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Abstract. Motivated by `p-optimization arising from sparse optimization, high-dimensional
data analytics and statistics, this paper studies sparse properties of a wide range of p-norm based
optimization problems with p > 1, including generalized basis pursuit, basis pursuit denoising, ridge
regression, and elastic net. It is well known that when p > 1, these optimization problems lead to less
sparse solutions. However, the quantitative characterization of the adverse sparse properties is not
available. This paper shows how to exploit optimization and matrix analysis techniques to develop
a systematic treatment of a broad class of p-norm based optimization problems for a general p > 1
and show that their optimal solutions attain full support, and thus have the least sparsity, for almost
all measurement matrices and measurement vectors. Comparison to `p-optimization with 0 < p ≤ 1
and implications for robustness as well as extensions to the complex setting are also given. These
results shed light on analysis and computation of general p-norm based optimization problems in
various applications.
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1. Introduction. Sparse optimization arises from various important applica-
tions of contemporary interest, e.g., compressed sensing, high-dimensional data ana-
lytics and statistics, machine learning, and signal and image processing [7, 14, 16, 26].
The goal of sparse optimization is to recover the sparsest vector from observed data
which are possibly subject to noise or errors, and it can be formulated as the `0-
optimization problem [2, 5]. Since the `0-optimization problem is NP-hard, it is
folklore in sparse optimization to use the p-norm or p-quasi norm ‖ · ‖p with p ∈ (0, 1]
to approximate the `0-norm to recover sparse signals [11, 14]. Representative opti-
mization problems involving the p-norm include basis pursuit, basis pursuit denoising,
LASSO, and elastic net; see section 2 for the details of these problems. In particu-
lar, when p = 1, it gives rise to a convex `1-optimization problem which leads to
efficient numerical algorithms [14, 29]; when 0 < p < 1, it yields a nonconvex and
non-Lipschitz optimization problem whose local optimal solutions can be effectively
computed [9, 13, 15, 18]. Despite possible convergence to nonoptimal stationary
points, `p-minimization with 0 < p < 1 often leads to improved and more stable
recovery results, even under measurement noise and errors [23, 24, 28].

When p > 1, it is well known that the p-norm formulation will not lead to sparse
solutions [4, 14]; see Figure 1.1 for illustration and comparison with `p minimization
with 0 < p ≤ 1. However, to the best of our knowledge, a formal justification of this
fact for a general setting with an arbitrary p > 1 is not available, except as an intu-
itive and straightforward geometric interpretation for special cases, e.g., basis pursuit;
see [30] for a certain adverse sparse property for p-norm based ridge regression with
p > 1 from an algorithmic perspective. Besides, when different norms are used in ob-
jective functions of optimization problems, e.g., the ridge regression and elastic net,
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2722 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

Fig. 1.1. (Left panel) Basis pursuit, thick solid line: {x |Ax = y}. (Right panel) Basis pursuit
denoising, shaded area: {x | ‖Ax− y‖2 ≤ ε}. Solid line: `2 ball; dashed line: `1 ball; dash-dot line:
`1/2 ball.

it is difficult to obtain a simple geometric interpretation. Moreover, for an arbitrary
p > 1, there lacks a quantitative characterization of how less sparse such solutions are
and how these less sparse solutions depend on a measurement matrix and a measure-
ment vector, in comparison with the related problems for 0 < p ≤ 1. In addition to
theoretical interest, these questions are also of practical value, since the p-norm based
optimization with p > 1 and its matrix norm extensions find applications in graph
optimization [12], machine learning, and signal/image processing [9, 19]. It is also
related to the `p-programming coined by Terlaky [25]. Motivated by the aforemen-
tioned questions and their implications in applications, we give a formal argument
for a broad class of p-norm based optimization problems with p > 1 generalized from
sparse optimization and other fields. When p > 1, we show that these problems not
only fail to achieve sparse solutions but also yield the least sparse solutions generi-
cally. Specifically, when p > 1, for almost all measurement matrices A ∈ Rm×N and
measurement vectors y ∈ Rm, solutions to these p-norm based optimization problems
have full support, i.e., the support size is N ; see Theorems 4.3, 4.5, 4.6, 4.9, and 4.10
for formal statements. The proofs for these results turn out to be nontrivial, since
except p = 2 the optimality conditions of these optimization problems yield highly
nonlinear equations and there are no closed-form expressions of optimal solutions in
terms of A and y. To overcome these technical difficulties, we exploit techniques
from optimization and matrix analysis and give a systematic treatment to a broad
class of p-norm based optimization problems originally from sparse optimization and
other related fields, including generalized basis pursuit, basis pursuit denoising, ridge
regression, and elastic net. The results developed in this paper will also deepen the
understanding of general p-norm based optimization problems emerging from many
applications and shed light on their computation and numerical analysis.

The rest of the paper is organized as follows. In section 2, we introduce generalized
p-norm based optimization problems and show the solution existence and uniqueness.
When p > 1, a lower sparsity bound and other preliminary results are established in
section 3. Section 4 develops the main results of the paper, namely, the least sparsity
of p-norm optimization based generalized basis pursuit, generalized ridge regression
and elastic net, and generalized basis pursuit denoising for p > 1. In section 5, we
extend the least sparsity results to measurement vectors restricted to a subspace of
the range of A, possibly subject to noise, and compare this result with `p-optimization
for 0 < p ≤ 1 arising from compressed sensing; extensions to the complex setting are
also given. Conclusions are made in section 6.

Notation. Let A = [a1, . . . , aN ] be an m × N real matrix with N > m, where
ai ∈ Rm denotes the ith column of A. For a given vector x ∈ Rn, supp(x) denotes the
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LEAST SPARSITY OF p-NORM OPTIMIZATION 2723

support of x. For any index set I ⊆ {1, . . . , N}, let |I| denote the cardinality of I, and
A•I = [ai]i∈I be the submatrix of A formed by the columns of A indexed by elements
of I. For a given matrix M , R(M) and N(M) denote the range and null space of M ,
respectively. Let sgn(·) denote the signum function with sgn(0) := 0. Let < denote
the positive semidefinite order, i.e., for two real symmetric matrices P and Q, P < Q
means that (P−Q) is positive semidefinite. The gradient of a real-valued differentiable

function f : Rn → R is given by ∇f(x) = (∂f(x)∂x1
, . . . , ∂f(x)∂xn

)T ∈ Rn. Let F : Rn ×
Rr → Rs be a differentiable function given by F (x, z) = (F1(x, z), . . . , Fs(x, z))

T

with Fi : Rn × Rr → R for i = 1, . . . , s. The Jacobian of F with respect to x =
(x1, . . . , xn)T ∈ Rn is

JxF (x, z) =


∂F1(x,z)
∂x1

· · · · · · ∂F1(x,z)
∂xn

∂F2(x,z)
∂x1

· · · · · · ∂F2(x,z)
∂xn

...
...

∂Fs(x,z)
∂x1

· · · · · · ∂Fs(x,z)
∂xn

 ∈ Rs×n.

By convention, we also use ∇xF (x, z) to denote JxF (x, z). Besides, by saying that
a statement (P) holds for almost all x in a finite-dimensional real vector space E,
we mean that (P) holds on a set W ⊆ E whose complement W c has zero Lebesgue
measure. For two vectors u, v ∈ Rq, u ⊥ v denotes the orthogonality of u and v, i.e.,
uT v = 0.

2. Generalized p-norm based optimization problems. In this section, we
introduce a broad class of widely studied p-norm based optimization problems emerg-
ing from sparse optimization, statistics, and other fields, and we discuss their general-
izations. Throughout this section, we let the constant p > 0, the matrix A ∈ Rm×N ,
and the vector y ∈ Rm. For any p > 0 and x = (x1, . . . , xN )T ∈ RN , define

‖x‖p := (
∑N
i=1 |xi|p)1/p.

Generalized basis pursuit. Consider the following linear equality constrained
optimization problem whose objective function is given by the p-norm (or quasi norm):

(2.1) BPp : min
x∈RN

‖x‖p subject to Ax = y,

where y ∈ R(A). Geometrically, this problem seeks to minimize the p-norm distance
from the origin to the affine set defined by Ax = y. When p = 1, it becomes the
standard basis pursuit [6, 8, 14].

Generalized basis pursuit denoising. Consider the following constrained op-
timization problem which incorporates noisy signals:

(2.2) BPDNp : min
x∈RN

‖x‖p subject to ‖Ax− y‖2 ≤ ε,

where ε > 0 characterizes the bound of noise or errors. When p = 1, it becomes
the standard basis pursuit denoising (or quadratically constrained basis pursuit) [4,
14, 27]. Another version of the generalized basis pursuit denoising is given by the
following optimization problem:

(2.3) min
x∈RN

‖Ax− y‖2 subject to ‖x‖p ≤ η,

where the bound η > 0. Similarly, when p = 1, the optimization problem (2.3)
pertains to a relevant formulation of basis pursuit denoising [14, 27].
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2724 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

Generalized ridge regression and elastic net. Consider the following un-
constrained optimization problem:

(2.4) RRp : min
x∈RN

1

2
‖Ax− y‖22 + λ ‖x‖pp,

where λ > 0 is the penalty parameter. When p = 2, it becomes the standard ridge
regression extensively studied in statistics [16, 17]; when p = 1, it yields the least
absolute shrinkage and selection operator (LASSO) with the `1-norm penalty [26].
The RRp (2.4) is closely related to the maximum a posteriori (MAP) estimator when
the prior takes the generalized normal distribution. A related optimization problem
is the generalized elastic net arising from statistics:

(2.5) ENp : min
x∈RN

1

2
‖Ax− y‖22 + λ1 ‖x‖rp + λ2 ‖x‖22,

where r > 0 and λ1, λ2 are positive penalty parameters. When p = r = 1, the
ENp (2.5) becomes the standard elastic net formulation which combines the `1 and
`2 penalties in regression [31]. Moreover, if we allow λ2 to be nonnegative, then the
RRp (2.4) can be treated as a special case of the ENp (2.5) with r = p, λ = λ1 > 0,
and λ2 = 0.

In what follows, we show the existence and uniqueness of optimal solutions for
the generalized optimization problems introduced above.

Proposition 2.1. Fix an arbitrary p > 0. Each of the optimization problems
(2.1), (2.2), (2.3), (2.4), and (2.5) attains an optimal solution for any given A, y,
ε > 0, η > 0, λ > 0, r > 0, λ1 > 0, and λ2 ≥ 0 as long as the associated constraint
sets are nonempty. Further, when p > 1, each of (2.1), (2.2), and (2.4) has a unique
optimal solution. Besides, when p ≥ 1, r ≥ 1, λ1 > 0, and λ2 > 0, (2.5) has a unique
optimal solution.

