days a patient was followed, either until death, loss-of-follow-up, or

trial completion. The latter two end-points result in censored outcomes. Costs were collected

from a subset of patients. The multi-center trial took place over 24 trials. However, sample

sizes varied between 1 to 123 patients per center (not accounting for missing data). Cost-

effectiveness analysis on the CIDS data has been carried out by Willan, Lin and Manca

(2005). The authors account for censoring through inverse probability weighting.
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We focus our analysis to just two centers. Based on these two centers, we fitted

a lognormal-lognormal model for the cost and effectiveness outcomes having the form of

(6.1.1). In our analysis, we have excluded patients with missing data values. Several patient-

level characteristics were recorded at the start of the trial, including age, ejection fraction,

gender, and indicator of congestive heart failure. The ejection fraction measures the ratio

between blood pumped out of and into the heart. It demonstrates how well the heart is

able to pump blood through the body. Low ejection fraction suggests that the heart is

deficient in its pumping function and has been associated with congestive heart failure. The

model fit indicated that the first two factors, i.e. age and ejection fraction, were statistically

significant. Using the lognormal-lognormal model fitted with the covariates age and ejection

fraction, outcomes were simulated for 42 patients within each center and each treatment

group. The new treatment is the implantable cardioverter-defibrillator (treatment one), and

the standard treatment is taken to be amiodarone (treatment two).

We fit model (6.1.1) with age and ejection fraction as covariates to the simulated data

having 42 patients within each center and each treatment group, i.e. n11 = n12 = n21 = n22

= 42. We obtain estimates of the parameters using the restricted iterative generalized least

squares (RIGLS) method, provided in algorithm 13, with stopping criterion ε = 0.0001. The

estimates are:

γ̂1 =

γ̂C1
γ̂E1

 =

10.9242

7.7250

 ; γ̂2 =

γ̂C2
γ̂E2

 =

9.7450

7.6364


B̂1

T
=

B̂C
1,eject B̂C

1,age

B̂E
1,eject B̂E

1,age

 =

 0.0097 −0.0004

−0.0055 −0.0026


B̂2

T
=

B̂C
2,eject B̂C

2,age

B̂E
2,eject B̂E

2,age

 =

0.0092 −0.0074

0.0077 −0.0089


Based on the parameter estimates, we notice differences between the two centers
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as well as between the two treatments. Average cost at the baseline is slightly higher for

patients in the first center compared to those in the second center. From the estimates B̂1

and B̂2, we note that both treatments have increasing average costs for younger patients and

those who have a larger ejection fraction. Average number of response days are lower for

older patients under both treatment groups. However, the effect of ejection fraction on the

average number of response days differs between the two treatment groups. In particular,

as the ejection fraction increases, the number of response days in the amiodarone treatment

group increases. In contrast, a similar increase in ejection fraction has a decreasing affect

for the average number of response days for implantable cardioverter-defibrillator. Willan,

Briggs and Hoch (2004) also found that B̂C
1,eject > 0 and B̂E

1,eject < 0 under their analysis

(see Willan, Lin and Manca (2005, p. 138-139)).

The estimated covariance matrices are given by

Ψ̂ =

0.000078 0.000028

0.000028 0.000042


Σ̂11 =

0.1178 0.0051

0.0051 0.1555

 Σ̂12 =

0.8401 0.1799

0.1799 0.1877


Σ̂21 =

0.9897 0.0640

0.0640 0.1456

 Σ̂22 =

1.0015 0.0843

0.0843 0.1407


The estimated covariance matrices are all positive definite. However, Ψ̂ indicates

that variability between centers is near zero. While these elements are small in magnitude,

they still affect the resulting estimates, as others have noted in the literature. The estimated

matrices A1 and A2 are positive definite as required and correspond to centers one and two,

each is provided next
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Â1 =



0.1211 0.0063 0.0033 0.0012

0.0063 0.1573 0.0012 0.0018

0.0033 0.0012 0.8434 0.1810

0.0012 0.0018 0.1810 0.1894



Â2 =



0.9930 0.0652 0.0033 0.0012

0.0652 0.1473 0.0012 0.0018

0.0033 0.0012 1.0047 0.0855

0.0012 0.0018 0.0855 0.1424


Next, we analyze the cost-effectiveness of the new treatment, implantable cardioverter-

defibrillator against the standard treatment amiodarone. This will be carried out for twenty-

three patients, i.e. corresponding to twenty-three covariate vectors w0 (i.e., 23 pairs of values

for the age and ejection fraction). These are given in Table 6.1.
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Table 6.1 Covariate values
of twenty-three patients

