

ABSTRACT

Title of Document: RESUSCITATING SERVICE ORIENTED

ARCHITECTURE (SOA): HONING SOA ADOPTION

BY MEASURING MATURITY AT THE SERVICE

ARCHITECTURE LEVEL.

 Gohar Mukhtar, Ph.D. Information Systems, 2016

Directed By: Professor Anthony F. Norcio Name. Information Systems

Despite sound theory, Service Oriented Architecture (SOA) appears to be failing in

delivering on its brilliant promises. Over the last few years, a vast amount of good-faith efforts

by many organizations towards SOA adoption have withered in frustration. Researchers and

practitioners cannot pinpoint the reason(s) with certainty. Some point to its inherent complexity

while others point to the widespread misunderstanding and confusion this over-used buzzword

has acquired in the industry. One thing everyone agrees is that SOA adoption is non-trivial. The

magnitude of change required to transition from traditional silo-based application design to

service-orientation can be overwhelming for any organization. This architectural paradigm-shift

encapsulates more than just new technologies; it demands a different mindset. The fundamental

service design principles, however, remain applicable throughout. And this is where the others

have missed the heart of the problem. The SOA adoption maturity is commonly measured at a

high-level, involving elements like infrastructure, tools and technologies adoption, but misses to

consider the low-level service design principles. This study offers a new focused maturity-

measure that is capable of assessing the essence of SOA design paradigm at its roots. The

proposed Service Architecture Maturity (SAM) not only provides a more accurate measure of

SOA adoption, but can also hone in on the adoption efforts by focusing attention to the

essentials. SAM can help organizations currently stalling on the path of SOA adoption in

recognizing their misplaced focus, correcting mistakes, and in achieving the promised benefits

from SOA adoption.

RESUSCITATING SERVICE ORIENTED ARCHITECTURE (SOA): HONING

SOA ADOPTION BY MEASURING MATURITY AT THE SERVICE

ARCHITECTURE LEVEL

By

Gohar Mukhtar

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy,

Information Systems

2016

© Copyright by

Gohar Mukhtar

2016

 ii

Dedication

To my ever beautiful and radiant wife Nazli who stood by me through all the ups

and downs of life with unwavering commitment, love and loyalty. She indeed has a

heart of gold, and I’m the lucky one to have it.

 iii

Acknowledgements

I am heartily thankful to my research supervisor, Prof. Anthony F. Norcio, whose

encouragement, guidance and support from the beginning to the end enabled me to

complete this profound academic journey. His commitment to excellence and high

academic standards made it a great learning experience. I can’t thank him enough for

all his help and support.

I want to express my gratitude to my doctoral committee members, Dr. Lina

Zhou and Dr. Henry H. Emurian for their constructive comments that improved the

quality of this dissertation. I am especially grateful to Dr. Gregory Bluher and to Dr.

Massoud Farhang for being the designated readers of this work.

I would also like to thank my employer, IRS, Terence V. Milholland (CTO) and

Daniel B. Chaddock (ACIO) for their trust, confidence and continued support during

this research and pursuit of my Ph.D. at UMBC.

This acknowledgement will not be complete without thanking my wife Nazli and

my daughters Zernab and Amal for enduring lonely evenings and weekends for the

past six years while I was preoccupied with my academic activities.

 iv

Table of Contents

Dedication ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ... 1

1. SOA Overview .. 1

2. Promised Benefits of SOA Adoption .. 8

2.1. Intrinsic Interoperability ... 9

2.2. Vendor Diversity Options ... 10

2.3. Federation ... 11

2.4. Business and Technology Alignment ... 11

2.5. Organizational Agility .. 12

2.6. Increased Return on Investment (ROI) ... 12

2.7. Reduced IT Burden ... 13

3. Common Measure of Success for an SOA Adoption Initiative 14

4. Success-Rate with SOA .. 15

4.1. Challenge of Measurability of SOA as an Architectural Style 16

4.2. Specific Research Questions ... 18

Chapter 2: Literature Review .. 20

1. A Critical Review and Analysis of the Existing SOA Maturity Models 20

1.1. SOA Maturity Model by SOA Alliance.. 20

 v

1.2. SOA Maturity Model by IBM... 22

1.3. SOA Maturity Model by Sonic Software.. 24

1.4. SOA Maturity Model by Microsoft .. 26

1.5. SOA Maturity Model by The Open Group ... 28

1.6. SOA Maturity Evaluation by Eric Marks ... 31

1.7. SOA Maturity Model by Business Process Trends (BPTrends) 32

1.8. SOA Maturity Model by Welke, Hirschheim and Schwarz 34

1.9. SOA Maturity Model by Rathfelder and Groenda 36

1.10. Challenge Not Fully Addressed by the Existing Maturity Models 38

2. The Service Architecture Under the SOA Principles of Service Design as

Conventional Software Design Best-Practices ... 39

2.1. Standardized Service Contract .. 42

2.1.1. Historical Underpinning in Conventional Software Design 42

2.1.2. Definition and Discussion ... 43

2.1.3. Goals ... 44

2.1.4. Types of Service Contract Standardization ... 45

2.1.4.1. Standardization of Functional Expression .. 45

2.1.4.2. Standardization of Data Model ... 45

2.1.5. Service Level Agreements – Non-Technical Part of a Service Contract 46

2.2. Service Loose Coupling .. 47

2.2.1. Historical Underpinning in Conventional Software Design 47

2.2.2. Definition and Discussion ... 47

2.2.3. Positive and Negative Coupling Types ... 50

 vi

2.2.3.1. Positive Coupling Types ... 50

2.2.3.1.1. Logic to Contract Coupling Type ... 51

2.2.3.1.2. Consumer to Contract Coupling Type .. 51

2.2.3.2. Negative Coupling Types ... 51

2.2.3.2.1. Contract to Logic .. 52

2.2.3.2.2. Contract to Functional... 52

2.2.3.2.3. Contract to Implementation .. 53

2.2.3.2.4. Contract to Technology... 53

2.2.3.2.5. Consumer to Service Logic and/or Implementation 54

2.2.3.3. Percolation of Negative Coupling – the Unintended Inheritance Effect 55

2.3. Service Abstraction ... 56

2.3.1. Historical Underpinning in Conventional Software Design 56

2.3.2. Definition and Discussion ... 56

2.3.3. What to Hide and What Not to Hide is the Question 59

2.3.3.1. Functional Metadata.. 60

2.3.3.2. Quality of Service (QoS) Metadata... 60

2.3.3.3. Implementation Technology Metadata ... 61

2.3.3.4. Programmatic Metadata .. 62

2.3.4. Organizational Impact ... 63

2.4. Service Reusability ... 64

2.4.1. Historical Underpinning in Conventional Software Design 64

2.4.2. Definition and Discussion ... 65

2.4.2.1. Logic Centralization Pattern ... 66

 vii

2.4.2.2. Contract Centralization Pattern ... 67

2.4.3. Types of Reuse .. 68

2.4.4. Considerations for Creating Agnostic Services 69

2.5. Service Autonomy .. 70

2.5.1. Definition and Discussion ... 70

2.5.2. Service Autonomy vs. Service Composability 72

2.5.3. Types of Autonomy .. 73

2.5.3.1. Design-time Autonomy ... 73

2.5.3.2. Runtime Autonomy ... 74

2.6. Service Statelessness ... 75

2.6.1. Definition and Discussion ... 75

2.6.2. Understanding Deferral and Delegation Processes 77

2.6.3. State Types and Conditions .. 78

2.6.3.1. Passive State.. 78

2.6.3.2. Active State ... 79

2.6.3.3. Stateless... 79

2.6.3.4. Stateful .. 79

2.7. Service Discoverability ... 81

2.7.1. Definition and Discussion ... 81

2.7.2. Goals ... 83

2.7.3. Design-Time vs. Runtime Discoverability ... 84

2.7.4. Types of Relevant Metadata for Discoverability 85

2.7.4.1. Functional Metadata.. 86

 viii

2.7.4.2. Quality of Service (QoS) Metadata... 86

2.7.5. Service Discoverability Principle vs. Service Abstraction Principle 87

2.8. Service Composability .. 88

2.8.1. Historical Underpinning in Conventional Software Design 88

2.8.2. Definition and Discussion ... 89

2.8.3. Composition Actors and Concepts.. 90

2.8.3.1. Service Composition Related Concepts .. 90

2.8.3.1.1. Service Activity .. 91

2.8.3.1.2. Composition .. 91

2.8.3.1.3. Simple Composition.. 91

2.8.3.1.4. Complex Composition .. 92

2.8.3.2. Service Activity Related Roles ... 92

2.8.3.2.1. Composition Initiator .. 93

2.8.3.2.2. Composition Member ... 93

2.8.3.2.3. Composition Controller .. 93

2.8.3.2.4. Composition Sub-Controller ... 93

3. Summary of the Literature Review ... 94

4. Related Works ... 94

Chapter 3: Research Methodology.. 97

1. Significance of the Research Questions .. 97

2. Research Bed Selection... 97

2.1. Subject Group 1 .. 99

2.2. Subject Group 2 .. 99

 ix

3. Survey Questionnaires and the Interview ... 100

3.1. SOA Adoption Priorities Survey .. 100

3.2. SOA Maturity Survey ... 101

3.3. Service Architecture Maturity Survey .. 103

3.4. Interview ... 108

4. Data Analysis .. 109

4.1. Quantitative Analysis .. 109

4.2. Qualitative Analysis .. 109

Chapter 4: Results ... 111

1. Survey Results Data .. 111

2. Quantitative Analysis .. 119

2.1. SOA Adoption Priorities Survey .. 120

2.2. SOA Maturity Survey ... 121

2.3. Service Architecture Maturity (SAM) Survey .. 122

3. Qualitative Analysis ... 124

3.1. Disparity in Current Measure of SOA Maturity 125

3.2. Education and Training ... 126

3.3. Project Based Funding vs. Enterprise Level funding................................ 126

3.4. Too Big and too Complex for SOA .. 127

3.5. Strategic vs. Tactical Executive Disposition .. 128

3.6. Ownership Question.. 128

Chapter 5: Conclusion.. 130

1. Overview ... 130

 x

1.1. Diagnoses whether the lack of success is related to a general

misunderstanding of the SOA design paradigm ... 132

1.1.1. Findings: ... 132

1.1.1.1. Correlational Analysis: ... 133

1.2. Diagnoses whether the perception of failure is due to the use of a unsuitable

maturity measure and model ... 133

1.2.1. Findings: ... 134

1.2.1.1. Correlational Analysis: ... 134

1.3. Provides a focused and suitable tool for measuring real SOA maturity ... 135

1.3.1. Findings: ... 136

1.3.1.1. Service Architecture Maturity Model (SAMM) 136

1.4. Explores the potential of this new tool for helping and furthering SOA

adoption... 137

1.4.1. Findings... 138

2. Concluding Remarks ... 138

3. Future Research .. 143

Appendices .. 145

1. Appendix A ... 145

2. Appendix B ... 147

3. Appendix C ... 150

5. Appendix D ... 152

7. Appendix E ... 155

8. Appendix F.. 157

 xi

10. Appendix G ... 160

12. Appendix H ... 164

14. Appendix I .. 167

15. Appendix J .. 169

Glossary .. 170

Bibliography ... 179

 xii

List of Tables

Table 1: The SOA Adoption Priorities Survey Questionnaire 100

Table 2: SOA Maturity Survey Questionnaire.. 101

Table 3: Service Architecture Maturity Survey Questionnaire 104

Table 4: SOA Adoption Interview .. 108

Table 5: SOA Adoption Priorities Survey – Combined Results 111

Table 6: SOA Adoption Priorities Survey – Subject Group 1 Results 112

Table 7: SOA Adoption Priorities Survey – Subject Group 2 Results 112

Table 8: SOA Maturity Survey – Combined Results.. 112

Table 9: SOA Maturity Survey – Subject Group 1 Results 114

Table 10: SOA Maturity Survey - Subject Group 2 Results 115

Table 11: Service Maturity Survey ... 117

Table 12: SOA Maturity Survey - Combined Aggregated Results 122

Table 13: SOA Adoption Priorities Survey - Correlation Analysis 133

Table 14: Service Architecture Maturity Model (SAMM) 137

 xiii

List of Figures

Figure 1: High-level view – a Service Inventory . .. 4

Figure 2: A deeper look into the layered structure of a Service Inventory 5

Figure 3: A sample Service Composition using all three types of services 6

Figure 4: A big business problem is decomposed into smaller modules 7

Figure 5: SOA Goals and Benefits ... 8

Figure 6: Interoperability . .. 10

Figure 7: The traditional technology architectures .. 13

Figure 8 – Enterprise SOA Maturity Model by SOA Alliance .. 21

Figure 9 – Service Integration Maturity Model by IBM .. 24

Figure 10 – SOA Maturity Model by Sonic Software ... 26

Figure 11 – SOA Maturity Model by Microsoft .. 27

Figure 12 – SOA Maturity Model by The Open Group ... 29

Figure 13 – SOA Maturity Model by BPTrends .. 33

Figure 14 – SOA Maturity Model by Welke, Hirschheim and Schwarz 35

Figure 15 – SOA Maturity Model by Rathfelder and Groenda 37

Figure 16: The Eight Principles of Service Design . .. 41

Figure 17: The Service Contract 44

Figure 18: Schema Centralization 46

Figure 19: Coupling Types .. 50

Figure 20: The Four Common Meta Information Types ... 59

Figure 21: Official End-Point to a Normalized Service ... 68

Figure 22: ServiceTransitions through Several Different Stages 78

 xiv

Figure 23: Service Contracts are Supplemented with Metadata 83

Figure 24: Registry vs. Repository .. 84

Figure 25: Decomposing Bigger Problems into Smaller Manageable Chunks 92

Figure 26: The “Low” Priority Rating Pie Chart – Combined Results (G 1 + G 2) 120

Figure 27: Service Architecture Maturity Ratings for the Eight SOA Principles Graph 123

 1

Chapter 1: Introduction

1. SOA Overview

Ongoing empirical studies, following the up-and-coming trends in the Information

Technology (IT) industry, show strong support for Service Oriented Architecture (SOA)
1

adoption. In 2008, at least 44% of North American, European, and Asian-Pacific

enterprises adopted SOA, and at least 63% would adopt it by the end of 2008, with the

trend only growing stronger in more recent years (Aldris, Nugroho, Lago, & Visser,

2013). Resent research shows the value and applicability of SOA in such emerging

technologies and diverse areas like design and development of mobile applications (Ali,

Chen, & Solis, 2012), air traffic management (Gringinger, Trausmuth, Balaban, Jahn, &

Milchrahm, 2012), industrial automation (Ollinger, Zuhlke, Theorin, & Johnsson, 2013),

systems of systems (Lewis, Morris, Simanta, & Smith, Jan-Feb 2011), next generation

network architecture and virtualization in cloud computing (Duan, Yan, & Vasilakos,

2012; Grammatikou, et al., 2011; Kumar, Haber, Yazidi, & Reichert, 2010; Ning, Zhou,

Zhang, Yin, & Ni, 2011; Ruz, Baude, Sauvan, Mos, & Boulze, 2011), generic virtual

power plants and smart power grid management (Andersen, Poulsen, Trholt, &

Ostergaard, 2009; Vrba, et al., Aug 2014) smart building management systems (Degeler,

et al., 2013), telecommunications (Blum, Magedanz, Schreiner, & Wahle, 2009), driver

assistance systems (Wagner, Zobel, & Meroth, 2014), and in business, financial services

industry (Fischbach, Puschmann, & Alt, 2011; Murer & Hagen, Nov-Dec 2014),

1
 Service-oriented architecture is an architectural style for building service-oriented solutions with distinct

characteristics in support of realizing service-orientation and the strategic goals associated with service-

oriented computing (for more information, see the Glossary of terms at the end of this document).

 2

healthcare (Chu, 2005) and military strategic and tactical networks/systems (Cameron,

Stumptner, Nandagopal, Mayer, & Mansell, 2013; Lund, Eggen, Hadzic, Hafsoe, &

Johnsen, October 2007; Nath, 2012). Prior research has also shown that with the adoption

of SOA, changeability and efficiency improve compared to alternative architectures

(Offermann, Hoffmann, & Bub, 2009).

Despite all this visibility and traction gained by SOA during the last few years in the

IT industry, it remains wrapped in significant mist of confusion. The conflicting vendor

interests and technology hypes have contributed in perpetuating this widespread

bewilderment (Bloomberg, 2013). The misperception ranges from some considering the

use of web services technology as constituting SOA, to others who deem SOA as a web-

centric mutation of the existing Object Oriented design style (Bloomberg, 2013). Some

researchers have gone so far as to assert “that one of the most important challenges that

face SOA is the lack of knowledge” and understanding of its finer aspects (Hassan,

2009). In what follows, some salient features of SOA are reviewed in order to demystify

the subject matter.

SOA is a unique architectural style that has gained significant attention within the

information technology and business communities (Service Oriented Architecture

Reference Model Technical Committee, 2012). It represents a new generation of

distributed architecture (Li & Wu, 2009) in which, through meaningful “application of

service-orientation design principles, Service-oriented solution logic is shaped” (Erl,

2008, pp. 38-39) and exposed through standardized service contracts, specifically

designed to communicate via non-proprietary protocols and technologies, based on

established industry standards (Curbera, 2007). To be legitimately considered an SOA, “a

 3

system should demonstrate some degree of service-orientation” (Aldris, Nugroho, Lago,

& Visser, 2013), where “Service-orientation is a design paradigm comprised of service-

orientation design principle” (Erl, 2008, p. 41). SOA builds upon past distributed

computing efforts, adds new design and governance considerations, and continues to

evolve in face of changing research challenges (Erl, 2008, pp. 96-97; Takdir &

Kistijantoro, 24-25 Sept. 2014).

The concept of a Service sits at the heart of this design paradigm as an atomic,

Cohesive, and black-boxed unit of service-oriented solution-logic (Hassan, 2009; Fortuna

& Mohorcic, Aug 2009). It is defined as a self-contained logical representation of a

repeatable business activity that has a specified outcome (The Open Group, 2009). An

organization involved in service-orientation usually strives to build a collection of

services – known as a Service Inventory – that are designed, developed, deployed and

governed according to one set of standards (Figure 1). It is preferable for an enterprise to

have one service inventory; however, multiple service inventories within very large

enterprises that are comprised of culturally independent business domains are also not

uncommon (Mauro, Leimeister, & Krcmar, 2010).

 4

Figure 1: High-level view – a Service Inventory is a pool of

services that are designed, build, deployed and governed

according to the same set of standards.

SOA as an architectural style focuses on optimizing creative aggregations of these

services for dynamically solving business-process automation problems. Each service is

assigned a distinct functional-context, which is comprised of a set of service capabilities

related to this context (Erl, 2008). Thus, a service can be conceived as a set or container

of related functions, and the technology-neutral term for those related functions is service

capabilities (Erl, 2008, p. 115). Based on business perspective, a functional-context is a

meaningful affinity which binds related capabilities into services, just like the Cohesion

which binds methods into classes in object-oriented design paradigm. These discrete

capabilities are invoked by consumer programs and/or other services through a

standardized and published service contract.

Based on the theory of separation of concerns, services can be modeled after three
2

basic types, i.e. Task, Entity or Utility (Erl, 2008, p. 43). Task services are also sometimes

called Process Services (or Business Process Services) because they are business process-

2
 Some experts add Orchestrated-Task as a fourth type, but it can also be looked at as a variant of basic

Task type. Process Abstraction and Process Centralization are the two design patterns that are applied to a

Task service to make it an Orchestrated-Task service.

 5

centric in nature, and their functional-context typically encapsulates a business-workflow.

Entity services are not process-centric but are business-centric. This means that they are

agnostic to any specific business-process but hold affinity to specific business domains.

Utility services are most generic in nature, and thus are completely agnostic; they are

neither process-centric nor business-centric, and are thus most reusable (Figure 2).

Service Inventory

E3

U1 U3

E1 E2

U2

T2T1

OT1

U4
Utility

Layer

Orchestrated

Task Layer

Task

Layer

Entiry

Layer

A
g

n
o

s
ti
c

N
o

n
-a

g
n

o
s
ti
c

Figure 2: A deeper look into the layered structure of a Service Inventory – a low-level view.

Although the individual services exist as physically independent software programs

with specific design characteristics in support of attaining the strategic goals associated

with service-oriented computing, it’s really the aggregation of these services – called a

Service Composition – that typically solves a complete business problem.

 6

T1

E1

U1

E2

U2

Figure 3: A sample Service Composition using all three types

of services. A Task service (T1) encapsulates business process

work-flow logic; an Entity service (E1, E2) encapsulate

business-centric but process-agnostic logic; and Utility

services encapsulate generic and completely agnostic logic.

 Service Compositions are usually aggregated from within a Service Inventory to

automate a business-process. In such cases, a Task service, encapsulating a business-

workflow, acts as a Composition Controller (T1 in Figure 3 and Figure 4) and does the

composition (or aggregation) of the Entity and Utility type services. This kind of service-

modeling is based on the theory of separation of concerns which fosters modularity, and

promotes reutilization, understandability, extensibility and maintainability by separating

the different concerns of an application into independent modules (Felix & Ortin, 2014).

Thus, large business problems or processes are decomposed into smaller components to

further their reusability with new and creative service compositions (Dubey, 2010).

 7

T1

E1

U1

E2

U2

Figure 4: A big business problem is decomposed into

smaller modules. This modularization approach allows for

proper service modeling. Each type of service model

encapsulates only appropriate kind of logic. This typically

results in a Composition of all three types of services.

Central to this architectural style is a well-recognized and established set of eight

principles of service design (Erl, 2008). These principles provide specific guidelines

about how to shape the individual services that are to become part of the larger whole

called an SOA Ecosystem. From an architectural perspective, these design principles are

the cornerstone of an SOA adoption initiative in any organization. However, due to

vendor-interest and technology-hypes, these principles are sometimes relegated to a

backseat in the SOA adoption initiatives (Bloomberg, 2013). When this happens, an

organization often loses focus from the essentials, gets confused by mere tools and

technologies, and gets “deluded into thinking that they’re building SOA, when actually

they aren’t doing any such thing. Such situations are still quite prevalent, and when such

implementations fail, they can undeservedly give SOA a bad name”. (Bloomberg, 2013,

pp. 23, 180)

 8

2. Promised Benefits of SOA Adoption

What are the core issues that SOA architectural style attempts to solves, and why

should an organization care to invest in SOA adoption?

It is commonly understood that “SOA can reduce integration cost, increase visibility

and agility, increase asset reuse, and ease regulatory compliance” (Bloomberg, 2013, p.

29; Sud, 2010). Through industry experience, a set of standard “strategic goals and

benefits” have emerged from the SOA vision, as illustrated by the Figure 5 (Erl, 2008, p.

56). These goals and benefits clearly establish a target-state that no IT enterprise can

ignore and stay competitive (Jain & Kumar, 2007).

Federation
Intrinsic

Interoperability

Vendor Diversity

Options

Business and

Technology

Alignment

 P

ro
d

u
c
e

s

Strategic Goals

Increased

Organizational

Agility

Increased

Return on

Investment

Reduced

IT Burden

Strategic Benefits

Figure 5: SOA Goals and Benefits. The first four goals lead to the attainment of

the later three goals and benefits. All SOA goals are interrelated and are strategic

in nature: they are focused on the long-term benefits of an IT enterprise.

a. Intrinsic Interoperability

b. Vendor Diversity Options

c. Federation

 9

d. Business and Technology Alignment

e. Organizational Agility

f. Increased Return On Investment (ROI)

g. Reduced IT Burden

2.1. Intrinsic Interoperability

Interoperability means the ability of the disparate software programs to work together

by sharing and exchanging data. “Intrinsic interoperability” is so inherent and

fundamental to the design of such disparate programs that no (or minimal) amount of

integration is required for them to work together as a whole (Erl, 2008, pp. 92-93). In

other words, integration can be looked at as being antithesis of interoperability; more

integration two programs require to interact, less interoperable they are. The integration

effort is often costly (Murer & Hagen, Nov-Dec 2014), and can grow exponentially as the

complexity and size of the programs increases (Appendix F).

Not only that SOA sets intrinsic interoperability as one of its goal, increased

“interoperability is a natural by-product of applying service-orientation design principles”

(Erl, 2008, p. 75). By being mindful of this goal at the design-time of these disparate

programs called Services, SOA seeks to reach a point where integration as a concept

starts to fade away; the target-state being an inventory of services that can work in

Service Compositions inherently and without any special integration effort (Figure 6).

 10

Project Team A

Project Team C

Project Team B

Figure 6: Interoperability. Because these services are designed to

be intrinsically interoperable, regardless of when, where and by

whom they are developed, these services can be recombined many

times into creative Compositions with least integration effort

(Mukhtar, Demystifying Service-Oriented Architecture Part-I:

Promised Goals and Benefit, 11/2011).

2.2. Vendor Diversity Options

The word ‘options’ is the key to understanding this goal. SOA does not advocate

vendor diversity per se. Having multiple vendors is not necessarily a positive thing for an

IT enterprise. In fact, unnecessary and excessive vendor diversification can impair an

organization’s ability and agility (Erl, 2008). However, having the option to substitute

vendors when needed is the goal. In other words, SOA seeks to save an IT enterprise

from the dreary situation of vendor lock-in. By providing the ability to pick and choose

the best-of-breed products and technology innovations, SOA empowers an organization

with constant freedom to look for better solutions and incorporating latest technology

advancements.

 11

2.3. Federation

Federation implies a unification of disparate environments while still allowing

independent evolution. Service-Orientation’s ideal vision for the target-state environment

includes a Federated Endpoint Layer exposing all services (Erl, 2008, p. 58). This means

that no matter how different the underlying logic and implementation of these services

might be, at the contract level they are all standardized and harmonized. SOA hopes to

accomplish this ambitious task by proliferation of industry and design standards during

the design, development and deployment stages of service inventory.

2.4. Business and Technology Alignment

Due to ever-increasing complexity of its products, collaboration among different

people participating in the same development project has become the sine qua non of

success in the software industry (Arsenyan & Büyüközkan, 2009). Experience shows that

the initial business requirements vision is lost when the software architecture is

instantiated (Dahman, Charoy, & Godart, Aug 29-Sep 2 2011). In the SOA context, the

Business and technology alignment refers to the ability of the information technology

architecture to evolve with the changing business. SOA hopes to achieve this alignment

through the collaboration of business and IT experts during the analysis and modeling

stages. The output of this business and technology partnership manifests in the form of

delivered Services with solid business functional-context around them. Business logic is

partitioned and shaped into these business services that are designed to be flexible and

can continually evolve in tandem with the business.

 12

2.5. Organizational Agility

Business agility could be defined as the flexibility of a business in response to rapid

changes in the business environment (Rostampour, Kazemi, Zamiri, Haghighi, & Shams,

2011). SOA promises an IT that is responsive to the changing business. Some experts go

so far as to say that “implementing SOA means building for change” (Bloomberg, 2013,

p. 47). It hopes to achieve this goal through designing IT assets that are inherently

flexible and uniquely designed to be modified with minimal code change. This is

accomplished by means of proper decomposition of a given business problem, and

designing a solution which is inherently disposed to Service Composition and Agnostic

Services (i.e. Utility and Entity type services). Because such services are ideally

normalized, – i.e. they don’t have overlapping functional-boundaries – necessary changes

in the IT assets are minimized (Mauro, Leimeister, & Krcmar, 2010). Any new

development requirement can be partially met with the existing IT assets. This ideally

positions IT to remain flexible with the growing and moving business.

2.6. Increased Return on Investment (ROI)

An “architecture is defined by its significant design decisions, where ‘significant’ is

measured by the cost of change” (Booch, 2008, p. 18). ROI is the most tangible value in

cost-savings that SOA pledges. Even though, in the beginning of an SOA adoption

journey, the initial cost of an SOA based solution for an organization is expected to be

somewhat higher than a project-specific traditional silo-based solution, the additional

initial investment is hoped to be recouped many times over once the Service-Orientation

reaches a critical level (Erl, 2008). This is where Service-Orientation has been influenced

by the commercial product design. SOA encourages architects to design and create

 13

agnostic solution-logic and shape it into Entity and Utility services that can participate as

effective and efficient components of complex and creative Service Compositions.

Busin
ess E

xpandin
g a

nd

Evolv

in
g w

ith
 T

im
e

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Increasing Cost of

Technology Architecture

Traditio
nal A

rchite
cture:

Rigid and In
fle

xible

Figure 7: The traditional technology architectures are tactically focused, and over a period of time

prove rigid, inflexible and incapable of evolving in tandem with the business. As a result, business

and technology architecture grow increasingly out of synch – business requirements fulfillment

decreases. At the same time, the cost and effort to bend the existing architecture to comply with

changing business increases. (Mukhtar, 11/2011)

2.7. Reduced IT Burden

In the ultimate target-state vision, Service-Orientation envisions IT becoming “less of

a burden on the organization and more of an enabling contributor to its strategic goals”, a

business-partner and an enabler of change (Erl, 2008, p. 64). SOA hopes to reduce waste

and redundancy by reducing size and operational costs. After a critical stage has been

reached in SOA adoption and maturity, the organization would experience increased

responsiveness to changing business needs with reduced overall IT costs. The IT

department would become leaner and agile compared to a traditional IT enterprise.

 14

3. Common Measure of Success for an SOA Adoption Initiative

The progress of an organization on the path of SOA adoption, and the attained level

of maturity needs to be measured. “Understanding the extent to which SOA solutions

conform to the concept of service orientation is important. This is particularly true

because with such knowledge we might be able to explain the success and failure of SOA

implementations” (Aldris, Nugroho, Lago, & Visser, 2013).

Software designers and researchers have been keenly aware of the need to evaluate

the level of maturity of an SOA adoption (Cummins, 2009, pp. 19-26). Without an

empirical method of measuring progress, there is no objective way of assessing the level

of success or failure in any organization with respect to SOA adoption initiatives. In

order to address this question of measurability, the vendors and the researcher community

have developed several SOA Maturity Models (Gerić & Vrcek, 22-25 Jun 2009).

A typical SOA Maturity Model is a two dimensional matrix where some number

(commonly ranging from three to seven) of maturity stages are plotted on the x axis, and

some number (commonly ranging from five to seven) of critical SOA adoption factors

are plotted on the y axis. This provides a measuring tool for the factors deemed important

to be measured individually and independently.

It can be safely assumed that the level of fulfillment of business benefits from an

SOA adoption would naturally correspond with the level of SOA maturity achieved at an

organization. In other words, an organization with relatively low SOA adoption maturity

experiences the realization of relatively fewer benefits, as opposed to an organization

with relatively high SOA adoption maturity.

 15

4. Success-Rate with SOA

SOA seems to be failing (Appendix B), and its adoption has produced only mixed

results (Welke, Hirschheim, & Schwarz, 2011). Compared to some spectacular results in

terms of SOA adoption that produced measurable business results, some disappointing

failures are also evident (Gottschalk & Solli-Sæther, 2009; Sulong, 2013). Even after

struggling for many years and spending a fortune, some organizations just couldn’t get

SOA to work (Appendix G). As a result, “the glorious SOA utopia” in terms of strategic

business benefits that are promised by this unique design paradigm have not fully

materialized for some organizations, even after substantial investment in terms of time

and resources (Faust, 2010). An objective analysis of the situation is worth pursuing.

 In 2009, a much debated article appeared in a blog that claimed “SOA is dead”

(Appendix E). The ensuing discussion, and the existing mixed business results,

accumulated much negative goodwill around SOA design paradigm in the industry.

However, many industry experts rushed to its defense (Bloomberg, 2013), and explained

“what went wrong” (Appendix D).

Researchers and practitioners cannot pinpoint the reason(s) with certainty. Some

point to its inherent complexity (Kral & Zemlicka, 2009; Mamaghani, Mousavi,

Hakamizadeh, & Sadeghi, 23-25 June 2010) while others point to the widespread

misunderstanding and confusion this over-used buzzword has acquired in the industry

(Bloomberg, 2013; Gerić & Vrcek, 22-25 Jun 2009). One thing most experts agree is that

SOA adoption is non-trivial (Kannan, Bhamidipaty, & Narendra, 2011). A consensus

seems to be converging on the idea that SOA might be largely misunderstood. People

who claimed to be doing SOA were in fact not really doing SOA but were really getting

 16

confused by the vendor hype (Appendix C). If this is true, then an accurate measure of

SOA adoption maturity becomes increasingly important in order to separate the actual

failures from the mere perception of failure.

4.1. Challenge of Measurability of SOA as an Architectural Style

Despite the profusion of SOA maturity models, empirical studies show that “few

[organizations] could measure whether they are” having any real success (Welke,

Hirschheim, & Schwarz, 2011, p. 63). Thus the ability to objectively measure the SOA

adoption maturity seems to be eluding us.

An effective system development consistent with principles of SOA is non-trivial

(Selmeci & Rozinajova, 2012). Most of its complexity comes from the grassroots level –

the architectural decisions that must be made while shaping individual services in light of

the Principles of SOA. The application of these SOA principles, however, is a subtle

matter, and the assessment of SOA maturity is not necessarily obvious (Kannan,

Bhamidipaty, & Narendra, 2011). In reality, an organization could be working under the

illusion of being SOA compliant, while in fact, only perpetuating the traditional silo-

based architecture under a veneer of web-services and some expensive Commercial of the

Shelve (COTS) products like an Enterprise Service Bus (ESB) and a Service Registry and

Repository (SRR) (Bloomberg, 2013, p. 23). If that were the case, the grand promises of

SOA like increased ROI, increased organizational agility and reduced IT burden, cannot

materialize (Erl, SOA: Principles of Service Design, 2008, p. 56). The ambitions of such

an organization towards SOA adoption will only end in confusion and frustration. Some

of the recent surveys show that several organizations are pulling back from SOA after

struggling with SOA adoption for a few years with minimal results (Appendix G). If the

 17

problem lies in the understanding of the SOA design paradigm at an organization then the

existing SOA maturity models can only produce skewed results in terms of measuring

SOA adoption maturity.