Proof. For any p > 0, the optimization problems (2.1), (2.2), (2.4), and (2.5)
attain optimal solutions since their objective functions are continuous and coercive
and the constraint sets (if nonempty) are closed. The problem (2.3) also attains a
solution because it has a continuous objective function and a compact constraint set.

When p ≥ 1, (2.1) and (2.2) are convex optimization problems, and they are
equivalent to minAx=y ‖x‖pp and min‖Ax−y‖2≤ε ‖x‖pp, respectively. Further, the func-

tion ‖ · ‖pp is strictly convex on RN ; see the proof in the appendix (cf. section 7).
Hence, each of (2.1), (2.2), and (2.4) has a unique optimal solution. When p ≥ 1,
r ≥ 1, λ1 > 0, and λ2 > 0, the generalized elastic net (2.5) is a convex optimiza-
tion problem with a strictly convex objective function and thus has a unique optimal
solution.

3. Preliminary results on sparsity of p-norm based optimization with
p > 1. This section develops key preliminary results for the global sparsity analysis
of p-norm based optimization problems when p > 1.

3.1. Lower bound on sparsity of p-norm based optimization with p > 1.
We first establish a lower bound on the sparsity of optimal solutions arising from the
p-norm based optimization with p > 1. Specifically, we show that when p > 1, for
almost all (A, y) ∈ Rm×N×Rm, any (nonzero) optimal solution has at least (N−m+1)
nonzero elements and thus is far from sparse when N � m. This result is critical to
show in the subsequent section that for almost all (A, y), an optimal solution achieves
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LEAST SPARSITY OF p-NORM OPTIMIZATION 2725

full support; see the proofs of Propositions 4.1 and 4.7, and Theorem 4.5. Toward
this end, we define the following set in Rm×N × Rm with N ≥ m:
(3.1)

S :=
{

(A, y) ∈ Rm×N × Rm | every m×m submatrix of A is invertible, and y 6= 0
}
.

Clearly, S is open and its complement Sc has zero measure in Rm×N × Rm. Note
that a matrix A satisfying the condition in (3.1) is said to be of completely full rank
[18]. To emphasize the dependence of optimal solutions on the measurement matrix
A and the measurement vector y, we write an optimal solution as x∗(A,y) or x∗(A, y)

below; the latter notation is used when x∗ is unique for any given (A, y) so that x∗ is
a function of (A, y).

Proposition 3.1. Let p > 1. For any (A, y) ∈ S, the following statements hold:
(i) The optimal solution x∗(A,y) to the BPp (2.1) satisfies |supp(x∗(A,y))| ≥ N −

m+ 1.
(ii) If 0 < ε < ‖y‖2, then we have that the optimal solution x∗(A,y) to the BPDNp

(2.2) satisfies |supp(x∗(A,y))| ≥ N −m+ 1.

(iii) For any λ > 0, we have that the optimal solution x∗(A,y) to the RRp (2.4)

satisfies |supp(x∗(A,y))| ≥ N −m+ 1.

(iv) For any r > 0, λ1 > 0 and λ2 ≥ 0, each nonzero optimal solution x∗(A,y) to

the ENp (2.5) satisfies |supp(x∗(A,y))| ≥ N −m+ 1.

We give two remarks on the conditions stated above before presenting a proof.
(a) Note that if ε ≥ ‖y‖2 in statement (ii), then x = 0 is feasible such that the

BPDNp (2.2) attains the trivial (unique) optimal solution x∗ = 0. For this reason, we
impose the assumption 0 < ε < ‖y‖2.

(b) When 0 < r < 1 in statement (iv) with λ1 > 0 and λ2 ≥ 0, the ENp (2.5) has a
nonconvex objective function and it may have multiple optimal solutions. Statement
(iv) says that any such nonzero optimal solution has the sparsity of at least N−m+1.

Proof. Fix (A, y) ∈ S. We write an optimal solution x∗(A,y) as x∗ for notational

simplicity in the proof. Furthermore, let f(x) := ‖x‖pp. Clearly, when p > 1, f is

continuously differentiable on RN .
(i) Consider the BPp (2.1). Note that 0 6= y ∈ R(A) for any (A, y) ∈ S. By

Proposition 2.1, the BPp (2.1) has a unique optimal solution x∗ for each (A, y) ∈ S.
In view of x∗ = argminAx=yf(x), the necessary and sufficient optimality condition for
x∗ is given by the following KKT condition:

∇f(x∗)−AT ν = 0, A x∗ = y,

where ν ∈ Rm is the Lagrange multiplier, and (∇f(x))i = p · sgn(xi) · |xi|p−1 for each
i = 1, . . . , N . Note that ∇f(x) is positively homogeneous in x and each (∇f(x))i
depends on xi only. Suppose that x∗ has at least m zero elements. Hence, ∇f(x∗)
has at least m zero elements. By the first equation in the KKT condition, we deduce
that there is an m×m submatrix A1 of A such that AT1 ν = 0. Since A1 is invertible, we
have ν = 0 such that ∇f(x∗) = 0. This further implies that x∗ = 0. This contradicts
Ax∗ = y 6= 0. Therefore, |supp(x∗)| ≥ N −m+ 1 for all (A, y) ∈ S.

(ii) Consider the BPDNp (2.2). Note that for any given (A, y) ∈ S and 0 <
ε < ‖y‖2, the BPDNp (2.2) has a unique nonzero optimal solution x∗. Let g(x) :=
‖Ax − y‖22 − ε2. Since A has full row rank, there exists x ∈ RN such that g(x) < 0.
As g(·) is a convex function, Slater’s constraint qualification holds for the equivalent
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2726 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

convex optimization problem ming(x)≤0 f(x). Hence x∗ satisfies the KKT condition
with the Lagrange multiplier µ ∈ R, where ⊥ denotes the orthogonality,

∇f(x∗) + µ∇g(x∗) = 0, 0 ≤ µ ⊥ g(x∗) ≤ 0.

We claim that µ > 0. Suppose not. Then it follows from the first equation in the KKT
condition that ∇f(x∗) = 0, which implies x∗ = 0. This yields g(x∗) = ‖y‖22 − ε2 > 0,
which is a contradiction. Therefore µ > 0 such that g(x∗) = 0. Using ∇g(x∗) =
2AT (Ax∗ − y), we have ∇f(x∗) + 2µAT (Ax∗ − y) = 0. Suppose, by contradiction,
that x∗ has at least m zero elements. Without loss of generality, we assume that the
first m elements of x∗ are zeros. Partition the matrix A into A = [A1 A2], where
A1 ∈ Rm×m and A2 ∈ Rm×(N−m). Similarly, x∗ = [0; x̃∗], where x̃∗ ∈ RN−m. Hence,
the first m elements of ∇f(x∗) are zero. By the first equation in the KKT condition,
we derive 2µAT1 (Ax∗−y) = 0. Since µ > 0 and A1 is invertible, we obtain Ax∗−y = 0.
This shows that g(x∗) = −ε2 < 0, which is a contradiction to g(x∗) = 0.

(iii) Consider the RRp (2.4). The unique optimal solution x∗ is characterized by
the optimality condition AT (Ax∗ − y) + λ∇f(x∗) = 0, where λ > 0. Suppose, by
contradiction, that x∗ has at least m zero elements. Using a similar argument to that
for case (ii), we derive that Ax∗− y = 0. In view of the optimality condition, we thus
have ∇f(x∗) = 0. This implies that x∗ = 0. Substituting x∗ = 0 into the optimality
condition yields AT y = 0. Since A has full row rank, we obtain y = 0. This leads to
a contradiction. Hence |supp(x∗)| ≥ N −m+ 1 for all (A, y) ∈ S.

(iv) Consider the ENp (2.5) with the exponent r > 0 and the penalty parame-
ters λ1 > 0 and λ2 ≥ 0. When λ2 = 0, it is closely related to the RRp with the
exponent on ‖x‖p replaced by an arbitrary r > 0. For any (A, y) ∈ S, let x∗ be a
(possibly nonunique) nonzero optimal solution which satisfies the optimality condition
AT (Ax∗ − y) + rλ1 · ‖x∗‖r−1p · ∇‖x∗‖p + 2λ2x

∗ = 0, where for any nonzero x ∈ RN ,

∇‖x‖p =
1

‖x‖p−1p

(
sgn(x1)|x1|p−1, . . . , sgn(xN )|xN |p−1

)T
=
∇‖x‖pp

p · ‖x‖p−1p

.

The optimality condition can be equivalently written as

(3.2) p ·AT (Ax∗ − y) + rλ1 · ‖x∗‖r−pp · ∇f(x∗) + 2pλ2 x
∗ = 0.

Consider two cases. (iv.1) λ2 = 0. By a similar argument to that of case (iii), it
is easy to show that |supp(x∗)| ≥ N − m + 1 for all (A, y) ∈ S. (iv.2) λ2 > 0. In
this case, suppose, by contradiction, that x∗ has at least m zero elements. As before,
let A = [A1 A2] and x∗ = [0; x̃∗] with A1 ∈ Rm×m and x̃∗ ∈ RN−m. Hence, the
optimality condition leads to p ·AT1 (Ax∗−y) = 0. This implies that Ax∗−y = 0 such
that rλ1 ·‖x∗‖r−pp ·∇f(x∗)+2pλ2 x

∗ = 0. Since (∇f(x))i = p ·sgn(xi) · |xi|p−1 for each
i = 1, . . . , N , we obtain rλ1 · ‖x∗‖r−pp · |x∗i |p−1 + 2λ2|x∗i | = 0 for each i. Hence x∗ = 0,
a contradiction. We thus conclude that |supp(x∗)| ≥ N −m+ 1 for all (A, y) ∈ S.

We discuss an extension of the sparsity lower bound developed in Proposition 3.1
to another formulation of the basis pursuit denoising given in (2.3). It is noted that
if η ≥ minAx=y ‖x‖p (which implies y ∈ R(A)), then the optimal value of (2.3)
is zero and can be achieved at some feasible x∗ satisfying Ax∗ = y. Hence any
optimal solution x′ must satisfy Ax′ = y so that the optimal solution set is given by
{x ∈ RN |Ax = y, ‖x‖p ≤ η}, which is closely related to the BPp (2.1). This means
that if η ≥ minAx=y ‖x‖p, the optimization problem (2.3) can be converted to a
reduced and simpler problem. For this reason, we assume that 0 < η < minAx=y ‖x‖p
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LEAST SPARSITY OF p-NORM OPTIMIZATION 2727

for (2.3). The following proposition presents important results under this assumption;
these results will be used for the proof of Theorem 4.10.