Patient ID Lveject Age

1 12.5 55
2 15 55
3 12.5 65
4 15 65
5 17.5 65
6 20 65
7 12.5 75
8 15 75
9 17.5 75
10 20 75
11 22.5 75

12 30 55
13 35 55
14 40 55
15 45 55
16 50 55
17 35 65
18 40 65
19 45 65
20 50 65
21 40 75
22 45 75
23 50 75

The twenty-three cases include patients having ejection fraction levels ranging from

12.5 to 50, and ages of 55, 65, and 75. In Willan, Lin and Manca (2005), the authors

included ejection fraction as an indicator function, which indicates whether an individual

has an ejection fraction less than or equal to 35. In our analysis, we include both covariates

as continuous effects. The next table gives each patient’s average incremental cost and

average incremental effectiveness.
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Table 6.2 Estimated average
incremental number of response days
and incremental costs for the
twenty-three patients

Patient ID ∆̂E ∆̂C

1 308.6 5919.8
2 251.7 6117.1
3 396.2 8723.5
4 342.6 8985.9
5 288.8 9255.9
6 234.8 9533.6
7 473.5 11 311.9
8 423.0 11 634.4
9 372.3 11 965.8

10 321.4 12 306.5
11 270.3 12 656.6
12 −95.6 7434.4
13 −214.0 7928.9
14 −333.9 8453.9
15 −455.5 9011.2
16 −579.0 9602.7
17 −94.9 11 376.0
18 −207.3 12 063.0
19 −321.2 12 789.8
20 −436.7 13 558.8
21 −94.1 15 394.6
22 −200.8 16 277.9
23 −309.0 17 210.7

From the results in Table 6.2, the new treatment, implantable cardioverter-defibrillator,

is more costly on average for all patients. The average cost is higher for older patients com-

pared to that of younger patients. In addition, the costs are higher on average for patients

having larger ejection fraction levels. The most noticeable differences occur for the average

incremental effectiveness. The first eleven patients having lower ejection fraction levels have

higher number of response days under the new treatment on average compared to the stan-

dard treatment. In contrast, the remaining patients all have negative average incremental

effectiveness which indicates that the standard treatment is more effective for such patients.

163



For a fixed age, the average incremental effectiveness decreases under the new treatment as

the ejection fraction increases.

Based on these results, we conclude that patients 12 to 23 clearly will not achieve

cost-effectiveness under the new treatment, as the new treatment is more costly and less

effective on average. For the first eleven patients, these preliminary results indicate that

older patients with lower ejection fraction levels (more at risk of cardiac arrest) are most

likely to benefit from the new treatment. Next, the estimated INB values for the twenty-three

patients upon which our analysis focuses are provided in the following table.

Table 6.3 Estimated INB for the twenty-three patients for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 5000

1 71 221.0 148 361.7 302 643.2 1 536 895.3
2 56 797.9 119 712.9 245 542.9 1 252 182.7
3 90 333.4 189 390.2 387 503.9 1 972 413.7
4 76 671.8 162 329.4 333 644.8 1 704 167.3
5 62 950.9 135 157.7 279 571.2 1 434 879.6
6 49 166.7 107 867.0 225 267.6 1 164 472.6
7 107 063.6 225 439.1 462 190.2 2 356 198.4
8 94 107.7 199 849.8 411 333.9 2 103 207.0
9 81 100.8 174 167.3 360 300.4 1 849 365.5

10 68 038.9 148 384.3 309 075.0 1 594 601.0
11 54 918.3 122 493.1 257 642.8 1 338 840.4
12 −31 330.9 −55 227.4 −103 020.5 −485 364.9
13 −61 420.4 −114 911.9 −221 894.9 −1 077 758.8
14 −91 928.1 −175 402.2 −342 350.5 −1 677 936.7
15 −122 892.2 −236 773.1 −464 534.9 −2 286 629.7
16 −154 351.9 −299 101.1 −588 599.4 −2 904 586.1
17 −35 103.6 −58 831.2 −106 286.4 −485 927.7
18 −63 893.4 −115 723.7 −219 384.4 −1 048 670.1
19 −93 092.2 −173 394.6 −333 999.3 −1 618 837.3
20 −122 737.1 −231 915.3 −450 271.9 −2 197 124.1
21 −38 909.0 −62 423.5 −109 452.4 −485 683.4
22 −66 478.2 −116 678.5 −217 079.1 −1 020 283.9
23 −94 448.5 −171 686.3 −326 162.0 −1 561 967.4