The real and meaningful SOA adoption happens at the individual service design level

(low-level), and that is what is needed to be measured. To use the analogy of bricks and

wall, if a complete SOA eco-system is a wall, then each service is a brick in that wall

(Dubey, 2010). The aggregate strength of the wall depends on the strength of the

individual bricks. The existing SOA maturity models measure the strength of the wall,

but ignore the bricks. The challenge, thus, is to come up with a Service Architecture

Maturity Model (SAMM) for SOA adoption that can accurately and empirically measure

the strength of each brick, and as a result, provide a fair assessment of the strength of the

complete wall. Such would be an accurate measure of SOA maturity in an organization.

The general hypothesis under the given circumstances is that the perception of SOA

failure at some organizations could simply be due to the use of high-level maturity

models for measuring the SOA maturity. For the sake of understanding, consider the

following hypothetical but illustrative scenario:

A large public sector organization has spent 20 million dollars over a period of last

six years on an SOA adoption initiative. At the end of this period, the CIO polls the heads

of all business units that the IT department serves, in order to measure business results

from his investment in the SOA program. On the scale of 1 to 5 (5 being the highest), the

average score comes to a disappointing 0.75. The CIO asks the technical advisor to

provide the current maturity level of SOA adoption at the agency, using one of the

 18

existing maturity models, in order to rationalize the low score received from the business

units. Surprisingly, the maturity level measurement, on the same scale, comes to an

impressive 4.0. The critical question then becomes: if SOA is well mature at this agency,

why such modest business-results? Considering the two contradictory pieces of the

information, the CIO concludes that SOA is an empty-promise, or at least not workable at

the agency. Disillusioned, the CIO pulls back all the future investments planned for the

SOA adoption program, and writes-off $20 million already spent.

The maturity model used for assessing the SOA maturity in the above scenario was a

high-level model, focused on processes, tools, technologies and infrastructure, but not on

the low-level service architecture, which Manes refers to as “Micro SOA” (Manes, 2013).

A reasonable hypothesis could be that the maturity results are misleading and confusing

because of the wrong scope of measure. Next, the CIO of the same organization is asked

to use the proposed Service Architecture Maturity Model (SAMM) to measure the low-

level or micro SOA maturity at the same organization. This time, the maturity model

produces an SOA maturity score of 1.0, well aligned with the minimal realization of

business results. From this analysis, the CIO understands that there’s something wrong in

their understanding of SOA, and sets out to fix the problem instead of blaming the SOA

design paradigm for the realization of inadequate results.

4.2. Specific Research Questions

SOA is a promising design paradigm but some organizations continue to struggle on

the SOA adoption path. There could be a variety of reasons for that; however, it seems

logical that the achieved maturity in SOA adoption should be positively correlated with

the derived benefits from SOA adoption in an organization. In other words, the more

 19

advanced an organization is in SOA adoption, the more noticeable should the benefits be

from such an adoption, at least to a certain degree. If, however, a discrepancy exists

between these two factors, can it be reconciled?

Based on the above discussion, for such an organization, the following set of research

questions arises.

a. Is SOA largely misunderstood at an organization that struggles in reaching a

reasonable level of SOA adoption maturity, and in producing comparable

business results?

b. Is the lack of measure of SOA adoption maturity at the Service Architecture level

a major cause of the perceived failure of SOA design paradigm?

c. How to measure the level of SOA adoption maturity at the Service Architecture

level?

d. How can this more pointed maturity-measure of SOA adoption actually help an

organization progress to a higher maturity stage?

 20

Chapter 2: Literature Review

The questions raised in the previous section fall into two related but separate areas:

1. The existing SOA maturity models that are commonly used in the industry to

measure the SOA adoption maturity

2. Service architecture based on the Principles of Service Design

The existing literature of both these areas is reviewed under separate sections below.

1. A Critical Review and Analysis of the Existing SOA Maturity Models

Software researchers have been keenly aware of the need to evaluate the level of

maturity of SOA adoption. Without an empirical method of measuring progress, there’s

no objective way of assessing the level of success or failure in any organization with

respect to SOA adoption. In order to address this question of measurability of SOA

adoption maturity, the vendors and the researcher community has come up with several

SOA Maturity Models. Some of the important ones are discussed below.

1.1. SOA Maturity Model by SOA Alliance

In 2006, the Object Management Group (OMG) published an SOA Reference Model

by SOA Alliance – a group of independent SOA Practitioners – which included a high-

level SOA maturity model (Appendix H).

 21

Figure 8 – Enterprise SOA Maturity Model by SOA Alliance (Appendix H)

As can be seen from Figure 8, this model sliced SOA maturity into the following

three stages.

1. Web Application Development: At this early stage, organizations provide browser-

based business solutions to both internal and external users, usually in the form of

web-based CRM, ERP or custom applications. Enterprise services such as content

management, search and instant messaging are also usually built during this stage.

2. Develop Composite Applications: At this middle stage of SOA maturity,

organizations improve their data quality. Building on that improvement, IT

applications provide aggregated information from multiple sources to first internal

users, and later to external users as well.

3. Automate Business Process: At this highest level of maturity, the applications, data

and infrastructure all work in harmony and empower the user with the right

information at the right time. This level of SOA maturity results in increased ROI

through the consolidation of multiple business systems. Organizations transform to

 22

the target-state of end-to-end business process management, rather than traditional

point-to-point solutions.

This maturity model describes the three stages from which organizations go through

as they make progress on the SOA adoption track. The model does not attempt to

describe an assessment process of the internal architecture of the services, or a method of

measurement of the level of service-orientation achieved by an organization.

1.2. SOA Maturity Model by IBM

IBM architects find it meaningful to describe the SOA maturity in seven distinct

stages in their Service Integration Maturity Model (SIMM) (Arsanjani & Holley, 2006).

This model considers de-coupling and agility as determining factors, delineating one

stage from the other. The seven stages are listed below.

1. Silo (data integration)

2. Integrated (application integration)

3. Componentized (functional integration)

4. Simple services (process integration)

5. Composite services (supply-chain integration)

6. Virtualized services (virtual infrastructure)

7. Dynamically reconfigurable services (eco-system integration)

At level one of this SOA maturity track, the systems integration is ad-hoc and

inflexible because of the use of proprietary technologies. Moving up to the level two

means embracing some systemic adoption of EAI in order to leverage parts of legacy

applications and data integration. The level three is about modularization of applications

 23

which solidifies the interfaces and contracts between components, fostering decoupling.

The level four on the SOA maturity path is when organizations first start acting as

provider of services to its internal and/or external consumers, on a small scale. The level

five is signaled in when the service eco-system of an organization is mature enough that

it can support on-demand interaction with its trading partners. Level six focuses on the

virtualization of infrastructure to be used by the service implementations in order to make

it agile. And finally, at level seven, organizations reach an architectural maturity that they

can now dynamically reconfigure service compositions at runtime using externalized

policies and monitoring.

The natural progression of an organization through the above listed levels of SOA

maturity is incremental which is depicted in the Scope of Adoption diagram shown in

Figure 9. SOA adoption commonly evolves up from the project level into general

adoption of technologies at the Line of Business (LOB) level. This involves some

assessments and working proof-of-concepts. As the technology adoption gets mature, and

business sees value in sharing service capabilities across business domains, the benefits

in terms of reduced cost and complexity start becoming visible. As the next incremental

step, the adoption of shared services gets business buy-in at the enterprise level, and an

organization gets consolidation of business functions across several business domains.

Finally, the organization is transformed completely – standards get established at the

enterprise level, and governance becomes a function of the enterprise. A shared funding

model gets established for shared services implementation initiatives.

 24

Figure 9 – Service Integration Maturity Model by IBM (Arsanjani & Holley, 2006)

As can be seen in Figure 9, the IBM’s SOA maturity model describes the natural

progression of organizations through SOA adoption at relatively fine-grained levels.

There are distinct signs that signal the level of adoption of an organization. However, it

does not stress nor elaborate the maturity of individual service’s architecture, much less

point specific criteria to evaluate architecture at that low-level service architecture.

1.3. SOA Maturity Model by Sonic Software

A relatively straightforward SOA maturity model was published by a vendor

consortium in 2006 for benchmarking the SOA implementation and planning (Appendix

A). This model provided five progressive levels of maturity, from 1 to 5, where level 5

 25

was considered most mature, as can be seen in Figure 10 (Sonic Software Corporation,

AmberPoint Inc., BearingPoint, Inc., Systinet Corporation, 2005).

At Level 1, called Initial Services, “an organization creates definitions for services

and integrates SOA into methodologies for project development”. Here a project typically

employs an Enterprise Service Bus (ESB), and creates simple SOAP and HTTP Web

service.

At Level 2, called Architected Services, organizations typically set standards for

SOA governance, and SOA infrastructure like an ESB and a Service Repository are

established to foster reuse of services.

At level 3, called Business Services and Collaborative Services, organizations

optimize their business processes through the introduction of Business Process

Management (BPM). This is geared towards increasing organizational agility in response

to business change.

Maturity Level 4, called Measured Business Services, focuses on the collection and

dissemination of appropriate performance data to the business users in a continuous

feedback loop.

And finally, at Level 5, called Optimized Business Services, “business-optimization

rules are added, and the SOA becomes the nervous system for the enterprise”. At this

highest level of SOA maturity, business processes become dynamic, intelligent and

event-driven.

 26

Figure 10 – SOA Maturity Model by Sonic Software (Sonic Software Corporation, AmberPoint Inc.,

BearingPoint, Inc., Systinet Corporation, 2005)

This SOA Maturity Model claims to provide “a framework for IT and business users

to properly evaluate the applicability and benefits of SOA in an organization”. It does

mention Architected Services at its level two, but does not provide a method to evaluate

the maturity of the micro SOA, i.e. at that low-level service architecture.

1.4. SOA Maturity Model by Microsoft

A more elaborate SOA Maturity Model was published by Microsoft Services (Figure

11) under the title of “Assessment and Roadmap for Service Oriented Architecture” in

December of 2008 (Microsoft Services, 2007). This paper was aimed at providing “a

decisive [and] vendor independent perspective on ... SOA capabilities [through] a tailored

SOA roadmap with prioritized recommendations, supported by documentation of

comprehensive enterprise SOA assessment findings, the SOA Maturity Model workshop,

and a services inventory with dependencies and adoption levels”.

 27

The SOA Maturity Model that it proposed accounted for 36 technology-independent

capabilities as guidance “for what is possible and what is required [in order] to realize the

value of a service-oriented approach”. This model is shown in Figure 11, and

summarized below:

Figure 11 – SOA Maturity Model by Microsoft (Microsoft Services, 2007)

As can be seen from this two dimensional Microsoft’s roadmap to “SOA

excellence”, there are four Maturity Levels measured on the horizontal axis, and three

Capabilities on the vertical axis. This implies that, for instance, an organization could be

at Basic maturity level with regards to Administration capabilities, but at the same time,

on a higher maturity level, say Advanced, for Consumption and/or Implementation

capabilities. This independence in capability measurement maturity levels provides some

flexibility in the model.

 28

The scope of the maturity measurement in this model, however, remains very high-

level. For instance, at the Standardized maturity level, the model provides three

measurements under Implementation capabilities: 1. Loosely Coupled Compositions, 2.

Design Patterns and 3. Common Entities. It does not say, for instance, anything about

how to measure the application of the Design Patterns at the low-level of the service

architecture.

1.5. SOA Maturity Model by The Open Group

The Open Group is a large consortium of diverse IT professionals including vendors,

customers, consultants, independent architects, academics and researchers. The Group’s

vision is “Boundaryless Information Flow™ achieved through global interoperability in a

secure, reliable and timely manner”. An important part of its work involves “achievement

of business objectives through IT standards”.

The Service Integration Maturity Model (OSIMM) by this Group is a vendor neutral,

comprehensive and extendable SOA maturity model which can be used to assess the

degree of service integration maturity (The Open Group, 2011). Compared to the other

vendor-based SOA maturity models that are mostly tools, technology and infrastructure

focused, OSIMM is relatively more inclined towards measuring service-orientation. The

Open Group describes its model as below:

OSSIMM is “a model that enables estimation of the degree to which an organization

or enterprise has taken up the principles of SOA within their IT and business. There are

seven levels, Level 1 being the least take-up and Level 7 being the greatest take-up.

Higher degrees of maturity are likely to lead to a higher degree of agility in the business,

 29

but are not necessarily “better”, as each organization may have an ideal level of maturity

depending upon their business requirements and business and IT context.”

Figure 12 – SOA Maturity Model by The Open Group (The Open Group, 2011)

In the above seven by seven matrix (Figure 12), the columns correspond to the

Maturity Levels, and the rows correspond to the Dimensions. Each cell thus defines the

maturity level for each of the Dimensions of the SOA adoption. The overall SOA

maturity of an organization is assessed by aggregating its Maturity Level in each

Dimension. Since the Dimensions and the Maturity Levels of this model are well

described at the source (The Open Group, 2011), those are not reproduced here. Instead,

the distinguishing features of this model from the other vendor-based maturity models are

 30

discussed below. From the perspective of the current analysis, the four most important

features of this model are:

a. Focus on service-orientation – Instead of technology infrastructure

b. Low-level consideration of service architecture, i.e. micro SOA

c. Assessment method and questionnaire

d. Extensibility

Focus on service-orientation: SOA is a unique architectural style that is focused on

service-orientation, i.e. a way of thinking in terms of services. Relative to the other SOA

maturity models, OSIMM provides some focus on the evaluation of an organization’s

maturity level based on the principles of service design. For instance, the assessment

questions under the Architecture dimension asks: “What architectural principles define

your approach?” Under the Application dimension asks: “How common is re-use in your

organization?” Granted that it’s not going far enough to the level of the specific Eight

Principles of Service Design, but it is a step in the right direction. The Dimensions of this

model still include, for instance, Governance and Organization and Infrastructure and

Management which shifts the focus away from the micro SOA and the low-level services

architecture.

Low-level consideration of service architecture: Relative to the other SOA maturity

models, OSIMM shifts some focus in its SOA maturity assessment back to the basics of

micro SOA. This point becomes noticeable by reviewing the seven maturity levels of this

model. Most of the seven levels (e.g. level 3, 4, 5 and 6) try to focus on the issues related

 31

to the service decomposition which makes the overall architecture naturally amenable to

the application of SOA principles at the low-level service architecture.

 Assessment method and questionnaire: In addition to the maturity matrix, under the

Assessment Method, chapter 10, OSIMM also provides a detailed evaluation

methodology (The Open Group, 2011). Under each of the seven dimensions, it provides a

set of assessment questions, maturity indicator, and a mapping to the maturity attributes.

For instance, Architecture dimension provides Base Model Maturity Indicator as: “…by

identifying those service components that have been designed and are deployed using

formal SOA methods, principles, patterns, frameworks, or techniques.”

Extensibility: The base OSIMM model can be extended by adding additional

maturity indicators, assessment questions, and corresponding attribute mappings. While

the principles of service-orientation are relatively more stable than the implementation

technologies, there’s room for improvement and change in both areas. To this end, the

OSIMM is intentionally kept open to new and evolving techniques for implementing

services such as cloud computing. The extensibility of the OSIMM framework is

intended to provide a method to augment the base OSIMM model to include such

concepts.

Due to the above mentioned characteristics, compared to the other existing models,

OSIMM comes closest to an SOA maturity assessment model that can be extended and

modified for building a low-level Service Architecture Maturity Model.

1.6. SOA Maturity Evaluation by Eric Marks

A veteran author on SOA, Marks wrote a small blog in August 2006 titled “A Test of

Maturity” (Marks, 2006). Without providing a full-blown SOA maturity model, he

 32

mentioned a few key items in his maturity evaluation criteria: SOA strategy and vision;

services concept and maturity; SOA architecture and technology stack; SOA governance

and policy enforcement; organization and culture; and SOA metrics and results. What is

important from the perspective of the current analysis in this “test of maturity” is the fact

that under Services Concept and Maturity, Marks stresses on the centrality of the concept

of Service in SOA design. He states that an organization’s understanding of “service…is

the vehicle through which [it] attains the business goals articulated in [its] SOA strategy”.

However, he does not elaborate on this idea further as to how service architecture can or

should be used to measure an organization’s SOA maturity.

1.7. SOA Maturity Model by Business Process Trends (BPTrends)

Business Process Trends is a monthly webzine (web based magazine) that publishes

articles and reports on Business Process topics. It provides guidance and direction on new

developments and trends in the field of business process change. In 2007, it proposed its

own SOA maturity model which closely followed on the lines of CMMI levels as shown

in the Figure 13 below (Appendix I).

 33

Figure 13 – SOA Maturity Model by BPTrends (Appendix I)

The authors of this model stress that in order to evaluate SOA maturity of an

organization, it is important to have a multi-point view that encompasses as many aspects

of the organization’s SOA implementation as possible, to arrive at its true state of SOA

maturity.

The measure of the Scope of Adoption along the x-axis, and the five levels of SOA

maturity on the Y-Axis in this model are self-explanatory. The details of each scope and

level are available at the source (Appendix I). The important distinguishing features of

this model are briefly discussed below.

 34

On the question of ROI (Return on Investment) from SOA adoption, the model

depicts a gradual progress as the SOA maturity increases as shown in the quadrant

section. Increased maintainability is followed by increased flexibility and ultimately,

agility at the enterprise level is achieved at the highest level.

On the important point of cost effectiveness and feasibility, this model presents the

shaded areas to represent non-cost-effective and infeasible areas. This feature uniquely

captures an important fact about SOA adoption, i.e. these areas do “result when the level

of service maturity does not keep up with the degree of SOA adoption. For example,

implementing process enabled SOA for intra-department needs may not be cost-effective.

Similarly, trying to employ fundamental SOA techniques to achieve the goals of

enterprise level SOA is not feasible.” (Appendix I)

1.8. SOA Maturity Model by Welke, Hirschheim and Schwarz

In 2011, also following the lead from the Software Engineering Institute's (SEI)

Capability Maturity Model Integration (CMMI), Welke et al. offered an SOA maturity

model with five similar Maturity Levels, which they propose to be termed as “capability

orientation model”. Against these five Maturity Levels, laid out vertically, this SOA

maturity model mapped six Dimensions horizontally. “These levels use the same basic

CMMI terminology but reflect the changing locus of motivation for SOA adoption. Each

maturity level indicates the principal capability needed to achieve a higher-level

capability – that is, one that moves away from IT-dominated reasons for SOA use toward

enterprise-level transformational objectives” (Welke, Hirschheim, & Schwarz, 2011). In

order to distinguish the standard CMMI maturity categories from their model’s

 35

“Orientation View”, the authors include “SOA view” as the primary attribute

distinguishing the maturity progression.

In the author’s estimation, these six dimensions (SOA view, Benefits and metrics,

Business involvement, Methodology, Service sourcing, and Governance) represent the

key success factors in measuring SOA adoption maturity of an organization.

Figure 14 – SOA Maturity Model by Welke, Hirschheim and Schwarz (Welke, Hirschheim, &

Schwarz, 2011)

As shown in the above five by six matrix (Figure 14), against each of the five

Maturity Levels (vertical axis), the maturity of SOA adoption increases as it moves from

top to bottom on any given SOA Dimensions (horizontal axis) independently, with each

Level indicating the “principal capability” to reach to the next higher level. The authors

suggest that a higher maturity level indicate an organization’s progression to a more

mature SOA eco-system, and correspondingly, results in a higher realization of

anticipated business benefits. This model was offered as an evaluation tool for the

organizations interested in measuring their achieved level of SOA maturity, and for

 36

suggesting helpful steps to further progress on the SOA adoption path. Finally, the

authors do “encourage other researchers to further develop [their] model with both

qualitative and quantitative measures.” (Welke, Hirschheim, & Schwarz, 2011).

Not unlike other existing SOA maturity models, this model too fails to treat SOA as

an architectural style, and does not attempt to measure its adoption maturity based on the

service design principles. Instead, this model attempts to measure the SOA adoption

maturity across the six dimensions that were “considered” significant and essential by the

authors.

1.9. SOA Maturity Model by Rathfelder and Groenda

Explaining how the “existing SOA maturity models provide only weak assistance

with the selection of an adequate maturity level”, and that “most of them are developed

by vendors of SOA products and often used to promote their products”, in 2008,

Rathfelder and Groenda offered a new SOA maturity model, which they named,

“Independent SOA Maturity Model” or “iSOAMM”. By “independent” the authors

meant that their model is independent of the “technologies and products” that often

become inseparable part of SOA infrastructure and platforms. The authors also claimed

that this model will “enables enterprises to select the most adequate maturity level for

them, which is not necessarily the highest one”. The overview of this model is

reproduced in Figure 15 below.

 37

Figure 15 – SOA Maturity Model by Rathfelder and Groenda (Rathfelder & Groenda, 2008)

As can be seen in the above five-by-five matrix, this model defines five maturity

levels (numbered 1 through 5, 5 being the highest, in five rows) looked from five

different viewpoints (columns): service architecture, infrastructure, enterprise structure,

service development, and governance. The authors of this model considered these five

viewpoints critical enough to be included in the model, to be used as yardstick for the

SOA adoption maturity progress.

From the perspective of evaluating SOA as purely an architectural style, in this

model, except for the first viewpoint, i.e. service architecture, the other four only add to

the confusion, and lose the focus on measuring the maturity of the architecture.

Moreover, even within the relevant “service architecture” viewpoint, the model fails to go

deep enough at the principles of service design level in order to measure the true maturity

of the SOA design paradigm.

 38

1.10. Challenge Not Fully Addressed by the Existing Maturity Models

While it can be agreed that a comprehensive view might be helpful in assessing

overall SOA adoptions, for many organizations, more focused attention is needed to the

underlying service-orientation design principles to measure the SOA maturity. As Aldris

et al rightly argue that “in the end, the design of an SOA implementation will determine

the sustainability of the implemented solution in supporting the business goal” (Aldris,

Nugroho, Lago, & Visser, 2013).

A review of the above discussed maturity models brings out a critical point: the

existing SOA maturity models and matrices mostly remain focused on SOA enabling

tools, technologies, infrastructure, management and processes, while ignoring the internal

and essential attributes of SOA, i.e. the service design principles. These kinds of high-

level maturity models might measure the maturity of an SOA technology platform, but

not the maturity of “SOA as an architectural style” (Aldris, Nugroho, Lago, & Visser,

2013). To a certain degree, this reflects part of the prevalent misunderstanding about

SOA design paradigm. The existing SOA maturity measurement models miss the fact

that “SOA is both technology and protocol neutral” (Bloomberg, 2013, p. 21) and that the

real SOA happens at the service-architecture level (Mukhtar, 12/2011). Measurement of

SOA adoption maturity on the bases of the eight Principles of SOA, all of which focus on

shaping the individual services, is the critical gap in the existing research. In the absence

of such a yardstick, the claims of progress (or failure) on the road of SOA adoption will

remain tenuous. This existing gap justifies creating a new low-level micro SOA maturity

model, capable of measuring the maturity at the service architecture level, and can be

called the Service Architecture Maturity Model (SAMM).

 39

2. The Service Architecture Under the SOA Principles of Service Design as

Conventional Software Design Best-Practices

Designing software is a creative activity, and thus, like other creative activities, there

is no absolute formula which guarantees a good design. However, there are some known

principles that could increase the probability of attaining an effective design (Bahill &

Botta, 2008). A software design principle may be defined as ‘an adopted rule or method

for application in action’. Design principles should help generate ideas and enable an

architect to think through design implications. Most software design principles and

practices tend to be rules of thumb rather than hard-and fast rules (Wirfs-Brock, 2009).

Thinking in terms of software design is as old as software itself. As Ward explained,

it is “simply logical ways of going about designing a system. The fundamentals include

modularity, anticipation of change, generality and an incremental approach. Modularity

refers to the division of the system into smaller, more manageable components. The aim

is for each component to have high cohesion (e.g., just do one thing) and low coherence

(e.g., that it is not highly intertwined with other components). Anticipation of change

means that the system should be adaptable as no system is static and there is always the

possibility of change. Generality means that designers should investigate whether there is

a more general solution to the current problem and that, by providing a more general

solution, the designers will be providing solutions to other usage situations.

Incrementality refers to the fact that often the system does not have to be delivered as one

large piece of software” (Ward, 2006).

 40

The science of software architecture is primarily concerned with the description of

programs. It works on different hierarchical levels, and can be seen as a continuum of

software architecture, design and implementation (Eden, Hirshfeld, & Kazman, 2006). In

the field of software engineering, architectural decisions are often considered “hard to

make” (Fowler, 2003) and costly to change (Booch, The Economics of Architecture-First,

2007). It is well understood that the approaches for modeling and implementing service-

oriented systems are founded on the same fundamental ingredients of computing systems

as other paradigms – namely, data and operations (Atkinson & Bostan, 2009). Although,

the design principles may vary significantly depending on the application for which the

software is intended (Simonelis, 2004). In order to successfully achieve the promised

benefits from the SOA adoption, organizations should understand what SOA really is and

which key attributes are crucial in implementing SOA solutions (Aldris, Nugroho, Lago,

& Visser, 2013; Stal, Mar-Apr 2006).

In SOA design paradigm, a Service can be defined as a unit of solution logic to

which service-orientation has been applied to a meaningful extent (Erl, 2008, p. 28). This

Service is a physically isolated piece of software with some special design characteristics,

a distinct Functional Context and a set of related Capabilities. The key architectural

decisions that go into shaping an individual service are commonly known as the principle

of service design.

 41

Service

Orientation
Standardized

Service Contract

Service

Abstra
ctio

n
Service

Autonomy

Service

Loose Coupling
Service

Discoverability

Serv
ice

Reusabilit
y

ServiceStatelessness

Service

Composability

Figure 16: The Eight Principles of Service Design – five that directly

result in the desirable characteristics of SOA, and three that act as

regulators of the other principles. Applied together in a judicious and

balanced way, these principles make a solution truly Service-Oriented

(Mukhtar, 12/2011).

Although some researchers still account for less (Ahmed & Ahmed, 2013), after a

phase of disagreement (Legner & Vogel, 9-13 July 2007), the industry consensus seems

to be towards eight accepted principles of service design as illustrated in Figure 16.

Application of these principles “collectively define Service-Orientation as a design

paradigm”, and should be looked at as a spectrum (Erl, 2008). There exists an intricate

internal dynamic among these principles, in which these principles are interdependent

and intertwined. Only a holistic view and a balanced application of all eight principles

produce best results towards Service-Orientation. Unless the principles discussed below

are applied to a reasonable extent, the promised strategic benefits of SOA adoption will

not materialize, irrespective of the technology used or vendor employed (Erl, 2008, p.

107).

Long before SOA was accepted and established as an industry best-practice design

paradigm, software engineers were acutely aware of the design principles that now

 42

represent the essence of SOA. In other words, SOA did not emerge out of the blue; it

rather evolved and coalesced under the influences of existing software design paradigms.

Before reviewing each SOA principle, the historical underpinnings in the conventional

software design models are discuss below.

2.1. Standardized Service Contract

2.1.1. Historical Underpinning in Conventional Software Design

 Deliberating the fundamental principles of good system design, Bahill & Botta

advise that “special care should be given to interface design so that the interface does not

have to change when its associated systems change” (Bahill & Botta, 2008). Going

further back, quoting from their predecessors, they also recommend that “different

entities should use the same interface, rather than having a specialized interface for each

entity” (Schultz, Fricke, & Igenbergs, July 2000). Software engineers have been aware of

the significance of the idea of “Design by Contract” (DbC) since at least late 1980s. This

well-understood principle advocates defining formal, precise and verifiable interface

specifications for software components. These specifications are referred to as

"contracts", in accordance with a conceptual metaphor with the conditions and

obligations of business contracts (Meye, Oct 1992; Meyer, 2007). With this historical

backdrop, it’s possible to see how SOA adopts and extends the principle of Standardized

Service Contract from its predecessor design paradigms.

 43

2.1.2. Definition and Discussion

The principle of Standardized Service Contract may be defined as “Services within

the same service inventory are in compliance with the same contract design standards”

(Erl, 2008, p. 130)

Services should express their capabilities via a standardized service contract, thus

Contract-First design process is strongly advocated by this principle. The purpose is to

ensure that the manner in which services express their functionality and represent their

internal data-types continue to confirm to an enterprise (or domain) inventory standards.

Increased consistency of expression, of both data and functionality, is the specific

characteristic sought by the application of this principle, and is geared towards achieving

the Federated End-Point layer goal (Mukhtar, 12/2011). Some experts go so far as to say

that “the essence of the SOA style is the decoupling of service consumer and service

provider via the service contract” (Zimmermann, 2011). It requires specific

considerations while designing a service contract in terms of both the quality and the

quantity of the published content (Curbera, 2007). The emphasis is on the expression of

functionality, definition of data types and data models, and assertion of policies by the

services in a standardized fashion (Figure 17). Through this design principle, a constant

focus remains on ensuring that service contracts are optimized, standardized and are

appropriately granular so as to ensure that the endpoints are consistent, reliable, and

governable in pursuance of the Increased Federation goal.

 44

A Complete Service Contract

Non-Technical

Service Contract

Human Readable:

Service Level

Agreement (SLA)

Technical Service

Contract

C
o

n
tr

a
c
t

WS

Policy

WSDL

XML

Schema

Figure 17: The Service Contract includes the Technical Service Contract, plus the

human readable Service Level Agreement (SLA); all parts of a Service Contract are

affected by this principle.

Often, the quality of the initial release of a service contract determines the longevity

of a service. The sooner the contract needs to be modified, especially in a non-backward-

compatible way, the shorter the life of the service will prove to be. With the need of

versioning comes the challenge of service and contract governance (Mukhtar, 12/2011).

2.1.3. Goals

A meaningful application of this principle allows for:

 Easy and intuitive understanding of the capabilities of a service

 Reduced need for data model transformation

 Reduced need for data format transformation

 Increased intrinsic interoperability

 45

2.1.4. Types of Service Contract Standardization

There are two aspects of service contract standardization as discussed below (Mukhtar,

12/2011).

 Standardization of Functional Expression

 Standardization of Data Model

2.1.4.1. Standardization of Functional Expression

Functional Expression standardization refers to having each service express details

of its functional context using standard conventions. This includes the naming

conventions for the services and the service capabilities to comply with an existing

enterprise (or domain) standard. For instance, an Entity service should be named

according to the business entity it models, and a Task service should be named based on

the business process the service is automating. Similarly, the service capability names

should include a verb followed by a noun, and that the service capability names should

not repeat their service names.

2.1.4.2. Standardization of Data Model

Data Model standardization usually results in WSDL definitions that share common

XML schemas. Once these standardized XML schemas define the I/O for each service

capability, the need for data model transformation is naturally reduced, resulting in

relatively simple and more efficient service activity. The goal of data transformation

avoidance is thus materialized through the standardization of data representation across

service contracts as illustrated in Figure 18.

 46

WSDL Documents

Share Standardized

Schemas

Standardized XML

Schemas can

share parts of Base

XML Schemas

Standardized

Base XML

Schema

Figure 18: Schema Centralization - the functional context of a service often includes

multiple data structures. This overlapping of data-boundaries provide opportunity for

Schema Centralization, which means expressing complex data structures in a standard

format across disparate applications. That way, when the services need to share data

while participating in a Composition, no (or minimal) data model transformation is

necessary (Mukhtar, 12/2011).

2.1.5. Service Level Agreements – Non-Technical Part of a Service Contract

During the initial stages of an SOA adoption, organizations tend to focus on the

technical part of the service contract that includes standardized data models based on

XML schemas, and the functional expressions based on WSDL. The Quality of Service

(QoS) related aspects that are expressed in human readable form through the SLAs are

often ignored at this initial adoption stage. The SLA part of the service contract, though

not technically binding, is often legally binding, and thus should be considered an

important extension and integral part of the complete service contract. Below is a small

example list of the items that are often included in an SLA. Because of the very nature of

this part being human readable, business expectations might be firmly set and measured

against the actual service performance (Mukhtar, 12/2011).

 Response-time guaranty from individual service capabilities

 Average response-time guaranty from service compositions

 47

 Availability guaranty

 Protocols guaranty for any scheduled and unscheduled downtime

 Availability of the service utilization data and statistics

 User feedback protocols and guaranty of the feedback review

2.2. Service Loose Coupling

2.2.1. Historical Underpinning in Conventional Software Design

Loose coupling as a software engineering best-practice is well recognized even in the

conventional software design paradigms. In early 70s Parnas & Morris explained how

modularity is connected with independence, and presented these as a mechanism for

improving the flexibility and comprehensibility of a system. Commenting on the idea of

product flexibility, they further state that “it should be possible to make drastic changes

to the module without a need to change others” (Parnas & Morris, 1972). Taking this idea

further, the Layered Architecture is also well-established for its utility in the traditional

software architectures. In that pattern, loose coupling is achieved by limiting the visibility

of the modules to within their layer only, for instance, as Hunter reports and urges the

“separation of data access from the business logic” (Hunter, October 11 2008).

Inspiration for the principle of Service Loose Coupling in SOA can be directly traced

back from such preexisting notions.

2.2.2. Definition and Discussion

“Service contracts impose low consumer coupling requirements and are themselves

decoupled from the surrounding environment” (Erl, 2008, p. 167).