Proposition 3.2. The following hold for the problem (2.3) with p > 1:
(i) If A has full row rank and 0 < η < minAx=y ‖x‖p, then (2.3) attains a unique

optimal solution with a unique positive Lagrange multiplier.
(ii) For any (A, y) in the set S defined in (3.1) and 0 < η < minAx=y ‖x‖p, the

unique optimal solution x∗(A,y) satisfies |supp(x∗(A,y))| ≥ N −m+ 1.

Proof. (i) Let A be of full row rank. Hence, y ∈ R(A) so that η is well defined.
Let x∗ be an arbitrary optimal solution to (2.3) with the specified η > 0. Hence
x∗ = argminf(x)≤ηp

1
2‖Ax−y‖

2
2, where we recall that f(x) = ‖x‖pp. Clearly, the Slater

constraint qualification holds for the convex optimization problem (2.3). Therefore,
x∗ satisfies the following KKT condition:

(3.3) AT (Ax∗ − y) + µ∇f(x∗) = 0, 0 ≤ µ ⊥ f(x∗)− ηp ≤ 0,

where µ ∈ R is the Lagrange multiplier. We claim that µ must be positive. Suppose
not, i.e., µ = 0. By the first equation in (3.3), we obtain AT (Ax∗ − y) = 0. Since
A has full row rank, we have Ax∗ = y. Based on the assumption on η, we further
have ‖x∗‖p > η, which is a contradiction to f(x∗) ≤ ηp. This proves the claim. Since
µ > 0, it follows from the second equation in (3.3) that any optimal solution x∗ satisfies
f(x∗) = ηp or equivalently ‖x∗‖p = η. To prove the uniqueness of optimal solution,
suppose, by contradiction, that x∗ and x′ are two distinct optimal solutions for the
given (A, y). Thus ‖x∗‖p = ‖x′‖p = η. Since (2.3) is a convex optimization problem,
the optimal solution set is convex so that λx∗ + (1 − λ)x′ is an optimal solution for
any λ ∈ [0, 1]. Hence, ‖λx∗+(1−λ)x′‖p = η ∀λ ∈ [0, 1]. Since ‖ · ‖pp is strictly convex
when p > 1, we have ηp = ‖λx∗ + (1− λ)x′‖pp < λ‖x∗‖pp + (1− λ)‖x′‖pp = ηp for each
λ ∈ (0, 1). This yields a contradiction. We thus conclude that (2.3) attains a unique
optimal solution with µ > 0.

(ii) Let (A, y) ∈ S. Clearly, A has full row rank so that (2.3) has a unique optimal
solution x∗ with a positive Lagrange multiplier µ. Suppose x∗ has at least m zero
elements. It follows from the first equation in (3.3) and a similar argument to that
for case (iii) of Proposition 3.1 that Ax∗ = y. In light of the assumption on η, we
have ‖x∗‖p > η, which is a contradiction. Therefore |supp(x∗)| ≥ N −m+ 1 for any
(A, y) ∈ S.

3.2. Technical result on measure of the zero set of C1-functions. As
shown in Proposition 2.1, when p > 1, each of BPp (2.1), BPDNp (2.2), and RRp (2.4)
has a unique optimal solution x∗ for any given (A, y). Under additional conditions,
each of the ENp (2.5) and the optimization problem (2.3) also attains a unique optimal
solution. Hence, for each of these problems, the optimal solution x∗ is a function of
(A, y), and each component of x∗ becomes a real-valued function x∗i (A, y). Therefore,
the global sparsity of x∗ can be characterized by the zero set of each x∗i (A, y). The
following technical lemma gives a key result on the measure of the zero set of a real-
valued C1-function under a suitable assumption.

Lemma 3.3. Let f : Rn → R be continuously differentiable (i.e., C1) on an open
set W ⊆ Rn whose complement W c has zero measure in Rn. Suppose ∇f(x) 6= 0 for
any x ∈ W with f(x) = 0. Then the zero set f−1({0}) := {x ∈ Rn | f(x) = 0} has
zero measure.

Proof. Consider an arbitrary x∗ ∈ W . If f(x∗) = 0, then ∇f(x∗) 6= 0. Without
loss of generality, we assume that ∂f

∂xn
(x∗) 6= 0. Let z := (x1, . . . , xn−1)T ∈ Rn−1.
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2728 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

By the implicit function theorem, there exist a neighborhood U ⊂ Rn−1 of z∗ :=
(x∗1, . . . , x

∗
n−1)T , a neighborhood V ⊂ R of x∗n, and a unique C1 function g : U → V

such that f(z, g(z)) = 0 for all z ∈ U . The set f−1({0})∩(U×V ) = {(z, g(z)) | z ∈ U}
has zero measure in Rn since it is an (n − 1)-dimensional manifold in the open set
U×V ⊂ Rn. Moreover, in view of the continuity of f , we deduce that for any x∗ ∈W
with f(x∗) 6= 0, there exists an open set B(x∗) of x∗ such that f(x) 6= 0 ∀x ∈ B(x∗).
Combining these results, it is seen that for any x ∈ W there exists an open set B(x)
of x such that f−1({0}) ∩ B(x) has zero measure. Clearly, the family of these open
sets given by {B(x)}x∈W forms an open cover of W . Since Rn is a topologically
separable metric space, so is W ⊂ Rn and thus it is a Lindelöf space [21, 22]. Hence,
this open cover attains a countable subcover {B(xi)}i∈N of W , where each xi ∈ W .
Since f−1({0}) ∩ B(xi) has zero measure for each i ∈ N, the set W ∩ f−1({0}) has
zero measure. Besides, since f−1({0}) ⊆ W c ∪ (W ∩ f−1({0})) and both W c and
W ∩ f−1({0}) have zero measure, we conclude that f−1({0}) has zero measure.

4. Least sparsity of p-norm based optimization problems with p > 1.
In this section, we establish the main results of the paper, namely, when p > 1, the
p-norm based optimization problems yield least sparse solutions for almost all (A, y).
We introduce more notation to be used through this section. Let f(x) := ‖x‖pp for

x ∈ RN , and when p > 1, we define for each z ∈ R,

(4.1) g(z) := p · sgn(z) · |z|p−1, h(z) := sgn (z) ·
∣∣∣∣zp
∣∣∣∣ 1
p−1

,

where sgn(·) denotes the signum function with sgn(0) := 0. Direct calculation shows
that (i) when p > 1, g(z) = (|z|p)′ ∀ z ∈ R and h(z) is the inverse function of g(z);
(ii) when p ≥ 2, g is continuously differentiable and g′(z) = p(p− 1) · |z|p−2 ∀ z ∈ R;
and (iii) when 1 < p ≤ 2, h is continuously differentiable and

h′(z) = |z|
2−p
p−1 /[(p− 1) · p1/(p−1)] ∀ z ∈ R.

Furthermore, when p > 1, ∇f(x) = (g(x1), . . . , g(xN ))T .
The proofs for the least sparsity developed in the rest of the section share similar

methodologies. For the benefit of the reader, we give an overview of the main ideas
of these proofs and comment on certain key steps in the proofs. As indicated at the
beginning of section 3.2, the goal is to show that the zero set of each component of an
optimal solution x∗, which is a real-valued function of (A, y), has zero measure. To
achieve this goal, we first show using the KKT conditions and the implicit function
theorem that x∗, possibly along with a Lagrange multiplier if applicable, is a C1

function of (A, y) on a suitable open set S ′ in Rm×N×Rm whose complement has zero
measure. We then show that for each i = 1, . . . , N , if x∗i is vanishing at (A, y) ∈ S ′,
then its gradient evaluated at (A, y) is nonzero. In view of Lemma 3.3, this leads to
the desired result. Moreover, for each of the generalized optimization problems with
p > 1, i.e., the BPp, BPDNp, RRp, and ENp, we divide their proofs into two separate
cases: (i) p ≥ 2 and (ii) 1 < p ≤ 2. This is because each case invokes the derivative
of g(·) or its inverse function h(·) defined in (4.1). When p ≥ 2, the derivative g′(·) is
globally well defined. On the contrary, when 1 < p ≤ 2, g′(·) is not defined at zero.
Hence, we use h(·) instead, since h′(·) is globally well defined in this case. The choice
of g or h gives rise to different arguments in the following proofs, and the proofs for
1 < p ≤ 2 are typically more involved.
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4.1. Least sparsity of the generalized basis pursuit with p > 1. We
consider the case in which p ≥ 2 first.

Proposition 4.1. Let p ≥ 2 and N ≥ m. For almost all (A, y) ∈ Rm×N × Rm,
the unique optimal solution x∗(A,y) to the BPp (2.1) satisfies |supp(x∗(A,y))| = N .

Proof. For any (A, y) ∈ Rm×N × Rm, the necessary and sufficient optimality
condition for x∗ is given by the following KKT condition shown in Proposition 3.1:

∇f(x∗)−AT ν = 0, A x∗ = y,

where ν ∈ Rm is the Lagrange multiplier and (∇f(x))i = g(xi) for each i = 1, . . . , N .
Here g is defined in (4.1). When p = 2, x∗ = AT (AAT )−1y for any (A, y) ∈ S.
As x∗i (A, y) = 0 yields a polynomial equation whose solution set has zero measure in
Rm×N×Rm, the desired result follows. We consider p > 2 as follows, and show that for
any (A�, y�) in the open set S defined in (3.1), x∗(A, y) is continuously differentiable
at (A�, y�) and that each x∗i with x∗i (A

�, y�) = 0 has nonzero gradient at (A�, y�).
Recall that x∗ is unique for any (A, y). Besides, for each (A, y) ∈ S, AT has

full column rank such that ν is also unique in view of the first equation of the KKT
condition. Therefore, (x∗, ν) is a function of (A, y) ∈ S. For notational simplicity,
let x� := x∗(A�, y�) and ν� := ν(A�, y�). Define the index set J := {i |x�i 6= 0}. By
Proposition 3.1, we see that J is nonempty and |J c| ≤ m − 1. Further, in light of
the KKT condition, (x∗, ν) ∈ RN × Rm satisfies the following equation:

F (x, ν,A, y) :=

[
∇f(x)−AT ν

Ax− y

]
= 0.