The INB estimates in Table 6.3 indicate that cost-effectiveness differs immensely

amongst patients. The analysis is conducted under four willingness-to-pay values (λ =
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250, 500, 1000, and 5000). The first eleven patients having lower ejection fraction levels,

have positive and increasing INB values as a function of λ. The remaining patients all

have negative INB values that decrease as willingness-to-pay increases. To assess the cost-

effectiveness of the new treatment, we compute the lower 95% confidence limits for the

patients in Table 6.1 using the delta method approach.

Table 6.4 95% lower confidence limits of the INB using the delta method for different values of λ

Patient ID λ = 250 λ = 500 λ = 1000 λ = 5000

1 9504.3 26 587.9 59 479.0 319 514.6
2 1319.3 10 829.8 28 399.2 165 415.1
3 14 979.2 39 357.6 87 298.7 468 869.1
4 8302.5 26 556.2 62 179.1 345 031.4
5 1012.8 12 551.3 34 637.5 208 931.8
6 −7110.8 −3114.1 3734.3 55 742.6
7 17 485.5 46 352.1 103 471.6 558 960.6
8 11 878.9 35 677.1 82 637.0 456 792.5
9 5888.8 24 264.1 60 334.0 347 260.2

10 −602.5 11 876.4 36 080.0 227 894.9
11 −7760.2 −1821.4 9189.3 95 182.8
12 −82 606.7 −155 879.8 −305 456.9 −1 509 277.5
13 −126 056.8 −243 495.1 −481 662.5 −2 394 678.2
14 −174 008.2 −340 028.8 −675 641.3 −3 368 792.6
15 −225 074.6 −442 672.8 −881 808.0 −4 403 945.5
16 −278 659.6 −550 270.3 −1 097 893.9 −5 488 975.8
17 −89 942.4 −167 226.7 −324 505.1 −1 589 137.3
18 −131 916.2 −251 392.2 −493 436.0 −2 436 993.8
19 −178 210.2 −344 144.7 −679 491.2 −3 370 310.5
20 −227 584.6 −442 968.0 −877 658.5 −4 364 227.7
21 −97 386.6 −178 063.6 −342 109.7 −1 660 851.8
22 −138 015.0 −259 076.3 −504 353.7 −2 473 960.9
23 −182 809.4 −348 393.3 −683 170.9 −3 369 794.3

The lower confidence limits in Table 6.4 demonstrate that the new treatment, im-

plantable cardioverter-defibrillator, is not cost-effective for patients with higher ejection frac-

tion levels (greater than or equal to 30), i.e. patients 12 to 23. For these patients, increased

investment in the new treatment results in lower cost-effectiveness, as expected based on

the results in Table 6.2. Focusing on the first 11 patients with lower ejection fraction levels,
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we note that the lower limits increase when the willingness-to-pay increases. This indicates

that increased investment in the new treatment results in higher cost-effectiveness for these

patients.

Amongst the first 11 patients having ejection fraction levels equal or less than 22.5,

the older patients with lower ejection fraction levels have the highest cost-effectiveness under

the new treatment. Similar results regarding the effect of ejection fraction were reported in

Willan, Lin and Manca (2005, p. 139). In our analysis, patient 7 (having ejection fraction of

12.5 and age 75) has the highest lower limit, followed by patient 3 (having ejection fraction

of 12.5 and age 65), followed by patient 8 (having ejection fraction equal to 15 and age 75)

regardless of willingness-to-pay value. Patients 6 and 11 have the largest ejection fraction

levels and the smallest lower limits among the first eleven patients.