 48

The term ‘coupling’ means the connection or relationship, and the resulting

dependency, between two software programs or other IT elements (Kannan,

Bhamidipaty, & Narendra, 2011). These relationships are directed to both internal and

external elements of a service, and can be measured via some dependency metrics

(Karhikeyan & Geetha, 25-27 April 2012). While the internal elements comprise of the

program logic that a contract encapsulates, the external elements are the consumers of a

service. In the context of service orientation, coupling specifically implies these

dependency relationships around a service contract. The principle of loose coupling

advocates minimizing negative forms of coupling in order to increase the independence

of service contract from its underlying implementation as well as from other consumers.

Although, it is more of a regulatory principle in that it enables other principles to

achieve their specific target characteristics, principle of service loose coupling does

specifically target achieving a functional context that is as independent as possible of the

outside logic. The Service Autonomy is the other design principle that this principles

directly impacts as discussed later. Increased positive coupling results in increased

design-time control of a service (Mukhtar, 12/2011).

In order for loose-coupling to enables service-reuse, strong coherency must be

maintained. However, when new service compositions are created from loosely coupled

services that are independent (i.e. owned by different parts of the organization, based on

disparate technology assumptions, and evolving on independent schedules and with

diverse priorities) the coherency of the composite application can be a challenge (High,

Krishnan, & Sanchez, 2008). In any distributed application architecture, coupling is a

natural and unavoidable phenomenon that must be well understood. The architectural

 49

adjustments to the extent and direction of such coupling further the goals of Service-

Orientation. The application of the service loose coupling principle could result in some

additional runtime processing compared to what two tightly coupled services might

require. The price of the independence usually manifests in the form of increased data-

exchange and data-processing since each service chooses not to depend on the other. On

the flip side, however, this price is considered worth the target-state, which is an

environment in which services, along with their consumers, can evolve independently

over time, with minimal impact on each other. The traditional point-to-point architecture

– the antithesis of this principle – “is not scalable and very complex as the number of

integration points increases as the number of systems increases and can quickly become

unmanageable” (Papazoglou & van den Heuvel, 2007). Since service contract and service

logic both can form dependencies on parts of the service environment and on each other,

the scope of this principle encompasses both the logic of the service and the design of the

service contract. As Zhang and Zhou has proposed, the degree of loosely coupling

measurement for individual services can be quantified, and can be analyzed from the

service dependencies among its disparate consumers (Zhou & Zhang, 2009).

 50

Service

s
e

rv
ic

e
 c

o
n

tr
a

c
t

message

processing

logic

core

service

logic

 contract to logic coupling

 contract to implementation coupling

 contract to functional coupling

 contract to technology coupling

 logic to contract coupling

service

consumer

application

specific

implementation

application specific

functional business

process
 consumer to service-logic coupling

 consumer to contract coupling

 consumer to implementation

.NET

J2EE

vendor

specific

technology

Figure 19: Coupling Types. There are several distinct types of dependencies (or couplings) that a

service can have. Loose coupling principle promotes independence in the design of service contracts

and allows for free evolution of service logic. It’s important to understand the governance

implications of such coupling types. More the negative coupling types find their way into the service

contract, greater the governance burden and maintenance overhead of a service will be. (Note:

negative type couplings are shown in red arrows; positive couplings are depicted with green arrows.)

(Mukhtar, 12/2011)

2.2.3. Positive and Negative Coupling Types

There are several types of coupling that relate to either internal or external service

design and runtime service activity. These different forms of coupling represent

dependencies that exist between the three distinct architectural elements, i.e. Services,

Messages and Contracts, but most often, the last. As illustrated in the Figure 19, there are

two positive coupling types, and five negative coupling types. Positive coupling types are

desirable couplings that are sought by SOA architects, whereas the negative coupling

types are undesirable. Much of the effort in Service-Orientation goes into designing

services that avoid the negative types of coupling to the extent possible. Below, these

coupling types are discussed individually (Mukhtar, 12/2011).

2.2.3.1. Positive Coupling Types

 Logic to Contract

 51

 Consumer to Contract

2.2.3.1.1. Logic to Contract Coupling Type

If the service contract is written first, (following the Contract First approach as

discussed earlier), the implementation that follows, in the form of service logic, gets

tightly coupled with the existing contract. This is a desirable outcome. It means that in

the future, if the service implementation needs to change, the service contract would

remain impervious to it, and so will the service consumers.

2.2.3.1.2. Consumer to Contract Coupling Type

When a consumer binds to a service contract, the resultant relationship is called a

consumer-to-contract coupling. It is a desirable form of coupling because it achieves

most independence between the consumer and the service logic. Service-Orientation

advocates that all communication between a service and its consumer occur via the

published service contract. If this contract is designed independent of the service

implementation, all consumer coupling will be limited to this published contract, leaving

the service implementation logic and the consumer decoupled.

2.2.3.2. Negative Coupling Types

There are five types of negative couplings that must be closely watched during the

service design stage. The desired target-state is to avoid, or minimize, such undesirable

couplings in order to maximize the governance independence of the service contracts.

These undesirable couplings types are listed below and illustrated by Figure 19 in red

arrows.

a. Contract to logic

 52

b. Contract to functional

c. Contract to implementation

d. Contract to technology

e. Consumer to service logic and/or implementation

2.2.3.2.1. Contract to Logic

Contract to logic is the negative coupling type that is most associated with the

bottom-up approach of service development. If the service implementation already exists

and the service contract is derived from it using auto-generation tools, the resulting

contract will be closely tied to the underlying implementation. Due to this inheritance

effect, in the future, when the implementation needs to change, the contract will have to

change with it. In such a scenario, service logic will not be dependent on the service

contract, instead, with a new or modified implementation, a new or modified contract

would need to be regenerated. Furthermore, with a modified service contract the service

consumers would need to be changed as well. This, of course, is the antitheses to the

promised target-state of Service-Orientation.

2.2.3.2.2. Contract to Functional

If a service contract has specifically been designed and developed in support of a

pre-existing business-process, an existing consumer, and/or a task service, it might result

in tight coupling of the service contract to the underlying process or to the specific

consumer. As the internal implementation of this underlying process changes, the service

contract will have to change with it. Same dynamic can happen when the contract is

specifically developed for an existing consumer. In a B2B implementation, for example,

 53

if consumer-specific implementation details are allowed to seep into a service contract,

that contract will probably be forced to change when the service consumer is modified.

2.2.3.2.3. Contract to Implementation

Service logic can potentially envelope several implementation specific elements like

legacy APIs, vendor specific database functions, physical server environments, network

specific paths, file names and user account information. Program logic can have direct or

indirect dependencies on such implementation elements, but if these dependencies

spillover the service contract, that can form the negative coupling type called contract to

implementation coupling. Given the fact that these implementation specific details do

tend to change frequently, contract to implementation form of coupling is one of the

nastiest one, and easy to be overlooked by a service designer.

2.2.3.2.4. Contract to Technology

If the service contract itself is not technology agnostic, it can be said that contract to

technology coupling exists. It is a form of negative coupling in that it limits the

consumers of your service to use only the underlying technology. The consumers that

cannot use that specific technology are left out. Web Services offer a technology agnostic

way of creating service contracts, but mere use of WSDL does not bulletproof a contract

from this negative type of coupling. A WSDL can include technology specific data types,

say .NET specific calendar field, and hence still end up with contract to technology

coupling. The point to keep in mind is not to include anything in the service contract that

might be specific to the underling implementation technology.

 54

However, there’s a silver lining to this negative coupling type as well. Since making

the contract technology agnostic usually involves transforming data into a standard

format, like XML/SOAP, technology specific communication is much faster. Marshaling

and un-marshaling is the necessary price that is to be paid to keep a contract technology

independent. In certain cases, however, when all (or an overwhelming percentage of)

consumers of a service are developed in one technology, it might be worthwhile to

consider allowing this coupling. In case not all but most consumers of a service depend

on one technology, a service may be exposed via two contracts – applying Concurrent

Contracts design pattern – one in the target technology and the other, for the small

minority consumers, in a technology agnostic form. A tradeoff price in terms of

governance overhead is naturally to be paid with such a configuration.

2.2.3.2.5. Consumer to Service Logic and/or Implementation

Since one cannot always force a potential consumer to necessarily access a service or

its underlying resources through a published service contract, it is possible of a consumer

to simply bypass the service contract and to connect directly to the core service logic, or

even to the underlying resources of a service like a database. This is one of the worst

forms of coupling as it tends to defeat the purpose of Service-Orientation. From

maintainability perspective also, it represents worst case scenario. Business

implementation is bound to change with time, and when it does, the consumer would

need to be modified as well. Implementing the Contract Centralization design pattern

could provide a solution, which requires that all service consumers interface with a

service exclusively via the officially published service contract, and not through other

potentially available resource entry points.

 55

2.2.3.3. Percolation of Negative Coupling – the Unintended Inheritance Effect

The negative couplings, as discussed above, could create more serious and far-

reaching problems that might not be readily obvious to a casual eye. Building consumer-

to-contract coupling is a recommended approach which helps avoid negative coupling

types. However, if the service contract is poorly designed, consumer-to-contract coupling

can also produce unintended negative couplings. Because of the cascading effect, such

negative type of couplings could percolate downstream and unintentionally form tight

coupling with deeper architectural element.

As discussed in the Positive Coupling Types section previously, service consumers

are expected to develop the positive form of coupling to the service contract. Any of the

four negative coupling types carried by a contract, however, can produce a domino effect.

If this happens, all subsequent service consumer programs will end up forming the same

dependencies to the underlying implementations. Worst, the consumer designers will

have least idea that their programs are involuntarily getting tied to something beyond the

published service contract, seamlessly inheriting the negative coupling from it. These

types of indirect coupling can lead to serious flaws in the overall design of an entire

solution, and result in far-reaching and expensive reworks and modifications later in time.

Thus, the undesirable forms of coupling allowed into the service contract design

eventually ends up being imposed upon, and proliferated through, all consumers of the

service. Specially, in the case of agnostic services that need to be highly reused, the

problem can be magnified exponentially, and must be watched carefully at the original

service design stage (Mukhtar, 12/2011).

 56

2.3. Service Abstraction

2.3.1. Historical Underpinning in Conventional Software Design

Writing on the subject of modularization in 1972 Parnas & Morris instructed us to

hide data from the objects that do not have “a need to know” (Parnas & Morris, 1972).

The rationale behind this wisdom being: “if the data structure is changed, the other

objects do not have to be notified about the change” (Bahill & Botta, 2008). In 2000,

Gomaa reiterated this principle, and called it “information hiding and function hiding”

(Gomaa, 2000). Abstraction and information hiding form the foundation of all object-

oriented development. As Booch explained, large object-oriented systems tend to be built

in layers of abstraction, where each layer denotes a collection of objects with restricted

visibility to other layers called subsystems (Booch, 1986). In SOA, the principle of

Service Abstraction directly traces back to this well understood notion in conventional

software design. However, SOA simply shifts the fulcrum from Object to Service, and

heeds to the advice of privacy experts to disclose the minimum set of information needed

to complete a transaction (Breaux, 2014).

2.3.2. Definition and Discussion

The principle of Service Abstraction may be defined as “Service contracts only

contain essential information and information about services is limited to what is

published in service contracts” (Erl, 2008, p. 214).

At the fundamental level, this principle advocates deliberate hiding of service

metadata such that only necessary and minimal information is available to the service

consumers, and that too, only via published service contract. All other non-essential

 57

information about the service and its capabilities is abstracted away from the consumers

and consumer designers.

As with service Loose Coupling principle, instead of incorporating any specific

target characteristic, this principle is a regulatory principle which supports and enables

other principles. Most directly, this principle influences the extent of loose coupling that

can be attained, and the design of service contract. The application of this principle also

influences the service reusability, service composability and service discoverability

principles by regulating and limiting the amount and nature of the metadata available for

the service consumers (Mukhtar, 12/2011).

The idea of information hiding is not new and is fairly straightforward on the

surface. It’s borrowed from Object Oriented design world where it’s known as the

principle of encapsulation – limiting access to an object’s data members only through the

accessor (get/set) methods. In Service-Orientation, however, the tricky question is: how

much information hiding? Achieving the proper balance in such information-hiding is

this principle’s core idea. Too much information hiding can impede the consumer’s

ability to utilize the service effectively; on the other hand, too little information hiding

can encourage the consumers to develop unwanted dependencies, and undo loose

coupling.

As more information is published in a technical service contract, tighter the

subsequent consumer-to-contract coupling becomes. Consumer-to-contract coupling is a

positive form of coupling which is a desirable characteristic of SOA target-state.

However, if the consumer-designer has access to the information regarding the actual

implementation of the service, and the service contract is liberal enough to allow using

 58

such privileged information, the undesirable type of consumer-to-implementation

coupling can still seep in. This subtle point can be elaborated with the following example.

Suppose that a service X is implemented using .NET Components technology that uses

Security Tokens and Active Directory references. Also, suppose that the service X

contract-designer has intentionally reduced constraint granularity in order to achieve high

service reusability. Given this possible scenario, a consumer-designer, with this

privileged information regarding internal implementation detail of the service can choose,

in good faith, to utilize it by directly passing into service X, security tokens and hard

directory references, in order to gain a performance advantage. This, of course, will work

and probably even produce better performance for this particular consumer, until

suddenly one day it will stop working all together, when, for some reason, the underlying

service implementation gets modified.

Similarly, as more information is made available to the consumer-designers in the

form of human readable non-technical part of the service contract (i.e. SLAs), greater will

be the potential that the designers will base their consumer programs on this additional-

information, and unintentionally end up binding to the service too tightly.

Thus, increasing the consumer awareness about all aspects of the service is not

necessarily a good thing in all cases. The Service Abstraction principle asks the service

designer to take the time and assess and balance, both risk and value propositions of

publishing specific pieces of Meta information about the service (Mukhtar, 12/2011).

 59

2.3.3. What to Hide and What Not to Hide is the Question

When determining what service information one must hide and what information one

must expose in the service contract, it is often helpful to partition all available

information in the following four distinct categories (Erl, 2008, p. 218).

a. Functional metadata

b. Quality of Service (QoS) metadata

c. Implementation Technology metadata

d. Programmatic metadata

The proper implementation of this principle turns a service into a black-box that

consumers know how to use, but don’t know how it works. This abstraction and black-

box concept permeates the commercial software designs because the commercial

software vendors want their customers to be able to use their products without giving out

any information on how those products actually work. Service-Orientation treats the

services in the similar vein; abstraction within the enterprise thus becomes a serious

design consideration. The consideration for each of the Meta information categories listed

above is discussed below (Figure 20) (Mukhtar, 12/2011).

Functional

P
ro

g
ra

m
m

a
ti

c

Quality of

Service

T
e

c
h

n
o

lo
g

y

Service

Figure 20: The four common Meta information types. Each describes the

service from a unique perspective. Meta information related to

Programmatic and Technology aspects of a service generally are of more

 60

concern for Abstraction than Functional and QoS related information.

(Mukhtar, 12/2011)

As with the other service design principles, the question is never all or none; whether

a service design should or should not abstract, but how much should be abstracted. In

each of the Meta categories discussed below, the service design architect needs to make a

judgment decision as to where the proper balance rests.

2.3.3.1. Functional Metadata

Within a functional context, services often have more capabilities at the fine-grained

level than are exposed via its technical contract. The question for the architect designing

the service is which fine-grained capabilities should be exposed and which should be

abstracted out. For example, assume service S contains capabilities A, B and C. Also

assume that capabilities B and C provide partial functionalities which capability A

aggregates by composition. Should capability B and C be exposed in the service contract

or should only capability A be exposed? In order to answer this question the service

architect needs to figure out if there are other possible direct consumers of capability B

and C. If not, the capabilities B and C are better left abstracted. Service contract is mainly

the region impacted by functional metadata abstraction.

2.3.3.2. Quality of Service (QoS) Metadata

A wide range of non-functional, utilization, reliability and behavior related

information which is usually part of the SLA of a service is accounted under QoS

metadata. Alternately, if the deployment environment supports, these SLAs could also be

implemented using WS-Policy Assertions. Either way, most of this design-time

 61

information should be shared with the consumer-designers in order to set their

expectations. However, there’s no need for service to share any runtime QoS metadata.

For instance, peak-time business hours, say “9AM to 3PM – Mon to Fri”, and

performance expectation during this time, say “a response within 3 seconds”, should be

shared with the consumer-designer so that they can realistically set their program

parameters, say “timeout limit during the day”. However, runtime information, for

example, the current state of service X on node 3, cluster 5 of the application container,

does not need to be shared. Service contract is mainly the region impacted by QoS

metadata abstraction, but because of the behavior and reliability related details, core

service logic region can also be impacted.

2.3.3.3. Implementation Technology Metadata

As the name suggests, this type of information includes metadata related to the

technical implementation of the underlying service logic. Some of this information is

needed by the consumer to be able to use a service, but there’s other information that the

user does not care about and should not know. Any commercial off the shelf (COTS)

software program can be a point in case – as a consumer of such a program one needs to

know how to install it and how to execute it, what are the available interfaces, and with

which operating systems the program will work. However, one does not need to know

which programming language the program code was written in, and which particular

version of the compiler the program was compiled with. Not only that a consumer does

not need this kind of information, but in fact, this kind of information in the wrong hands

can be harmful to the program and its vendor. Naturally, the COTS vendor wants to

protect his program by abstracting this kind of meta information. During service design, a

 62

service architect needs to take the same approach towards sharing implementation

technology related metadata of a service. In Service-Orientation, this technology related

metadata abstraction not only protects a service but also protects the consumers. When

the consumer designer doesn’t know the underlying implementation technology details,

there is less of a chance that the consumer programs will develop unintentional tight

coupling to a service.

For instance, in case of the service implementation via web services technology,

information that the service can be invoked using SOAP 1.1 is necessary to be shared

with the consumer, but information that the service was developed using Java 1.5 is

unnecessary and undesirable. Core service logic as well as message processing logic can

be impacted by implementation technology metadata abstraction.

2.3.3.4. Programmatic Metadata

Information regarding the low-level program logic and routines include things like

exception handling data, specific computational algorithms, authentication and

authorization programming logic and logging related programming details. Consumers of

a service do not need to know these programmatic details of a service. However, some

organizations nurture open IT environment and make available even the program source-

code to anyone interested. Open Source projects, and some organizations using these

projects are good examples. This can make the programmatic metadata abstraction

challenging, and may require an organizational and cultural change.

The service abstraction principle advocates hiding of programmatic metadata from

the consumer-designers in order to increase the longevity of the consumer programs and

decrease the governance burden for the service. It also provides the service the freedom

 63

to evolve freely without any constrain from its consumers. By abstracting away this level

of information, an architect avoids inadvertent consumer-to-logic negative coupling. Core

service logic is mainly the region impacted by programmatic metadata abstraction.

2.3.4. Organizational Impact

Proper implementation of this principle has the potential not only to change the IT

department but also how an organization works as a whole.

Within the project, it introduces “hidden composition” issue that can impact service

performance expectations and what is committed to in the SLAs. Because this principle

advocates limiting the information about a service to its published contract, it is very

much possible that what a consumer is invoking as a service is in fact a service

composition controller, i.e. a service capability at the top of a service composition

hierarchy, composing other services. In this common scenario, some inter-service

performance computation will be required to set consumer expectations in terms of

service performance. For example, assume consumer C invokes service X, which in turn

composes capabilities in service Y and service Z. In order to satisfy service X’s SLA of

say, “responds within 2 seconds”, service Y and service Z must not take more than 2

seconds of processing time collectively. From consumer C’s perspective, services Y and

Z do not exist; he’s only aware of the promise made to him in service X’s SLA.

However, the designers of service X are aware of Y and Z as participating members in

their composition. They must keep in mind limitations of service Y and service Z when

writing service X’s SLA.

Application of the service abstraction principle may also involve the need to

introduce or tighten the access controls for service design documents as well as its source

 64

code. As discussed above, even within the IT department, other teams need to be denied

access to some of the service related meta information. This measure protects both

service as well as its consumer from developing undesirable negative types of coupling.

However, this implies changing the organizational culture of information sharing across

project teams, and might require some explanation and justification at the enterprise

level.

The impact of implementing this principle can, thus, go beyond current project and

program, and can require changes at the organizational and cultural level of the whole

enterprise. For the sake of the service abstraction principle, a detailed formalization of the

processing resources are lacking for the individual service capabilities (Stachtiari,

Vesyropoulos, Kourouleas, Georgiadis, & Katsaros, 2014).

2.4. Service Reusability

2.4.1. Historical Underpinning in Conventional Software Design

The Single Responsibility Principle (SRP) from the traditional software architecture

and design paradigms is well known and understood. Originated by Martin and quoted by

others, it states that “every object in a system should have a single responsibility, and all

the object’s services should be focused on carrying out that single responsibility” (Haoyu

& Haili, August 2012; Martin, 2003). Thus, reuse is a well-regarded concept in

traditional software development, but it is merely a convenience, whereas reuse is

essential in the case of services, because services cut across organizational boundaries

(Huhns & Singh, 2005).

 65

2.4.2. Definition and Discussion

The principle of Service Reuse may be defined as “Services contain and express

agnostic logic that can be positioned as reusable enterprise assets” (Erl, 2008, p. 259).

Reusability is one of the most fundamental principles of service design which

influences all other principles (Welke, Hirschheim, & Schwarz, 2011). It seeks to

increase the potential of a service to be reused by the consumers beyond the original

requirement for which it was designed and developed. This principle advocates actively

looking for potentially reusable unit of logic and making it available within an agnostic

service context. Service-Orientation design paradigm assigns unprecedented weight to the

principle of reusability, bring it on par with the commercial software engineering

practice. In fact, this principle combines techniques and methodologies from traditional

commercial software design to that of silo-based enterprise product design and

development. This stress on reusability clearly points to the fact that commercial product

design is one of the major influences on Service-Orientation design paradigm.

Service reusability principle promotes several of the strategic goals of Service-

Orientation and helps develop some tangible target characteristics. By focusing on

agnostic service context, this principle directly supports increased ROI, increased

organizational agility and eventually, reduced IT burden (Mukhtar, 12/2011).

A service can be considered agnostic if its capabilities expose functionality that is

not tied to a particular business process, but instead, exposes generic multi-purpose logic

that can be used by several different business processes. As a general rule, more generic

the encapsulated solution logic, higher will be the reusability potential.

 66

In Service-Orientation design paradigm, reusability represents a core target-state

characteristic that directly ties to the goal of increased ROI. This principle sets the stage

for materializing this goal by actively seeking reusable units of logic and building

agnostic services. To be specific, Logic Centralization and Contract Centralization are the

two vehicles with witch Service-Orientation achieve service reusability. The result is a

highly standardized and normalized service inventory maximizing reusability (Mukhtar,

12/2011).

2.4.2.1. Logic Centralization Pattern

Logic Centralization pattern limits the number of implementations of a particular

business-solution logic. It advocates that at any given time, there should be one and only

one way of executing certain solution logic – technically known as Service Normalization

which emphasizes service boundary alignment.

This puts the onus on the architects and designers of a solution not to rebuild

something that already exists elsewhere. On the other hand, the responsibility is also

shared by the owners of the existing solution logic to make it available, accessible and

useable by project teams, other than their own. Redundancy of solution logic is

undesirable in SOA design
3
. In such an adverse scenario, one either must take on the

governance responsibility of keeping the logic in sync at two different places, or

accepting potentially inconsistent and irreconcilable results. If service A encapsulates

business logic to do X, all subsequent services should form effective compositions with

service A to execute solution logic X. All efforts should be spent not to inadvertently (or

3
 Jeff Bezos (Amazon’s CEO) issued a stern warning in 2003 to all the internal software teams that each

service within the company must be consumed only by a single well-documented contract. This famous

edict is often credited by the experts for the tremendous success Amazon IT achieved in SOA adoption.

 67

otherwise) redevelop logic to perform X in another service capability. This design pattern

applies to all services, but especially to the agnostic services because of their high

potential of reuse.

The ideal implementation of the Logic Centralization pattern can prove challenging

at the enterprise level, especially in large organizations. However, a reasonable extent of

application of this principle could involve implementing it in conjunction with the

Domain Inventory design pattern, which advocates segmenting the organization in

manageable business domains (Mukhtar, 12/2011).

2.4.2.2. Contract Centralization Pattern

Logic centralization pattern, as discussed above, addresses only part of the problem.

It tackles the issue of single vs. multiple copies of solution logic residing within a service

inventory, and advocates that there should be only one copy. It does not, however,

address the question of how that solution logic should be invoked – that is the Contract

Centralization part. Contract Centralization pattern demands to limit the access to a

service only through its published contract. This means that no consumer should be build

such that can connect and execute the encapsulated logic of a service, bypassing the

published service contract (Figure 21) (Mukhtar, 12/2011).

 68

Service

Consumer

A

contract

Logic for

Capability X

 V
io

la
ti
n

g
 C

o
n

tr
a

c
t
C

e
n

tr
a

liz
a

ti
o

n

Service

Consumer

B

Violating Logic

Centralization

New Service with

Capability X

Figure 21: Applying Logic Centralization and Contract Centralization design

patterns together establish a single official entry-point to a normalized service.

(Mukhtar, 12/2011)

2.4.3. Types of Reuse

A service can be reused in two different ways: by being repeatedly invoked from the

same consumer for the same business task, or by being invoked by different consumers

for different business processes. Although, both types of reuse increase ROI, it’s the

second type of the reuse where the real prize lies. By designing highly generic services

with agnostic functional context the principle of reusability tries to maximize reuse from

different consumers resulting in a highly composable service inventory. The Principle of

Service Composability (discussed below) directly supports this goal (Mukhtar, 12/2011).

 69

2.4.4. Considerations for Creating Agnostic Services

Emphasis on reusability implies some stringent design considerations that affect all

parts of the service. Service-orientation “should apply equally at all levels in the business

such that there is no distinction between larger-grained ‘business services’ and finer-

grained ‘IT services’” (Nayak & Nigam, 23-26 July 2007). Below are some guidelines

for creating agnostic services that can be leveraged multiple times and can survive for a

reasonable period of time (Mukhtar, 12/2011).

 The upfront time spent on defining service inventory blueprint provides great

opportunity to identify agnostic units-of-logic and to fashion them into agnostic

services. Sometimes, pressure to meet delivery deadlines on projects can eclipse

the centrality of this part of the process. When possible, don’t rush through this

process.

 Decompose the high-level base-logic of a business requirement into such

reasonable size units-of-logic that can maximize reusability, but not too granular

that the overhead of gluing them together would overweigh the potential benefit.

Incorrect granularity could mean that a service covers too much functionality or

too little functionality. A key challenge that SOA architects face is to determine

the most appropriate level of service granularity, which could be quantitatively

measured depending upon the granularity attributes, i.e. reusability,

composability, complexity, business value, and context-independency

(Khoshkbarforoushha, Tabein, Jamshidi, & Shams, 5-10 July 2010).

 Seek active involvement of business domain SMEs and service analysts to ensure

that the service-context boundary and contract granularity represent true

 70

functional context. The service analysts, who are well familiar with the detailed

contract requirements, might be tempted to define an extremely fine-grained

service contract. Passing extremely sanitized I/O parameters to your service

makes sense if you’re only thinking of your current project requirements.

However, a broader vision of reusability potential might suggest a lenient and

coarse-grained contract to keep room for other consumer to join in later.

 No matter how well the Logic Centralization and Contract Centralization design

patterns are followed, changes are bound to occur. A well designed and

regularized versioning system will help during the service evolution stage.

 Finally, if agnostic service context means reusability, it also means the need for

scalability. As the amount of reusable services grow, so does the need for a highly

scalable runtime environment where agnostic services can be deployed as

effective compositions. Stress-testing such a deployment environment for peak

usage is an advisable strategy.

2.5. Service Autonomy

2.5.1. Definition and Discussion

The principle of Service Autonomy may be defined as “Services exercise a high

level of control over their underlying runtime execution environment” (Erl, 2008, p. 296).

The principle of service autonomy advocates that the services should have maximum

amount of control possible over their underlying resources and environment. It asks the

service architects to carefully consider all direct and indirect dependencies that the

service will form, and the potential performance impact of such dependencies. Naturally,

 71

more independence and isolation a service enjoys in terms of its underlying resources,

more predictable its performance will be. On the other hand, more resources a service

shares with other programs, less predictable and reliable its performance can expected to

be.

Reliability, consistency, and behavioral predictability are the three specific target-

state characteristics sought by the application of this principle. The principle of autonomy

also directly supports the reusability and composability principles (Mukhtar, 12/2011).

Autonomy refers to the ability to self-govern, i.e. the freedom and control to make

internal decisions without dependency over external elements (Kannan, Bhamidipaty, &

Narendra, 2011). In relation to Service-Orientation, a service is said to be autonomous if

it is able to carry out its logic independently without getting influenced by external

factors.

With the understanding that in most environments, complete service autonomy is

practically not possible, this principle urges an architect to consider and realize any

opportunities to isolate the underlying resources of a service, and make a service as self-

sufficient as possible. On the flip side, achieving high service autonomy can significantly

increase infrastructure requirements and costs.

The most common shared IT resources are databases and server infrastructure.

Because the database entities usually cut across the business domains and functional

contexts of services, it is most probable that a service will have to share database

resources with other programs and services. The concurrency of use in such cases

impacts the consistency of service performance. A high utilization time, for example, of

another application or service that is sharing a database with a service can negatively

 72

impact its performance without much advance knowledge. Similarly, it’s naturally

difficult to meet promised performance related SLAs consistently, if the server that is

hosting a service is also hosting ten other services with irregular peak utilization hours

(Sud, 2010) (Mukhtar, 12/2011).

2.5.2. Service Autonomy vs. Service Composability

In a way, the considerations for the Principle of Autonomy compete with the

considerations of the principle of Service Composability. A service naturally tends to

diminish its autonomy as it moves up the hierarchy of service composition tree. Also, due

to the principle of Service Abstraction, a consumer-service designer might not know

anything about the relative position of a provider-service within a service composition

hierarchy i.e., what is invoked as a service might in fact be a large and complex

composite service. For example, assume that capability C1 in service S1 invokes

capability C2 in service S2. Even if S2 is not a composite service, S1 has relented a

certain amount of control by delegating work to C2, which means S1 is now dependent

over S2. Furthermore, the fact that S1 does not know where S2 stands in a possible

service composition hierarchy makes it even more difficult for S1 to measure its own

level of autonomy. Thus, in this case, the autonomy of S1 would be reduced by the total

autonomy of S2 composition.

This dynamic of service aggregation into service compositions is a natural outcome

of Service-Orientation which cannot be avoided, but by understanding it better, an

architect can make educated and balanced design decisions. An SOA architect needs to

find the best equilibrium between these two competing considerations, and tailor the

solution according to the project limitations and ground realities (Mukhtar, 12/2011).

 73

2.5.3. Types of Autonomy

There are two distinct types of autonomies that this principle refers to as listed below

(Mukhtar, 12/2011).

a. Design-time autonomy

b. Runtime autonomy

As a general rule, more design-time autonomy translates to greater potential for the

runtime autonomy.

2.5.3.1. Design-time Autonomy

The level of freedom service designers have to modify their service in the face of

external dependencies is referred to as design-time autonomy. Once a service contract is

published, service consumers inevitably develop dependencies on it. As explained earlier,

this is referred to as consumer-to-contract coupling which is a positive type of coupling.

We, as service designers, seek to maximize consumer-to-contract coupling because it

limits consumer dependency to the service, leaving the service implementation and core

logic to freely evolve. However, if the service contract is poorly designed or the contract

is itself based on and is derived from some existing implementation (bottom-up

approach), the technology and implementation related features can creep in and percolate

up to the service consumer, right through the service contract.

For example, assume that a project team, under pressure to show results of SOA

adoption, generated service contract SC using automated tools from an existing legacy

implementation encapsulated by service S. In this bottom-up development approach, also

assume that the legacy implementation included a vendor technology specific data-

structure that the WSDL generation tool directly translated into XML schema complex-

 74

type. By exposing this underlying technology specific feature in SC, the project team has

inadvertently limited their design-time autonomy. Any future change to this data-

structure would inevitably trigger an accompanying change in the service consumer as

well.

2.5.3.2. Runtime Autonomy

The level of control a service has over its execution environment and underlying

resources when the service is invoked and is running, is referred to as runtime autonomy.

It’s an important design consideration because it enables a service designer to commit to

specific runtime performance guaranties to the service consumers. These guaranties could

be published in the form of SLAs, as expected performance matrix (for example, by time

of the day and response time), or, these guaranties could be related to performance

reliability and security expectations.

It makes it increasingly difficult to provide the above mentioned performance

guaranties if the service is dependent upon, and/or shares runtime environment with,

other programs and services. Increased physical service isolation translates into greater

service runtime autonomy and vice versa. Since agnostic services that model into Entity

and Utility services has greatest potential of reuse, these services end up being part of

complex compositions. Even though this is a desirable dynamic, on the flip side,

providing performance guaranties for such complex composition becomes challenging at

best.

 75

2.6. Service Statelessness

2.6.1. Definition and Discussion

The principle of Service Statelessness may be defined as “Services minimize

resource consumption by deferring the management of state information when necessary”

(Erl, 2008, p. 331).

Digging deep in to the principle of Service Statelessness, Atkinson & Bostan makes

a point of distinguishing between the “Observable” and the “Inherent” state. These

researchers aptly point out that only the latter distinguishes whether the responsibility for

storing the state is “internal” or “external” to the implementation of the service. They

further affirm that the principle of Service Statelessness is about this Inherent state

(Atkinson & Bostan, 2009).

During its execution, a service transitions through several stages of processing

activity. During these stages, the service is not always actively working on all the data

that has been passed to it or that it has generated from its own processing. Holding and

managing excessive context related state data in working memory negatively impacts the

service performance, especially if it’s a large Task business service running in a

choreography engine like BPEL (Jain & Kumar, 2007). A service should therefore be

ideally designed to hold only the necessary state data that it’s currently working upon. All

other state data should be tucked in somewhere it can be retrieved quickly and efficiently

when needed while the other processing continues.