Clearly, F : RN × Rm × Rm×N × Rm → RN+m is C1, and its Jacobian with respect
to (x, ν) is

J(x,ν)F (x, ν,A, y) =

[
Λ(x) −AT
A 0

]
,

where the diagonal matrix Λ(x) := diag(g′(x1), . . . , g′(xN )). We respectively par-
tition Λ� := Λ(x�) and A as Λ� = diag(Λ1, Λ2) and A� = [A1 A2], where Λ1 :=
diag(g′(x�i ))i∈J c with Λ1 = 0 as p > 2, Λ2 := diag(g′(x�i ))i∈J is positive definite,
A1 := A�•J c , and A2 := A�•J . We claim that the following matrix is invertible:

W := J(x,ν)F (x�, ν�, A�, y�) =

Λ1 0 −AT1
0 Λ2 −AT2
A1 A2 0

 ∈ R(N+m)×(N+m).

In fact, let z := [u1;u2; v] ∈ RN+m be such that Wz = 0. Since Λ1 = 0 and Λ2 is
positive definite, we have AT1 v = 0, u2 = Λ−12 AT2 v, and A1u1 + A2u2 = 0. Therefore,
0 = vT (A1u1 +A2u2) = vTA2Λ−12 AT2 v, which implies that AT2 v = 0 such that u2 = 0
and A1u1 = 0. Since |J c| ≤ m − 1 and any m × m submatrix of A is invertible,
the columns of A1 are linearly independent such that u1 = 0. This implies that
AT v = 0. Since A has full row rank, we have v = 0 and thus z = 0. This proves
that W is invertible. By the implicit function theorem, there are local C1 functions
G1, G2, H such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) := G(A, y), ν = H(A, y),
and F (G(A, y), H(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�).

By the chain rule, we have

J(x,ν)F (x�, ν�, A�, y�)︸ ︷︷ ︸
=W

·

∇yG1(A�, y�)
∇yG2(A�, y�)
∇yH(A�, y�)

+ JyF (x�, ν�, A�, y�) = 0,
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2730 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

where

JyF (x�, ν�, A�, y�) =

 0
0
−I

 , W−1 := P =

P11 P12 P13

P21 P22 P23

P31 P32 P33

 .
It is easy to verify that ∇yG1(A�, y�) = P13 and P13A1 = I by virtue of PW = I. The
latter equation shows that each row of P13 is nonzero, so is each row of ∇yG1(A�, y�).
Thus each row of∇(A,y)G1(A�, y�) is nonzero. Hence, for each i = 1, . . . , N , x∗i (A, y) is
C1 on the open set S, and when x∗i (A

�, y�) = 0 at (A�, y�) ∈ S, its gradient is nonzero.
By Lemma 3.3, the zero set of x∗i (A, y) has zero measure for each i = 1, . . . , N . This
shows that |supp(x∗(A, y))| = N for almost all (A, y) ∈ Rm×N × Rm.

The next result addresses the case in which 1 < p ≤ 2. In this case, it can
be shown that if x∗i is vanishing at some (A�, y�) in a certain open set, then the
gradient of x∗i evaluated at (A�, y�) also vanishes. This prevents us from applying
Lemma 3.3 directly. To overcome this difficulty, we introduce a suitable function
which has exactly the same sign of x∗i and to which Lemma 3.3 is applicable. This
technique is also used in other proofs for 1 < p ≤ 2; see Theorems 4.5, 4.6, 4.10, and
Proposition 4.8.

Proposition 4.2. Let 1 < p ≤ 2 and N ≥ 2m − 1. For almost all (A, y) ∈
Rm×N × Rm, the unique optimal solution x∗(A,y) to the BPp (2.1) satisfies

|supp(x∗(A,y))| = N.

Proof. Let S̃ be the set of all (A, y) ∈ Rm×N × Rm satisfying the following con-
ditions: (i) y 6= 0, (ii) each column of A is nonzero, and (iii) for any index set
I ⊆ {1, . . . , N} with |Ic| ≥ m and rank(A•I) < m, rank(A•Ic) = m. Hence, such an
A has full row rank, i.e., rank(A) = m. Clearly, S̃ is open and its complement S̃c has
zero measure. Note that the set S given in (3.1) is a proper subset of S̃.

Let A = [a1, . . . , aN ], where ai ∈ Rm is the ith column of A. It follows from the
KKT condition ∇f(x∗) − AT ν = 0 that x∗i = h(aTi ν) for each i = 1, . . . , N , where
the function h is defined in (4.1). Along with the equation Ax∗ = y, we obtain the
following equation for (ν,A, y):

F (ν,A, y) :=

N∑
i=1

aih(aTi ν)− y = 0,

where F : Rm × Rm×N × Rm → Rm is C1 and its Jacobian with respect to ν is

JνF (ν,A, y) =
[
a1 · · · aN

]

h′(aT1 ν)

h′(aT2 ν)
. . .

h′(aTNν)


a

T
1
...
aTN

 ∈ Rm×m.

We show next that for any (A�, y�) ∈ S̃ with (unique) ν satisfying F (ν,A�, y�) = 0,
the Jacobian Q := JνF (ν,A�, y�) is positive definite. This result is trivial for p = 2
since h′(aTi ν) = 1/2 for each i. To show this result for 1 < p < 2, we first note that
ν 6= 0 since otherwise x∗ = 0 so that Ax∗ = 0 = y, which contradicts y 6= 0. Using
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the formula for h′(·) given below (4.1), we have
(4.2)

wTQw =

N∑
i=1

(aTi w)2 ·h′(aTi ν) =
1

(p− 1) · p1/(p−1)
N∑
i=1

(
aTi w

)2 · ∣∣aTi ν∣∣ 2−p
p−1 ∀w ∈ Rm.

Clearly, Q is positive semidefinite. Suppose, by contradiction, that there exists w 6= 0
such that wTQw = 0. Define the index set I := {i | aTi w = 0}. Note that I must be
nonempty because, otherwise, it follows from (4.2) that AT ν = 0, which contradicts
rank(A) = m and ν 6= 0. Similarly, Ic is nonempty in view of w 6= 0. Hence we
have (A•I)Tw = 0 and (A•Ic)T ν = 0. Since I ∪ Ic = {1, . . . , N}, I ∩ Ic = ∅, and
N ≥ 2m − 1, we must have either |I| ≥ m or |Ic| ≥ m. Consider the case in which
|I| ≥ m first. As (A•Ic)T ν = 0, we see that ν is orthogonal to R(A•Ic). Since ν ∈ Rm
is nonzero, we obtain rank(A•Ic) < m. Thus it follows from the properties of A that
rank(A•I) = m, but this contradicts (A•I)Tw = 0 for the nonzero w. Using a similar
argument, it can be shown that the case in which |Ic| ≥ m also yields a contradiction.
Consequently, Q is positive definite. By the implicit function theorem, there exists a
local C1 function H such that ν = H(A, y) and F (H(A, y), A, y) = 0 for all (A, y) in
a neighborhood of (A�, y�). Let ν� := H(A�, y�). Using the chain rule, we have

JνF (ν�, A�, y�)︸ ︷︷ ︸
:=Q

·∇yH(A�, y�) + JyF (ν�, A�, y�) = 0.

Since JyF (ν�, A�, y�) = −I, we have ∇yH(A�, y�) = Q−1.
Observing that x∗i = h(aTi ν) for each i = 1, . . . , N , we deduce via the property

of the function h in (4.1) that sgn(x∗i ) = sgn(aTi ν) for each i. Therefore, in order to
show that the zero set of x∗i (A, y) has zero measure for each i = 1, . . . , N , it suffices
to show that the zero set of aTi ν(A, y) has zero measure for each i. It follows from the
previous development that for any (A�, y�) ∈ S̃, ν = H(A, y) for a local C1 function
H in a neighborhood of (A�, y�). Hence, ∇y(aTi ν)(A�, y�) = (a�i )

T · ∇yH(A�, y�) =
(a�i )

T · Q−1, where Q := JνF (ν�, A�, y�) is invertible. Since each a�i 6= 0, we have
∇y(aTi ν)(A�, y�) 6= 0 for each i = 1, . . . , N . In light of Lemma 3.3, the zero set of
aTi ν(A, y) has zero measure for each i. Hence |supp(x∗(A, y))| = N for almost all
(A, y) ∈ Rm×N × Rm.

Combining Propositions 4.1 and 4.2, we obtain the following result for the gener-
alized basis pursuit.

Theorem 4.3. Let p > 1 and N ≥ 2m− 1. For almost all (A, y) ∈ Rm×N ×Rm,
the unique optimal solution x∗(A,y) to the BPp (2.1) satisfies |supp(x∗(A,y))| = N .

Motivated by Theorem 4.3, we present the following corollary for a certain fixed
measurement matrix A, whereas the measurement vector y varies. This result will be
used for Theorem 5.1 in section 5.

Corollary 4.4. Let p > 1 and N ≥ 2m − 1. Let A be a fixed m × N matrix
such that any m×m submatrix of A is invertible. For almost all y ∈ Rm, the unique
optimal solution x∗y to the BPp (2.1) satisfies |supp(x∗y)| = N .

Proof. Consider p ≥ 2 first. For any y ∈ Rm, let x∗(y) be the unique optimal
solution to the BPp (2.1). It follows from a similar argument to that for Proposition 4.1
that for each i = 1, . . . , N , x∗i is a C1 function of y on Rm \ {0}, and that if x∗i (y) = 0
for any y 6= 0, then the gradient ∇yx∗i (y) 6= 0. By Lemma 3.3, |supp(x∗(y))| = N
for almost all y ∈ Rm. When 1 < p ≤ 2, we note that the given matrix A satisfies
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the required conditions on A in the set S̃ introduced in the proof of Proposition 4.2,
since S defined in (3.1) is a proper subset of S̃ as indicated at the end of the first
paragraph of the proof of Proposition 4.2. Therefore, by a similar argument to that for
Proposition 4.2, we have that for any y 6= 0, the gradient ∇yx∗i (y) 6= 0. Consequently,
the desired result follows.

4.2. Least sparsity of the generalized ridge regression and generalized
elastic net with p > 1. We first establish the least sparsity of the generalized ridge
regression in (2.4) as follows.

Theorem 4.5. Let p > 1, N ≥ m, and λ > 0. For almost all (A, y) ∈ Rm×N ×
Rm, the unique optimal solution x∗(A,y) to the RRp (2.4) satisfies |supp(x∗(A,y))| = N .

Proof. Recall that for any given (A, y) ∈ Rm×N×Rm, the unique optimal solution
x∗ to the RRp (2.4) is described by the optimality condition AT (Ax∗−y)+λ∇f(x∗) =
0, where λ > 0 is a penalty parameter.