Certain trends regarding the willingness-to-pay are also evident. For lower values

of λ, the covariate ejection fraction appears to be the dominating factor determining the

cost-effectiveness of the new treatment. However, as λ increases, age becomes increasingly

important. In particular, as λ increases, older patients achieve more benefit compared to

younger patients (when ejection fraction is still low). Further, positive lower limits of the

INB indicate that the new treatment is cost-effective. Out of the first eleven patients, all

achieve cost-effectiveness by λ = 250, apart from patients 6, 10, and 11. These patients

all have ejection fraction levels equal to 20 and 22.5, the highest in this subset of patients.

Increasing the willingness-to-pay to λ = 500, patients 6 and 11 still do not achieve cost-

effectiveness under the new treatment. However, when λ is increased to 1000, all of the first

eleven patients have positive lower confidence limits for the INB, indicating that all of these

patients have achieved cost-effectiveness under the new treatment.

In addition, we can also plot the estimated INB and the corresponding 95% confi-

dence limits to visualize the effect of willingness-to-pay on cost-effectiveness. In Figure 6.1

the estimated INB and lower 95% confidence limits are plotted as a function of willingness-

to-pay, λ.
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Figure 6.1: Estimated INB and 95% lower confidence limit for patient five

Figures similar to Figure 6.1 can be particularly useful to decision makers who

desire to analyze cost-effectiveness for a particular patient in regards to the investment, the

willingness-to-pay.

6.4 Discussion and conclusions

In this chapter, we developed a multivariate multi-level model for the outcomes from

multi-center trials. Our model includes relevant patient-level covariates to enable a patient-

level assessment of cost-effectiveness of a new treatment. The proposed model includes a

center-specific intercept and treatment-specific regression parameters. The model is a linear

mixed-effects model; the random effect is center-specific. The proposed model captures

heterogeneity at both the center-level and subject-level. In addition, we model the outcomes

of the multi-center trial directly, rather than modelling cost-effectiveness metrics such as

the NMB. Further, the model includes treatment-specific regression parameters which are

often excluded in most multi-level modelling. This is an important feature since patient
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characteristics can have a different effect on the outcomes of treatments.

We have developed a restricted iterative generalized least squares approach, which

provides parameter estimates equivalent to the restricted maximum likelihood solution. The

cost-effectiveness of the new treatment for a particular patient is assessed by calculating

a lower confidence limit for that patient’s INB. We constructed an asymptotic lower limit

using the delta method. The results of our analysis indicate that patient-level covariates

strongly affect the cost-effectiveness of a new treatment. In particular, it is possible to draw

conclusions regarding for which patients the new treatment is cost-effective. Furthermore,

our methods provide information on the amount of resources a decision maker should invest

for a specified treatment and particular patient.

We believe that our methods and models can be further developed to suit other

frameworks. For example, extension of our model to accommodate longitudinal data would

be of particular interest for multi-center trials that have long-term follow-up periods.

6.5 Appendix

6.5.1 Appendix A- Derivation of the covariance matrices

Here we shall give a derivation of Cov(β̂) and Cov(θ̂) under the multi-level model.

The log-likelihood is given by

l(x|θ, β) = log[L(x|θ, β)] ∝ −1

2

g∑
j=1

(X̃j − W̃jβ)TV −1
j (X̃j − W̃jβ)]− 1

2

g∑
j=1

log|Vj| (6.5.1)

It is well known that the Fisher information matrix is block-diagonal, having two blocks

corresponding to β and θ. From the above expression for the log-likelihood function, it
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follows that the block corresponding to β is simply

g∑
j=1

W̃ T
j V

−1
j W̃j

Thus we get

Cov[β̂] =

(
g∑
j=1

W̃ T
j V̂

−1
j W̃j

)−1

Derivation of Cov(θ̂)

We will present the derivation for some of the elements in θ for brevity. We restrict

the results here for the case when the number of centers is g = 2, however the results follow

similarly when there are more than two centers.