The name of this principle is somewhat misleading. Service statelessness principle

does not advocate that building stateless services, but it does ask an architect to consider

and avail the opportunities to defer and delegate the state related data whenever possible.

 76

Thus, the service statelessness principle aims to establish mechanisms to support runtime

deferral of state data in order to minimize stateful condition while the service is active.

Increased availability and scalability are the specific target-state characteristics

sought by the application of this principle (Mukhtar, 12/2011).

The principle of service statelessness is all about increasing service availability,

scalability and improving the service execution performance. This principle is somewhat

different from the rest of the service design principles in that it seeks to modify the core

service logic temporarily. Depending on the approach used to apply this principle and the

model of the service under question, different design characteristics can be supported.

All programs, including services, are required to temporarily hold data related to the

task under execution. This task-related context data is referred to as state or state data. At

times, especially in n-tier applications where numerous clients concurrently invoke a

server-side program (a service in Service-Oriented paradigm) many times over, this state

data can stack up very quickly. If services are left to amass this data unchecked, the

system performance can be severely impacted as the number of clients increase. Services

are therefore designed to remain in a stateless condition wherever appropriate, by

deferring the state data to a temporary location.

This temporary location can be a system cache that does not involve this service’s

resources. It can also be a local database or even a message queue. The particular

mechanism of this temporary storage is not important as long as it does not share the

resources with the service. Since the idea is to off load unnecessary burden to keep the

services as lightweight as possible on the underlying service resources, this temporary

location must be really fast in accessibility.

 77

The give and take of the state data in this situation would understandably be

extremely recurrent, thus this principle, like the principle of service autonomy, focuses

less on service contract and much more on the design of the core service logic. Also,

because services themselves are only containers of capabilities, the measure of

statelessness would differ from capability to capability within a single service (Mukhtar,

12/2011).

2.6.2. Understanding Deferral and Delegation Processes

Deferral and delegation are two related concepts used in the process of unloading of

the state data in application of this principle. Deferral implies putting off the management

of state data, related to the current activity, to a later time, while Delegation implies

passing down the responsibility of holding the data to an outside agent. This whole

process of temporary relocation of the state data outside of the executing program is

referred to as state deferral and delegation. The intention is to retrieve the data back at a

later point in time to finish the task at hand but is not really needed at the very moment.

The management of the state data is postpone (hence Defer), and instead of holding this

data in memory throughout the processing of the entire task, it is transferred (hence

Delegate) to a local database (or elsewhere) for temporary safekeeping (Mukhtar,

12/2011).

 78

2.6.3. State Types and Conditions

There are four basic state types and service conditions that need discussion in relation

to the service statelessness principle. These are listed, illustrated (Figure 22) and

discussed below (Mukhtar, 12/2011).

a. Passive

b. Active

c. Stateless

d. Stateful

Service States

active passive

contextbusinesssession

stateful stateless

A service can be active

and currently holding

state data in memory.

The performance of a service

which is allowed to amass

different types of state data

can severely be degraded.

A service can be active
but currently holding no
state data in memory.

Figure 22: During its execution, a service transitions through several different

stages, some requiring it to hold temporary state data. The principle of Service

Statelessness asks an architect to adopt a mechanism for the runtime deferral and

delegation of such data when possible in order to minimize a service stateful

condition. (Mukhtar, 12/2011)

2.6.3.1. Passive State

At a point in time when a service is not yet invoked and is thus not using any

underlying resources, it is in a Passive State. In case of component based services,

bean/object containers might keep a ready pool of initialized service objects to be served

up to the consumers on request. In that case, even though the service might reside in the

 79

object pool of the container in the initialized state, since it has not yet been invoked by a

consumer, the service is considered to be in the Passive State.

2.6.3.2. Active State

At a point in time when a service is invoked and is in the process of executing its

core logic, it can be said to be in the Active State. In this state, a service instance is

constantly consuming a base amount of server memory and CPU cycles.

2.6.3.3. Stateless

A service can be in the Active State but not processing or holding any state data at a

particular point in time. It might be waiting for another process to finish, or, for another

service that it has composed to gather some data and pass it back to it. Either case, there’s

no state data to be managed at this point in time. In such a condition, a service can be

classified as stateless.

2.6.3.4. Stateful

When a service is in the Active State and is holding and processing state related data,

it is called to be Stateful. It can hold some state data while work on gathering some other.

Or it can be performing some computations on part of the data while holding the rest for

later use. This temporary data can be classified in the following three broad categories.

a. Context related data

b. Business related data

c. Session related data

 80

In any service activity, complex or simple, the invocations between services usually

involve a set of data that is passed back and forth between service capabilities. This data

can be fine-grained or coarse-grained but is usually more than what is needed for

immediate processing – more so when passing coarse-grained than with fine-grained

exchanges. Services need this data to set a context of a request that is being worked on.

This kind of data is called Context Data.

The business related state data usually include the result-set from database queries.

While the core service logic is performing its processing tasks, most of this business data

usually need to be held in memory for further processing steps. It is often large and not

all of it is needed at once. Thus this kind of state data provide good opportunity to be off

loaded until actually needed.

Session level state data is usually tied to a particular user that might need multiple

requests to complete a job. Even though the HTTP protocol is stateless – meaning it does

not maintain a session beyond current request – webservers and application-servers offer

means to remember requestors and thus allow working in a session environment. During

the life of such a session, usually some data is generated that need to be kept alive for

further processing, but is not needed to be in the memory every microsecond of the

session’s life. This kind of session-data also provides some possibility of deferring and

delegating it out temporarily.

 81

2.7. Service Discoverability

2.7.1. Definition and Discussion

The principle of Service Discoverability may be defined as “Services are

supplemented with communicative metadata by which they can be effectively discovered

and interpreted” (Erl, 2008, p. 368).

As Atighetchi et al explain, Service Discovery itself is a relatively simple process. A

Service registers itself with an existing Service Registry, while a client performs lookup

requests on this Service Registry to find newly registered services. Once the client has

found a suitable service, it proceeds to invoke that service through a specific invocation

mechanism (Atighetchi, Webb, Loyall, & Mayhew, 2010; Hutchinson, et al., Jan.-Feb.

2008). While Discovery is the process of finding services, the Interpretation is the

process of understanding the capabilities a service offers. Similarly, Discoverability and

Interpretability are the measures to which a service supports the discovery and

interpretation processes and thus adheres to this principle.

Increased awareness of available enterprise resources is the specific characteristic

sought by the application of this principle.

In a service-oriented organization, “business processes are available [on demand] as

services for integration with other business processes [ideally] across the company and

with key partners, suppliers, and customers” (Nayak & Nigam, 23-26 July 2007). For the

service reusability to work, it is imperative that the services in a service inventory be

easily locatable and understandable in terms of their capabilities as well as the data-

structures exchanged (Papazoglou & van den Heuvel, 2007). If the services are hidden

from their potential users, or are ambiguous as to the functionality they provide, it’s

 82

highly probable that someone will waste time and energy in rebuilding what already

exists, and defeat the whole idea of service normalization and reusability. Besides service

de-normalization, other negative effects include inconsistent results from bloated,

convoluted and eventually unmanageable enterprise architecture (Mukhtar, 12/2011).

This principle is all about the quality of communication and effective dissemination

of the information about service capabilities through the use of a service profile and/or a

service registry. This information includes the content in the service contract as well as

the metadata in the corresponding registry/repository record to also describe the

nonfunctional aspects (Parlanti, Paganelli, & Giuli, June 2011). In other words, the

metadata related to discoverability can be incorporated directly into the technical service

contract (e.g. WSDL) in the form of human-readable annotations which does not affect

the contract but only explains it. Similarly, discoverability related metadata can also be

applied via the use of creative policy assertions by implementing WS-Policy standard

(Figure 23). For this metadata to be effectively used by disparate teams that might need to

reuse a service, the service profile needs to be readily available and understandable.

Unfortunately, even the services provided by ecommerce giants like Amazon and PayPal

have sometimes been noted to confuse the service consumers due to ambiguous data

interactions and hidden business rules (Saleh, Kulczycki, & Blake, Sep/Oct 2009).

 83

Service Inventory

Human readable

annotations can be

made part of the

WSDL

Policy assertions

can be made part of

the contract by

implementing WS-

Policy standard.

Figure 23: Besides being standardized, all service contracts within a

service inventory are supplemented, in a standard way, with metadata

that helps in finding and understanding services and their capabilities.

(Mukhtar, 12/2011)

Service discoverability principle needs to be applied during the Service-Oriented

analysis and design stages and should be done for all services, especially the agnostic and

entity services. Application of this principle at a later stage will most probably negatively

affect the service quality because, with delayed documentation, the subtle interpretability

details are bound to be lost. Those involved with the early design of the service are most

suited for providing this documentation while it is still fresh in their heads (Mukhtar,

12/2011).

2.7.2. Goals

A meaningful application of this principle allows for (Mukhtar, 12/2011):

a. Increase discoverability of services. Enable disparate project team members, with

different level of technical expertise, to effectively carryout the discovery process.

 84

b. Increase interpretability of services. The purpose and capabilities are clearly and

effectively expressed so that they can be interpreted and understood easily and

quickly, both by humans and by programs.

2.7.3. Design-Time vs. Runtime Discoverability

UDDI is the core industry standard behind the service discoverability principle.

Whereas there is difference between the idea of a registry and a repository (Figure 24),

most modern commercial products package both into a single product for marketing

purposes.

Registry Repository

Figure 24: Registry vs. Repository. Registries hold references to architectural

artifacts, and repositories hold those artifacts. In other words, the registries hold

metadata while the repositories hold the data. Many commercial vendors combine

the two ideas into one product. (Mukhtar, 12/2011)

The design-time discovery of reusable services by disparate project architects for

potential reuse is most common and an extremely important activity in all successful

SOA implementations. However, the runtime dynamic service discovery by intelligent

programs hasn’t lived up to the promises. The question whether the dynamic service

discovery technology is not yet mature in this area, or whether it’s simply a false hope, is

out of scope for the current concern. What does concern us, however, is the fact that the

 85

mere use of a commercial registry product is not important – the effective dissemination

of the relevant information is.

It is well understood and accepted fact that out of the three industry standards that

initially made-up the core of the first-generation (or primitive) SOA implementation

through the use of web services, namely, WSDL, SOAP and UDDI, the last has lost its

prominence (Erl, 2008). Many organizations now prefer to do without a formal COTS

registry and repository product because they find little practical value in it. Such

organizations instead employ other effective information sharing means, like

standardized Service Profiles implemented as a wiki, for the design time discovery of

services and sharing of other metadata across disparate project teams, within and outside

of their organizations. From the service design principle’s perspective, this works just

fine. As stated earlier, the goal of this principle is to improve the communications quality

of service metadata, and not the use of a certain set of COTS products.

While design-time discovery and interpretation is currently most common, there’s

work being done to achieve some run-time discovery as well. WS-MetadataExchange

specification, for example, is a step in that direction. By implementing this specification,

a service consumer can request the latest version of the technical service contract at

runtime (Guinard, Trifa, Karnouskos, S. S., Spiess, & Savio, 2010.3).

2.7.4. Types of Relevant Metadata for Discoverability

Out of the four metadata types defined under Service Abstraction principle,

Functional and Quality of Service (QoS) are naturally relevant for discoverability

principle as discussed below (Mukhtar, 12/2011).

 86

2.7.4.1. Functional Metadata

The documentation of a service and its capabilities in the form of labels and

annotations explain what is being offered. This information is very helpful for architects

and solution designer from across project teams in discovering and understanding service

capabilities. The more comprehensive and clearer this metadata, greater would be the

chance of its getting discovered and reused across projects. Not only that this

documentation should be presented in a standard format that helps people to quickly get

to what they are looking for, it should be designed to be consumed by non-technical team

members as well. Consider that not all solution designers and architects necessarily come

from a development background.

2.7.4.2. Quality of Service (QoS) Metadata

Policy data related to the run-time service behavior makes up the QoS metadata. It

can include service policies related to operational threshold that might provide

information by peak and off peak hours, comments about over all service robustness and

performance expectations or SLAs. These and other similar factors can be very helpful in

increasing the service interpretability. With functional metadata alone, someone looking

for a specific service capability can find your service but that information perhaps will

not be sufficient to make a decision if the service is a suitable fit for their composition.

QoS bridges the gap and provides that missing behavioral information that architects

need to decide to reuse a service.

The following quick checklist can be used to measure the extent the principle of

discoverability has been applied (Mukhtar, 12/2011).

a. Document functional metadata in plain language

 87

b. Append service contract with standard, clear and effective meta information

c. Create and socialize a comprehensive service profile in the form of a wiki, or a

central service registry

d. Ensure business centricity of the service context by active involvement of the

business experts and stakeholders

e. Document QoS metadata in nontechnical language and incorporate it in formal

SLA documents

f. Ensure that all functional and QoS related metadata documented within the

service contract and in formal SLAs is also documented in service profile and/or

service registry.

g. Ensure all documentation is according to the conventions and standards defined at

the domain or the enterprise level

2.7.5. Service Discoverability Principle vs. Service Abstraction Principle

As discussed earlier under the Service Abstraction principle, it is beneficial to hide

some information regarding the service from its consumers. Service discoverability

principle, however, argues in the other direction; to share information beyond the

technical contract. It seems contradictory, and to some extent, the two principles do push

in the opposite direction.

A finely calibrated balance is needed between the two valid but opposing principles.

On one hand, the detailed information about the capabilities of a service needs to be

published and shared widely in order to make it an easy candidate for reuse, on the other

hand, information that will encourage the potential consumers to tightly couple with a

service implementation needs to be masked. Such information hiding, and the resulting

 88

loose coupling, allows independent evolution of the both the service consumer and the

service provider. An architect needs to weigh in the risk and potential benefit from both

perspectives, and decide which information to publish and which information to

withhold. An improper balancing of these two principles at the design time will not be

revealed until long after the service has been active in the production environment. Thus,

it might be quite late before someone finds the real result of this design decision

(Mukhtar, 12/2011).

2.8. Service Composability

2.8.1. Historical Underpinning in Conventional Software Design

SOA is a descendant of the logical evolution of the software modularization

techniques that go back more than 50 years. A service’s composability is related to its

modular structure. Modular structure enables services to be assembled into applications

the developer had no notion of when designing the service. (Valipour, Amirzafari,

Maleki, & Daneshpour, 2009). In one of his seminal papers, Booch states that object-

oriented development is an approach to software design in which the decomposition of a

system is based upon the concept of an object which mirrors our model of reality, while

the functional decomposition is achieved through a transformation of the problem space

(Booch, 1986). SOA is profoundly influenced from that concept, albeit spins the focus

from the “model of reality” to the “business utility” in decomposing the problem space.

However, a key challenge that SOA architects face is to determine the most appropriate

level of service granularity depending upon the granularity attributes e.g. reusability,

composability, complexity and business value (Bu, 2011).

 89

2.8.2. Definition and Discussion

The principle of Service Composability may be defined as “Services are effective

composition participants regardless of the size and complexity of the composition” (Erl,

2008, p. 392).

As Blum et al summarizes, SOA represents a model in which functionality is

decomposed into distinct units (services), which can be distributed over a network, and

can be merged and orchestrated together as an application to fulfill some business

requirement. These services communicate among each other by passing data from one

service to another, or by coordinating an activity between two or more services (Blum,

Magedanz, Schreiner, & Wahle, 2009; Garcia-Valls, Perez-Palacin, & Mirandola, 27-30

Jul 2014). The primary concern of the principle of Service Composability is to build

services in such a way that they become effective and efficient composition members,

irrespective of whether they are immediately required to be part of a composition or not,

thus making “the whole greater than the sum of its parts” (Chang, Mazzoleni, Mihaila, &

Cohn, 2008). This potential ability of a service is critical for the whole Service-Oriented

endeavor because it enables the Service Reusability principle (Papazoglou & van den

Heuvel, 2007). Aggregating smaller capabilities from disparate sources to solve a larger

problem lies at the heart of the distributed computing paradigm. Service-Orientation

formalizes the same methodology into a core design principle (Chang, Mazzoleni,

Mihaila, & Cohn, 2008).

Although, the principle of service composability is one of the three design principles

that does not directly produce a specific characteristic but regulate and support other

principles to produce the desired results, it does directly facilitates the principle of

 90

reusability. Also, this principle is unique in the sense that all other principles, directly or

indirectly, support and enable the implementation of this principle (Mukhtar, 12/2011).

The principle of service composability advocates the design of services such that

they can be composed and recomposed in creative combinations over a long period of the

life of a service. This ability “to correctly and efficiently assemble solutions by

composing existing services” that are highly optimized and can sustain multiple and

simultaneous compositions “is essential to” the overall success of SOA (Chang,

Mazzoleni, Mihaila, & Cohn, 2008). For the services to be repeatedly reused and

recomposed they must possess a highly effective execution environment that efficiently

manages high concurrency. The service contract needs to be less restrictive (coarse-

grained validation) to allow similar (but not same) data exchanges for like functions. The

core service logic needs to effectively manage any unnecessary state data that would

impede its reliability and scalability (Mukhtar, 12/2011).

2.8.3. Composition Actors and Concepts

Below is a list of important actors and concepts that must be understood for a formal

discussion and proper implementation of this design principle (Figure 25) (Mukhtar,

12/2011).

2.8.3.1. Service Composition Related Concepts

a. Service Activity

b. Composition

c. Simple Composition

d. Complex Composition

 91

2.8.3.1.1. Service Activity

Service Activity may be defined as the mapping of the runtime path of the message

exchanges between service capabilities that are participating in a service composition.

For instance, if in a certain service composition, service A has a capability x, service B

has a capability y and service C has a capability z, invoked respectively starting with x

through z, the Service Activity can be mapped as A(x) → B(y) → C(z). This means that

Service Activity only includes the interaction between services but not the actions and

processes inside the service boundary.

2.8.3.1.2. Composition

Service Composition may be defined as an aggregation of two or more service

capabilities. These aggregations are mostly associated with the automation business

processes that require specific workflow logic. Service compositions can be further

categorized as simple or complex as discussed below.

2.8.3.1.3. Simple Composition

As the name suggests, a simple Service Composition is a relatively simple

aggregation of only a few service capabilities to automate not a very complex business

process. This kind of Composition usually does not require Business Process Modeling

(BPM) nor does it require special business process orchestration environments that

include, for example, Distributed Transactions. Most organizations, in the beginning of

their SOA adoption phase, start with such simple Service Compositions which in time

usually grow into Complex Service Compositions as discussed below.

 92

2.8.3.1.4. Complex Composition

A Complex Service Composition is a relatively advanced aggregation of service

capabilities that automates an elaborate business process including such advanced steps

as conditional branching and comprehensive exception handling, use of context and

transactional management systems and extensive use of SOAP headers. The use of these

advanced features often requires Business Process Execution Language (BPEL) and a

special execution environment.

A Service Inventory with two Service Compositions:

Simple and Complex

Composition

Controller

Composition

Member

Composition

Sub-Controller

Composition

Sub-Controller

Simple

Service

Composition

Composition

Initiator

Complex

Service

Composition

Figure 25: The theory of Separation of Concerns advocates decomposing bigger

problems into smaller manageable chunks (concerns) without overlapping functional

boundaries. The ultimate target-state characteristic of Service-Orientation is a Service

Inventory where a large number of services are agnostic, and can be used and reused

in creative combinations of complex Service Compositions. (Mukhtar, 12/2011)

2.8.3.2. Service Activity Related Roles

a. Composition Initiator

b. Composition Member

c. Composition Controller

d. Composition Sub-Controller

 93

2.8.3.2.1. Composition Initiator

Composition Initiator is basically the trigger that fires off a service composition at

runtime. It’s not part of the composition but an outsider that simply passes the required

parameters and starts the execution by calling the Composition Controller (as discussed

below). Some examples of a Composition Initiator could include a user executing a

command from a mainframe command-line, a scheduled desk-top program, a batch

program or browser based user sending a request through a web server.

2.8.3.2.2. Composition Member

Composition Member is the service that contains the capability that is being

composed, either by a Composition Controller or by the Composition Sub-Controller. In

a complex service composition there are often many members working together to

complete a predefined business process.

2.8.3.2.3. Composition Controller

A Composition Controller is the service that is at the top of a composition hierarchy.

This top level service contains the capability that receives its execution command and

parameters from the Composition Initiator (as discussed above) and composes other

Compositions members, even possibly Composition Sub-Controller(s) as discussed

below.

2.8.3.2.4. Composition Sub-Controller

A Composition Sub-Controller is the service that contains a capability that is

composing other service capabilities, but at the same time, is also being composed by

 94

another service. This leads to possible hierarchies of service compositions which are not

unusual in well-developed and mature SOA environments.

3. Summary of the Literature Review

The previous two sections examined the research and industry literature for the SOA

maturity models, and the principles of SOA design paradigm. Although, some of the

prominent existing SOA maturity models are reviewed, it is by no means a

comprehensive list of such prevailing models. The nine models examined are only a fair

representation of the trend. In the SOA principles section, the eight principles are

discussed in depth upon which the industry and research community has converged over

time.

4. Related Works

In 2009, Gerić & Vrcek presented a paper in which they outlined a comparative

analysis of some existing service-oriented architecture maturity models (SOAMMs). The

goal of their study was to find out if different SOAMM's, and their maturity levels are

compatible and equivalent; how do different SOAMM correlate, and do they define

similar or the same levels of SOA implementation? Their analysis shows that the

SOAMMs they compared define very similar maturity levels, and a very similar set of

prerequisites that an organization has to achieve in order to increase its maturity level of

SOA implementation. They conclude that it is possible to define a basic set of criteria, as

a necessary set of prerequisites that an organization has to establish if it wants to establish

successful SOA implementation. The question of exactly which set of criteria should be

used by an organization was said to depend on the specific domains, i.e. public

 95

administration, manufacturing, retail, financial institutions, etc., and was left open for

further research (Gerić & Vrcek, 22-25 Jun 2009).

In section 1 of this chapter, nine different existing SOA Maturity Models from the

industry and the research literature where examined. This is not an exhaustive list by any

means. Mazzarolo at el, for instance, present several other maturity models in their recent

paper. These same researchers also performed a similar study in a large institution in

periodic evaluations (Y 2011, 2012 and 2014). The application of their proposed model

allowed evaluating the evolution of the level of maturity in each adoption cycle, but was

primarily based on the maturity scale of CMMI (Mazzarolo, Martins, Toffanello, &

Puttini, Jan. 2015). The current study, on the other hand, is concerned, in the first

instance, about determining the correct understanding of the SOA design paradigm within

a large federal government agency, and then devising a measuring tool which could also

inherently act as an educational tool for this agency.

Architectural principles of component technology are so fundamental to software

construction in general that they can now be found across numerous application domains,

from traditional desktop applications to enterprise and embedded systems. Buchgeher and

Weinreich present a toolkit supporting the design, analysis and implementation of

component-based software systems which could be helpful in the design, analysis and

implementation of fine-grained services (Buchgeher & Weinreich, 2009).

In 2010, Gu & Zhang offered an SOA based Enterprise Application Integration (EAI)

approach in which they offered types of services based on service granularity instead of

service concerns (Gu & Zhang, 29-31 July 2010). However, modeling services simply

based on their granularity could be counterintuitive, and could limit service reuse. A

 96

modeling scheme based on the theory of separation of concerns, as offered by Erl and

others, as explained in Chapter 1, might be preferable.

A study conducted in 2011 by Rostampour at el confirmed that to deliver business

agility with SOA effectively, business services should be designed according to SOA

principles that affect business agility, including autonomy, cohesion and structural

complexity. In order to guarantee service effectiveness towards business agility, this

paper offers a set of metrics to evaluate services at the modeling level which are provided

from structural complexity, autonomy and cohesion point of views. The researchers

analyzed the role of the selected design principles in improving the business agility part

of the SOA goals that are outlined in Chapter 1 above (Rostampour, Kazemi, Zamiri,

Haghighi, & Shams, 2011).

 97

Chapter 3: Research Methodology

1. Significance of the Research Questions

The four pointed questions raised at the end of Chapter 1 are significant to a general

researcher in the area of software design, but are doubly important for an organization

that is struggling on the path of SOA adoption. Having made substantial financial and

resource investments on the road of SOA adoption while unable to produce matching

business results to justify continued pursuit, these struggling organizations are looking for

answers.

The research questions are as following.

a. Is SOA largely misunderstood at an organization that struggles in reaching a

reasonable level of SOA adoption maturity, and in producing comparable

business results?

b. Is the lack of measure of SOA adoption maturity at the Service Architecture level

a major cause of the perceived failure of SOA design paradigm?

c. How to measure the level of SOA adoption maturity at the Service Architecture

level?

d. How can this more pointed maturity-measure of SOA adoption actually help an

organization progress to a higher maturity level?

2. Research Bed Selection

In order to explore these questions, a combination of quantitative and qualitative

research methodology is used in this study, targeted to an organization with the following

specific prerequisite characteristics of interest:

 98

a. Size of the enterprise must be large enough to rule out individual (or small group)

biases. A very large organization (5000 or more employees) would be preferable.

b. The enterprise must have a substantially large budget for its Information

Technology organization (preferably in millions of US$) in order to avoid

unreasonable financial constraints on new and innovative technology adoption.

c. The enterprise must have a formal and mature management structure with formal

structured funding mechanism.

d. The IT organization must have reasonably advanced technical competency,

preferably with specialized organizational roles of Enterprise Architects and

Solution Architects among its software engineering workforce.

e. The IT organization of this target enterprise must have been working on SOA

adoption initiative at some level of the organization for a minimum of five years.

f. There exists a discrepancy between the measured (or perceived) SOA maturity

and the measured (or perceived) business results derived from its SOA adoption

initiative, i.e. higher SOA maturity, but lower business results.

g. There should be some known general dissatisfaction within the organization with

the pace, progress and/or results from the SOA adoption initiative.

Based on the above outlined characteristics, a large independent agency of the US

Federal Government (henceforth “Agency”) is chosen as the research bed for this study.

From within the Information Technology organization of this enterprise, two sets of

 99

pertinent individuals (henceforth “Subjects”) are chosen for direct surveys and

interviews. The selection criterion for these Subjects is as follows:

2.1. Subject Group 1

a. Must be directly related to the Information Systems organization

b. Must be in a management official (or higher) position with an intimate

understanding of the mission and goals of the IT organization

c. Must have been involved (directly or indirectly) in the past with at least one of the

following three areas of specialization:

I. Enterprise Architecture

II. Solutions Architecture

III. Applications Architecture

d. Must have had some past experience with the SOA adoption initiative within the

organization

2.2. Subject Group 2

a. Must be directly related to the Information Systems organization

b. Must be in a senior developer, senior analyst, engineer, architect or higher

technical position with some understanding of the goals of the IT organization

c. Must have been directly involved in the past with at least one of the following

three areas of specialization:

I. Enterprise Architecture

II. Solutions Architecture

III. Applications Architecture

 100

d. Must have had some direct experience with the SOA adoption within the

organization

Based on the above listed characteristics, a relatively small group of Subjects (10

individuals) is selected from Group 1, and a larger group (25 individuals) is selected from

the Group 2 for the purposes of this study.

3. Survey Questionnaires and the Interview

In order to solicit direct feedback from the Subjects involved in the SOA adoption at

this Agency, three separate survey questionnaires is used. Each questionnaire is geared

towards providing some insight to the four research questions as described below.

3.1. SOA Adoption Priorities Survey

The SOA Adoption Priorities Survey is the first survey questionnaire which contains

eight brief multiple choice questions – numbered from Q1 through Q8. An average

Subject is expected to take no more than 6 minutes to complete all questions. This survey

is designed to gauge the general understanding of the SOA design paradigm by probing

into the priorities of the Subject for SOA adoption. This survey helps directly answer the

first research question, i.e. Is SOA largely misunderstood at this organization? The

survey is given to both Subject groups.

Table 1: The SOA Adoption Priorities Survey Questionnaire

SOA Adoption Priorities Survey

In terms of SOA design paradigm, how important is to:

Q1
Establish formal processes in the organization ___ Low ___ Medium ___ High

Q2
Have an SOA hardware/software infrastructure ___ Low ___ Medium ___ High

 101

Q3
Establish an SOA governance framework ___ Low ___ Medium ___ High

Q4
Have SOA related tools and technologies ___ Low ___ Medium ___ High

Q5 Have one (or more) ESB as part of the enterprise
SOA infrastructure

___ Low ___ Medium ___ High

Q6 Work with an SOA product vendor that is well
established, stable and reputed in the industry

___ Low ___ Medium ___ High

Q7 Have one (or more) Enterprise Services Registry as
part of the enterprise SOA infrastructure

___ Low ___ Medium ___ High

Q8
Individual service design characteristics ___ Low ___ Medium ___ High

3.2. SOA Maturity Survey

SOA Maturity Survey is the second survey questionnaire. It contains eighteen

multiple choice questions under five different categories – numbered from C1 through

C5. These categories are crafted based on the prior research/knowledge of the Agency,

and are based on the existing and popular SOA maturity models of the industry.

Answering all the questions in this survey is estimated to take an average Subject no

more than 15 minutes. This survey is devised to assess the perceived maturity of the SOA

adoption at the Agency by inquiring about the ancillary aspects (i.e. tools, technologies,

processes, infrastructure, etc.) while missing the low-level service architecture aspect

which is the mainstay of SOA design paradigm. This survey helps shed some light on the

second research question, i.e. Is the lack of measure of SOA maturity at the Service

Architecture level a major cause of the perceived failure of SOA? The survey is given to

both Subject groups.

Table 2: SOA Maturity Survey Questionnaire

 102

SOA Maturity Survey

Please rate the maturity of the following aspects of your SOA adoption initiative as it exits,
is acquired and/or adopted in your organization:

C1

SOA Management

(includes Vision, Strategy, Funding, Roadmap, Measurement Model)

An SOA Vision is formally documented ___ No ___ Somewhat ___ Yes

An SOA adoption Strategy is formally documented ___ No ___ Somewhat ___ Yes

Funding is available for SOA adoption ___ No ___ Somewhat ___ Yes

An SOA Roadmap is formally documented ___ No ___ Somewhat ___ Yes

An SOA Measurement Model is formally adopted ___ No ___ Somewhat ___ Yes

C2

SOA Governance

(includes Roles and Responsibilities, Processes, Command and Control Structure)

Roles and Responsibilities are well defined ___ No ___ Somewhat ___ Yes

Processes are well defined ___ No ___ Somewhat ___ Yes

Command and Control Structure is well established ___ No ___ Somewhat ___ Yes

C3

SOA Security Architecture

(Includes Security Architecture, Security Infrastructure)

A Security Architecture is established ___ No ___ Somewhat ___ Yes

Security Infrastructure is in place ___ No ___ Somewhat ___ Yes

C4

Development

(Includes Change Management, ELC Documents and Templates, Reference Process)

A formal Change Management process is followed ___ No ___ Somewhat ___ Yes

Enterprise Lifecycle (ELC) Documents and Templates

exist and are available
___ No ___ Somewhat ___ Yes

A formal Development Reference Process is adopted

by the development teams
___ No ___ Somewhat ___ Yes

 103

C5

Infrastructure

(Includes Service Asset Management, Service Usage Infrastructure, Standardized

Development Environment, ESB, Service Deployment Platform)

A commercial (or Open Source) Enterprise Services

Registry product exists for Service Asset Management
___ No ___ Somewhat ___ Yes

A Service Usage Infrastructure is acquired to log real-

time service utilization data
___ No ___ Somewhat ___ Yes

A Standardized Development Environment is available

to, and is used by, the development teams
___ No ___ Somewhat ___ Yes

One, or more, commercial (or Open Source)

Enterprise Service Bus (ESB) product is acquired and

available

___ No ___ Somewhat ___ Yes

A Service Deployment Platform exists for

PROD/TEST/DEV environment for the execution of

the services

___ No ___ Somewhat ___ Yes

3.3. Service Architecture Maturity Survey

The Service Architecture Maturity Survey is the third survey questionnaire. It

contains eight sections following the eight principles of service design – numbered from

P1 through P8. Some sections are further decomposed in order to distinctly deal with

some fine-grained aspects of that design principle. Each aspect is clearly and concisely

explained. Answering all the questions in this survey is estimated to take no more than 20

minutes for an average Subject. This survey is formulated to measure the real maturity of

the SOA adoption at the Agency by deep-divining into the micro SOA, i.e. low-level

aspects of service architecture which is the core of SOA design paradigm. This survey

helps elucidate and explore the third research question, i.e. How to measure the level of

 104

SOA adoption maturity at the Service Architecture level? The survey is given to the

Subject Group 2 only.

Table 3: Service Architecture Maturity Survey Questionnaire

Service Architecture Maturity Survey

Please rate the maturity of the Service Architecture in your organization against each of the

eight principles listed and explained below:

Principles of Service Design
Realization level

Low High
1 2 3 4 5

P1 Standardized
Service
Contract

Do your service-
contracts follow
these two
aspects of this
principle?

Purpose: Achieve a
Federated End-Point
Layer

Standardization of Data-Model: result in
contract definitions that share common XML
vocabulary defined at the enterprise level.
Once these standardized XML schemas
define the I/O for each service capability,
the need for data-model transformation is
naturally reduced, resulting in efficient
service activity.

Standardization of Functional-
Expression: results in naming conventions
for the services/capabilities complying with
enterprise standard e.g. Entity services
should be named according to their business
entities, and the Task services should be
named based on the business process the
service is automating. Service capability
names should include a verb followed by a
noun, and that the service capability names
should not repeat their service names.

P2 Service Loose
Coupling

Do your service-
contracts impose
low consumer
coupling, and are
themselves
decoupled from
the surrounding
environment?