(i) p ≥ 2. The p = 2 case is trivial by using x∗ = (2λI+ATA)−1AT y, and we thus
consider p > 2 as follows. Define the function F (x,A, y) := λ∇f(x) + AT (Ax − y),
where ∇f(x) = (g(x1), . . . , g(xN ))T with g given in (4.1). Hence, the optimal solution
x∗, as a function of (A, y), satisfies the equation F (x∗, A, y) = 0. Obviously, F is C1

and its Jacobian with respect to x is given by

JxF (x,A, y) = λD(x) +ATA,

where the diagonal matrix D(x) := diag(g′(x1), . . . , g′(xN )). Since each g′(xi) ≥ 0,
we see that λD(x) +ATA is positive semidefinite for all A’s and x’s.

We show below that for any (A�, y�) in the set S defined in (3.1), the matrix
JxF (x�, A�, y�) is positive definite, where x� := x∗(A�, y�). For this purpose, de-
fine the index set J := {i |x�i 6= 0}. Partition D� := D(x�) and A� as D� =
diag(D1, D2) and A� = [A1 A2], respectively, where D1 := diag(g′(x�i ))i∈J c = 0,
D2 := diag(g′(x�i ))i∈J is positive definite, A1 := A�•J c , and A2 := A�•J . It follows
from Proposition 3.1 that |J c| ≤ m−1 such that the columns of A1 are linearly inde-
pendent. Suppose there exists a vector z ∈ RN such that zT [λD� + (A�)TA�]z = 0.
Let u := zJ c and v := zJ . Since zT [λD� + (A�)TA�]z ≥ zTλD�z = λvTD2v ≥ 0 and
D2 is positive definite, we have v = 0. Hence, zT [λD�+ (A�)TA�]z ≥ zT (A�)TA�z =
‖A�z‖22 = ‖A1u‖22 ≥ 0. Since the columns of A1 are linearly independent, we have
u = 0 and thus z = 0. Thus JxF (x�, A�, y�) = λD� + (A�)TA� is positive definite.

By the implicit function theorem, there are local C1 functions G1 and G2 such
that x∗ = (x∗J , x

∗
J c) = (G1(A, y), G2(A, y)) := G(A, y) and F (G(A, y), A, y) = 0 for

all (A, y) in a neighborhood of (A�, y�) ∈ S. By the chain rule, we have

JxF (x�, A�, y�) ·
[
∇yG1(A�, y�)
∇yG2(A�, y�)

]
+ JyF (x�, A�, y�) = 0,

where
JyF (x�, A�, y�) = −(A�)T = −[A1 A2]T .

Let P be the inverse of JxF (x�, A�, y�), i.e.,

P =

[
P11 P12

P21 P22

]
=

[
λD1 +AT1 A1 AT1 A2

AT2 A1 λD2 +AT2 A2

]−1
.

Since D1 = 0, we obtain P11A
T
1 A1 + P12A

T
2 A1 = I. Further, since ∇yG1(A�, y�) =

P11A
T
1 +P12A

T
2 , we have ∇yG1(A�, y�) ·A1 = I. Therefore, each row of ∇yG1(A�, y�)
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is nonzero or equivalently the gradient of x∗i (A, y) is nonzero at (A�, y�) for each i ∈
J c. By virtue of Lemma 3.3, |supp(x∗(A, y))| = N for almost all (A, y) ∈ Rm×N×Rm.

(ii) 1 < p < 2. Let Ŝ be the set of all (A, y) ∈ Rm×N ×Rm such that each column
of A is nonzero and AT y 6= 0. Obviously, Ŝ is open and its complement has zero
measure. Further, for any (A, y) ∈ Ŝ, it follows from the optimality condition and
AT y 6= 0 that the unique optimal solution x∗ 6= 0.

Define the function

F (x,A, y) :=

 x1 + h(λ−1aT1 (Ax− y))
...

xN + h(λ−1aTN (Ax− y))

 ,
where h is defined in (4.1). For any (A, y) ∈ Rm×N ×Rm, the unique optimal solution
x∗, as a function of (A, y), satisfies F (x∗, A, y) = 0. Further, F is C1 and its Jacobian
with respect to x is

JxF (x,A, y) = I + λ−1 · Γ(x,A, y)ATA,

where the matrix Γ(x,A, y) = diag(h′(λ−1aT1 (Ax− y)), . . . , h′(λ−1aTN (Ax− y))).

We show next that for any (A�, y�) ∈ Ŝ, the matrix JxF (x�, A�, y�) is in-
vertible, where x� := x∗(A�, y�). Define the index set J := {i |x�i 6= 0}, as be-

fore. Since (A�, y�) ∈ Ŝ implies that x� 6= 0, the set J is nonempty. Parti-
tion Γ� := Γ(x�, A�, y�) and A� as Γ� = diag(Γ1, Γ2) and A� = [A1 A2] respec-
tively, where Γ1 := diag(h′(λ−1(a�i )

T (A�x� − y�)))i∈J c = 0 due to 1 < p < 2,
Γ2 := diag(h′(λ−1(a�i )

T (A�x� − y�)))i∈J is positive definite, a�i is the ith column
of A�, A1 := A�•J c , and A2 := A�•J . Therefore, we obtain

(4.3) JxF (x�, A�, y�) =

[
I 0

λ−1Γ2A
T
2 A1 I + λ−1Γ2A

T
2 A2

]
.

Since Γ2 is positive definite, we deduce that I+λ−1Γ2A
T
2 A2 = Γ2(Γ−12 +λ−1AT2 A2) is

invertible. Hence JxF (x�, A�, y�) is invertible. By the implicit function theorem, there
are local C1 functions G1 and G2 such that x∗ = (x∗J , x

∗
J c) = (G1(A, y), G2(A, y)) :=

G(A, y) and F (G(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�) ∈ Rm×N×
Rm. By the chain rule, we have

JxF (x�, A�, y�) ·
[
∇yG1(A�, y�)
∇yG2(A�, y�)

]
= −JyF (x�, A�, y�) =

[
Γ1 λ

−1AT1
Γ2 λ

−1AT2

]
∈ RN×m.

In view of equation (4.3), Γ1 = 0, and the invertibility of JxF (x�, A�, y�), we obtain
∇yG1(A�, y�) = 0 and ∇yG2(A�, y�) = (I + λ−1Γ2A

T
2 A2)−1Γ2λ

−1AT2 .
Noting that x∗i = −h(λ−1aTi (Ax∗ − y)) for each i = 1, . . . , N , we deduce via

the property of the function h in (4.1) that sgn(x∗i ) = sgn(aTi (y − Ax∗)) for each i.
Therefore, it suffices to show that the zero set of aTi (y − Ax∗) has zero measure for
each i = 1, . . . , N . It follows from the previous development that for any (A�, y�) ∈ Ŝ,
(x∗J c , x∗J ) = (G1(A, y), G2(A, y)) in a neighborhood of (A�, y�) for local C1 functions
G1 and G2. For each i ∈ J c, define

qi(A, y) := aTi
(
y −A · x∗(A, y)

)
.

Then ∇y qi(A�, y�) = (a�i )
T (I − A2 · ∇yG2(A�, y�)). Note that by the Sherman–

Morrison–Woodbury formula [20, section 3.8], we have

A2 · ∇yG2(A�, y�) = A2(I + λ−1Γ2A
T
2 A2)−1Γ2λ

−1AT2 = I − (I + λ−1A2Γ2A
T
2 )−1,
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where we use the fact that I +λ−1A2Γ2A
T
2 is invertible. Hence, for any (A�, y�) ∈ Ŝ,

we deduce via a�i 6= 0 that ∇y qi(A�, y�) = (a�i )
T (I + λ−1A2Γ2A

T
2 )−1 6= 0 for each

i ∈ J c. By Lemma 3.3, |supp(x∗(A, y))| = N for almost all (A, y) ∈ Rm×N × Rm.

The next result pertains to the generalized elastic net (2.5).

Theorem 4.6. Let p > 1, N ≥ m, r ≥ 1, and λ1, λ2 > 0. For almost all
(A, y) ∈ Rm×N × Rm, the unique optimal solution x∗(A,y) to the ENp (2.5) satisfies

|supp(x∗(A,y))| = N .

Proof. Recall that for any given (A, y) ∈ Rm×N×Rm, the unique optimal solution
x∗ to the ENp (2.5) is characterized by equation (3.2):

(4.4) AT (Ax∗ − y) + p−1rλ1 · ‖x∗‖r−pp · ∇f(x∗) + 2λ2 x
∗ = 0,

where r ≥ 1 and λ1, λ2 > 0 are the penalty parameters.
(i) p ≥ 2. Consider the open set S defined in (3.1). For any (A, y) ∈ S, since

A has full row rank and y 6= 0, we have AT y 6= 0. Hence, it follows from (4.4) and
AT y 6= 0 that the unique optimal solution x∗ 6= 0 for any (A, y) ∈ S.

Define the function F (x,A, y) := AT (Ax− y) + p−1rλ1 · ‖x‖r−pp · ∇f(x) + 2λ2 x,
where ∇f(x) = (g(x1), . . . , g(xN ))T . Hence, the optimal solution x∗, as a function of
(A, y), satisfies the equation F (x∗, A, y) = 0. Since ‖ · ‖p is C2 on RN \ {0}, we see
that F is C1 on the open set (RN \ {0})×Rm×N ×Rm, and its Jacobian with respect
to x is given by

JxF (x,A, y) = ATA+ λ1H(‖x‖rp) + 2λ2I,

where H(‖x‖rp) denotes the Hessian of ‖ · ‖rp at any nonzero x. Since r ≥ 1, ‖ · ‖rp
is a convex function and its Hessian at any nonzero x must be positive semidefinite.
This shows that for any (A�, y�) ∈ S, JxF (x�, A�, y�) is positive definite, where
x� := x∗(A�, y�) 6= 0. Hence, there exists a local C1 functionG such that x∗ = G(A, y)
with F (G(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�).

For any given (A�, y�) ∈ S, define the (nonempty) index set J := {i |x�i 6= 0}. Let
Λ(x) := diag(g′(x1), . . . , g′(xN )). Partition Λ� := Λ(x�) and A� as Λ� = diag(Λ1, Λ2)
and A� = [A1 A2], respectively, where Λ1 := diag(g′(x�i ))i∈J c , Λ2 := diag(g′(x�i ))i∈J
is positive definite, A1 := A�•J c , and A2 := A�•J . Thus Λ1 = 0 for p > 2, and Λ1 = 2I
for p = 2. Using ∇(‖x‖p) = (p‖x‖p−1p )−1 · ∇(‖x‖pp) for any x 6= 0, we have

H(‖x‖rp) =
r

p
· ‖x‖r−pp ·

[
Λ(x) +

r − p
p‖x‖pp

· ∇f(x)
(
∇f(x)

)T ] ∀ x 6= 0.