The first order partial derivatives of the log-likelihood function with respect to the

elements in θ are:

∂l(x|β, θ)
∂τCC

∝1

2
(X̃j − W̃jβ)TV −1

1

[
J(n1×n1) ⊗

1 0

0 0

]V −1
1 (X̃j − W̃jβ)

− 1

2

g∑
j=1

Tr

[
V −1

1 J(n1×n1) ⊗

1 0

0 0

]

+
1

2
(X̃j − W̃jβ)TV −1

2

[
J(n2×n2) ⊗

1 0

0 0

]V −1
2 (X̃j − W̃jβ)

− 1

2
Tr

[
V −1

2 J(n2×n2) ⊗

1 0

0 0

]

(6.5.2)
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∂l(x|β, θ)
∂τCE

∝1

2
(X̃j − W̃jβ)TV −1

1

[
J(n1×n1) ⊗

0 1

1 0

]V −1
1 (X̃j − W̃jβ)

− 1

2

g∑
j=1

Tr

[
V −1

1 J(n1×n1) ⊗

0 1

1 0

]

+
1

2
(X̃j − W̃jβ)TV −1

2

[
J(n2×n2) ⊗

0 1

1 0

]V −1
2 (X̃j − W̃jβ)

− 1

2
Tr

[
V −1

2 J(n2×n2) ⊗

0 1

1 0

]

(6.5.3)

∂l(x|β, θ)
∂τEE

∝1

2
(X̃j − W̃jβ)TV −1

1

[
J(n1×n1) ⊗

0 0

0 1

]V −1
1 (X̃j − W̃jβ)

− 1

2

g∑
j=1

Tr

[
V −1

1 J(n1×n1) ⊗

0 0

0 1

]

+
1

2
(X̃j − W̃jβ)TV −1

2

[
J(n2×n2) ⊗

0 0

0 1

]V −1
2 (X̃j − W̃jβ)

− 1

2
Tr

[
V −1

2 J(n2×n2) ⊗

0 0

0 1

]

(6.5.4)

∂l(x|β, θ)
∂σj1CC

∝− 1

2
Tr

[
V −1
j

I(nj1×nj1) 0

0 0

⊗
1 0

0 0

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[I(nj1×nj1) 0

0 0

⊗
1 0

0 0

]V −1
j (X̃j − W̃jβ)

(6.5.5)
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∂l(x|β, θ)
∂σj1CE

∝− 1

2
Tr

[
V −1
j

I(nj1×nj1) 0

0 0

⊗
0 1

1 0

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[I(nj1×nj1) 0

0 0

⊗
0 1

1 0

]V −1
j (X̃j − W̃jβ)

(6.5.6)

∂l(x|β, θ)
∂σj1EE

∝− 1

2
Tr

[
V −1
j

I(nj1×nj1) 0

0 0

⊗
0 0

0 1

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[I(nj1×nj1) 0

0 0

⊗
0 0

0 1

]V −1
j (X̃j − W̃jβ)

(6.5.7)

∂l(x|β, θ)
∂σj2CC

∝− 1

2
Tr

[
V −1
j

0 0

0 I(nj2×nj2)

⊗
1 0

0 0

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[0 0

0 I(nj2×nj2)

⊗
1 0

0 0

]V −1
j (X̃j − W̃jβ)

(6.5.8)

∂l(x|β, θ)
∂σj2CE

∝− 1

2
Tr

[
V −1
j

0 0

0 I(nj2×nj2)

⊗
0 1

1 0

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[0 0

0 I(nj2×nj2)

⊗
0 1

1 0

]V −1
j (X̃j − W̃jβ)

(6.5.9)
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∂l(x|β, θ)
∂σj2EE

∝− 1

2
Tr

[
V −1
j

0 0

0 I(nj2×nj2)

⊗
0 0

0 1

]

+
1

2
(X̃j − W̃jβ)TV −1

j

[0 0

0 I(nj2×nj2)

⊗
0 0

0 1

]V −1
j (X̃j − W̃jβ)

(6.5.10)

Next, we derive the second order partial derivative of the log-likelihood with respect

to τCC .

∂l(x|β, θ)
∂2τCC

∝− Tr

[
V −1

1 J(n1×n1) ⊗

1 0

0 0

V −1
1 J(n1×n1) ⊗
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V −1
1 (X̃j − W̃jβ)(X̃j − W̃jβ)T
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+
1

2
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+
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Tr
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2 J(n2×n2) ⊗

1 0

0 0

V −1
2 J(n2×n2) ⊗

1 0

0 0

]

(6.5.11)

The second order partial derivatives follow similarly for the remaining parameters in θ.
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Taking the expected value and after doing some simplifications, we obtain the following.