Positive Coupling – Logic to
Contract: Were the service-contracts
written before the service-logic?

Positive Coupling – Consumer to
Contract: Are the service-consumers
tightly coupled to the published service
contracts?

Negative Coupling – Contract to
Logic: Are the service-contracts decoupled
from the underlying application logic?

(hint: if the service-contract was auto-generated

 105

Purpose: Achieve
flexibility to change,
and independent
functional-context

using a tool, from an existing underlying
implementation logic then your contract is most
likely not decoupled)

Negative Coupling – Contract to
Functional: Are the service-contracts
decoupled from the underlying business
processes?

(hint: if the service-contract was specifically
designed in support of a pre-existing business
process or an existing consumer then your
contract is most likely not decoupled)

Negative Coupling – Contract to
Implementation: Are the service-
contracts decoupled from the underlying
implementations?

(hint: if the service-contract is tied to
implementation specific elements like legacy
APIs, vendor specific database functions, physical
server environments, network specific paths, file
names and user account information then your
contract is not decoupled)

Negative Coupling – Contract to
Technology: Are the service-contracts
decoupled from the underlying technology?

(hint: if the service-contract itself is not
technology agnostic, but instead tied to the
implementation technology like Java or .NET then
your contract is not decoupled)

Negative Coupling – Consumer to
Service Logic: Are the service-
implementations inaccessible to consumers
except via the published service contracts?

(hint: if a consumer can simply bypass the
service-contract and can connect directly to the
core-service-logic, or to the underlying resources
like a database, then you’re not decoupled)

P3 Service
Abstraction

Do your service-
contracts only
contain essential
information, and
information
about your

Deliberately hide service-metadata
such that only necessary information
is available to the service consumers,
and that too, only via published
service contracts. All other non-
essential information about the
internal logic of your service and its
capabilities should be abstracted
away (hidden) from the consumers

 106

services (outside
your team) is
limited to what
is published in
the service
contracts?

Purpose: Enhanced
service reusability,
service
composability and
service
discoverability

and consumer designers.

P4 Service
Reusability

Do most of your
services expose
agnostic logic
that can be
positioned as
reusable
enterprise
assets?

Purpose: increase
ROI, increase
organizational
agility and reduce IT
burden

Consider the potential of a service to
be reused by the consumers beyond
the original requirement for which it
is being designed and developed.
This is typically achieved via
appropriate Business Process
Decomposition, and by following a
proper Service Modeling scheme.

P5 Service
Autonomy

Do your services
exercise a high
level of control
over their
underlying
runtime
execution
environment?

Purpose: increase
reliability,
consistency, and
behavioral

Services should have maximum
amount of control possible over their
underlying resources and
environment. Carefully consider all
direct and indirect dependencies
that the service will form, and the
potential performance impact of
such dependencies.

 107

predictability

P6 Service

Statelessness

Do your services
minimize
resource
consumption by
deferring the
management of
state
information
when necessary?

Purpose: increase
scalability,
availability and
performance

Holding and managing excessive
context related state data in working
memory negatively impacts the
service performance. A service
should therefore be designed to hold
only the necessary state data that it’s
currently working upon. All other
state data should be tucked in from
somewhere it can be retrieved
quickly and efficiently when needed
while the other processing
continues.

P7 Service
Discoverability

Are your
services
supplemented
with
communicative
metadata by
which they can
be effectively
discovered and
interpreted?

Purpose: increase
reuse

For the service reusability to work, it
is imperative that the services be
easily locatable and understandable
in terms of their capabilities as well
as the data-structures exchanged.

P8 Service
Composability

Are your
services effective
composition
participants
regardless of the
size and
complexity of the

Services should be designed in such
a way that they becomes effective
and efficient composition members,
irrespective of whether they are
immediately required to be part of a
composition or not.

 108

composition?

Purpose: increase
reuse

3.4. Interview

After the Subjects complete the Service Architecture Maturity Survey they are briefly

interviewed to gather their thoughts on the fourth research question, i.e. How can this

more pointed maturity-measure of SOA adoption actually help an organization progress

to a higher maturity stage? The standardized semi-structured interview contains five

questions; each supplemented with an open-ended “how” to stimulate free expression of

expert thought. Conducting of this interview is estimated to take no more than 20 minutes

with an average Subject. This interview is intended to collect subjective opinions for the

qualitative analysis and assessment.

Table 4: SOA Adoption Interview

SOA Adoption Interview

How can this more pointed maturity-measure of SOA adoption actually help your
organization progress to a higher maturity stage?

1 Can this survey help increase the overall understanding of the SOA design paradigm? How?

2
Can this survey be used as a tool to shift organizational focus to the low-level service
architecture? How?

3
Can this more pointed maturity-measure help in your strategic planning, including a revised SOA
Roadmap, and in developing a more suitable Maturity Model for your SOA adoption initiative?
How?

4 Can this measure help in your financial and resource planning? How?

5 Can this tool be helpful in furthering SOA adoption in your organization? How?

 109

4. Data Analysis

Using the quantitative and qualitative methodology, the data analysis will be

performed as following.

4.1. Quantitative Analysis

The raw data captured anonymously with the first three Survey Forms (shown in

section 3 above) is aggregated and tabulated (in percentages) showing the score that each

survey question received. Based on this data, bar-graphs and/or pie charts are drawn in

order to highlight the comparative values of each enumeration separately for each of the

three survey forms. The graphical presentation focuses on how the data addresses the

specific research questions, and does not necessarily cover all of the aspects of the

tabulated data.

4.2. Qualitative Analysis

In empirical software engineering studies, a commonly used strategy for combining

qualitative and quantitative methods is to extract values for quantitative variables from

qualitative data, often collected from interviews, in order to perform some type of

quantitative or statistical analysis. This process is called coding (Seaman, 1999).

In this study, the SOA Adoption Interview Form is used as the interview guide, and

field notes are taken during the interview process by hand (Taylor & Bogdan, 1984).

Employing the process of coding, the answers captured, and any new ideas generated

with the SOA Adoption Interview Form are summarized, synthesized and grouped in the

end. The coding is verified by a review of the field notes by an independent analyst. This

section does not limit the discussion to the research questions only, but rather broadens

 110

the scope in order to capture free flow of opinions and reflections from the experts of

SOA at this Agency.

 111

Chapter 4: Results

This chapter provides the results of this case study conducted in the form of three

survey questionnaires and an interview conducted at this Agency. The tabulation of the

results data is followed by a quantitative analysis of the significant findings, which in

turn is followed by a qualitative analysis from the SOA Adoption Interview.

1. Survey Results Data

SOA Adoption Priorities Survey is the first survey questionnaire. The results gathered

are tabulated below.

Table 5: SOA Adoption Priorities Survey – Combined Results

SOA Adoption Priorities Survey - Results - Combined (Group 1 + Group 2)

In terms of SOA design paradigm, how important is to:

 Low Medium High

Q1 Establish formal processes in the organization 9% 20% 71%

Q2 Have an SOA hardware/software infrastructure 11% 31% 58%

Q3 Establish an SOA governance framework 9% 23% 68%

Q4 Have SOA related tools and technologies 17% 37% 46%

Q5 Have one (or more) ESB as part of the enterprise SOA infrastructure 9% 26% 65%

Q6
Work with an SOA product vendor that is well established, stable and
reputed in the industry

9% 40% 51%

Q7
Have one (or more) Enterprise Services Registry as part of the
enterprise SOA infrastructure

11% 43% 46%

Q8 Individual service design characteristics 26% 40% 34%

 112

Table 6: SOA Adoption Priorities Survey – Subject Group 1 Results

SOA Adoption Priorities Survey - Results - Subject Group 1
In terms of SOA design paradigm, how important is to:

 Low Medium High

Q1 Establish formal processes in the organization 20% 80%

Q2 Have an SOA hardware/software infrastructure 20% 80%

Q3 Establish an SOA governance framework 30% 70%

Q4 Have SOA related tools and technologies 20% 20% 60%

Q5 Have one (or more) ESB as part of the enterprise SOA infrastructure 30% 70%

Q6
Work with an SOA product vendor that is well established, stable and
reputed in the industry

 20% 80%

Q7
Have one (or more) Enterprise Services Registry as part of the
enterprise SOA infrastructure

20% 20% 60%

Q8 Individual service design characteristics 30% 40% 30%

Table 7: SOA Adoption Priorities Survey – Subject Group 2 Results

SOA Adoption Priorities Survey - Results - Subject Group 2
In terms of SOA design paradigm, how important is to:

 Low Medium High

Q1 Establish formal processes in the organization 12% 20% 68%

Q2 Have an SOA hardware/software infrastructure 16% 36% 48%

Q3 Establish an SOA governance framework 12% 20% 68%

Q4 Have SOA related tools and technologies 16% 44% 40%

Q5 Have one (or more) ESB as part of the enterprise SOA infrastructure 12% 24% 64%

Q6
Work with an SOA product vendor that is well established, stable and
reputed in the industry

12% 48% 40%

Q7
Have one (or more) Enterprise Services Registry as part of the
enterprise SOA infrastructure

8% 52% 40%

Q8 Individual service design characteristics 24% 40% 36%

SOA Maturity Survey is the second survey questionnaire. The results gathered are

tabulated below.

Table 8: SOA Maturity Survey – Combined Results

 113

SOA Maturity Survey - Results - Combined (Group 1 + Group 2)

Please rate the maturity of the following aspects of your SOA adoption initiative as it exists, is
acquired and/or adopted in your organization:

C1

SOA Management

(includes Vision, Strategy, Funding, Roadmap, Measurement Model)

 No Somewhat Yes

An SOA Vision is formally documented 9% 31% 60%

An SOA adoption Strategy is formally documented 3% 14% 83%

Funding is available for SOA adoption 26% 23% 51%

An SOA Roadmap is formally documented 11% 37% 52%

An SOA Measurement Model is formally adopted 20% 17% 63%

C2

SOA Governance

(includes Roles and Responsibilities, Processes, Command and Control Structure)

 No Somewhat Yes

Roles and Responsibilities are well defined 37% 43% 20%

Processes are well defined 37% 43% 20%

Command and Control Structure is well established 46% 37% 17%

C3

SOA Security Architecture

(Includes Security Architecture, Security Infrastructure)

 No Somewhat Yes

A Security Architecture is established 17% 63% 20%

Security Infrastructure is in place 43% 31% 26%

C4

Development

(Includes Change Management, ELC Documents and Templates, Reference Process)

 No Somewhat Yes

A formal Change Management process is followed 6% 23% 71%

Enterprise Lifecycle (ELC) Documents and Templates exist and
are available

 17% 83%

A formal Development Reference Process is adopted by the
development teams

6% 31% 63%

C5

Infrastructure

(Includes Service Asset Management, Service Usage Infrastructure, Standardized
Development Environment, ESB, Service Deployment Platform)

 No Somewhat Yes

A commercial (or Open Source) Enterprise Services Registry
product exists for Service Asset Management

 9% 91%

A Service Usage Infrastructure is acquired to log real-time
service utilization data

9% 40% 51%

 114

A Standardized Development Environment is available to, and is
used by, the development teams

 11% 89%

One, or more, commercial (or Open Source) Enterprise Service
Bus (ESB) product is acquired and available

 3% 97%

A Service Deployment Platform exists for PROD/TEST/DEV
environment for the execution of the services

3% 9% 88%

Table 9: SOA Maturity Survey – Subject Group 1 Results

SOA Maturity Survey - Results – Group 1
Please rate the maturity of the following aspects of your SOA adoption initiative as it exists, is
acquired and/or adopted in your organization:

C1

SOA Management

(includes Vision, Strategy, Funding, Roadmap, Measurement Model)

 No Somewhat Yes

An SOA Vision is formally documented 20% 80%

An SOA adoption Strategy is formally documented 10% 90%

Funding is available for SOA adoption 40% 10% 50%

An SOA Roadmap is formally documented 20% 20% 60%

An SOA Measurement Model is formally adopted 30% 10% 60%

C2

SOA Governance

(includes Roles and Responsibilities, Processes, Command and Control Structure)

 No Somewhat Yes

Roles and Responsibilities are well defined 30% 40% 30%

Processes are well defined 40% 30% 30%

Command and Control Structure is well established 40% 40% 20%

C3

SOA Security Architecture

(Includes Security Architecture, Security Infrastructure)

 No Somewhat Yes

A Security Architecture is established 20% 70% 10%

Security Infrastructure is in place 30% 30% 40%

C4

Development

(Includes Change Management, ELC Documents and Templates, Reference Process)

 No Somewhat Yes

A formal Change Management process is followed 10% 20% 70%

Enterprise Lifecycle (ELC) Documents and Templates exist and
are available

 20% 80%

A formal Development Reference Process is adopted by the
development teams

 30% 70%

 115

C5

Infrastructure

(Includes Service Asset Management, Service Usage Infrastructure, Standardized
Development Environment, ESB, Service Deployment Platform)

 No Somewhat Yes

A commercial (or Open Source) Enterprise Services Registry
product exists for Service Asset Management

 10% 90%

A Service Usage Infrastructure is acquired to log real-time
service utilization data

10% 40% 50%

A Standardized Development Environment is available to, and is
used by, the development teams

 20% 80%

One, or more, commercial (or Open Source) Enterprise Service
Bus (ESB) product is acquired and available

 100%

A Service Deployment Platform exists for PROD/TEST/DEV
environment for the execution of the services

 10% 90%

Table 10: SOA Maturity Survey - Subject Group 2 Results

SOA Maturity Survey - Results – Group 2
Please rate the maturity of the following aspects of your SOA adoption initiative as it exists, is
acquired and/or adopted in your organization:

C1

SOA Management

(includes Vision, Strategy, Funding, Roadmap, Measurement Model)

 No Somewhat Yes

An SOA Vision is formally documented 12% 36% 52%

An SOA adoption Strategy is formally documented 4% 16% 80%

Funding is available for SOA adoption 20% 28% 52%

An SOA Roadmap is formally documented 8% 44% 48%

An SOA Measurement Model is formally adopted 16% 20% 64%

C2

SOA Governance

(includes Roles and Responsibilities, Processes, Command and Control Structure)

 No Somewhat Yes

Roles and Responsibilities are well defined 40% 44% 16%

Processes are well defined 36% 48% 16%

Command and Control Structure is well established 48% 36% 16%

C3

SOA Security Architecture

(Includes Security Architecture, Security Infrastructure)

 No Somewhat Yes

A Security Architecture is established 16% 60% 24%

Security Infrastructure is in place 48% 32% 20%

 116

C4

Development

(Includes Change Management, ELC Documents and Templates, Reference Process)

 No Somewhat Yes

A formal Change Management process is followed 4% 24% 72%

Enterprise Lifecycle (ELC) Documents and Templates exist and
are available

 16% 84%

A formal Development Reference Process is adopted by the
development teams

8% 32% 60%

C5

Infrastructure

(Includes Service Asset Management, Service Usage Infrastructure, Standardized
Development Environment, ESB, Service Deployment Platform)

 No Somewhat Yes

A commercial (or Open Source) Enterprise Services Registry
product exists for Service Asset Management

 8% 92%

A Service Usage Infrastructure is acquired to log real-time
service utilization data

8% 40% 52%

A Standardized Development Environment is available to, and is
used by, the development teams

 8% 92%

One, or more, commercial (or Open Source) Enterprise Service
Bus (ESB) product is acquired and available

 4% 96%

A Service Deployment Platform exists for PROD/TEST/DEV
environment for the execution of the services

4% 8% 88%

 117

The Service Architecture Maturity (SAM) Survey is the third survey questionnaire.

The results gathered are tabulated below.

Table 11: Service Maturity Survey

Service Architecture Maturity Survey

Please rate the maturity of the Service Architecture in your organization against each of the eight

principles listed and explained below:

Principles of Service Design
Realization level

Low Medium High

P1

Standardized Service Contract

Do your service-contracts
follow these two aspects of this
principle?

Purpose: Achieve a Federated
End-Point Layer

Standardization of Data-Model: result in contract
definitions that share common XML vocabulary defined
at the enterprise level. Once these standardized XML
schemas define the I/O for each service capability, the
need for data-model transformation is naturally
reduced, resulting in efficient service activity.

48% 24% 28%

Standardization of Functional-Expression: results in
naming conventions for the services/capabilities
complying with enterprise standard e.g. Entity services
should be named according to their business entities,
and the Task services should be named based on the
business process the service is automating. Service
capability names should include a verb followed by a
noun, and that the service capability names should not
repeat their service names.

80% 12% 8%

P2

Service Loose Coupling

Do your service- contracts
impose low consumer coupling,
and are themselves decoupled
from the surrounding
environment?

Purpose: Achieve flexibility to
change, and independent
functional-context

Positive Coupling – Logic to Contract: Were the service-
contracts written before the service-logic?

84% 12% 4%

Positive Coupling – Consumer to Contract: Are the
service-consumers tightly coupled to the published
service contracts?

24% 24% 52%

Negative Coupling – Contract to Logic: Are the service-
contracts decoupled from the underlying application
logic?

(hint: if the service-contract was auto-generated using a
tool, from an existing underlying implementation logic
then your contract is most likely not decoupled)

36% 56% 8%

Negative Coupling – Contract to Functional: Are the
service-contracts decoupled from the underlying
business processes?

(hint: if the service-contract was specifically designed in
support of a pre-existing business process or an existing
consumer then your contract is most likely not
decoupled)

68% 20% 12%

 118

Negative Coupling – Contract to Implementation: Are
the service-contracts decoupled from the underlying
implementations?

(hint: if the service-contract is tied to implementation
specific elements like legacy APIs, vendor specific
database functions, physical server environments,
network specific paths, file names and user account
information then your contract is not decoupled)

20% 72% 8%

Negative Coupling – Contract to Technology: Are the
service-contracts decoupled from the underlying
technology?

(hint: if the service-contract itself is not technology
agnostic, but instead tied to the implementation
technology like Java or .NET then your contract is not
decoupled)

68% 16% 16%

Negative Coupling – Consumer to Service Logic: Are the
service-implementations inaccessible to consumers
except via the published service contracts?

(hint: if a consumer can simply bypass the service-
contract and can connect directly to the core-service-
logic, or to the underlying resources like a database,
then you’re not decoupled)

84% 12% 4%

P3

Service Abstraction

Do your service-contracts only
contain essential information,
and information about your
services (outside your team) is
limited to what is published in
the service contracts?

Purpose: Enhanced service
reusability, service composability
and service discoverability

Deliberately hide service-metadata such that only
necessary information is available to the service
consumers, and that too, only via published service
contracts. All other non-essential information about the
internal logic of your service and its capabilities should
be abstracted away (hidden) from the consumers and
consumer designers.

84% 12% 4%

P4

Service Reusability

Do most of your services
expose agnostic logic that can
be positioned as reusable
enterprise assets?

Purpose: increase ROI, increase
organizational agility and reduce
IT burden

Consider the potential of a service to be reused by the
consumers beyond the original requirement for which it
is being designed and developed. This is typically
achieved via appropriate Business Process
Decomposition, and by following a proper Service
Modeling scheme.

76% 16% 8%

 119

P5

Service Autonomy

Do your services exercise a
high level of control over their
underlying runtime execution
environment?

Purpose: increase reliability,
consistency, and behavioral
predictability

Services should have maximum amount of control
possible over their underlying resources and
environment. Carefully consider all direct and indirect
dependencies that the service will form, and the
potential performance impact of such dependencies.

76% 20% 4%

P6

Service Statelessness

Do your services minimize
resource consumption by
deferring the management of
state information when
necessary?

Purpose: increase scalability,
availability and performance

Holding and managing excessive context related state
data in working memory negatively impacts the service
performance. A service should therefore be designed to
hold only the necessary state data that it’s currently
working upon. All other state data should be tucked in
from somewhere it can be retrieved quickly and
efficiently when needed while the other processing
continues.

68% 24% 8%

P7

Service Discoverability

Are your services
supplemented with
communicative metadata by
which they can be effectively
discovered and interpreted?

Purpose: increase reuse

For the service reusability to work, it is imperative that
the services be easily locatable and understandable in
terms of their capabilities as well as the data-structures
exchanged

56% 28% 16%

P8

Service Composability

Are your services effective
composition participants
regardless of the size and
complexity of the composition?

Purpose: increase reuse

Services should be designed in such a way that they
becomes effective and efficient composition members,
irrespective of whether they are immediately required
to be part of a composition or not.

52% 36% 12%

2. Quantitative Analysis

Some significant findings from the data gathered from the three surveys are

respectively examined below.

 120

2.1. SOA Adoption Priorities Survey

The SOA Adoption Priorities Survey was designed to determine the focus of the

priorities of the Subjects with respect to the SOA design paradigm. Offering eight

discrete priority dimensions, with the first seven being ancillary, and the last being

essential to the SOA paradigm, this survey underscored the undue focus of the Subject’s

priorities on the ancillary aspects at this Agency. Below is a graphical representation of

an aggregation of the same from the combined (Group 1 + Group 2) survey results of the

“Low” rankings.

Figure 26: The “Low” Priority Rating Pie Chart – Combined Results (G 1 + G 2)

A substantial number (26%) of all Subjects rated the “Individual Service Design” as

Low priority. Also noticeable is the fact that the “High” ranking for the same (34%),

although a bit higher that the “Low”, comes out to be the least important “High” priority.

This result strengthens the hypothesis 1 that SOA could largely be misunderstood at this

organization.

9%
11%

9%

17%
9%

9%

11%

25%

SOA Adoption Priorities Survey - Combined
Results for "Low" Rating

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

 121

2.2. SOA Maturity Survey

The SOA Maturity Survey was developed to evaluate the perceived maturity of the

SOA adoption at the Agency by inquiring both subject groups about the supplementary

aspects of SOA maturity, while omitting the core of SOA design paradigm. This survey

helped with the second research question, i.e. Is the lack of measure of SOA maturity at

the Service Architecture level a major cause of the perceived failure of SOA?

If the Combined Results table is aggregated for each of the five categories in this

survey as both Subject Groups marked “yes”, noticeable is the fact that except for the

Governance and Security categories, the perceived maturity comes out quite high (62%,

72% and 83% for Management, Development, and Infrastructure respectively). This

observation becomes even more significant if “somewhat” and “yes” columns are

combined (an 86% aggregated score for Management, 60% for Governance, 70% for

Security, 96% for Development, and 98% for Infrastructure). These numbers further

support the hypothesis that because the SOA maturity at this Agency is not being

measured at the Service Architecture level, the perceived SOA maturity is quite high.

 122

Table 12: SOA Maturity Survey - Combined Aggregated Results

SOA Maturity Survey - Results - Combined (G1 + G2) Aggregated

C1

SOA Management

(includes Vision, Strategy, Funding, Roadmap, Measurement Model)

 No Somewhat Yes

Aggregated 14% 24% 62%

C2

SOA Governance

(includes Roles and Responsibilities, Processes, Command and Control Structure)

 No Somewhat Yes

Aggregated 40% 41% 19%

C3

SOA Security Architecture

(Includes Security Architecture, Security Infrastructure)

 No Somewhat Yes

Aggregated 30% 47% 23%

C4

Development

(Includes Change Management, ELC Documents and Templates, Reference Process)

 No Somewhat Yes

Aggregated 4% 24% 72%

C5

Infrastructure

(Includes Service Asset Management, Service Usage Infrastructure, Standardized
Development Environment, ESB, Service Deployment Platform)

 No Somewhat Yes

Aggregated 2% 15% 83%

2.3. Service Architecture Maturity (SAM) Survey

The Service Architecture Maturity Survey was devised to measure the real maturity of

the SOA adoption at this Agency by deep-divining into the principles of SOA. This

survey helped in exploring the third research question, i.e. How to measure the level of

SOA adoption maturity at the Service Architecture level? Only the Subject Group 2 was

 123

asked to evaluate how closely they followed the principles of SOA while designing their

individual services.

Figure 27: Service Architecture Maturity Ratings for the Eight SOA Principles –

Bar Graph

The data from this survey strongly suggest that the principles of SOA have not been

given the due consideration while designing the individual services at this Agency. When

the Subject Group 2 is specifically asked to evaluate their past solution designs by

focusing their attention on the eight principles of SOA one by one, given the precise

explanation of each principle, their rating comes out to be mostly on the low end. This

finding does not come as a surprise given the results of the survey 1 above, which also

suggested misplaced priorities in the overall SOA adoption initiative. Except for the

principle of Service Discoverability and Service Composability, all other principles are

rated as “Low” implementation by well above 60% of the Subjects. The principle of

Service Discoverability and Service Composability fare only marginally better which can

potentially be explained by high achievement (83% aggregated) in the Infrastructure

0

20

40

60

80

100

P1 P2 P3 P4 P5 P6 P7 P8

Service Architecture Maturity Survey -
Agregated Results

Low Medium High

 124

category of the survey 2. This Agency have fairly advanced SOA infrastructure which

include a highly rated ESB and a commercial Service Registry which can partially help in

implementing these two SOA principles. As can be seen from the bar-graph above, all the

eight principles are rated fairly low on the implementation of the past service designs.

The “High” rating, on the other hand, is consistently below 10% for all the eight

principles except one; i.e. the Standardized Service Contract principle. The aggregated

“High” rating received by this one principle stands at 18%; slightly higher but not

substantially different from the rest. However, also noticeable is the fact that the “Data

Model Standardization” part of this principle individually received a “High” rating of

28%, which is the highest individual rating overall. This achievement can partly be

explained by a successful initiative by this Agency of establishing an Enterprise XML

Vocabulary group which, to a certain degree, has successfully implemented the Schema

Centralization design pattern (Mukhtar, 2011).

3. Qualitative Analysis

Qualitative data are the data represented as words and pictures instead of numbers.

The techniques of gathering qualitative data and performing qualitative analysis has

achieved significant recognition by the broader software engineering research community

in order to study the complexities of human behavior (e.g., motivation, communication,

understanding) and solve complex management and organizational issues which are

sometimes referred to as “people problems” (Seaman, 1999). The blend of technical and

human behavioral aspects in the current case study lends itself to combining qualitative

and quantitative methods, in order to take advantage of the strengths of both. Participant

observation and interviewing are the two methods used in gathering this type of data.

 125

In this study, a semi-structured interviewing technique is employed to include a

mixture of open-ended and specific questions, designed to elicit not only the information

foreseen, but also unexpected types of information, mainly to collect opinions and

impressions of the Subject Group 2 about the SOA adoption initiative at this Agency. The

process of coding is used to transforms qualitative data into quantitative data without

affecting its objectivity. This coding is further reviewed and verified by an independent

analyst who agreed with the results and aggregations.

 The findings from the qualitative part of this study are analyzed, synthesized, and

aggregated below. The sections used here are simply the most natural and intuitive

grouping of the gathered information.

3.1. Disparity in Current Measure of SOA Maturity

After taking the SAM survey, 84% of the Subjects felt that it was helpful in focusing

them on the real SOA. A majority of them also stated that they can now see how their

focus has been misplaced on technology rather than on the service design principles.

While 72% of the Subjects felt that their existing SOA maturity model needs

improvement and should be incorporated with SAM, 28% stated that SAM independently

stands out as a better model for taking a more pointed measure. 80% of the Subjects

agreed that a periodic measure of SOA maturity should be conducted using SAM (or

SAM incorporated into their existing measurement model); 32% voted for a yearly

measure, while 48% considered a survey every two years to be appropriate. A small

minority (16%) felt skeptical that SOA adoption maturity can ever be measured

accurately with any model simply due the sheer complexity involved.

 126

3.2. Education and Training

A majority of Subjects were found sensitive and frustrated due to the lack of technical

training opportunities in SOA. A large majority (72%) expressed interest and motivation

for attending focused SOA training and certification, if provided. However, almost all of

these Subjects mentioned lack of funds and ongoing budget constraints as the explanation

for almost nonexistent educational opportunities. Some of them jestingly called

themselves “paper engineers” referring to the lack of real hands-on training in the field.

Several Subjects also mentioned the fact that any on-the-job training that they receive is

mostly vendor driven. For instance, their ESB vendor is SoftwareAG which only

provides guidance in their own product, i.e. WebMethods. Subjects felt the need to be

able to learn about other ESB products available in the market, and get some vendor-

neutral training about just the ESBs in general so that they can be better informed and

broaden their technological horizon. This observation is pertinently reconfirming the

findings of this current study, as the results of the first survey suggested largely

misplaced focus in the overall SOA adoption initiative at this organization. If used

periodically, every year or every other year, as a maturity measure and as a quality

control tool, SAM can fill this educational gap to a certain degree; however, the need for

more focused training in the SOA remains valid for this organization.

3.3. Project Based Funding vs. Enterprise Level funding

A strong majority (72%) of the Subjects, in one way or the other mentioned the

challenge of project based funding models followed at this Agency. The individual

projects bring their own funding and remain tactically focused in meeting their own

business requirements. There is little motivation for these projects to follow the SOA

 127

direction and standards set by the enterprise group, especially when following such

strategic enterprise direction implies investing more time and resources with little visible

and immediate benefit related to their individual project requirements. Some Subjects

also mentioned that this particular challenge has been, at least to a certain degree,

understood by the senior IT leadership, and thus a new Strategy group at the enterprise

level has been stood up recently with its own independent funding stream. However, the

larger question of what exactly needs to be funded by this new group and what should

remain funded by the individual projects stays somewhat confounding. Although not

directly covered under the scope of this current study, this observation is very interesting

and significant for the continued future research in this area.

3.4. Too Big and too Complex for SOA

A minority of the Subjects (36%) expressed some level of doubt in the ability of this

Agency to ever truly adopt SOA to the fullest, simply due to the inherent high level of

complexity involved. They pointed out the large and complex organizational structure

and a prevalent culture too inclined to technological inertia to effect such a widespread

change as the SOA adoption demands. Some of these Subjects alluded to the absence of

will or inability in the senior executive leadership to coordinate an enterprise wide

organizational change including the new roles needed for the SOA adoption. They

quipped about the decades old roles and technologies which continue to be responsible

for running the business critical core systems of their organization to date. This seems a

worthy challenge which needs to be looked closely in a future research project extending

the current study.

 128

3.5. Strategic vs. Tactical Executive Disposition

Noting that a successful SOA adoption requires strong executive sponsorship, some

Subjects (24%) cited the fact of term-appointed senior executives in this Agency. These

Subjects felt that such limited time appointment holders (usually for four years) are

naturally predisposed to tactical results for proving their achievements, and are not

seriously interested in investing in strategic initiatives like SOA which cannot bare

substantial fruits within their limited time tenure. Although, no other corroborating

evidence was found for such a phenomenon, the challenge is worth looking deeper in an

organizational research study, because if it exists, it might not be limited to this one

government Agency.

3.6. Ownership Question

The SOA Governance related questions loomed large on the minds of many of the

Subjects. One of the questions that kept coming up in the interviews was that of

Ownership of the Services. Who owns the Enterprise Common Services
4
? The enterprise

group or the individual project teams? Who makes the modification in an existing

Service when an additional service capability is needed, not by the owner project team

but by some other business domain? Questions like these become more relevant when the

funding aspect is brought to bear. The issue really boils down as to who foots the bill for

common services, when the funding in this agency has traditionally remained project

based. Although, it begs the question, but in a large organization like this one, such

governance concerns are very natural. Creating new and independent funding streams for

4
 Enterprise Common Services or ECS is the term used at this Agency for the Services that are delivered

under the SOA initiative

 129

organizations like Enterprise Services, and focused training can be recommended,

especially at the midlevel management, on the SOA governance track from a vendor-

neutral perspective, to mitigate the situation before it gets worse with the further progress

in the SOA adoption at this Agency.

 130

Chapter 5: Conclusion

1. Overview

This dissertation began with an introduction to the SOA design paradigm as a unique

architectural style which, in the recent past, has gained significant momentum in the

information technology industry, and has attracted attention from the research

community. Its promised goals and benefits were outlined, and then followed some

challenges that organizations face in its meaningful adoption. An unexplained disparity

has been observed among some organizations in realizing the promised benefits from

SOA adoption – while some were successful, others have not been so fruitful. Around the

same time, mostly in the nonscientific literature, a backlash to the SOA popularity was

observed, sometimes going so far as declaring that “SOA is dead” (Appendix E). Instead

of passing quick judgment and declaring SOA as an empty promise, this study considered

it prudent to explore the essence of this architectural style, and separate the necessary

from the ancillary aspects.

There are two related areas identified that needed detailed literature review in order to

elucidate the problem domain: 1) The principles on which this design paradigm stands

and; 2) The existing measurement models of its attained maturity. For the former, eight

established design principles have been identified that form the cornerstone of SOA

design paradigm. These are the principles that must be kept in consideration when

designing individual services. For the later, several popular measurement models,

currently established in the industry, have been examined. The key point understood with

this review is the fact that none of these maturity models accurately measure SOA

 131

adoption maturity against the SOA principles. Instead these models mostly measured the

SOA maturity against the ancillary aspects like technologies and infrastructure.

It is hypothesized that the SOA design paradigm could be largely misunderstood at an

organization that struggles in its adoption and stalls in realizing its promised benefits. In

order to test this hypothesis, a research test bed, at a large government agency, has been

selected according to carefully considered criteria, as outlined in chapter 4. At the same

time, it was also decided to measure the perceived SOA adoption maturity within the

same test bed. The data resulted from the experiments confirmed the hypothesis.

The first survey results suggest considerable misalignment in the priorities and the

individual service design considerations. The second survey results indicate a high

perceived maturity of SOA adoption based on an existing maturity model. A Service

Architecture Maturity (SAM) survey was then developed which measured the SOA

adoption maturity directly against the eight principles of SOA, as discussed in chapter 2.