Based on the partition given above, we have H(‖x�‖r−pp ) = diag(H1, H2), where the
matrix H2 is positive semidefinite, and H1 = 0 for p > 2, and H1 = r‖x�‖r−22 · I for
p = 2. Therefore, we obtain JyF (x�, A�, y�) = −(A�)T = −[A1 A2]T , and

JxF (x�, A�, y�) =

[
AT1 A1 + 2λ2I + λ1H1 AT1 A2

AT2 A1 AT2 A2 + 2λ2I + λ1H2

]
.

Let Q be the inverse of JxF (x�, A�, y�), i.e.,

Q =

[
Q11 Q12

Q21 Q22

]
.

Hence, we have

(4.5) (Q11A
T
1 +Q12A

T
2 )A2 +Q12

(
2λ2I + λ1H2

)
= 0.
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We claim that each row of Q11A
T
1 + Q12A

T
2 is nonzero. Suppose not, that is, sup-

pose instead that (Q11A
T
1 +Q12A

T
2 )i• = 0 for some i. Then it follows from (4.5) that

(Q12)i•(2λ2I+λ1H2) = 0. Since 2λ2I+λ1H2 is positive definite, we have (Q12)i• = 0.
By (Q11A

T
1 +Q12A

T
2 )i• = 0, we obtain (Q11)i•A

T
1 = 0. It follows from Proposition 3.1

that |J c| ≤ m − 1 such that the columns of A1 are linearly independent. Hence, we
have (Q11)i• = 0 or equivalently Qj• = 0 for some j. This contradicts the invert-
ibility of Q, and thus completes the proof of the claim. Furthermore, let G1, G2

be local C1 functions such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) for all (A, y)
in a neighborhood of (A�, y�) ∈ S. By a similar argument as before, we see that
∇yG1(A�, y�) = Q11A

T
1 +Q12A

T
2 . Therefore, we deduce that the gradient of x∗i (A, y)

at (A�, y�) is nonzero for each i ∈ J c. In light of Lemma 3.3, |supp(x∗(A, y))| = N
for almost all (A, y) ∈ Rm×N × Rm.

(ii) 1 < p < 2. Let Ŝ be the set defined in case (ii) of Theorem 4.5, i.e., Ŝ is the set
of all (A, y) ∈ Rm×N ×Rm such that each column of A is nonzero and AT y 6= 0. The
set Ŝ is open and its complement has zero measure. For any (A, y) ∈ Ŝ, the unique
optimal solution x∗, treated as a function of (A, y), is nonzero. By the optimality
condition (4.4) and the definition of the function h in (4.1), we see that x∗ satisfies
the following equation for any (A, y) ∈ Ŝ:

(4.6) F (x,A, y) :=

 x1 + h(w1)
...

xN + h(wN )

 = 0,

where wi := p‖x‖p−rp ·
[
aTi (Ax−y) + 2λ2xi

]
/(rλ1) for each i = 1, . . . , N . It is easy to

show that F is C1 on (RN \ {0})×Rm×N ×Rm and its Jacobian with respect to x is

JxF (x,A, y) = I +
p

rλ1
· Γ(x,A, y) ·

{
[AT (Ax− y) + 2λ2x] · [∇(‖x‖p−rr )]T

+ ‖x‖p−rp (ATA+ 2λ2I)
}
,

where the diagonal matrix Γ(x,A, y) := diag
(
h′(w1), . . . , h′(wN )

)
and ∇(‖x‖p−rr ) =

(p− r)∇f(x)/[p · ‖x‖rp].
We show next that JxF (x�, A�, y�) is invertible for any (A�, y�) ∈ Ŝ, where x� :=

x∗(A�, y�). As before, define the (nonempty) index set J := {i |x�i 6= 0}. Partition
Γ� := Γ(x�, A�, y�) and A� as Γ� = diag(Γ1, Γ2) and A� = [A1 A2], respectively,
where Γ1 := diag(h′(wi))i∈J c = 0, Γ2 := diag(h′(wi))i∈J is positive definite, a�i is the
ith column of A�, A1 := A�•J c , and A2 := A�•J . Therefore, we obtain

W := JxF (x�, A�, y�) =

[
I 0
? W22

]
,

where, by letting the vector b̃ := (∇f(x�))J ,

W22 := I+
p

rλ1
·Γ2 ·

{
[AT2 (A2x

�
J −y)+2λ2x

�
J ] · (p− r)̃b

T

p‖x�‖rp
+‖x�‖p−rp (AT2 A2 +2λ2I)

}
.

It follows from (4.4) that p
rλ1
· [AT2 (A2x

�
J − y) + 2λ2x

�
J ] = −‖x�‖r−pp · b̃. Hence,

(4.7) Γ−12 ·W22 = Γ−12 +
r − p
p‖x�‖pp

· b̃ · b̃T︸ ︷︷ ︸
:=U

+
p‖x�‖p−rp

rλ1
· (AT2 A2 + 2λ2I).
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Clearly, when r ≥ p > 1, the matrix Γ−12 W22 is positive definite. In what follows, we
consider the case in which 2 > p > r ≥ 1. Let the vector b := (sgn(x�i ) · |x�i |p−1)i∈J
so that b̃ = p · b. In view of (4.6), we have wi = h−1(−x�i ) = p · sgn(−xi)|x�i |p−1 for
each i. Using the formula for h′(·) given below (4.1), we obtain that for each i ∈ J ,

h′(wi) =
|wi|

2−p
p−1

(p− 1) · p
1

p−1

=

(
p · |x�i |p−1

) 2−p
p−1

(p− 1) · p
1

p−1

=
|x�i |2−p

(p− 1) · p
.

This implies that Γ−12 = p(p−1)D, where the diagonal matrix D := diag(|x�i |p−2)i∈J .
Clearly, D is positive definite. We thus have, via p− 1 ≥ p− r > 0,

U = Γ−12 +
r − p
p‖x�‖pp

· b̃ · b̃T = p(p− 1)

(
D − p− r

p− 1
· b · b

T

‖x‖pp

)
< p(p− 1)

(
D − b · bT

‖x‖pp

)
,

where < denotes the positive semidefinite order. Since the diagonal matrix D is
positive definite, we further have

D − b · bT

‖x‖pp
= D1/2

(
I − D−1/2b · bTD−1/2

‖x‖pp

)
D1/2 = D1/2

(
I − u · uT

‖u‖22

)
D1/2,

where u := D−1/2 · b = (sgn(x�i )|x�i |p/2)i∈J such that ‖u‖22 = ‖x‖pp. Since I −
u · uT /‖u‖22 is positive semidefinite, so is D − b · bT /‖x‖pp. This shows that U in
(4.7) is positive semidefinite. Since the last term on the right-hand side of (4.7) is
positive definite, Γ−12 W22 is positive definite. Therefore, W22 is invertible, and so is
W for all 1 < p < 2 and r ≥ 1. By the implicit function theorem, there are local
C1 functions G1 and G2 such that x∗ = (x∗J , x

∗
J c) = (G1(A, y), G2(A, y)) := G(A, y)

and F (G(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�) ∈ Rm×N × Rm.
Moreover, we have

JxF (x�, A�, y�) ·
[
∇yG1(A�, y�)
∇yG2(A�, y�)

]
= −JyF (x�, A�, y�)

=
p‖x�‖p−rp

rλ1

[
Γ1A

T
1

Γ2A
T
2

]
∈ RN×m.

In view of the invertibility of JxF (x�, A�, y�) and Γ1 = 0, we obtain

∇yG1(A�, y�) = 0, ∇yG2(A�, y�) =

(
p‖x�‖p−rp

rλ1

)
W−122 Γ2A

T
2 .

Since x∗i = −h(wi) for each i = 1, . . . , N , where wi is defined below (4.6), we
deduce via the positivity of ‖x‖p and the property of the function h in (4.1) that
sgn(x∗i ) = sgn(aTi (y −Ax∗)− 2λ2x

∗
i ) for each i. For each i ∈ J c, define

qi(A, y) := aTi
(
y −A · x∗(A, y)

)
− 2λ2x

∗
i (A, y).

In what follows, we show that for each i ∈ J c, the gradient of qi(A, y) at (A�, y�) ∈ Ŝ
is nonzero. It follows from the previous development that for any (A�, y�) ∈ Ŝ,
(x∗J c , x∗J ) = (G1(A, y), G2(A, y)) in a neighborhood of (A�, y�) for local C1 functions
G1 and G2. Using ∇yG1(A�, y�) = 0, we have

∇y qi(A�, y�) = (a�i )
T (I −A2 · ∇yG2(A�, y�)).
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Letting α := p‖x�‖p−rp /rλ1 > 0 and by (4.7), we have

A2 · ∇yG2(A�, y�) = αA2W
−1
22 Γ2A

T
2 = αA2(Γ−12 W22)−1AT2

= αA2

[
U + α(AT2 A2 + 2λ2I)

]−1
AT2 .

Since U is positive semidefinite and AT2 A2 + 2λ2I is positive definite, we have

A2

(
AT2 A2 + 2λ2I

)−1
AT2 < αA2

[
U + α(AT2 A2 + 2λ2I)

]−1
AT2 < 0.

Since each eigenvalue of A2(AT2 A2 + 2λ2I)−1AT2 is strictly less than one, we conclude
that A2 · ∇yG2(A�, y�) is positive semidefinite and each of its eigenvalues is strictly
less than one. Therefore, I − A2 · ∇yG2(A�, y�) is invertible. Since each a�i 6= 0, we
have ∇y qi(A�, y�) 6= 0 for each i ∈ J c. In view of Lemma 3.3, |supp(x∗(A, y))| = N
for almost all (A, y) ∈ Rm×N × Rm.

4.3. Least sparsity of the generalized basis pursuit denoising with p > 1.
We consider the case in which p ≥ 2 first.

Proposition 4.7. Let p ≥ 2 and N ≥ m. For almost all (A, y) ∈ Rm×N × Rm
with y 6= 0, if 0 < ε < ‖y‖2, then the unique optimal solution x∗(A,y) to the BPDNp

(2.2) satisfies |supp(x∗(A,y))| = N .