E
[∂l(x|β, θ)

∂2τCC

]
∝− 1

2
vecT

[
J(n1×n1) ⊗

1 0

0 0

][V −1
1 ⊗ V −1

1

]
vec

[
J(n1×n1) ⊗

1 0

0 0

]

− 1

2
vecT

[
J(n2×n2) ⊗

1 0

0 0

][V −1
2 ⊗ V −1

2

]
vec

[
J(n2×n2) ⊗

1 0

0 0

]

(6.5.12)

E
[∂l(x|β, θ)

∂2τCE

]
∝− 1

2
vecT

[
J(n1×n1) ⊗

0 1

1 0

][V −1
1 ⊗ V −1

1

]
vec

[
J(n1×n1) ⊗

0 1

1 0

]

− 1

2
vecT

[
J(n2×n2) ⊗

0 1

1 0

][V −1
2 ⊗ V −1

2

]
vec

[
J(n2×n2) ⊗

0 1

1 0

]

(6.5.13)

E
[∂l(x|β, θ)

∂2τEE

]
∝− 1

2
vecT

[
J(n1×n1) ⊗

0 0

0 1

][V −1
1 ⊗ V −1

1

]
vec

[
J(n1×n1) ⊗

0 0

0 1

]

− 1

2
vecT

[
J(n2×n2) ⊗

0 0

0 1

][V −1
2 ⊗ V −1

2

]
vec

[
J(n2×n2) ⊗

0 0

0 1

]

(6.5.14)

E
[∂l(x|β, θ)
∂2σj1CC

]
∝ −1

2
vecT

[I(nj1×nj1) 0

0 0

⊗
1 0

0 0

][V −1
j ⊗V −1

j

]
vec

[I(nj1×nj1) 0

0 0

⊗
1 0

0 0

]
(6.5.15)
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E
[∂l(x|β, θ)
∂2σj1CE

]
∝ −1

2
vecT

[I(nj1×nj1) 0

0 0

⊗
0 1

1 0

][V −1
j ⊗V −1

j

]
vec

[I(nj1×nj1) 0

0 0

⊗
0 1

1 0

]
(6.5.16)

E
[∂l(x|β, θ)
∂2σj1EE

]
∝ −1

2
vecT

[I(nj1×nj1) 0

0 0

⊗
0 0

0 1

][V −1
j ⊗V −1

j

]
vec

[I(nj1×nj1) 0

0 0

⊗
0 0

0 1

]
(6.5.17)

E
[∂l(x|β, θ)
∂2σj2CC

]
∝ −1

2
vecT

[0 0

0 I(nj2×nj2)

⊗
1 0

0 0

][V −1
j ⊗V −1

j

]
vec

[0 0

0 I(nj2×nj2)

⊗
1 0

0 0

]
(6.5.18)

E
[∂l(x|β, θ)
∂2σj2CE

]
∝ −1

2
vecT

[0 0

0 I(nj2×nj2)

⊗
0 1

1 0

][V −1
j ⊗V −1

j

]
vec

[0 0

0 I(nj2×nj2)

⊗
0 1

1 0

]
(6.5.19)

E
[∂l(x|β, θ)
∂2σj2CE

]
∝ −1

2
vecT

[0 0

0 I(nj2×nj2)

⊗
0 0

0 1

][V −1
j ⊗V −1

j

]
vec

[0 0

0 I(nj2×nj2)

⊗
0 0

0 1

]
(6.5.20)

E
[ ∂l(x|β, θ)
∂τCC∂σj2CC

]
∝ −1

2
vecT

[
J(nj×nj)⊗

1 0

0 0

][V −1
j ⊗V −1

j

]
vec

[0 0

0 I(nj2×nj2)

⊗
1 0

0 0

]
(6.5.21)
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E
[ ∂l(x|β, θ)
∂σj2CC∂σj1CC

]
∝ −1

2
vecT

[I(nj1×nj1) 0

0 0

⊗
1 0

0 0

][V −1
j ⊗V −1

j

]
vec

[0 0

0 I(nj2×nj2)

⊗
1 0

0 0

]
(6.5.22)

∂l(x|β, θ)
∂σ12CC∂σ21CC

= 0 (6.5.23)

Completing the above derivation for all pairs of unknown elements in θ we obtain

the Fisher information matrix for θ, which can be expressed in terms of H and V ∗∗. In

particular, Hj0 and Hj1 can be expressed as follows.