This experiment indicates the real SOA maturity to be substantially lower than the

perceived SOA maturity. SAM was further positioned as an educational and guiding tool

to help this agency refocus on the necessary aspects of SOA adoption, and thus raise its

adoption maturity. For the qualitative part of this research, several engineers, architects

and management officials were freely interviewed, soliciting their opinions and

perspectives on the effectiveness of SAM and other challenges they face day to day in

SOA adoption in general. The findings are synthesized in the Qualitative Analysis section

of the Results chapter giving some recommendations on the pertinent observations.

The contributions of this research study are fourfold. It:

 132

I. Diagnoses whether the lack of success is related to a general misunderstanding of

the SOA design paradigm

II. Diagnoses whether the perception of failure is due to the use of a unsuitable

maturity measure and model

III. Provides a focused and suitable tool for measuring real SOA maturity

IV. Explores the potential of this new tool for helping and furthering SOA adoption

Below, each contribution is discussed in light of respective research question and its

relevant findings.

1.1. Diagnoses whether the lack of success is related to a general misunderstanding

of the SOA design paradigm

The first research question in the case study can be simplified as: Is SOA largely

misunderstood? Exploring this question, the SOA Adoption Priorities Survey was

designed and executed with both Subject Groups. Recall, Subject Group 1 mainly

comprised of management officials, while the Subject Group 2 included non-managerial

technologists.

1.1.1. Findings:

The data from this survey supported the hypothesis 1 that SOA can be misunderstood

at this organization. The combined groups survey results in both “Low” and “High”

rankings suggest significant inclination (26% and 34% respectively) towards ancillary

SOA adoption factors as compared to the given “Service Design” option. Looking at

Subject Group 1 and Subject Group 2 separately, the data also show a positive correlation

 133

between the two, implying that SOA adoption is somewhat equally misunderstood at both

organizational levels.

1.1.1.1. Correlational Analysis:

The raw data from the SOA Adoption Priorities survey limited to “Low” and “High”

ratings is tabulated below which suggest a positive correlation between Subject Group 1

and Subject Group 2, indicating a similar misunderstanding in both subject groups.

Table 13: SOA Adoption Priorities Survey - Correlation Analysis

SOA Adoption Priorities Survey – Raw Data

Subject Group 1 Subject Group 2

Low High Low High

0 8 3 17

0 8 4 12

0 7 3 17

2 6 4 10

0 7 3 16

0 8 3 10

2 6 2 10

3 3 6 9

Correlation

Low High

0.52741 0.511277

1.2. Diagnoses whether the perception of failure is due to the use of a unsuitable

maturity measure and model

The second research question in this study is about falsely perceived high SOA

maturity at this organization, and can be simplified as: Is the omission of Service

Architecture maturity a contributing factor to this false perception? Exploring this

 134

question, the SOA Maturity Survey was designed and executed with both Subject Group

1 and Subject Group 2.

1.2.1. Findings:

The combined data from Group 1 and Group 2 suggest a perception of high SOA

adoption maturity in at least 3 out of 5 categories. An interesting aspect to explore would

be to compare this false maturity perception among the two subject groups. As noted

already, SOA adoption is a strategic initiative with all its goals looking beyond short-term

tactical gains. Such an initiative naturally requires strong long-term executive-

management commitment and sponsorship. Since the Subject Group 1 of this study

consists entirely of management officials, a correlational analysis among the two groups

can shed some light on this aspect.

1.2.1.1. Correlational Analysis:

The raw data from the SOA Maturity survey is tabulated below which suggest a

positive correlation between Subject Group 1 and Subject Group 2, indicating a similar

level of false perception of high SOA adoption maturity exists in both subject groups.

 135

Table 14: SOA Maturity Survey - Correlation Analysis

SOA Maturity Survey – Raw Data

Subject Group 1 Subject Group 2

No Somewhat Yes No Somewhat Yes

0 2 8 3 9 13

0 1 9 1 4 20

4 1 5 5 7 13

2 2 6 2 11 12

3 1 6 4 5 16

3 4 3 10 11 4

4 3 3 9 12 4

4 4 2 12 9 4

2 7 1 4 15 6

3 3 4 12 8 5

1 2 7 1 6 18

0 2 8 0 4 21

0 3 7 2 8 15

0 1 9 0 2 23

1 4 5 2 10 13

0 2 8 0 2 23

0 10 0 1 24

0 1 9 1 2 22

Correlation

No Somewhat Yes

0.831816 0.788575 0.925649

1.3. Provides a focused and suitable tool for measuring real SOA maturity

The third research question in this case study is about measuring the SOA maturity at

the Service Architecture level. Subject Group 2 which was more closely associated with

the design and architecture tasks on ground was asked to take the Service Architecture

Maturity survey. The purpose was to explore how closely were the principles of SOA

followed in the service design practice?

 136

1.3.1. Findings:

The data from Service Architecture Maturity survey suggest that the individual

services are designed without giving much consideration to the principles of SOA;

thereby the discrepancy between the (perceived) high maturity and the (real) low maturity

in the SOA adoption could be explained. Based on the Service Architecture maturity, a

new, more focused, SOA maturity model can thus be constructed as below.

1.3.1.1. Service Architecture Maturity Model (SAMM)

The aim of this model is to provide a framework that consistently measures an

organization’s SOA adoption maturity and evolution. This Service Architecture Maturity

Model consists of five stages. These stages show the progression of SOA adoption within

an organization against the eight principles of SOA. The model is visualized as a two

dimensional table. The columns of this table indicate the various SOA Maturity Stages,

while the rows list the SOA principles.

 137

Table 14: Service Architecture Maturity Model (SAMM)

Service

Architecture
Neutral

Service
Architecture

Aware

Service
Architecture

Capable

Business
Aligned

Architecture

Business Driven
Architecture

Standardize
Service

Contract

No contract
standardization

effort

Technology
standardization
only, e.g. WSDL

+ Standardized
functional
expression

+ Standardized
data model

+ Completely standardized
contracts, including non-

technical part

Service Loose
Coupling

Coupling not
considered

Minimally
considered

Contracts impose
low consumer

coupling

“Contract First”
approach
followed

+ Decoupled from the

surrounding environment

Service
Abstraction

Service
architecture

openly available

Published
contracts

Limited
consumer

awareness about
service

architecture

Contracts limited
to essential

information only

Black-Box services - All

service-metadata strictly
hidden except what is

published in the contract

Service
Reusability

Monolithic
services

Agnostic vs non-
agnostic logic

considered

Service modeling
scheme followed

+ Logic
Centralization

pattern applied

+ Contract Centralization

pattern applied

Service
Autonomy

Direct and indirect
dependencies not

considered

Performance
impact of direct
dependencies

considered

Performance
impact of both

direct and
indirect

dependencies
considered

Predictability and
reliability
increased

through the
application of
design-patters

Maximum control possible
over underlying resources

and environment

Service
Statelessness

Resource
consumption not

considered

Identified state-
data

Performance
impact

considered

Some state-data
management
deferred and

delegated

Management of all state-
data carefully considered

against performance
impact. Deferred and
delegated as needed

Service
Discoverability

Service metadata
scattered and/or

not readily
available

Service metadata
organized and

available

+ Standardized
service metadata

Increased
awareness of

discoverable and
interpretable

services

Widespread awareness of

available enterprise
resources with accurate

understanding

Service
Composability

Non-modular
systems

Some
decomposition

Decomposed and
designed based

on a given service
modeling scheme

Maximization of
agnostic services

Highly optimized services
that can sustain multiple

and simultaneous
compositions

1.4. Explores the potential of this new tool for helping and furthering SOA adoption

The last research question in this case study explores the potential of this proposed

maturity model for helping and furthering SOA adoption maturity at this agency. Hands

 138

on practitioners and technologists at this agency were given opportunity to express their

thoughts via semi-structured interviews.

1.4.1. Findings

The qualitative data gathered from the interviews suggested that a large majority

(84%) of the practitioners felt that SAM is helpful in focusing them on the real SOA, and

a similar majority agree that a periodic measure of SOA maturity should be conducted

using SAM. This contribution, however, goes beyond just that. It not only provides

Service Architecture maturity survey as a tool to periodically measure the real SOA

adoption maturity at this organization, it also offers a Service Architecture Maturity

Model (SAMM) for the assessed maturity to be plotted against. In a technology roadmap,

a model is a necessary ingredient, without which a moving periodic measure cannot be

objectively assessed over time. SAMM fills that gap, and provides a more focused and

direct model than the ones reviewed in the Chapter 2.

2. Concluding Remarks

SOA is a convoluted design paradigm which, besides the obvious architectural

mindset shift, also demands cultural and organizational changes for it to be successful.

The standardization aspect alone which it emphases requires a group within the

organization to hold a broad and strategic enterprise wide vision. Within the US

Government agencies, establishment of an Enterprise Architecture (EA) group is

mandated by law, i.e. Clinger–Cohen Act 1996. For the private sector organizations as

well, an independent group with such enterprise vision makes perfect sense. When

individual projects are exclusively focused on meeting their distinct business

 139

requirements, this EA group can provide necessary guidance and standardization across

the enterprise, and can be a primary user and beneficiary of SAM.

There has been some recent talk about Micro SOA (Manes, 2013) which in essence is

not much different from what is advocated in this study – re-shifting the focus on the

Services in SOA. Micro SOA and Enterprise Architecture (EA) have a symbiotic

relationship; the strategic impact of SOA and the broad reach of EA strongly suggest a

mutually beneficial correlation. Observing the need for Technical Architecture and

Enterprise Architecture to coexist and interoperate, Booch recently highlighted the

uniqueness of SOA design paradigm, because, as he stated, “architecting a business

around the services it provides and architecting a software-intensive system that makes

manifest those services are shared goals of the enterprise and the technology” (Booch,

2010, p. 95).

Human beings, at a most fundamental level, are tool makers (Goodall, 1998; Walsh,

1920). When encountered with a challenge, instead of solving it with their claws and

teeth, humans tend to invent a tool. Human history at large is a witness to this fact. From

the simple club used by the cave dwelling ancestors, to the invention of the wheel which

empowered them to perform remarkable tasks, there has always been a tool which

propelled human civilization to a new high. These tools tend to become extensions of the

human mind; enabling to do things that are otherwise not possible. Although, human

history is fraught with such inventions and innovations, some of these tools, like the

invention of the printing press around early 15
th

 century really changed the course of

history, bringing hitherto unimaginable advancement to human civilization. The

 140

invention of the computer in mid-20th century marks such a turning point, triggering a

domino effect, and a revolution which continues to reformat the civilization.

Computing machines are not new in human intellectual history; from ancient abacus

to Charles Babbage's Difference Engine in the early 1800s; humans have always been

fascinated by the power of numbers, and conscious of their own biological limitations in

harnessing it fully. Mankind needed a tool; a tool which, in a way, could become an

extension of its neurons; a tool which could remain accurate yet untired and unfatigued

when charting our big ideas in massive calculations. The invention of the modern

computer filled this gap.

However, from the very beginning of the contemporary Information Systems

discipline, the advancement in the hardware domain lead the charge while the progress in

the software trailed behind. The hardware platform provided raw jinni like power at the

tips of the software programmers to do enormous computations in microseconds.

However, the first software architects and engineers intuitively designed their systems

much like a human mind works – sequentially. Given a large task, human mind

intuitively tries to break it down into smaller more manageable chunks, and execute them

as a shopping list – i.e. sequentially, from top to bottom (Miller, 1955). This kind of

thinking gave rise to the early programming languages that were Structured and

Procedural in nature. In the old software systems, for instance, written in COBOL and C,

the program control could be seen flowing mostly from top to bottom, with commands

like GOTO and PERFROM tossing the program flow from one part of the program to the

other. This kind of architecture survived for a few decades until a paradigm shift

occurred.

 141

With the advent of Object Oriented (OO) architecture, software engineers realized

that looking at a problem from OO lenses is much more effective and efficient (Booch,

1986). Designing a software solution by following the OO design principles, i.e.

Inheritance, Encapsulation and Polymorphism, made their systems much more

manageable, flexible and reusable. This was especially true when designing scientific and

natural systems since everything in nature is an object. Around the turn of the century,

however, the world witnessed the rise of e-commerce. Not only that more and more

businesses started harnessing the power of modern computers to build their business

systems, but that many business models shifted towards online marketplace. This

exposed businesses to the challenges of integration and interoperability which the

previously designed closed software systems could not survive. Private businesses were

not the only entities impacted by these challenges; government agencies and social media

encountered the same questions where the commodity traded was mostly information.

These challenges received several responses from the software industry in the form of

EDI
5
, CORBA

6
, etc. but the real paradigm shift started with the advent of SOA. The

argument was simple. Just like the premise behind OO architecture was: everything in the

nature is an object consisting of attributes and behaviors, so did the SOA argue:

everything in the business is a service. Even in the manufacturing industry, different

departments and shops could be looked at as providing unique services to the product

being produced. Thus, it became reasonable to start looking at the business problems

from the lenses of SOA, and architecting software solutions according to the principles of

SOA. In a way, OO architectural style evolved into SOA specifically for business use.

5
 Electronic Data Interchange (EDI)

6
 Common Object Request Broker Architecture (CORBA)

 142

Architectural models are curious tools because they provide guidance in the form of

constraints and principles but do not provide enforcement mechanisms. In other words,

an architect is free to pick and choose from among the principles of an architectural style,

and still call it by its original name. The same thing applies in the software architecture.

About a decade ago, passing through the initial stages on the Gartner’s Hype Cycle, SOA

had reached its “slope of enlightenment” by 2009 (Lewis, Morris, Simanta, & Smith, Jan-

Feb 2011, p. 58). However, during the same time, it also became an overused buzzword.

Software engineers, sometimes not fully conversant with this complex tool, yet eager to

adopt it, started following and focusing on parts of SOA, and ignoring the others, all the

while calling it SOA (Bloomberg, 2013).

A tool is only as good as the hand that wields it. SOA is a sophisticated tool, designed

to solve specific challenges, and to affect particular out comes. When understood and

used properly it produces great results, but, on the other hand, when used imprecisely, it

results in a waste of resources and causes frustration. Observing such frustration

sporadically spread out in the industry, this study hypothesized a potential problem in the

hand rather than in the tool, and set out to proffer a more direct and accurate measure of

SOA adoption maturity.

The same Gartner analyst that in 2009 cried “SOA is dead” (Appendix E) commented

four years later that “Service-oriented architecture has become essential for supporting

modern application requirements, including mobile enablement, social integration, data

virtualization and cloud computing” (Manes, 2013, p. 1).

 143

3. Future Research

Out of the four surveys conducted at this Agency, the first and the third are generic,

and thus, can be used at other federal agencies in order to get a fair assessment of the

aspects these surveys attempt to measure. However, the second survey and the final

interview need to be tailored to the prevailing circumstances of an organization where

they are to be executed. These questionnaires were developed based on the prior

knowledge of the environment and the direction of this Agency. With some similar

background, these surveys can be customized for use at other organizations as well.

Further research is needed for such customization, or even for developing a purely

generic set of surveys that could be applied to other agencies.

The initial hypothesis in this dissertation was that SOA is misunderstood, or at least

not fully understood, at this organization. Under this hypothesis a measurement tool was

built which could simultaneously be used as an educational device for the organization to

cure a particular ailment. Under the light of the literature that was reviewed, it was a

fairly reasonable hypothesis which was then further reinforced by the results gathered

from executing the survey 1, but it is by no means the only possibility for the perceived

failure of SOA adoption in another organization. Further research is needed to understand

other possible causes of staling SOA adoption maturity if the survey 1 results in an

outcome indicating strong and accurate understanding of the SOA design paradigm at

another subject organization.

In this study, Subjects were divided into Group 1 and Group 2 based on their affinity

of roles as technologists vs. managers, and their closeness to service architecture work

during design and engineering stages. The goal was to explore similarities or differences

 144

in their perception and priorities in SOA adoption. A simple correlation analysis is

performed for that purpose. However, potential for further exploration remains in order to

understand how the two groups within the organizational hierarchy contribute towards

SOA adoption. A more fine-grained data collection, followed by some advanced

statistical models can shed light on this important aspect in a future research.

 145

Appendices

1. Appendix A

This story appeared on Network World. Used here with permission.

Model offers measure for SOA success
By Jon Bachman, special to Network World

February 13, 2006 12:04 AM ET

This vendor-written tech primer has been edited by Network World to eliminate product promotion, but

readers should note it will likely favor the submitter's approach.

Network World - Service-oriented architecture has emerged as the most significant shift in how

applications are designed, developed and implemented in the last 10 years.

A consortium of software vendors and consultants recently introduced the SOA Maturity Model, which is

designed to provide IT decision makers with a framework for benchmarking the strategic value of their

SOA implementations and planning. The model is divided into five levels.

Level 1: Initial services
At the initial stage, an organization creates definitions for services and integrates SOA into methodologies

for project development. In a financial-services environment, a Level 1 project may use an application

server or an enterprise service bus (ESB) adapter to create Simple Object Access Protocol and HTTP Web

service invocations between a management system that places an order and a trading service that accepts

the order.

Level 2: Architected services
At this stage, standards are set for the technical governance of an SOA implementation, typically under the

leadership of the architecture organization. Standard SOA infrastructure and components, such as an ESB,

a services and policies repository, an exception-management service, a transformation service and a single

sign-on service, are used to foster greater reuse of services, as well as provide tight management and

control of services across an organization.

Level 3: Business services and collaborative services
Level 3 features the introduction of business-oriented services, such as business process management

(BPM). With a focus on the partnership between technology and business organizations, Level 3 optimizes

the flexibility of business processes, allowing IT to respond quickly to changing business requirements.

For example, a Level 3 project utilizing BPM might use a Universal Description, Discovery and Integration

registry to find a funds-transfer service that could significantly reduce settlement times. This service would

be connected to the ESB process within hours of recognizing the business need.

Level 4: Measured business services
Level 4 provides continuous feedback on the performance and business impact of the processes

implemented at Level 3. The key focus at this level is collecting data and providing that data to business

users, enabling them to transform the way they respond to events.

In our example, a Level 4 project could introduce logging and a service to monitor business activity. These

functions provide a collection and display process for business managers to view their trade routing

operation and for compliance officers to monitor trading behaviors of their staff and customers.

http://www.networkworld.com/details/6187.html?def
http://www.networkworld.com/details/531.html?def
http://www.networkworld.com/details/706.html?def

 146

Level 5: Optimized business services
At this final level, business-optimization rules are added, and the SOA becomes the nervous system for the

enterprise. Automatic responses to the measurements and displays of Level 4 allow an organization to take

immediate action on events.

A Level 5 project can take the request messages entering the ESB and route that information to an event-

stream processor. This service correlates the behavior of all traders across multiple execution venues and

identifies important patterns. This information might be used to execute new trades or stop a rogue trader

who is out of view of compliance officers.

The SOA Maturity Model provides a framework for IT and business users to properly evaluate the

applicability and benefits of SOA in an organization.

Bachman is senior director of product marketing at Sonic Software. He can be reached at

jbachman@sonicsoftware.com.

All contents copyright 1995-2014 Network World, Inc. http://www.networkworld.com

From: Tim Greene [mailto:TGreene@nww.com]
Sent: Friday, September 25, 2015 2:20 PM
To: Mukhtar Gohar
Subject: RE: seeking permission to use an old online article in my PhD dissertation as appendix

Hi, Gohar,

That should be OK.
Best,

Tim

Tim Greene

Senior Editor
Network World
MAXIMIZE YOUR RETURN ON IT

492 Old Connecticut Path

Framingham, MA 01701-9002
508.766.5432
Twitter: @Tim_Greene

From: Mukhtar Gohar

Sent: Wednesday, September 16, 2015 9:51 AM

To: Tim Greene <TGreene@nww.com>
Subject: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Tim,

Hope you are doing well.

I’m seeking permission for using the following full article as an appendix in my Ph.D. dissertation that I’m currently working
on at the IS department at UMBC.

This story appeared on Network World at
http://www.networkworld.com/news/tech/2006/021306-soa.html

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

mailto:jbachman@sonicsoftware.com
http://www.networkworld.com/
mailto:TGreene@nww.com
http://www.networkworld.com/news/tech/2006/021306-soa.html

 147

2. Appendix B

This story appeared on Gartner Newsroom. Used here with permission.

Press Release
Egham, UK, May 14, 2009

Gartner Survey Shows 40 Per Cent of SOA Users Don't Measure Time to Achieve Return on

Investment
Analysts Explain How to Drive Value from SOA at Gartner SOA & Application Development and

Integration Summit 2009, June 24-25 in London

Organisations must set realistic expectations, and identify a few numerical measures of success agreed with

the business, to achieve value from service-oriented architecture (SOA), according to Gartner, Inc. A global

Gartner survey of 200 companies conducted in the fourth quarter of 2008, found that 40 per cent of SOA

users don’t measure the time to achieve return on investment, and 50 per cent of non-SOA-users have not

adopted it because they cannot articulate and demonstrate the business value of it.

“Many companies come to SOA with excessive expectations, such as immediately achieving quicker

project cycles, but users often are not aware of the efforts, resources and time needed to achieve these

benefits,” said Massimo Pezzini, research vice president and fellow at Gartner. “Consequently, some SOA

projects are perceived to have failed when in fact there are simply no well established metrics to evaluate

success. Therefore sometimes the benefits are there, but people keep arguing how much better things are,

and whether any improvement is really linked to SOA.”

“Under the pressure of technology vendors and with a generally too optimistic view of the possible

benefits, organisations tend to over-spend on technology but under-spend from an organisational and

governance viewpoint, so they come to the conclusion that SOA is expensive and doesn’t deliver,” said

Paolo Malinverno, research vice president at Gartner.

To ensure expectations are realistic and accurate measurement towards goals takes place, Gartner

recommends organisations initially focus on achieving just one key benefit from the list of potential

business advantages of SOA. As the SOA effort matures, and the benefit starts being delivered, they should

add further benefits and change or add to the measures accordingly. Choice of benefit depends on what is

the most urgent or important business value that benefit can deliver, and how quickly it can be reached. The

benefits include:

Improved Efficiency in Business Processes Execution - Isolating the business logic from the functional

application work enables a clearer view of what a process is, and the rules to which it adheres. This can be

measured by lower process administrative costs, higher visibility on existing/running business processes,

and reduced number of manual, paper-based steps; better service-level effectiveness; quicker

implementation of process iterative or of variants of the same process for different contexts.

Quicker Time to Market/Shorter Project Cycles - The SOA principle of modularity results in services

than can be reused repeatedly from different contexts. This can be measured by easier internationalisation

of processes and quicker adaptation of processes to several products; the number of new products per unit

of time; a higher percentage of on-time delivery of products; shorter IT integration of merging entities; a

higher market coverage index (the number of countries an organisation sells in, weighted by size of

revenue/target market global industry revenue); shortened project delivery times; and number of projects

completed per unit of time.

Enablement of New Fast-Growth Business Models – Again, SOA’s modular, clearly defined, and

http://www.gartner.com/technology/home.jsp

 148

shareable system interfaces, coupled with better application quality delivered faster, enable system

scalability that can lead to new business models, such as e-commerce and cloud computing. Typical

measures are the number of new processes identified and improved over 12 months; new ways/channels for

interacting with customers/suppliers, and traffic/number of transactions associated; shortened time of

integration of business partners; number of qualified sales leads; decreasing cost of sales.

Shift in IT Culture From New Developments to Reuse - Services being reused can be developed

internally and outside the business (e.g. for B2B document exchange, or to extract CRM data), and used on

demand on a SaaS basis. Measures can include SOA's total reuse factor (the number of service

consumers/number of services) is increasing; a decreasing number of new service requests to the SOA

centre of excellence; a decreasing number of new services added to the repository per month; and an

increasing percentage of programmers' incentives based on the number of services they reuse or on the

number of effectively reused services they design (not on the amount of software they develop from scratch

or maintain).

Lowering Total Cost of Application Development and Maintenance- This cost tends to increase year by

year, except when disruptive events (such as a major cost-cutting initiatives) bring it down drastically,

causing significant pain within the organisation. A successful and well-governed SOA project brings these

costs down, with considerably less organisational disruption. This cost is already measured in every IT

department, straight out of IT budget data. Another measure is the reduced number of staff doing

application development and maintenance, or the higher productivity of existing staff, such as application

development or maintenance.

“Organisations must measure and communicate the success of SOA projects continuously in terms of the

positive business outcomes achieved or the negative business outcomes avoided. If no-one knows what

SOA is good for, it will be seen as just another fashion wave, and the SOA project will be at risk,” said Mr

Pezzini.

Mr Pezzini added: “Organisations not yet engaged with SOA should avoid attempts at building a long-term

business case for SOA. They should instead justify initial and focused investments in SOA in the context of

projects aimed at addressing business needs with short to mid-term paybacks. Incremental investments to

extend their SOA infrastructure and to strengthen governance processes should also be cost-justified on a

project-by-project basis in terms of tangible business benefits.”

From: van der Meulen,Rob [mailto:Rob.vanderMeulen@gartner.com]
Sent: Wednesday, September 16, 2015 10:08 AM
To: Mukhtar Gohar; Pettey,Christy
Subject: RE: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Gohar,

Information on our news room is public domain. This means you may use it in your appendix provided you attribute clearly to Gartner

and do not alter the meaning of the content.

Best regards,

Robert van der Meulen

PR Manager Gartner

Direct: + 44 (0) 1784 267 892
Mobile: +44 (0) 7739 312 218

Media Hotline: +44 (0) 1784 26 7 738

Skype: bobvdmeulen

Twitter: @bobvdmeulen

From: Mukhtar Gohar
Sent: 16 September 2015 15:00

To: van der Meulen,Rob; Pettey,Christy

Subject: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Rob or Christy,

http://twitter.com/#!/bobvdmeulen

 149

Hope you are doing well.

I’m seeking permission for using the following (full or partial) article as an appendix in my Ph.D. dissertation that I’m currently
working on at the IS department at UMBC.

This story appeared on Gartner Newsroom at
http://www.gartner.com/newsroom/id/978712

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

http://www.gartner.com/newsroom/id/978712

 150

3. Appendix C

This story first appeared on SD Times. Used here with permission.

SOA’s dead; long live SOA
Alex Handy

January 15, 2010

When Anne Thomas Manes declared SOA dead last January, the enterprise software world stood up and

took notice. Manes, a vice president and research director with Burton Group (now with Gartner), declared

that SOA and middleware products had worn out their welcome in corporate America, and that SOA as a

marketing term was no longer useful. Now, one year later, Manes is still bearish on SOA technology, but

very bullish on applying SOA best practices to the cloud.

Jason Bloomberg, managing partner at consulting firm ZapThink, said that SOA has changed from being a

market category for software and middleware companies to a set of best practices, and that this shift

became prominent in the market towards the end of 2008. He said that SOA was always about best

practices, but that the companies hoping to make money on the term had obscured this fact with lots of

advertising dollars.

Today, said Bloomberg, these companies have seen their markets dry up, and only a few such companies

remain; most SOA companies were acquired by the likes of IBM and Oracle over the past four years. But

even IBM has changed its marketing to emphasize SOA consulting, not SOA products, he said.

“What's really shifted, and this is what Anne was getting at, is a shift away from vendor-driven fake

architecture projects where you say you want to do SOA, you buy from Oracle or IBM, they install it and

you wonder where the SOA went," said Bloomberg.

"Budgets were tight last year, and that helped organizations resist spending money on software to solve the

problem. There is now a focus on true architecture to leverage existing infrastructure."

ZapThink used to offer SOA-specific advice, and it even ranked SOA tools in the company newsletter.

Bloomberg said that such work is no longer a part of the ZapThink business model, which is now focused

on training and consulting rather than purchasing advice.

From SOA to the cloud
Now that SOA has lost its appeal as a buzzword, many companies are pushing their middleware products

into the cloud. “Vendors had to do something to convince people to buy,” said Manes. “They basically took

everything they had for SOA and repackaged it to say, 'This is cloud stuff.' But you can't do cloud

computing very effectively at all if you're not also using service-oriented principles.

"The business guys aren't interested in investing in this abstract architecture concept. But at the same time,

you have to do it or your systems are going to remain in this quagmire they've been in.”

Adam Vincent, CTO of Layer 7 Technologies, said that the software underpinnings of SOA still exist, but

they are no longer being sold as SOA panaceas.

“The tenets of SOA still exist. One of those is the idea of creating composite services out of existing

applications,” said Vincent.

Layer 7 recently entered the enterprise service bus market, but the company was careful not to attach the

http://www.sdtimes.com/default.aspx

 151

"SOA" label

 to its new appliance. Rather, it's marketing it as an integration appliance.

Greg Schott, CEO of MuleSoft, is also in the ESB business. “The SOA market got all the hype around

these big-bang approaches where the company says, 'We are now going to deploy a SOA.' Now, people are

realizing that's not the way to do it. The way you get service reuse is to start with grassroots,” he said.

Focusing on best practices
Bloomberg agrees that SOA best practices are just as relevant in the cloud. He said that SOA can help to

make cloud-based applications more flexible. Many companies are now realizing they have to enforce

policies and governance on the many APIs they use across the Internet, and this is a problem that SOA best

practices have already addressed. Those best practices vary from firm to firm, but they tend to have major

aspects in common. And these commonalities are also applicable to the cloud.

These best practices, of which IBM, Oracle and Sun all have their own versions of, include items such as

“Architect someplace in the network where policies and governance can be enforced on incoming and

outgoing traffic,” and “Develop loosely coupled services, not tightly integrated one-off services designed

only for use in a single application.”

“You can't do true cloud computing without architecture. Leveraging best practices to build loosely coupled

abstractions: That's a SOA best practice," said Bloomberg. "You won't be able to succeed in the cloud

without SOA best practices.

"SOA takes the whole notion of an API one step further. What SOA brings to the table is a loosely coupled

vision for interfaces. You can still call it an API, but it’s still more of a loosely coupled service and

extraction interface. This requires a higher level of governance. If the service provider makes an update, it

shouldn't break any of the consumers. That becomes a governance challenge.”

A year later, Manes remains confident that SOA as a tool-driven concept is still dead, but she also said that

SOA best practices don't need to be updated for the cloud. After seven years of consulting and researching

SOA, she said that for clients today, she gives mostly the same advice she has been giving on how to do

SOA, because, she said, “that's also how you do cloud.”

From: Dave Rubinstein [mailto:drubinstein@bzmedia.com]
Sent: Wednesday, September 16, 2015 1:08 PM
To: Mukhtar Gohar
Subject: Re: seeking permission to use an old online article in my PhD dissertation as appendix

Hello Mukhtar!
As long as the article is credited to SD Times (it is copyrighted material) we would allow this kind of use.
Thanks for the inquiry.
David

On Wed, Sep 16, 2015 at 12:55 PM, Mukhtar Gohar wrote:

Hi David,

Hope you are doing well.

I’m seeking permission for using the following full article as an appendix in my Ph.D. dissertation that I’m currently working
on at the IS department at UMBC.

This story first appeared on SD Times at
http://www.sdtimes.com/content/article.aspx?ArticleID=34062

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

mailto:drubinstein@bzmedia.com
http://www.sdtimes.com/content/article.aspx?ArticleID=34062

 152

5. Appendix D

This story first appeared on CIO.com. Used here with permission.

Burton Group: SOA is Dead; Long Live Services
Although the word "SOA" is dead, the requirement for service-oriented architecture is stronger than ever.
By David Linthicum

Tue, January 06, 2009

InfoWorld — Anne Thomas Manes put out an interesting post yesterday, declaring that SOA has failed, but

there are a few FWBs (features with benefits), that we should still consider.

SOA met its demise on January 1, 2009, when it was wiped out by the catastrophic impact of the economic

recession. SOA is survived by its offspring: mashups, BPM, SaaS, Cloud Computing, and all other

architectural approaches that depend on "services."

I'm actually having Anne on the podcast this week to talk about this.

So, what do I think? In short, she may have something there, and I've been hitting on these issues for years

now.

Indeed, while SOA is possible, and has a bunch of value, most of those out there tasked to implement SOA

were doing so with all the talent of trained monkeys, and just could not get down to the basic issues of

architecture, instead focusing way too much on technology and the hype. In short, the efforts were focused

in the wrong directions and now there is little to show for it.

But perhaps that's the challenge: The acronym got in the way. People forgot what SOA stands for. They

were too wrapped up in silly technology debates (e.g., "what's the best ESB?" or "WS-* vs. REST"), and

they missed the important stuff: architecture and services.

I was actually hopeful that somehow, someway SOA would transcend some of the practice issues I saw

around EAI. Indeed, most enterprises are dealing with a huge mess, and it's a good idea to begin to cleaning

things up. Right? SOA was and is a great approach for doing that, but many charged with making SOA

work just could not get out of their own way.

The demise of SOA is tragic for the IT industry. Organizations desperately need to make architectural

improvements to their application portfolios. Service-orientation is a prerequisite for rapid integration of

data and business processes; it enables situational development models, such as mashups; and it's the

foundational architecture for SaaS and cloud computing.

So what went wrong?

First, there are not enough qualified architects to go around, and you'll find that most of the core mistakes

were made by people calling themselves "architects," who lack the key skills for moving an enterprise

towards SOA. They did not engage consultants or get the training they needed, and ran around in circles for

a few years until somebody pulled their budgets.

http://www.infoworld.com/
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
http://www.infoworld.com/topic-center/soa/

 153

Second, the big consulting firms drove many SOA projects into the ground by focusing more on tactics and

billable hours than results and short- and long-term value.

Third, the vendors focused too much on selling and not enough on the solution. They put forth the notion

that SOA is something they have to sell, not something you do.

Finally, the hype was just too much for those charged with SOA to resist. Projects selected the technology

first, then the approach and architecture. That's completely backwards.

However, this failure does not diminish the need for SOA. Indeed, most enterprise architectures are a mess

and are getting messier as the years go by. Moreover, if you just look at the inefficiencies within the current

IT infrastructure you can easily make a case for SOA.