Proof. Consider the set S defined in (3.1). It follows from the proof for case (ii) in
Proposition 3.1 that for any given (A, y) ∈ S and any ε > 0 with ε < ‖y‖2, the unique
optimal solution x∗ satisfies the optimality conditions ∇f(x∗) + 2µAT (Ax∗ − y) = 0
for a unique positive µ, and ‖Ax∗ − y‖22 = ε2. Hence, (x∗, µ) ∈ RN+1 is a function of
(A, y) on S and satisfies the following equation:

F (x, µ,A, y) :=


g(x1) + 2µaT1 (Ax− y)

...
g(xN ) + 2µaTN (Ax− y)
‖Ax− y‖22 − ε2

 = 0.

Clearly, F : RN × R × Rm×N × Rm → RN+1 is C1 and its Jacobian with respect to
(x, µ) is given by

J(x,µ)F (x, µ,A, y) =

[
M(x, µ,A) 2AT (Ax− y)

2(Ax− y)TA 0

]
,

where M(x, µ,A) := Λ(x) + 2µATA, and Λ(x) := diag(g′(x1), . . . , g′(xN )) is diagonal
and positive semidefinite. Given (A�, y�) ∈ S, define x� := x∗(A�, y�) and µ� :=
µ(A�, y�) > 0. We claim that J(x,µ)F (x�, µ�, A�, y�) is invertible for any (A�, y�) ∈ S.
To show it, define the index set J := {i |x�i 6= 0}. Note that J is nonempty by
virtue of Proposition 3.1. Partition Λ� := Λ(x�) and A as Λ� = diag(Λ1, Λ2) and
A� = [A1 A2], respectively, where Λ1 := diag(g′(x�i ))i∈J c , Λ2 := diag(g′(x�i ))i∈J
is positive definite, A1 := A�•J c , and A2 := A�•J . Hence, AT1 (A�x� − y�) = 0,
Λ1 = 0 for p > 2, and Λ� = diag(Λ1, Λ2) = 2I for p = 2. It follows from a
similar argument to that for case (i) in Theorem 4.5 that M� := M(x�, µ�, A�) is
positive definite. Moreover, it has been shown in the proof of Proposition 3.1 that
b := 2(A�)T (A�x� − y�) ∈ RN is nonzero. Hence, for any z = [z1; z2] ∈ RN+1 with
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z1 ∈ RN and z2 ∈ R, we have

J(x,µ)F (x�, µ�, A�, y�)z =

[
M� b
bT 0

](
z1
z2

)
= 0 ⇒ M�z1 + bz2 = 0, bT z1 = 0

⇒ bT
(
M�
)−1

bz2 = 0.

This implies that z2 = 0 and further z1 = 0. Therefore, J(x,µ)F (x�, µ�, A�, y�) is
invertible. By the implicit function theorem, there are local C1 functions G1, G2, H
such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) := G(A, y), µ = H(A, y), and
F (G(A, y), H(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�). By the
chain rule, we have

J(x,µ)F (x�, µ�, A�, y�)︸ ︷︷ ︸
:=V

·

∇yG1(A�, y�)
∇yG2(A�, y�)
∇yH(A�, y�)

 = −JyF (x�, µ�, A�, y�)

=

 2µ�AT1
2µ�AT2

2(A�x� − y�)T

 ,
where

V =

 Λ1 + 2µ�AT1 A1 2µ�AT1 A2 2AT1 (A�x� − y�)
2µ�AT2 A1 Λ2 + 2µ�AT2 A2 2AT2 (A�x� − y�)

2(A�x� − y�)TA1 2(A�x� − y�)TA2 0

 .
Let P be the inverse of V given by the symmetric matrix

P =

P11 P12 P13

PT12 P22 P23

PT13 PT23 P33

 .
Consider p > 2 first. In this case, Λ1 = 0 such that P112µ�AT1 A1 + P12 2µ�AT2 A1 +
P13 2(A�x� − y�)TA1 = Im. Since

∇yG1(A�, y�) = −[P11 P12 P13] · JyF (x�, µ�, A�, y�)

= P112µ�AT1 + P12 2µ�AT2 + P13 2(A�x� − y�)T ,

we have ∇yG1(A�, y�) · A1 = Im. We then consider p = 2. In this case, letting B :=
∇yG1(A�, y�) = P112µ�AT1 +P12 2µ�AT2 +P13 2(A�x�−y�)T and using diag(Λ1, Λ2) =
2I, we have 2P11 + BA1 = I and 2P12 + BA2 = 0. Suppose, by contradiction, that
the ith row of B is zero, i.e., Bi• = 0. Then (P11)i• = eTi /2 and (P12)i• = 0,
where ei denotes the ith column of I. Substituting these results into B and using
AT1 (A�x� − y�) = 0, we have 0 = Bi•(A

�x� − y�) = 2µ�(P11)i•A
T
1 (A�x� − y�) +

2(P13)i‖A�x� − y�‖22 = 2(P13)i‖A�x� − y�‖22, which implies that the real number
(P13)i = 0 as A�x�−y� 6= 0. In view of the symmetry of P , V = P−1, and Λ1 = 2I, we
have (2I + 2µ�AT1 A1)ii = 2, which yields (A1)•i = 0, a contradiction. Therefore, each
row of ∇yG1(A�, y�) is nonzero. Consequently, by Lemma 3.3, |supp(x∗(A, y))| = N
for almost all (A, y) ∈ Rm×N × Rm.

In what follows, we consider the case in which 1 < p < 2.

Proposition 4.8. Let 1 < p < 2 and N ≥ m. For almost all (A, y) ∈ Rm×N×Rm
with y 6= 0, if 0 < ε < ‖y‖2, then the unique optimal solution x∗(A,y) to the BPDNp

(2.2) satisfies |supp(x∗(A,y))| = N .
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Proof. Let S̆ be the set of all (A, y) ∈ Rm×N × Rm such that each column of A
is nonzero and y 6= 0. Obviously, S̆ is open in Rm×N × Rm and its complement has
zero measure. For any (A, y) ∈ S̆ and any positive ε with ε < ‖y‖2, it follows from
the proof for case (ii) in Proposition 3.1 that the unique optimal solution x∗ 6= 0 with
a unique positive µ. Further, (x∗, µ) ∈ RN+1 satisfies the following equation:

F (x, µ,A, y) :=


x1 + h(2µaT1 (Ax− y))

...
xN + h(2µaTN (Ax− y))

‖Ax− y‖22 − ε2

 = 0,

where h is defined in (4.1). Hence, F : RN ×R×Rm×N ×Rm → RN+1 is C1 and its
Jacobian with respect to (x, µ) is given by

J(x,µ)F (x, µ,A, y) =

[
V (x, µ,A, y) 2Γ(x, µ,A, y)AT (Ax− y)

2(Ax− y)TA 0

]
∈ R(N+1)×(N+1),

where Γ(x, µ,A, y) := diag(h′(2µaT1 (Ax − y)), . . . , h′(2µaTN (Ax − y))) ∈ RN×N , and
V (x, µ,A, y) := I + Γ(x, µ,A, y) 2µATA.

We use the same notation x� and µ� as before. For any (A�, y�) ∈ Rm×N × Rm,
define the index set J := {i |x�i 6= 0}. Note that J is nonempty as ‖y‖2 > ε. Partition
Γ� := Γ(x�, µ�, A�, y�) and A� as Γ� = diag(Γ1, Γ2) and A� = [A1 A2], respectively,
where

Γ1 := diag(h′(2µ�(a�i )
T (A�x� − y�)))i∈J c = 0,

Γ2 := diag(h′(2µ�(a�i )
T (A�x� − y�)))i∈J

is positive definite, A1 := A�•J c , and A2 := A�•J . Therefore, using the fact that Γ1 = 0
and Γ2 is positive definite, we obtain

J(x,µ)F (x�, µ�, A�, y�)

=

 I 0 0
2µ�Γ2A

T
2 A1 I + 2µ�Γ2A

T
2 A2 2Γ2A

T
2 (A�x� − y�)

2(A�x� − y�)TA1 2(A�x� − y�)TA2 0

 .(4.8)

As Γ2 is positive definite, the lower diagonal block in J(x,µ)F (x�, µ�, A�, y�) becomes[
I + 2µ�Γ2A

T
2 A2 2Γ2A

T
2 (A�x� − y�)

2(A�x� − y�)TA2 0

]
=

[
Γ2 0
0 I

]
·
[

Γ−12 + 2µ�AT2 A2 2AT2 (A�x� − y�)
2(A�x� − y�)TA2 0

]
︸ ︷︷ ︸

:=Q

.(4.9)

Clearly, Γ−12 +2µ�AT2 A2 is positive definite. Further, since µ� > 0 and x�i 6= 0 ∀ i ∈ J ,
we have AT2 (A�x� − y�) 6= 0. Hence, by a similar argument to that for Proposi-
tion 4.7, we see that the matrix Q is invertible such that J(x,µ)F (x�, µ�, A�, y�) is
invertible. By the implicit function theorem, there are local C1 functions G1, G2, H
such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) := G(A, y), µ = H(A, y), and

D
ow

nl
oa

de
d 

11
/0

7/
18

 to
 1

30
.8

5.
19

3.
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2740 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

F (G(A, y), H(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�). By the
chain rule, we obtain

J(x,µ)F (x�, µ�, A�, y�)·

∇yG1(A�, y�)
∇yG2(A�, y�)
∇yH(A�, y�)

 = −JyF (x�, µ�, A�, y�) =

 0
Γ2 2µ�AT2

2(A�x� − y�)T

 ,
where we use the fact that Γ1 = 0. In view of (4.8) and the above results, we have
∇yG1(A�, y�) = 0, and we deduce via (4.9) that
(4.10)(
∇yG2(A�, y�)
∇yH(A�, y�)

)
=

[
Γ−12 + 2µ�AT2 A2 2AT2 (A�x� − y�)
2(A�x� − y�)TA2 0

]−1
·
(

2µ�AT2
2(A�x� − y�)T

)
,

where A�x� − y� 6= 0 because otherwise ‖A�x� − y�‖22 − ε2 6= 0.
For each i ∈ J c, let qi(A, y) := aTi (y−A·x∗(A, y)). It follows from sgn(x∗i (A, y)) =

sgn(qi(A, y)) and the previous argument that it suffices to show that ∇y qi(A�, y�) 6= 0
for each i ∈ J c, where ∇y qi(A�, y�) = (a�i )

T (I − A2 · ∇y G2(A�, y�)). Toward this
end, we see, by using (a�i )

T (A�x�− y�) = 0 ∀ i ∈ J c and (4.10), that for each i ∈ J c,

(a�i )
TA2∇yG2(A�, y�) =

(a�i )
T

2µ�
[
2µ�A�2 2(A�x� − y�)

]
·
(
∇yG2(A�, y�)
∇yH(A�, y�)

)
=

(a�i )
T

2µ�
[
2µ�A�2 2(A�x� − y�)

]
·
[

Γ−12 + 2µ�AT2 A2 2AT2 (A�x� − y�)
2(A�x� − y�)TA2 0

]−1
·
[

2µ�AT2
2(A�x� − y�)T

]
.