Hj0 = [vec(Gj1), vec(Gj2), vec(Gj3)]

Hj1 = [vec(Gj4), vec(Gj5), vec(Gj6), vec(Gj7), vec(Gj8), vec(Gj9)] ,

(6.5.24)

where

Gj1 = J(n1×n1) ⊗

1 0

0 0

 , Gj2 = J(n1×n1) ⊗

0 1

1 0

 (6.5.25)

Gj3 = J(n1×n1) ⊗

0 0

0 1

 , Gj4 =

I(nj1×nj1) 0

0 0

⊗
1 0

0 0

 (6.5.26)

Gj5 =

I(nj1×nj1) 0

0 0

⊗
0 1

1 0

 , Gj6 =

I(nj1×nj1) 0

0 0

⊗
0 0

0 1

 (6.5.27)
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Gj7 =

0 0

0 I(nj2×nj2)

⊗
1 0

0 0

 , Gj8 =

0 0

0 I(nj2×nj2)

⊗
0 1

1 0

 (6.5.28)

Gj9 =

0 0

0 I(nj2×nj2)

⊗
0 0

0 1

 (6.5.29)

Using the above representation for H, we find that the Fisher information matrix,

Iθ can be expressed as:

Iθ =
1

2


HT

10(V ∗1 )−1H10 +HT
20(V ∗2 )−1H20 HT

10(V ∗1 )−1H11 HT
20(V ∗2 )−1H21

HT
11(V ∗1 )−1H10 HT

11(V ∗1 )−1H11 0

HT
21(V ∗2 )−1H20 0 HT

21(V ∗2 )−1H21

 =
1

2

[
HT (V ∗∗)−1H

]

(6.5.30)

Hence,

Cov(θ̂) = I−1
θ = 2

[
HT (V ∗∗)−1H

]−1

(6.5.31)

We note, that the results derived for Cov(β̂) and Cov(θ̂) are analogous to the results

provided by Goldstein (2011). We refer the reader to Appendix 2.1 of Goldstein’s book.

6.5.2 Appendix B- Assessing positive definiteness of Vj

It was noted that in order to verify the positive definiteness of Vj, it is enough to

verify if all the Σjks are positive definite and all Ajs are positive definite, for j = 1, . . . , g

and k = 1, 2, where Aj is defined in (6.1.20). We shall now prove this assertion. The proof

will be presented for the case of two centers. The proof for the general case is similar.

For k = 1, 2, let Qjk be a 2njk × 2njk orthogonal matrix whose first two columns

are given by 1√
njk

1njk ⊗ I2, where 1njk is an njk × 1 matrix of ones. Let Qj = diag (Qj1, Qj2)
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so that Qj is a 2nj.× 2nj. orthogonal matrix. By direct multiplication it can be verified that

QT
j VjQj =

 QT
j1Vj1Qj1 QT

j1

[
J(nj1×nj2) ⊗Ψ

]
Qj2

QT
j2

[
J(nj2×nj1) ⊗Ψ

]
Qj1 QT

j2Vj2Qj2

 , (6.5.32)

where Jm1×m2 is an m1 × m2 matrix of ones. The above expression for QT
j VjQj can be

explicitly written as

QT
j VjQj =





Σj1 + nj1Ψ 0 0 0

0 Σj1 0 0

0 0
. . . 0

0 0 0 Σj1


2nj1×2nj1



√
nj1nj2Ψ 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


2nj1×2nj2

√
nj1nj2Ψ 0 . . . 0

0 0 . . . 0

...
...

. . .
...

0 0 . . . 0


2nj12×2nj1



Σj2 + nj2Ψ 0 0 0

0 Σj2 0 0

0 0
. . . 0

0 0 0 Σj2


2nj12×2nj2



Now let Fj be an nj.×nj. permutation matrix obtained by permuting the 2nd column

and (njk + 1)th column of Inj. . We can then verify the following:

(
Fj ⊗ I2

)T[
QT
j VjQj

](
Fj ⊗ I2

)
= diag

(
Aj, Inj1−1 ⊗ Σj1, Inj2−1 ⊗ Σj2

)
. (6.5.33)

It should now be clear that the positive definiteness of Vj is equivalent to that of the matrices

Aj, Σj1 and Σj2.
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