Although the word "SOA" is dead, the requirement for service-oriented architecture is stronger than ever.

Can't disagree with that. Good luck.

From: Mike Shober [mailto:mike.shober@theygsgroup.com]
Sent: Friday, September 25, 2015 3:06 PM
To: Mukhtar Gohar
Subject: RE: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Gohar,

You are permitted to reference the article as detailed below.

Best,
Mike

Mike Shober
Content Sales & Licensing

The YGS Group
3650 West Market Street | York, PA 17404

p: 717.505.9701 x 2229 | d: 717.430.2229 | f: 888.608.0288
mike.shober@theygsgroup.com

www.theygsgroup.com

MARKETING SERVICES | PUBLISHING SOLUTIONS | PRINT OPERATIONS

Confidentiality Note: The information contained in this message is legally privileged and confidential; and is intended only for the use

of the individual or entity named above. If the recipient of this message is not the intended recipient, you are hereby notified that any

reading, use, dissemination, distribution or copying of this transmission is strictly prohibited.

From: Mukhtar Gohar

Sent: Friday, September 25, 2015 2:14 PM
To: Mike Shober <mike.shober@theygsgroup.com>

Subject: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Mike,

Hope you are doing well.

I’m seeking permission for using the following full article as an appendix in my Ph.D. dissertation that I’m currently working
on at the IS department at UMBC (purely academic use; no commercial value).

http://www.cio.com/article/474174/Burton_Group_SOA_is_Dead_Long_Live_Services

Since I’m told that I can’t include URLs or internet links in my dissertation, I plan to refer it as below.

This story first appeared on CIO.com

mailto:mike.shober@theygsgroup.com
http://www.theygsgroup.com/
mailto:mike.shober@theygsgroup.com
http://www.cio.com/article/474174/Burton_Group_SOA_is_Dead_Long_Live_Services

 154

Burton Group: SOA is Dead; Long Live Services

Although the word "SOA" is dead, the requirement for service-oriented architecture is stronger than ever.

By David Linthicum

Tue, January 06, 2009

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

 155

7. Appendix E

This story first appeared on Burton Group (now Gartner Inc.). Used here with permission.

SOA is Dead; Long Live Services
January 05, 2009

Blogger: Anne Thomas Manes

Obituary: SOA

SOA met its demise on January 1, 2009, when it was wiped out by the catastrophic impact of the economic

recession. SOA is survived by its offspring: mashups, BPM, SaaS, Cloud Computing, and all other

architectural approaches that depend on “services”.

Once thought to be the savior of IT, SOA instead turned into a great failed experiment—at least for most

organizations. SOA was supposed to reduce costs and increase agility on a massive scale. Except in rare

situations, SOA has failed to deliver its promised benefits. After investing millions, IT systems are no

better than before. In many organizations, things are worse: costs are higher, projects take longer, and

systems are more fragile than ever. The people holding the purse strings have had enough. With the tight

budgets of 2009, most organizations have cut funding for their SOA initiatives.

It’s time to accept reality. SOA fatigue has turned into SOA disillusionment. Business people no longer

believe that SOA will deliver spectacular benefits. “SOA” has become a bad word. It must be removed

from our vocabulary.

The demise of SOA is tragic for the IT industry. Organizations desperately need to make architectural

improvements to their application portfolios. Service-orientation is a prerequisite for rapid integration of

data and business processes; it enables situational development models, such as mashups; and it’s the

foundational architecture for SaaS and cloud computing. (Imagine shifting aspects of your application

portfolio to the cloud without enabling integration between on-premise and off-premise applications.)

Although the word “SOA” is dead, the requirement for service-oriented architecture is stronger than ever.

But perhaps that’s the challenge: The acronym got in the way. People forgot what SOA stands for. They

were too wrapped up in silly technology debates (e.g., “what’s the best ESB?” or “WS-* vs. REST”), and

they missed the important stuff: architecture and services.

Successful SOA (i.e., application re-architecture) requires disruption to the status quo. SOA is not simply a

matter of deploying new technology and building service interfaces to existing applications; it requires

redesign of the application portfolio. And it requires a massive shift in the way IT operates. The small

select group of organizations that has seen spectacular gains from SOA did so by treating it as an agent of

transformation. In each of these success stories, SOA was just one aspect of the transformation effort. And

here’s the secret to success: SOA needs to be part of something bigger. If it isn’t, then you need to ask

yourself why you’ve been doing it.

http://www.burtongroup.com/AboutUs/Bios/PrintBio.aspx?Id=94
http://bgaps.typepad.com/.a/6a00d8345208e269e2010536b40e94970c-pi

 156

The latest shiny new technology will not make things better. Incremental integration projects will not lead

to significantly reduced costs and increased agility. If you want spectacular gains, then you need to make a

spectacular commitment to change. Like Bechtel. It’s interesting that the Bechtel story doesn’t even use the

term “SOA”—it just talks about services.

And that’s where we need to concentrate from this point forward: Services.

From: Pettey,Christy [mailto:Christy.Pettey@gartner.com]
Sent: Wednesday, September 23, 2015 4:15 PM
To: Mukhtar Gohar
Subject: RE: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Mukhtar,
 You have permission to use http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-
services.html as an appendix in your Ph.D dissertation.

Thanks,
Christy

Christy Pettey
Director, Public Relations

Gartner
Tel: 1 408 709 8124
Press Hotline: 1 408 709 8220
E-mail: christy.pettey@gartner.com
Web site: http://www.gartner.com
Gartner Twitter: http://www.twitter.com/gartner_inc

Personal Twitter: http://twitter.com/cpettey

Gartner Newsroom: www.gartner.com/newsroom
YouTube Channel: http://www.youtube.com/gartnervideo

Gartner delivers the technology-related insight necessary for our clients to make the right decisions, every day.

From: Mukhtar Gohar

Sent: Wednesday, September 23, 2015 12:52 PM

To: Pettey,Christy
Subject: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Christy,

Hope you are doing well.

I’m seeking permission for using the following full article as an appendix in my Ph.D. dissertation that I’m currently working
on at the IS department at UMBC.

This story first appeared on Burton Group (now Gartner Inc.) at
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

http://www.networkworld.com/news/2008/102908-bechtel.html
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
mailto:christy.pettey@gartner.com
http://www.gartner.com/
http://www.twitter.com/gartner_inc
http://twitter.com/cpettey
http://www.gartner.com/newsroom
http://www.youtube.com/gartnervideo
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

 157

8. Appendix F

This story first appeared on Information Management. Used here with permission.

Reality Check: The Costs of Data and Application Integration
By Paige Roberts and David Inbar

NOV 21, 2008 11:24am ET

Disparate data, duplicate data and inaccessible data are all serious problems that can cripple an enterprise.

Everyone wants to address them, but budget-conscious corporations can’t afford to blow millions of dollars

on a project that will disrupt business for long periods and may break within months or weeks of finally

being put into place. The sky-high cost of integration projects and timelines measured in months or even

years make them the dread of many businesses. If you’re unfamiliar with the complexities of integration

projects, transferring data back and forth between a few applications, file formats or data stores may sound

deceptively straightforward.

Why are Integration Projects so Expensive?
Many factors make integration expensive – some are fairly obvious, some possibly surprising. A Yankee

Group report from a few years back, “The Hidden Costs of Data Integration,” uncovered some less obvious

contributors.1 The report’s main conclusion was that while businesses budget for building or purchasing

integration tools and setting up initial integration implementations, they rarely factor in long-term

maintenance and repair costs. The report notes, “Over a three-year period, the total cost of ownership of an

integration application is more than eight times the initial software license investment.”

Budget Busting Factors

Staffing costs. According to the Yankee Group, labor is the most expensive aspect of an integration

project, costing as much as the software and hardware costs combined over three years’ time. This cost as

well as the costs associated with disruption of the normal business routine increase as implementation time

increases. Anyone who has been involved with integration projects knows that implementation times

frequently turn out to be higher than expected. The more those schedules get stretched, the higher the price

tag.

One reason for high staffing costs is that the business environment is highly unstable due to mergers and

acquisitions, changes in business strategy, new market initiatives and other factors. This instability means

that even the most robust integration implementations have to adapt constantly. As much as labor costs

incurred during implementation can put a dent in the budget, the costs of making changes can be even more

extreme. The periodic downtime of a system that the corporation has come to rely on can cause myriad

unpredictable problems that have their own high price tag.

Data quality. Data quality issues are another major cause of system downtime and implementation delays.

Even data that everyone involved believes is clean and rigidly regulated frequently has flaws that can cause

integration pipelines to crash, driving up downtime and repair costs. If inaccurate or improperly classified

data makes it into mission-critical data stores, the result can be faulty analytics, damaged trust and lost

business, each of which is costly.

Endpoint variety. One of the biggest contributing factors to integration cost is the wide variety of data to

be integrated. Endpoints may include legacy systems on mainframe platforms that have been operating for

20 years or more, while others are software as a service (SaaS) systems that were recently implemented on

platforms outside the firewall. In between are a vast array of applications of all types and ages on a variety

of platforms with myriad interface types. Because no two programmers solve data storage problems in

quite the same way, no two applications ever store their data in the same structure or with the same

semantic logic. Even two applications of the same type, like two customer relationship management (CRM)

http://www.information-management.com/authors/2000290.html
http://www.information-management.com/authors/2000289.html
http://www.pervasive.com/documentation/whitepapers/yankee.pdf

 158

systems or two accounting systems, can show extreme variations in data storage strategies, making the data

incompatible without extensive transformation.

Project complexity. The demands of modern integration initiatives increase the level of complexity of the

problem, even while they seek to simplify and improve business processes. Frequently, simplicity for the

business user translates to more complexity in the underlying architecture. Data warehouse service-oriented

architecture (SOA), business intelligence (BI) and master data management (MDM) projects all propose to

make business processes more efficient by connecting multiple disparate systems, but they require complex

initial implementations to reach their goals. Meeting the technical demands of real-time updates,

bidirectional synchronization, and exponentially increasing data volumes doesn’t come cheap.

With multiple factors conspiring to make integration projects into budget busters, it’s amazing that anyone

accomplishes them at all without ending up in bankruptcy court. Yet, thousands of companies have

accomplished very successful integration initiatives, stayed within a reasonable budget and ended up with a

much higher ROI than their initial investment. Implementing a solid budget-conscious integration project

isn’t impossible. You just have to use the right strategies to counter the factors that make integration

expensive.

Create an Integration Strategy That Will Not Break the Bank

Adjust your expectations. The first thing that has to happen is that you need to adjust your expectations,

particularly of integration tools. Ridiculous price tags for integration projects should not be standard. Bloor

Research recently did a survey of approximately 200 companies comparing various integration vendors for

price across multiple projects.2 There was a huge difference in initial license costs for integration software,

from hundreds of thousands to free for open source tools or those included with other software. Strategies

that companies might think would save money are:

1. Invest in more expensive software up front, based on the idea that it would deliver ROI by being

more full featured and easier to implement, or

2. Go with open source software or other software that is virtually free and save on up-front licensing

costs.

The Bloor study compared various integration tools, including the other factors needed to make those tools

work, such as labor, hardware and dependent software requirements. Some of the results were surprising. In

particular, open source software, due to high technical resource demands and low reuse potential, was not

necessarily the most inexpensive across multiple projects. The high-dollar software was often just as costly

long term as it was up front, as much as doubling the cost-per-project relative to other options.

From: Schecter, Peggy [mailto:peggy.schecter@sourcemedia.com]

Sent: Friday, September 25, 2015 5:01 PM

To: Mukhtar Gohar

Subject: RE: seeking permission to use an old online article in my PhD dissertation as

appendix

Hi Gohar

Thank you for reaching out

This is approved as long as you credit Information Management Thanks Peggy

-----Original Message-----

From: Gohar Mukhtar

Sent: Friday, September 25, 2015 4:59 PM

To: Schecter, Peggy

Subject: seeking permission to use an old online article in my PhD dissertation as

appendix

This message was sent via the form /fdc.collector/Mail Send Form

From_Address: gohar.mukhtar@irs.gov

Contact_Name: Gohar Mukhtar

Subject: seeking permission to use an old online article in my PhD dissertation as

appendix

mailto:gohar.mukhtar@irs.gov

 159

Message: Hi Peggy,

Hope you are doing well.

I'm seeking permission for using the following full article as an appendix in my Ph.D.

dissertation that I'm currently working on at the IS department at UMBC.

This story first appeared on Information Management at http://www.information-

management.com/infodirect/2008_99/10002234-1.html

Are you the right person for this? If not, could you please guide me to the right person

in your organization?

Thanks,

Gohar Mukhtar

http://www.information-management.com/infodirect/2008_99/10002234-1.html
http://www.information-management.com/infodirect/2008_99/10002234-1.html

 160

10. Appendix G

This story first appeared on InformationWeek NETWORKComputing. Used here with permission.

InformationWeek Analytics: State Of SOA
By Roger Smith 02/19/2009

We polled readers to assess whether service-oriented architectures have simply hit an economy-

induced bump in the road or are, instead, at a significant crossroads.

Reports of SOA's demise have been greatly exaggerated, according to the 270 business technology

professionals InformationWeek Analytics surveyed for this report on the state of service-oriented

architecture. But that's not to say there isn't trouble in SOA-ville: Just 23% of respondents say that their

organizations have deployed a SOA, and a mere 7% of these report that the resulting systems are available

for external use. Twenty-nine percent are experimenting or in development, while 31% have no plans.

Much-touted business benefits of SOA, such as increased flexibility and business agility, reduced costs, and

improved time to market, weren't major factors speeding increased adoption. The percentage of overall

software reuse within organizations rose by just 7 points after initiating a SOA project, from 32% to 39%.

SOA governance, tragically, is DOA.
Still, enterprise IT groups rarely turn on a dime, and they don't lightly abandon technology investments and

strategic decisions. When asked if their SOA projects have been successful in delivering a positive business

impact, respondents overwhelmingly say results were as expected. Both positive and negative extremes

("more successful" and "less successful") rate nearly identical low scores. One interpretation: It's human

nature to resist admitting mistakes, so these IT pros are reluctant to cede defeat. But our take--supported by

survey results and discussions with a wide range of stakeholders--is that many companies are moving

forward with SOA implementations, though a significant number have decided to shift course and take the

path of least resistance. In essence, that means building their SOAs on the Web, using Internet-delivered

APIs, and swapping in more agile REST-based Web services as a simpler alternative to heavyweight

SOAP-based Web services where appropriate. In fact, when asked to indicate their past, present, and

estimated future use of SOAP-based Web services vs. REST-based Web services, respondents show a

marked drop-off in use of SOAP, from 54% a year ago to a projected 42% in the next 18 months. The

number primarily using or considering REST-based Web services is predicted to grow by a proportional

amount, from 14% to 24% over the same time frame.

The REST philosophy has simplicity going for it, and when resources get tight, faster and easier usually

wins. However, the two styles can complement each other; it doesn't have to be a case of one or the other.

A REST-based approach is a natural for data-oriented applications that focus on simple database look-up

scenarios. Many apps fit this model, especially on the Web. Another explanation for the increasing

 161

popularity of REST is the growing number of rapid prototyping tools, such as Ruby on Rails, that can be

used to build these types of apps.

REST isn't the best solution for all Web services, of course. Our advice: Don't be married to one method or

the other. To simplify your application development process and make it more accessible to more people,

first consider REST for straightforward operations. Choose SOAP only when your requirements demand it,

as with applications that require complex data retrieval operations or network independence. Here SOAP is

the more viable option.

An example of an IT pro taking this balanced approach is Ernest Mueller, whose company has experienced

rapid growth of its internal all-SOAP SOA implementation. Mueller manages the Web systems team at

National Instruments, a supplier of measurement and automation products for engineers and scientists. Two

years ago, as part of a business/technology alignment effort, Meuller and a multidiscipline Web

architecture team identified two major areas in which NI needed consistent, reusable systems.

"The first was application delivery on the Web, for which we constructed a reusable Java-based delivery

platform for our applications to use," Mueller says. "The second was initially framed as back-end access for

our Web site to transact with our ERP systems and other internal data and functionality repositories. After

some research, we decided that a full SOA tier was the solution. We had some internal Web services, but

wanted the additional functionality an ESB and BPEL engine would give us."

Based on these needs, the team selected Oracle's SOA Suite as its platform. Mueller says that while NI's

SOA project has been slow to define standards and governance--a trend in our poll--the company is happy

overall with its SOAP implementation internally. However, the team is looking at REST as NI starts to

expose services externally, thanks to what Mueller sees as REST's better ease of use.

Not Dead Yet
SOA success stories such as National Instruments' notwithstanding, there's a common industry perception

that a critical mass of SOAP-based SOA initiatives have failed to deliver their promised benefits and have

run out of steam. In response, a range of pundits have weighed in on SOA's future.

At one extreme of sensationalism, Burton Group's Anne Thomas Manes issued a blog post in January

declaring, "SOA Is Dead; Long Live Services," and followed up with an open invitation to a wake. A less-

dire November report from Gartner found that a growing number of organizations are delaying their SOA

adoption plans, and the number of organizations with no plans to adopt SOA has almost tripled, from 6% in

2007 to 16% in 2008. As discussed earlier, the percentage of companies deferring SOA adoption recorded

by our survey was even larger.

"The biggest challenge is to show to the business the benefits of using SOA," says Krishna Komanduri, a

technical director with brokerage firm Charles Schwab. "But, because of the current economic situation, the

business isn't enthusiastic about implementing new technologies when it's hard for them to see and realize

the benefits. In many cases, [SOA] requires organizational changes both in the business and technology--

which is very difficult."

Part of the problem: The percentage of overall software reuse within organizations was only marginally

higher after initiating SOA, with a 32% reuse rate cited before the SOA project versus 39% after. The key

for maximizing Web service reuse in an enterprise is good SOA governance. However, good governance is

hard to find in many IT shops, especially those with outdated incentive structures that encourage

developers to write pages of code rather than reuse existing Web services components.

But far and away the major reason respondents who aren't evaluating or implementing SOA cite for not

pursuing the initiative is a lack of a viable business case--43% say it's because SOA initiatives have

developed a reputation for overpromising and underdelivering.

 162

We're convinced that one of the main reasons for this is that when SOA started out a few years ago,

vendors sold the concept to CIOs and other corporate decision makers as being about specific (and

expensive) products like Web services or SOA management products, enterprise service buses, SOA

gateways, and hardware acceleration devices for Web services. But SOA is about much more than

deploying new technology and building service interfaces to existing applications. It requires significant

redesign of an enterprise's application portfolio as well as transformation of the entire business. Because so

much of SOA is actually about business practices--not technology--in many cases there's been a push back

from units reluctant to change or to invest in an IT infrastructure that may require multiple years to pay

back the investment.

Other hurdles identified in our survey by nonadopters: that a SOA initiative would increase rather than

reduce IT costs and would amplify rather than simplify complexity of the IT environment (17% and 15%,

respectively). Roughly the same percentage say they've had difficulty enlisting executive supporters and

evangelists for their SOA efforts.

However, the fact that National Instruments is actively considering both SOAP and REST Web services in

its SOA implementation is a strong indicator that there's room for these new initiatives and new

architectural principles that have value under the broader service orientation umbrella. Whether SOAs are

implemented in REST, SOAP, or a combination of both, we believe that a snowball effect will arise over

the coming years: As more Web services can be invoked, more applications will be written to invoke them.

With the increased availability of Web services components, application designers will evolve from

thinking about application architectures as monolithic, siloed software efforts and move toward the

exploitation of configurable, component-based SOAs.

NI's Mueller says some of this is happening already; in fact, he became a victim of his own success when

the SOA project team was forced to fight for money and resources from other groups. Meuller explains that

when his Web architecture team started work on the SOA project, it became clear that the demand at NI for

SOA stretched way past the original audience. Immediately, internal groups that were working on projects

requiring heavy interoperability came around and wanted in.

"After about six months of work, we went live in June 2008 with version 1.0 of our internal SOA system,"

says Mueller. "We've had to take a strong hand in metering uptake to maintain stability."

Mueller says there's been friction over money and resources, since Web marketing paid for the SOA tier

and now it's primarily being used by other groups. "Who pays for it and supports it long term is an

unresolved question."

That doesn't sound like a dying technology to us.

 163

From: Susan Fogarty [mailto:susan.fogarty@ubm.com]
Sent: Friday, September 25, 2015 2:54 PM
To: Mukhtar Gohar
Cc: Dr. Anthony F. Norcio
Subject: Re: seeking permission to use an old online article in my PhD dissertation as appendix

Hi Gohar,

Yes, that’s fine. Thanks for checking!

Susan Fogarty
Editor in Chief, Network Computing
Interop Las Vegas Content Lead
susan.fogarty@ubm.com
603-583-1306

On Sep 23, 2015, at 4:04 PM, Mukhtar Gohar wrote:

Hi Susan,
Hope you are doing well.
I’m seeking permission for using the following full article as an appendix in my Ph.D. dissertation that I’m currently working
on at the IS department at UMBC.

This story first appeared on InformationWeek NETWORKComputing at
http://www.networkcomputing.com/unified-communications/informationweek-analytics-state-of-soa/d/d-
id/1076795

Are you the right person for this? If not, could you please guide me to the right person in your organization?

Thanks,
Gohar Mukhtar

mailto:susan.fogarty@ubm.com
http://www.networkcomputing.com/unified-communications/informationweek-analytics-state-of-soa/d/d-id/1076795
http://www.networkcomputing.com/unified-communications/informationweek-analytics-state-of-soa/d/d-id/1076795

 164

12. Appendix H

SOA Practitioners’ Guide Part 2: SOA Reference Architecture
By SOA Alliance – Group of SOA Practitioners (09/15/2006)

The relevant section of this Guide is reproduced here (page 15-18) from public domain.

2.2.2 Enterprise SOA Maturity Model

The SOA maturity model helps enterprises develop a roadmap to achieve their target state.

Figure 5: Enterprise SOA Maturity Model

The above diagram illustrates the stages of the enterprise SOA maturity model.

2.2.2.1 Web Application Development Stage

At this stage, teams focus on providing rich client and browser-based business solutions to both internal

and external users. They might choose to roll out web-enabled CRM, ERP, or custom applications that

support connected and occasionally disconnected operations. In addition, IT organizations typically deploy

enterprise-based solutions and services such as content management, search, instant messaging, blogs,

Wikis, discussion forums, and white boards.

2.2.2.1.1 Business Requirements

Typically most enterprises would have already deployed external web sites as well as multiple internal web

sites and applications to support the diverse needs of each of the business units. The first step is to

standardize, share, and integrate these siloed solutions through an infrastructure that provides a common

look and feel. This makes it easier for customers, partners, and employees to find the information they are

seeking.

During this phase, the team should focus on:

• Unifying user experience on the external site, making it easy for potential users, partners, customers, and

analysts to find information they need

• Standardizing the look and feel across all sites (internal and external) as well as across processes and

procedures for publishing content

• Creating one my<company name> such as http://my.company.com, site for all employees, contractors,

partners, customers to personalize services and content

• Providing secure access to confidential information for all internal and external sites

• Providing a highly reliable, available, and scalable environment

• Enabling the site operations with AJAX to increase performance and user experience.

2.2.2.1.2 Key Challenges

 165

The key challenges for this phase include development of:

• Application support escalation path

• Support for numerous parallel activities

• Leadership and technical quality of team

• Physical environment for development through production, with release management processes and

skilled staff resources

• Dedicated production support processes and staffing

• Hosting.

2.2.2.1.3 Exit Criteria

The team can consider this phase complete when:

• External web site is up and running

• Portal front end has been developed for one or more packaged applications

• One or more custom applications is accessible through the portal site

• Most enterprise services have been deployed

• Business users can request information from multiple applications

• Establishment is complete for the program management office (PMO) and LOB governance model for

deploying application portals

• Business has confidence in delivery timeline and consistently approaches the program office for all major

initiatives.

2.2.2.1.4 Success Factors

This phase is successful if:

• Business involvement at LOB level is high

• Sponsorship/executive oversight has been established for all composite applications

• Web-based applications can be rapidly developed and delivered

• Project management is in place, and the team has leadership and a sense of urgency and direction

• Processes have been standardized across the LOB for development, deployment, and status reporting

• The team has developed identified and created experienced resources.

2.2.2.2 Develop Composite Applications

Composite applications aggregate and provide information and data from a variety of sources and channels,

and make them available to internal and external users as appropriate. Enterprise 2.0 services can provide

appropriate levels of SLA.

2.2.2.2.1 Business Requirements

The business requirement is for IT to adapt to changing business needs. Several business units may

approach IT to develop custom applications, enhance their own branding, increase productivity, or provide

additional information to their customers, partners, or employees.

Business requirements may include:

• Branding and exposing multiple applications through the portal

• Accessibility of information from multiple applications

• A web-based desktop for users

• Personalized service based on roles and responsibility of the user

• A single standardized look and feel, which can reduce user training requirements

• Reduced maintenance costs from standardizing on one platform

• Reduced operations and support cost, to enable IT to deploy scarce resources for new functionality.

2.2.2.2.2 Key Challenges

The key challenges for this phase include development of:

• Application support escalation path for shared services

• Support for numerous parallel activities across multiple LOBs

• Governance for shared services

• Leadership and technical quality of team

• Physical environment for development through production, with release management processes and

skilled staff resources

 166

• Dedicated production support processes and staffing

• Hosting.

2.2.2.2.3 Exit Criteria

This phase is complete when:

• A Program Management Office (PMO) has been created that spans multiple LOBs, and an enterprise-

wide governance model for deploying shared services has been established

• Business has confidence in delivery timelines, and uses the program office for all major initiatives

• Multiple deployed application portals leverage the SOA foundation

• Business units debate integration timeframes for applications or data.

2.2.2.2.4 Success Factors

This phase can be considered a success when:

• Business involvement and sponsorship, including executive oversight, is in place for all composite

applications

• The team has developed a rapid development and delivery approach

• Project management has developed leadership, a sense of urgency, and direction

• Processes for development, deployment, and status reporting have been standardized across the enterprise

for shared services

• The company has developed experienced resources in agile (parallel development) methodology.

2.2.2.3 Automate Business Processes

This is the stage where the applications, data, and infrastructure help users to perform their roles effectively

by providing the right information at the right time. At this stage, the enterprise can start achieving higher

ROI by consolidating multiple business systems into a single system. Business organizations should now be

ready to abandon their point solutions and transition to the target state of end-to-end business process

management.

2.2.2.3.1 Business Requirements

The basic requirements for this phase are as follows:

• Business is interested in standardizing the business process across the enterprise

• Infrastructure is consolidated on standards-based technolog, reducing costs

• Standardized business processes are used globally, but allow for some localization

2.2.2.3.2 Key Challenges

The key challenges for this phase include:

• Accomplishing business and IT transformation

• Establishing appropriate governance and organization models

• Implementing packaged applications for perceived short-term gain.

2.2.2.3.3 Success Factors

This phase is successful when:

• Business involvement and sponsorship and executive oversight enable both business and IT

transformation

• A dedicated team focuses on business processes

• Business process is the primary focus for the enterprise

• Loosely coupled business services are assembled to automate business processes and can be recombined

to provide new business functionality.

 167

14. Appendix I

SOA Maturity Model
By Srikanth Inaganti & Sriram Aravamudan (April 2007)

The most relevant section of this document is reproduced here (page 1-3) from public domain.

The SOA Maturity Model
An SOA maturity model is used to assess the current state of SOA adoption of an organization.
The model is used as a yardstick to take stock of as-Is state and develop a transition plan to lead
us to the To-Be state. The ultimate aim would be to achieve optimized business services that can
nimbly adapt to changing business scenarios.

However, in order to completely gauge the SOA maturity of an organization, it is important to
have a multi-point view that encompasses as many aspects of the organization’s SOA
implementation as possible, to arrive at its true state of SOA maturity. The SOA maturity model
proposed in this section takes the following aspects of SOA into consideration to get a full picture
of an organization’s current level of SOA maturity:

1. Scope of SOA adoption
2. SOA Maturity Level (capabilities of the architecture)
3. SOA Expansion Stages
4. SOA Return On Investment (ROI)
5. SOA Cost Effectiveness and Feasibility

The following diagram is a bird’s eye view of the SOA maturity model, depicting the various
aspects of SOA maturity.

Salient features of the SOA maturity model
The salient features of the various aspects of SOA maturity described earlier can be summarized
as follows. Please refer to the SOA Maturity Model diagram (Figure 1) for further details.

 168

Scope of SOA Adoption: The X- Axis describes the Scope of SOA adoption. As can be seen, it
is not a one-to-one mapping between scope of adoption and maturity level. For example
Business Unit Level SOA adoption would require a combination of Architected and Business
Service maturity in order to achieve effective SOA.

SOA maturity Levels: The Y-Axis shows five levels of SOA maturity along with the key business
impact of each level through adding new architectural capabilities with each level of maturity. The
SOA characteristics of each maturity level are shown within each level in the concentric quadrant
layers along with “Not Cost Effective” and “Not feasible” regions.

SOA Expansion Stages: Advancement in SOA maturity results in the use of new sets of SOA
compliant tools for implementation. This gradual progress in SOA implementation from
Fundamental SOA through Networked SOA, culminating in Process oriented SOA has been
shown in the quadrant area of the maturity model. Refer [6].

Return on SOA investment: The gradual increase in SOA Return on investment (ROI) with
increased maturity level and SOA adoption has been shown in the quadrant section of the model.
Increased maintainability is the first ROI, followed by a greater Flexibility, finally resulting in an
Agile, Enterprise level system at the highest level of SOA maturity. Refer [6].

SOA Cost Effectiveness and Feasibility: The shaded areas in the maturity model represent the
non-cost-effective and infeasible areas of SOA adoption. These areas result when the level of
service maturity does not keep up with the degree of SOA adoption. For example, implementing
process enabled SOA for intra-department needs may not be cost-effective. Similarly trying to
employ fundamental SOA techniques to achieve the goals of enterprise level SOA is not feasible.

 169

15. Appendix J

Agency Approval Letter

 170

Glossary

The technical terms that are not commonly understood are listed and explained in the

table below. Some definitions are adopted from ServiceOrientation.com for

standardization.

Term Meaning and Explanation

Agnostic Logic vs.
Non-agnostic Logic

Logic that is sufficiently generic so that it is not specific to (has no
knowledge of) a particular parent task is classified as agnostic
logic. Because knowledge specific to single purpose tasks is
intentionally omitted, agnostic logic is considered multi-purpose.
On the flipside, logic that is specific to (contains knowledge of) a
single-purpose task is labeled as non-agnostic logic.

Cohesion / Cohesive The degree to which the elements of a module belong together.
It is a measure of how strongly related each piece of
functionality expressed by the source code of a software module
is. Cohesion is an ordinal type of measurement and is usually
described as “high cohesion” or “low cohesion”. Modules with
high cohesion tend to be preferable because high cohesion is
associated with several desirable traits of software including
robustness, reliability, reusability, and understandability whereas
low cohesion is associated with undesirable traits such as being
difficult to maintain, difficult to test, difficult to reuse, and even
difficult to understand. Cohesion is often contrasted with
Coupling. High cohesion often correlates with loose coupling,
and vice versa.

Complex
Composition

Serious service-oriented solutions are comprised of sophisticated
combinations of services. Both in terms of runtime power and
design-time complexity, these types of service compositions go
well beyond the primitive variation that was more common in
the early days of SOA and are therefore referred to as complex
compositions.

Component A component is a unit of logic that exists as a standalone
software program as part of a distributed computing
architecture. Components can be created with different
development tools and programming languages, such as Java
and .NET. Component logic can be further exposed via the Web
services technology platform through the use of Web service
contract-related technologies, such as WSDL, XML schema, and
WS-Policy. Although the IT industry places a great deal of

 171

emphasis on creating services as Web services, it is important to
acknowledge that services can be solely constructed from
components as long as a meaningful extent of service-
orientation is realized.

Contemporary SOA While primitive SOA represents service-oriented architecture as
it can currently be realized, contemporary SOA is a classification
that can be used to represent SOA implementations that extend
the primitive model using any number of available technologies
or products that further the goals associated with service-
orientation.

Context (state
information type)

Information about a particular service activity (in addition to
session data) is qualified with the term context. The larger or
more complex a service composition, the more context
information will generally need to be managed because more
services and inter-service data exchanges will be involved in the
corresponding service activity. Context-related information is
one of three state information types, the other two being session
and business information. State information types are of
relevance to the application of the Service Statelessness design
principle.

Context Data
(context data type)

Information that pertains to what has and is transpiring as part
of a current service activity is referred to as context data

Coupling Coupling refers to a relationship or connection between two
things. If two things do not have a connection, they are
considered decoupled. If they do have a connection, they are
considered coupled, which then raises the question as to what
the extent of the coupling is. Something that is coupled to
something else may rely on the other thing's existence, which
means that the coupling results in a dependency. The extent of
coupling therefore may relate to the extent of dependency one
thing has on another. This measure of dependency is often
communicated with the terms "tight coupling" and "loose
coupling," the former indicating a high level of dependency and
the latter representing a low degree of dependency.

Data Model
Standardization

The standardization of data models used by schemas so as to
increase service interoperability.

Design Characteristic A specific attribute or quality of a body of solution logic that is
documented in a design specification and planned to be realized
in development. Service-orientation emphasizes the creation of

 172

very specific design characteristics. Almost every design
characteristic is attainable to a certain measure. This means that
it is generally not about whether solution logic does or does not
have a certain characteristic; it is almost always about the extent
to which a characteristic can or should be realized.

Design Paradigm An approach to designing solution logic which consists of a set of
complementary rules or principles that collectively define the
overarching approach represented by the paradigm. It provides a
set of principles that shape solution logic in certain ways so as to
fulfill a specific set of goals.

Design Pattern A certain way of doing something which provides a proven
solution to a common problem.

Design Principle A generalized, accepted industry practice done to promote
common objectives. It proposes a means of accomplishing
something based on past experience or industry-wide
acceptance. A design principle represents a highly recommended
guideline for shaping solution logic in a certain way and with
certain goals in mind. These goals are usually associated with
establishing one or more specific design characteristics (as a
result of applying the principle).

Domain Service
Inventory

Domain Inventory is the name of a design pattern. It provides an
answer to the challenge when establishing a single enterprise
service inventory may be unmanageable for some enterprises,
and attempts to do so may jeopardize the success of an SOA
adoption as a whole. The solution it advocates is that services
can be grouped into manageable, domain-specific service
inventories, each of which can be independently standardized,
governed, and owned.

Enterprise Service
Inventory

Enterprise Inventory is the name of a design pattern which
advocates designing of services for multiple solutions within a
standardized, enterprise-wide inventory architecture wherein
they can be freely and repeatedly recomposed.

Enterprise Service
Bus (ESB)

An ESB or Enterprise Service Bus represents an environment
designed to foster sophisticated interconnectivity between
services. It establishes an intermediate layer of processing that
can help overcome common problems associated with reliability,
scalability, and communications disparity.

Entity Service A service with a functional context that is derived from one or
more related business entities. Examples of business entities

 173

include order, client, timesheet, and invoice. Because their
functional boundary is based on business entities, Entity services
are naturally agnostic to business processes. This allows them to
be repeatedly reutilized in support of multiple tasks and business
process, positioning them as highly reusable services. Entity
services are typically named after their corresponding business
entities. For example, it would not be uncommon to label an
entity service associated with the invoice business entity as the
Invoice service.

Functional Context Functional Context is the Cohesion that binds Service Capabilities

together into a service. If a service is looked at as a container of

capabilities, the business sense (especially in the Task and Entity

services) that suggests grouping related capabilities together is

called the Functional Context.

Functional
Expression
Standardization

Standardized naming conventions can be applied to the delivery
of all services so as to ensure the consistent expression of service
contexts and capabilities. This approach is referred to as
functional expression standardization.

Service contracts delivered or extended by different projects and
at different times are naturally shaped by the various architects
and developers that are required to work with them. The
manner in which the service context and the service's individual
capabilities are defined and expressed through the contract
syntax can therefore vary. Some may use overly verbose
conventions, while others may use a terse and highly technical
format. Furthermore, the actual terms used to express common
or similar capabilities may vary across services. Because services
are positioned as enterprise resources, it is fully expected that
other project teams will need to discover and interpret the
contract in order to be understand how they can use the service.
Inconsistencies in how technical service contracts are expressed
undermine these efforts by introducing a constant risk of
misinterpretation on a technical level. The proliferation of these
inconsistencies furthermore places a convoluted face on a
service inventory, increasing the effort to effectively navigate
various contracts to study possible composition design options.

Federated Endpoint
Layer

Federated Endpoint Layer is the name of a design pattern.
Federation is an important concept in service-oriented
computing. It represents the desired state of the external,
consumer-facing perspective of a service inventory, as expressed

 174

by the collective contracts of all the services in that inventory.

Messaging Metadata Because messaging does not rely on a persistent connection
between service and consumer, it is challenging for a service to
gain access to the state data associated with an overall runtime
activity. Messaging Metadata is a design pattern that suggests:
Message contents can be supplemented with activity-specific
metadata that can be interpreted and processed separately at
runtime.

Micro SOA Micro SOA or Micro Services is a software architecture style in

which complex applications are composed of small, independent

processes communicating with each other using language-

agnostic APIs. These services are small, highly decoupled and

focus on doing a small task, facilitating a modular approach to

system-building. In SOA terms, the Functional Context of such

services is precisely and narrowly defined.

Organizational
Maturity Levels

From the point at which an organization begins planning for the
adoption of SOA and service-orientation up until the time it
achieves its planned target state, it can transition through one or
more of the common evolutionary levels.

Point-to-point The term point-to-point originated from the EAI era during which
many dedicated integration channels were established between
different applications or environments. These integration
channels allowed for the exchange of data between specific
endpoints. In the world of service-orientation, a point-to-point
exchange is comparable to a primitive service activity with a
scope limited to a service and a service consumer program.

Runtime Autonomy The level of control a service has over its processing logic at the
time the service is invoked and executing is called runtime
autonomy. The Service Autonomy design principle advocates
increasing runtime autonomy in order to guarantee the following
to service consumers:

1. consistently acceptable runtime execution performance
2. a greater degree of performance reliability
3. the option for it to be isolated in response to specific

security, reliability, or performance requirements
4. a greater level of behavioral predictability (especially

when concurrently accessed)

Service A service is a unit of solution logic to which service-orientation

 175

has been applied to a meaningful extent. It is the application of
service-orientation design principles that distinguish a unit of
logic as a service compared to units of logic that may exist only
as objects or components. Each service is assigned its own
distinct functional context and is comprised of a set of
capabilities related to this context. Therefore, a service can be
considered a container of capabilities associated with a common
purpose (or functional context).

Service Activity The chain of message exchanges carried out in support of the
execution of a specific task or business process is referred to as a
service activity. There are primitive and complex variations of a
service activity. A primitive service activity generally maps to a
single data exchange, much like a point-to-point interaction,
whereas a complex service activity is usually associated with the
message exchanges that occur across a composition of services.
Within modern SOA environments, a service activity is generally
considered by default to be a complex service activity.

service capability A service can be seen as a container for a collection of related
functions. These functions are called service capabilities and
those exposed via a service contract establish a basic API by
which the service can be invoked. The term service capability has
no implication as to how a service is implemented. Therefore,
this term can be especially useful during service modeling stages
when the physical design of a service has not yet been
determined. Once it is known whether a service exists as a Web
service or as a component, the terms “service operation” or
“service method” can be used instead.

Service Composition A service composition is an aggregate of services collectively
composed to automate a particular task or business process. To
qualify as a composition, at least two participating services plus
one composition initiator need to be present. Otherwise, the
service interaction only represents a point-to-point exchange.

Service Contract A service contract is comprised of one or more published
documents that express meta information about a service. The
fundamental part of a service contract consists of the technical
interface which essentially establishes an API into the
functionality offered by the service. A service contract can be
further comprised of human-readable documents, such as a
Service Level Agreement (SLA) that describes additional quality-
of-service features, behaviors, and limitations. Within service-
orientation, the design of the service contract is of paramount

 176

importance.

Service
Decomposition

Service Decomposition is the name of a design pattern. Overly
coarse-grained services can inhibit optimal composition design.
An already implemented coarse-grained service can be
decomposed into two or more fine-grained services. An increase
in fine-grained services naturally leads to larger, more complex
service composition designs.

Service Granularity The overall quantity of functionality encapsulated by a service
determines the service granularity. A service's granularity is
determined by its functional context which is often derived from
one of three common service models. The larger the quantity of
related functionality, the coarser the service granularity.
Conversely, services with more narrow or targeted functional
contexts will tend to have a finer grained level of service
granularity. Service granularity represents one of four types of
design granularity, the other three being capability, data, and
constraint granularity.

Service Inventory A service inventory is an independently standardized and
governed collection of complementary services within a
boundary that represents an enterprise or a meaningful segment
of an enterprise. When an organization has multiple service
inventories, this term is further qualified as domain service
inventory.

Service Model A service model is a classification used to indicate that a service
belongs to one of several predefined types based on the nature
of the logic it encapsulates, the reuse potential of this logic, and
how the service may relate to domains within its enterprise.
Three common service models are: Task service, Entity service,
and Utility service.

Service Modeling Modeling services refers to the process and technique of
decomposing business process logic into a granular set of
individually defined actions that are grouped and organized into
service candidates.

Service
Normalization

Service Normalization is the name of a design pattern that
attempts to answer the question of: How can a service inventory
avoid redundant service logic? And advocates that a service
inventory needs to be designed with an emphasis on service
boundary alignment.

 177

Service-Orientation Service-orientation is a design paradigm intended for the
creation of Service-oriented solution logic units that are
individually shaped so that they can be collectively and
repeatedly utilized in support of the realization of a specific set
of strategic goals and benefits associated with SOA and service-
oriented computing. Solution logic designed in accordance with
service-orientation can be qualified with "service-oriented," and
units of service-oriented solution logic are referred to as
services.

Service-Oriented
Architecture (SOA)

Service-oriented architecture is an architectural model (or style)
for building service-oriented solutions with distinct
characteristics in support of realizing service-orientation and the
strategic goals associated with service-oriented computing.

Service-oriented
computing

Service-oriented computing is an umbrella term used to
represents a new generation distributed computing platform. As
such, it encompasses many things, including its own design
paradigm and design principles, design pattern catalogs, pattern
languages, a distinct architectural model, and related concepts,
technologies, and frameworks.

Service-oriented
solution logic

A body of solution logic to which service-orientation has been
applied to a meaningful extent is considered "service-oriented."
A service represents the most fundamental unit of service-
oriented solution logic. There has been a common misperception
that the use of Web services technology constitutes a service-
oriented solution. It is through service-orientation design
principles that solution logic is shaped so that it supports the
realization of the strategic goals and benefits associated with
SOA and service-oriented computing.

Task Service

(also known as
Business Service or
Business Process
Service)

A Task service is a form of business service with a functional
context based on a specific business process. As a result, Task
services are not generally agnostic and therefore have less reuse
potential than other service models. Because Task services tend
to represent the end-to-end logic of a business process, they are
commonly positioned as service composition controllers,
responsible for composing other services (usually Entity and
Utility services) to automate their business process. Task services
are generally named after the business process they represent.
For example a Task service encapsulating logic for the Billing
Report process, may be labeled as the Run Billing Report service.

 178

Utility Service A Utility service is intentionally based on a non-business-centric
functional context. It typically encapsulates common, cross-
cutting functionality that is useful to many service compositions,
but which is not related to or derived from existing business
models. As a result, Utility services are commonly agnostic and
reusable. Unlike Task and Entity services, the involvement of
business analysts or business subject matter experts is generally
not required when modeling utility service candidates. Examples
of functional contexts that could form the basis of Utility services
include notification, event logging, exception handling, and
currency conversion.

Web service A Web service is a body of solution logic that provides a
physically decoupled technical contract consisting of a WSDL
definition, an XML schema definition, and possibly a WS-Policy
definition. This service contract exposes public functions (called
operations) and is therefore comparable to a traditional
application programming interface (API).

 179

Bibliography

Ahmed, N., & Ahmed, A. (2013). Enabling complexity use case function point on

service-oriented architecture. Computing, Electrical and Electronics Engineering

(ICCEEE) (pp. 535,540). International Conference on Aug. 2013.

Aldris, A., Nugroho, A., Lago, P., & Visser, J. (2013). Measuring the Degree of Service

Orientation in Proprietary SOA Systems. Service Oriented System Engineering

(SOSE), 2013 IEEE 7th International Symposium on 25-28 March 2013 (pp. 233-

244). Redwood City: IEEE Computer Society.

Ali, N., Chen, F., & Solis, C. (2012). Modeling Support for Mobile Ambients in Service

Oriented Architecture. Mobile Services (MS) (pp. 1,8). IEEE First International

Conference on 24-29 June 2012.

Andersen, P., Poulsen, B., Trholt, C., & Ostergaard, J. (2009). Using Service Oriented

Architecture in a Generic Virtual Power Plant. Sixth International Conference on

27-29 April 2009 (pp. 1621,1622). Information Technology: New Generations,

2009. ITNG '09.

Arsanjani, A., & Holley, K. (2006). The Service Integration Maturity Model: Achieving

Flexibility in the Transformation to SOA. IEEE International Conference on 18-

22 Sep 2006 (p. 515). Chicago, IL: Services Computing, 2006. SCC '06.

Arsenyan, J., & Büyüközkan, G. (2009). Modelling Collaborative Software Development

Using Axiomatic Design Principles. IAENG International Journal Of Computer

Science, 36(3), 234-239.

 180

Atighetchi, M., Webb, J., Loyall, J., & Mayhew, M. (2010). XDDS: A scalable guard-

agnostic cross domain discovery service. Military Communications Conference

Oct/Nov 2010 (pp. 1329,1336). MILCOM 2010.

Atkinson, C., & Bostan, P. (2009). Towards a Client-Oriented Model of Types and States

in Service-Oriented Development. Enterprise Distributed Object Computing

Conference 1-4 Sept. 2009 (pp. 119,127). IEEE International EDOC '09.

Bahill, T. A., & Botta, R. (2008). Fundamental Principles of Good System Design.

Engineering Management Journal, 20(4), 9-17.

Barbara, L. (May 1988). Data Abstraction and Hierarchy. SIGPLAN Notices, 23,5.

Bloomberg, J. (2013). The Agile Architecture Revolution. Hoboken, NJ: John Wiley &

Sons, Inc.

Blum, N., Magedanz, T., Schreiner, F., & Wahle, S. (2009). A research infrastructure for

SOA-based Service Delivery Frameworks. TridentCom 2009. 5th International

Conference on 6-8 April 2009 (pp. 1,6). Testbeds and Research Infrastructures for

the Development of Networks & Communities and Workshops.

Booch, G. (1986). Object-oriented development. IEEE Transactions on Software

Enineering, vol. SE-12, no. 2, 211-221.

Booch, G. (2007). The Economics of Architecture-First. Software, IEEE (Volume:24,

Issue: 5), 18-20.

Booch, G. (2008). Architectural Organizational Patterns. Software, IEEE (Volume:25,

Issue: 3), 18-19.

Booch, G. (2010). Enterprise Architecture and Technical Architecture. Software, IEEE

(Volume:27, Issue: 2), 96.

 181

Breaux, T. (2014). Privacy Requirements in an Age of Increased Sharing. IEEE Software,

Vol. 31 Issue 5, p24-27.

Bu, H. (2011). Metrics for service granularity in Service Oriented Architecture. 2011

International Conference on 24-26 Dec 2011 (pp. 491,494). Computer Science

and Network Technology (ICCSNT).

Buchgeher, G., & Weinreich, R. (2009). Tool Support for Component-Based Software

Architectures. Software Engineering Conference, 1-3 Dec. 2009 (pp. 127,134).

APSEC '09. Asia-Pacific.

Cameron, A., Stumptner, M., Nandagopal, N., Mayer, W., & Mansell, T. (2013). A rule-

based platform for distributed real-time SOA with application in defence systems.

Military Communications and Information Systems Conference 12-14 Nov. 2013

(pp. 1,7). MilCIS 2013.

Chang, Y.-C., Mazzoleni, P., Mihaila, G., & Cohn, D. (2008). Solving the Service

Composition Puzzle. IEEE International Conference on Services Computing

(SCC) (pp. 387-94). Honolulu, HI: IEEE Computer Society.

Chu, S. (2005). From component-based to service oriented software architecture for

healthcare. HEALTHCOM 2005. Proceedings of 7th International Workshop on

23-25 June 2005 (pp. 96,100). Enterprise networking and Computing in

Healthcare Industry, 2005.

Cummins, F. (2009). Building the Agile Enterprise with SOA, BPM and MBM.

Burlington, MA: Morgan Kaufmann Publishers.

Curbera, F. (2007). Component Contracts in Service-Oriented Architectures. IEEE

Computer Society, 74-80.

 182

Dahman, K., Charoy, F., & Godart, C. (Aug 29-Sep 2 2011). Towards Consistency

Management for a Business-Driven Development of SOA. Enterprise Distributed

Object Computing Conference (EDOC) (pp. 267,275). 2011 15th IEEE

International.

Degeler, V., Gonzalez, L., Leva, M., Shrubsole, P., Bonomi, S., Amft, O., & Lazovik, A.

(2013). Service-Oriented Architecture for Smart Environments (Short Paper).

IEEE 6th International Conference on 16-18 Dec. 2013 (pp. 99,104). Service-

Oriented Computing and Applications (SOCA).

Dietrich, A., Kirn, S., & Sugumaran, V. (Feb. 2007). A Service-Oriented Architecture for

Mass Customization—A Shoe Industry Case Study. Engineering Management,

IEEE Transactions on, pp.190,204.

Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented Network

Virtualization Toward Convergence of Networking and Cloud Computing.

Network and Service Management, IEEE Transactions on, vol.9, no.4,

pp.373,392.

Dubey, V. K. (2010). Quality of Service Management of Business Processes in Service

Oriented Architectures. Fairfax, VA: George Mason University.

Eden, A. H., Hirshfeld, Y., & Kazman, R. (2006). Abstraction classes in software design.

IEE Proceedings -- Software, 153(4), 163-182.

Erl, T. (2008). SOA: Principles of Service Design. Upper Saddle River, NJ: Prentice Hall.

Erl, T. (2008). Web Service Contract Design and Versioning for SOA. Upper Saddle

River, NJ: Prentice Hall.

 183

Faust, J. (2010). An Update on Service Oriented Architecture. SMPTE Motion Imaging

Journal, 90-91.

Felix, J. M., & Ortin, F. (2014). Aspect-Oriented Programming to Improve Modularity of

Object-Oriented Applications. Journal Of Software, Vol. 9 Issue 9, p2454-2460.

Fischbach, M., Puschmann, T., & Alt, R. (2011). Towards an interdisciplinary view on

service science — The case of the financial services industry. 2011 Federated

Conference on 18-21 Sep 2011 (pp. 521,527). Computer Science and Information

Systems (FedCSIS).

Fortuna, C., & Mohorcic, M. (Aug 2009). Dynamic composition of services for end-to-

end information transport. Wireless Communications, IEEE, vol.16, no.4,

pp.56,62.

Fowler, M. (2003). Who needs an Architect? IEEE Software, vol. 20 no. 5, 2-4.

Garcia-Valls, M., Perez-Palacin, D., & Mirandola, R. (27-30 Jul 2014). Extending the

verification capabilities of middleware for reliable distributed self-adaptive

systems. 2014 12th IEEE International Conference on (pp. 164,169). Industrial

Informatics (INDIN).

Gerić, S., & Vrcek, N. (22-25 Jun 2009). Prerequisites for successful implementation of

Service-Oriented Architecture. Proceedings of the ITI 2009 31st International

Conference on (pp. 175,180). Cavtat, Croatia: Information Technology Interfaces

- ITI 09.

Gomaa, H. (2000). Designing Concurrent, Distributed, and Real-time Applications with

UML. Addison-Wesley.

 184

Goodall, J. (1998). Learning From the Chimpanzees: A Message Humans Can

Understand. Science 282(5397), 2184-2185.

Gottschalk, P., & Solli-Sæther, H. (2009). E-Government Interoperability and

Information Resource Integration: Frameworks for Aligned Development.

Hershey, PA: IGI Global.

Grammatikou, M., Marinos, C., Demchenko, Y., Lopez, D., Dombek, K., & Jofre, J.

(2011). GEMBus as a Service Oriented Platform for Cloud-Based Composable

Services. 2011 IEEE Third International Conference on Nov 29 - Dec 01 2011

(pp. 666,671). Cloud Computing Technology and Science (CloudCom).

Gringinger, E., Trausmuth, G., Balaban, A., Jahn, J., & Milchrahm, H. (2012).

Experience report on successful demonstration of SWIM by three industry

partners. Integrated Communications, Navigation and Surveillance Conference

24-26 April 2012 (pp. G6-1,G6-8). ICNS.

Gu, C., & Zhang, X. (29-31 July 2010). An SOA Based Enterprise Application

Integration Approach. 2010 Third International Symposium on (pp. 324,327).

Electronic Commerce and Security (ISECS).

Guinard, D. D., Trifa, V. V., Karnouskos, S. S., Spiess, P., & Savio, D. (2010.3).

Interacting with the SOA-based internet of things: discovery, query, selection, and

on-demand provisioning of web services. IEEE Transactions On Services

Computing, 3(3), 223-235.

Haoyu, W., & Haili, Z. (August 2012). Basic Design Principles in Software Engineering.

Computational and Information Sciences (ICCIS) (pp. pp.1251,1254). Fourth

International Conference on.

 185

Hassan, Q. F. (2009). Aspects of SOA: An Entry Point for Starters. Annals.Computer

Science Series, 7(2), 125-142.

High, R., Krishnan, G., & Sanchez, M. (2008). Creating and maintaining coherency in

loosely coupled systems. IBM Systems Journal , vol.47, no.3, pp.357,376.

Huhns, M., & Singh, M. P. (2005). Service-oriented computing: key concepts and

principles. IEEE Internet Computing, 9(1), 75-81.

Hunter, P. (October 11 2008). Across the generation. Engineering & Technology, vol.3,

no.17, pp.56,59.

Hutchinson, J., Kotonya, G., Walkerdine, J., Sawyer, P., Dobson, G., & Onditi, V. (Jan.-

Feb. 2008). Migrating to SOAs by Way of Hybrid Systems. IT Professional ,

vol.10, no.1, pp.34,42.

Jain, B., & Kumar, R. (2007). Anatomy of Service-oriented Architecture. Institute of

Chartered Financial Analysts of India (ICFAI) University Press, Journal Of

Information Technology, 67-80.

Kannan, K., Bhamidipaty, A., & Narendra, N. (2011). Design Time Validation of Service

Orientation Principles using Design Diagrams. 2011 Annual SRII Global

Conference (pp. 795-804). IEEE Computer Society.

Karhikeyan, T., & Geetha, J. (25-27 April 2012). A metrics suite and fuzzy model for

measuring coupling in Service Oriented Architecture. 2012 International

Conference on (pp. 254,259). Recent Advances in Computing and Software

Systems (RACSS).

Khoshkbarforoushha, A., Tabein, R., Jamshidi, P., & Shams, F. (5-10 July 2010).

Towards a Metrics Suite for Measuring Composite Service Granularity Level

 186

Appropriateness. 2010 6th World Congress on (pp. 245,252). Services

(SERVICES-1).

Kral, J., & Zemlicka, M. (2009). Popular SOA Antipatterns. IEEE Computer Society -

ComputationWorld, 271-276.

Kumar, R., Haber, A., Yazidi, A., & Reichert, F. (2010). Towards a relation oriented

service architecture. 2010 Second International Conference on 5-9 Jan. 2010 (pp.

1,8). Communication Systems and Networks (COMSNETS).

Kumaran, S., Bishop, P., Chao, T., Dhoolia, P., Jain, P., Jaluka, R., . . . Nigam, A. (2007).

Using a model-driven transformational approach and service-oriented architecture

for service delivery management. IBM Systems Journal, vol.46, no.3, pp.513,529.

Legner, C., & Vogel, T. (9-13 July 2007). Design Principles for B2B Services - An

Evaluation of Two Alternative Service Designs. Services Computing (pp.

372,379). SCC 2007, IEEE International Conference on.

Lewis, G., Morris, E., Simanta, S., & Smith, D. (Jan-Feb 2011). Service Orientation and

Systems of Systems. IEEE Software vol.28, no.1, pp.58,63.

Li, H., & Wu, Z. (2009). Research on Distributed Architecture Based on SOA.

International Conference on Communication Software and Networks (pp. 670-

674). IEEE Computer Society.

Lund, K., Eggen, A., Hadzic, D., Hafsoe, T., & Johnsen, F. (October 2007). Using web

services to realize service oriented architecture in military communication

networks. IEEE Communications Magazine, vol.45, no.10, pp.47,53.

Mamaghani, N., Mousavi, F., Hakamizadeh, F., & Sadeghi, M. (23-25 June 2010).

Proposed combined framework of SOA and RUP. 2010 3rd International

 187

Conference on (pp. 346,351). Information Sciences and Interaction Sciences

(ICIS).

Manes, A. T. (2013, 11 04). Solution Path: Executing Your SOA Initiative. Gartner

Technical Professional Advise G00254072. Stanford, CT: Gartner, Inc.

Marks, E. (2006, 08). A Test of Maturity. Managing Automation, pp. Vol. 21 Issue 8,

p71-71, 1p.

Martin, R. C. (2003). Agile Software Development, Principles, Patterns, and Practices.

Upper Saddle River, N.J.: Prentice Hall.

Mauro, C., Leimeister, J. M., & Krcmar, H. (2010). Service Oriented Device Integration

– An Analysis of SOA Design Patterns. 2010 43rd Hawaii International

Conference on System Sciences (HICSS) (pp. 1-10). Honolulu, HI: IEEE

Computer Society.

Mazzarolo, C., Martins, V., Toffanello, A., & Puttini, R. (Jan. 2015). A Method for SOA

Maturity Assessment and Improvement. Latin America Transactions, IEEE

(Revista IEEE America Latina) , vol.13, no.1, 204,213.

Meye, B. (Oct 1992). Applying "Design by Contract". IEEE Computer, 25, 10, 40–51.

Meyer, B. (2007). Contract-driven development. Proceedings of the 10th international

conference on Fundamental approaches to software engineering (p. 11). Berlin,

Heidelberg: Springer-Verlag.

Microsoft Services. (2007). Assessment and Roadmap for Service Oriented Architecture.

Microsoft Corporation.

 188

Miller, G. A. (1955). The Magical Number Seven, Plus or Minus Two Some Limits on

Our Capacity for Processing Information. Psychological Review Vol. 101, No. 2,

343-352.

Mukhtar, G. (11/2011). Demystifying Service-Oriented Architecture Part-I: Promised

Goals and Benefit. unpublished.

Mukhtar, G. (12/2011). Demystifying SOA Part-II: Principles of Service Design.

unpublished.

Mukhtar, G. (2011). Demystifying Service-Oriented Architecture Part-III: Commonly

Used Design Patterns. unpublished.

Murer, S., & Hagen, C. (Nov-Dec 2014). Fifteen Years of Service-Oriented Architecture

at Credit Suisse. IEEE Software, vol.31, no.6, 9,15.

Nath, S. (2012). Web services: Design Choices for Space Ground System Integration.

Military Communications Conference, Oct 29 - Nov1 2012 (pp. 1,6). MILCOM.

Nayak, N., & Nigam, A. (23-26 July 2007). Modeling Business Services for

Implementing on Global Business Services Delivery Platforms. E-Commerce

Technology and the 4th IEEE International Conference on Enterprise Computing,

E-Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International

Conference on (pp. 577-583). Tokyo: IEEE.

Ning, F., Zhou, W., Zhang, F., Yin, Q., & Ni, X. (2011). The architecture of cloud

manufacturing and its key technologies research. 2011 IEEE International

Conference on 15-17 Sept. 2011 (pp. 259,263). Cloud Computing and Intelligence

Systems (CCIS).

 189

Offermann, P., Hoffmann, M., & Bub, U. (2009). Benefits of SOA: Evaluation of an

implemented scenario against alternative architectures. 13th Enterprise

Distributed Object Computing Conference Workshops 1-4 Sept. 2009 (pp.

352,359). EDOCW 2009.

Ollinger, L., Zuhlke, D., Theorin, A., & Johnsson, C. (2013). A reference architecture for

service-oriented control procedures and its implementation with SysML and

Grafchart. IEEE 18th Conference on10-13 Sept. 2013 (pp. 1,8). Emerging

Technologies & Factory Automation (ETFA).

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal, Volume 16,

Issue 3, 389-415.

Parlanti, D., Paganelli, F., & Giuli, D. (June 2011). A Service-Oriented Approach for

Network-Centric Data Integration and Its Application to Maritime Surveillance.

IEEE Systems Journal, vol.5, no.2, pp.164,175.

Parnas, D. L., & Morris, R. (1972). On the Criteria To Be Used in Decomposing Systems

into Modules. Communications of the ACM, Dec 1972, Vol. 15 Issue 12, 1053-

1058.

Rathfelder, C., & Groenda, H. (2008). iSOAMM: An Independent SOA Maturity Model.

Distributed Applications and Interoperable Systems (pp. 1-15). Berlin Germany:

Springer Berlin Heidelberg.

Rostampour, A., Kazemi, A., Zamiri, A., Haghighi, H., & Shams, F. (2011). A metric

suite for measuring service alignment with business agility. CSI International

 190

Symposium on 15-16 June 2011 (pp. 121,128). Computer Science and Software

Engineering (CSSE).

Ruz, C., Baude, F., Sauvan, B., Mos, A., & Boulze, A. (2011). Flexible SOA Lifecycle

on the Cloud Using SCA. 15th IEEE International Aug. 29 2011-Sept. 2 2011 (pp.

275,282). Enterprise Distributed Object Computing Conference Workshops

(EDOCW).

Saleh, I., Kulczycki, G., & Blake, B. (Sep/Oct 2009). Demystifying Data-Centric Web

Services. IEEE Internet Computing, 86-90.

Schultz, A. P., Fricke, E., & Igenbergs, E. (July 2000). Enabling Changes in Systems

Throughout the Entire Life-Cycle - Key To Success? Proceedings of the 10th

Annual International Symposium of the International Council on Systems

Engineering (INCOSE), (pp. 599-607).

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software

Engineering. IEEE Transactions on Software Engineering, VOL. 25, NO. 4, 557 -

572.

Selmeci, R., & Rozinajova, V. (2012). One approach to partial formalization of SOA

design patterns using production rules. 2012 Federated Conference on 9-12 Sept.

2012 (pp. 1381,1384). Computer Science and Information Systems (FedCSIS).

Service Oriented Architecture Reference Model Technical Committee. (2012, 12 04).

Reference Architecture Foundation for Service Oriented Architecture Version 1.0.

Committee Specification 01. Organization for the Advancement of Structured

Information Standards (OASIS).

 191

Simonelis, A. (2004). Design Principles Are Where You Find Them. Communications Of

The ACM, 47(11), 11.

Sonic Software Corporation, AmberPoint Inc., BearingPoint, Inc., Systinet Corporation.

(2005). A New Service-Oriented Architecture (SOA) Maturity Model. Object

Management Group (OMG®).

Stachtiari, E., Vesyropoulos, N., Kourouleas, G., Georgiadis, C., & Katsaros, P. (2014).

Correct-by-Construction Web Service Architecture. IEEE 8th International

Symposium on 7-11 April 2014 (pp. 47,58). Service Oriented System Engineering

(SOSE).

Stal, M. (Mar-Apr 2006). Using architectural patterns and blueprints for service-oriented

architecture. IEEE Software, vol.23, no.2, pp.54,61.

Sud, M. (2010). Sensitivity in Service Design for the Development of SOA Based Systems.

Windsor, Ontario, Canada: University of Windsor, Ontario, Canada.

Sulong, M. S.-A. (2013). The Importance of Considering Information Quality in the

Implementation of Service-Oriented Architecture Initiatives. IEEE 10th

International Conference on Services Computing (pp. 372-383). Santa Clara, CA:

IEEE Computer Society.

Takdir, & Kistijantoro, A. (24-25 Sept. 2014). Multi-layer SOA implementation pattern

with service and data proxies for distributed data-intensive application system.

2014 International Conference on (pp. 37,41). ICT For Smart Society (ICISS).

Taylor, S., & Bogdan, R. (1984). Introduction to Qualitative Research Methods. New

York: John Wiley & Sons.

 192

The Open Group. (2009). SOA Source Book. Zaltbommel: Van Haren Publishing.

Retrieved from The Open Group.

The Open Group. (2011). The Open Group Service Integration Maturity Model

(OSIMM), Version 2. Technical Standard. The Open Group. Retrieved from The

Open Group.

Valipour, M., Amirzafari, B., Maleki, K., & Daneshpour, N. (2009). A brief survey of

software architecture concepts and service oriented architecture. 2nd IEEE

International Conference on Computer Science and Information Technology 8-11

Aug 2009 (pp. 34,38). ICCSIT.

Vrba, P., Marik, V., Siano, P., Leitao, P., Zhabelova, G., Vyatkin, V., & Strasser, T. (Aug

2014). A Review of Agent and Service-Oriented Concepts Applied to Intelligent

Energy Systems. Industrial Informatics, IEEE Transactions on, vol.10, no.3,

pp.1890,1903.

Wagner, M., Zobel, D., & Meroth, A. (2014). SODA: Service-Oriented Architecture for

Runtime Adaptive Driver Assistance Systems. IEEE 17th International

Symposium on 10-12 June 2014 (pp. 150,157). Object/Component/Service-

Oriented Real-Time Distributed Computing (ISORC).

Walsh, J. J. (1920). Man As Tool and Weapon Maker. America, 23(21), 485-486.

Ward, M. (2006). Using Software Design Methods in CALL. Computer Assisted

Language Learning, 19(2-3), 129-147.

Welke, R., Hirschheim, R., & Schwarz, A. (2011). Service-Oriented Architecture

Maturity. Computer, 44(2), 61-67.

Wirfs-Brock, R. J. (2009). Principles in Practice. IEEE Software, 26(4), 11-12.

 193

Xiao-Jun, W. (19-20 Dec. 2009). Metrics for Evaluating Coupling and Service

Granularity in Service Oriented Architecture. International Conference on (pp.

1,4). Information Engineering and Computer Science ICIEC.

Xu, Y.-c., Wang, L., Xie, J., & Xia, G.-p. (19-20 Dec. 2009). Research and Realization

for Simulation System of Rock-Fill Dams Based on Service-Oriented-

Architecture. ICIECS 2009. International Conference on (pp. 1,4). Information

Engineering and Computer Science, 2009.

Zhou, N., & Zhang, L.-J. (2009). Analytic architecture assessment in SOA solution

design and its engineering application. 2009 IEEE International Conference on

Web Services (ICWS) (pp. 807-814). Los Angeles, CA: IEEE Computer Society.

Zimmermann, O. (2011). Architectural Decisions as Reusable Design Assets. IEEE

Software, 28(1), 64-69.

	FinalDraftDissertation - GoharMukhtar - UMBC-IS-2016 v4.3
	Approval Sheet signed 03312016
	FinalDraftDissertation - GoharMukhtar - UMBC-IS-2016 v4.3