Define

d := A�x� − y� 6= 0, C :=
[√

2µ� ·A2,
√

2
µ� · d

]
, D :=

[
Γ−12 0

0 − 2
µ� ‖d‖22

]
.

It is easy to verify that[
Γ−12 + 2µ�AT2 A2 2AT2 (A�x� − y�)
2(A�x� − y�)TA2 0

]
= D + CTC.

Therefore, we obtain

(a�i )
T
(
I −A2 · ∇yG2(A�, y�)

)
= (a�i )

T − (a�i )
TC(D + CTC)−1CT .

Recall that J is nonempty such that A2 exists and AT2 d 6= 0. Since A2Γ2A
T
2 and

I − ddT /‖d‖22 are both positive semidefinite and N(I − ddT /‖d‖22) = span{d}, it is
easy to see that N(A2Γ2A

T
2 ) ∩N(I − ddT /‖d‖22) = {0}. Hence, the following matrix

is positive definite:

I + CD−1CT = 2µ�A2Γ2A
T
2 + I − ddT

‖d‖22
.

By the Sherman–Morrison–Woodbury formula [20, section 3.8], we have

C(D + CTC)−1CT = I − (I + CD−1CT )−1.
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Consequently, for any (A�, y�) ∈ S̆, in view of a�i 6= 0 ∀ i, we deduce that for each
i ∈ J c,

∇y qi(A�, y�) = (a�i )
T
(
I −A2 · ∇yG2(A�, y�)

)
= (a�i )

T − (a�i )
TC(D + CTC)−1CT

= (a�i )
T (I + CD−1CT )−1 6= 0.

By Lemma 3.3, the zero set of x∗i (A, y) has zero measure for each i = 1, . . . , N .
Therefore, |supp(x∗(A, y))| = N for almost all (A, y) ∈ Rm×N × Rm.

Putting Propositions 4.7 and 4.8 together, we obtain the following result.

Theorem 4.9. Let p > 1 and N ≥ m. For almost all (A, y) ∈ Rm×N × Rm with
y 6= 0, if 0 < ε < ‖y‖2, then the unique optimal solution x∗(A,y) to the BPDNp (2.2)

satisfies |supp(x∗(A,y))| = N .

Next, we extend the above result to the optimization problem (2.3) pertaining to
another version of the generalized basis pursuit denoising under a suitable assumption
on η. Since its proof follows an argument similar to that for Theorem 4.9, we will be
concise with regard to the overlapping parts.

Theorem 4.10. Let p > 1 and N ≥ m. For almost all (A, y) ∈ Rm×N ×Rm with
y ∈ R(A), if 0 < η < minAx=y ‖x‖p, then the unique optimal solution x∗(A,y) to (2.3)

satisfies |supp(x∗(A,y))| = N .

Proof. We consider the following two cases: (i) p ≥ 2 and (ii) 1 < p < 2.
(i) p ≥ 2. Consider the set S defined in (3.1). Clearly, A has full row rank and

y ∈ R(A) for any (A, y) ∈ S. It follows from Proposition 3.2 that the optimal solution
x∗ is unique and the associated unique Lagrange multiplier µ is positive. Define
µ̃ := 1/µ > 0. Hence, (x∗, µ̃) is a function of (A, y) on S and satisfies the following
equation obtained from (3.3):

F (x, µ̃, A, y) :=


g(x1) + µ̃ aT1 (Ax− y)

...
g(xN ) + µ̃ aTN (Ax− y)

f(x)− ηp

 = 0.

Clearly, F : RN × R × Rm×N × Rm → RN+1 is C1 and its Jacobian with respect to
(x, µ̃) is

J(x,µ̃)F (x, µ̃, A, y) =

[
M(x, µ̃, A) AT (Ax− y)
(∇f(x))T 0

]
,

where M(x, µ,A) := Λ(x) + µ̃ATA, and Λ(x) := diag(g′(x1), . . . , g′(xN )) is diago-
nal and positive semidefinite. For any (A�, y�) ∈ S, we use the same notation x�,
µ̃�, J , Λ� = diag(Λ1,Λ2), and A� = [A1 A2] as before, where Λ1 = 0 for p > 2,
and diag(Λ1,Λ2) = 2I for p = 2. In light of N ≥ m and the second statement
of Proposition 3.2, we have |supp(x�)| ≥ N − m + 1 ≥ 1 such that the index set
J is nonempty. It follows from (3.3) that ∇f(x�) + µ̃� · (A�)T (A�x� − y�) = 0.
Further, ∇f(x�) 6= 0 and (A�)T (A�x� − y�) 6= 0. Therefore, using a similar argu-
ment to that for Proposition 4.7, we deduce that J(x,µ̃)F (x�, µ̃�, A�, y�) is invertible
for any (A�, y�) ∈ S. By the implicit function theorem, there are local C1 functions
G1, G2, H such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) := G(A, y), µ̃ = H(A, y),
and F (G(A, y), H(A, y), A, y) = 0 for all (A, y) in a neighborhood of (A�, y�). By the
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chain rule, we have

J(x,µ̃)F (x�, µ̃�, A�, y�) ·

∇yG1(A�, y�)
∇yG2(A�, y�)
∇yH(A�, y�)

 = −JyF (x�, µ̃�, A�, y�) =

µ̃�AT1µ̃�AT2
0

 .
Since ∇f(x�) = −µ̃� · (A�)T (A�x� − y�) and g(x�i ) = 0 ∀ i ∈ J c, it follows that we
have AT1 (A�x� − y�) = 0, and

J(x,µ̃)F (x�, µ̃�, A�, y�) =

Λ1 + µ̃�AT1 A1 µ̃�AT1 A2 0
µ̃�AT2 A1 Λ2 + µ̃�AT2 A2 ?

0 −µ̃�(A�x� − y�)TA2 0

 .
Let

P =

P11 P12 P13

P21 P22 P23

P31 P32 P33


be the inverse of the above Jacobian. We consider p > 2 first. In this case, Λ1 = 0 such
that P11µ̃

�AT1 A1 + P12 µ̃
�AT2 A1 = Im. Since B := ∇yG1(A�, y�) = −[P11 P12 P13] ·

JyF (x�, µ�, A�, y�) = P11µ̃
�AT1 + P12 µ̃

�AT2 , we have ∇yG1(A�, y�) · A1 = Im. This
shows that each row of ∇yG1(A�, y�) is nonzero. We next consider p = 2, where
diag(Λ1,Λ2) = 2I. Hence,

2P11 +BA1 = I and 2P12 +BA2 − µ̃�P13(A�x� − y�)TA2 = 0.

Suppose, by contradiction, that the ith row of B is zero, i.e., Bi• = 0. Then

(P11)i• = eTi /2 and (P12)i• = (µ̃�(P13)i)/2 · (A�x� − y�)TA2.

Using Bi• = µ̃�[(P11)i•A
T
1 + (P12)i•A

T
2 ], we have

0 = Bi•(A
�x� − y�) = µ̃�[(P11)i•A

T
1 (A�x� − y�) + (µ̃�(P13)i)/2 · ‖AT2 (A�x� − y�)‖22].

Since AT1 (A�x� − y�) = 0 and AT2 (A�x� − y�) 6= 0, we have (P13)i = 0, which
leads to (P12)i• = 0. Following a similar argument to that for Proposition 4.7, we
obtain (A1)•i = 0, and this yields a contradiction. Thus each row of ∇yG1(A�, y�) is
nonzero. Consequently, we deduce that |supp(x∗(A, y))| = N for almost all (A, y) ∈
Rm×N × Rm.

(ii) 1 < p < 2. Let S̀ be the set of (A, y) ∈ Rm×N × Rm with N ≥ m such that
y 6= 0, each column of A is nonzero, and A has full row rank. Hence, y ∈ R(A) for any
(A, y) ∈ S̀. By Proposition 3.2, we see that (2.3) attains a unique optimal solution
x∗ and a unique Lagrange multiplier µ > 0 for any (A, y) ∈ S̀. Define µ̃ := 1/µ > 0.
Hence, (x∗, µ̃), as a function of (A, y) on S̀, satisfies the following equation:

F (x, µ,A, y) :=


x1 + h(µ̃aT1 (Ax− y))

...
xN + h(µ̃aTN (Ax− y))

f(x)− ηp

 = 0.

Here F : RN ×R×Rm×N ×Rm → RN+1 is C1 and its Jacobian with respect to (x, µ̃)
is given by

J(x,µ̃)F (x, µ̃, A, y) =

[
V (x, µ̃, A, y) Γ(x, µ̃, A, y)AT (Ax− y)

(∇f(x))T 0

]
∈ R(N+1)×(N+1),
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LEAST SPARSITY OF p-NORM OPTIMIZATION 2743

where Γ(x, µ̃, A, y) := diag(h′(µ̃aT1 (Ax − y)), . . . , h′(µ̃aTN (Ax − y))) ∈ RN×N , and
V (x, µ̃, A, y) := I+Γ(x, µ̃, A, y) µ̃ATA. Using the same notation introduced in Propo-
sition 4.8, we deduce that for any (A�, y�) ∈ S̀,

J(x,µ̃)F (x�, µ̃�, A�, y�) =

I 0 0
? I + µ̃�Γ2A

T
2 A2 Γ2A

T
2 (A�x� − y�)

? vT 0

 ,
where the column vector v := (g(x�i ))i∈J . Note that the index set J is nonempty
since y 6= 0 and A has full row rank such that AT y 6= 0. In view of (3.3), we have v =
−µ̃�AT2 (A�x�− y�), where µ̃� > 0. This result, along with a similar argument to that
for (4.9), shows that J(x,µ̃)F (x�, µ̃�, A�, y�) is invertible. Therefore, there are local C1

functions G1, G2, H such that x∗ = (x∗J c , x∗J ) = (G1(A, y), G2(A, y)) := G(A, y),
µ̃ = H(A, y), and F (G(A, y), H(A, y), A, y) = 0 for all (A, y) in a neighborhood of
(A�, y�). Moreover,

J(x,µ̃)F (x�, µ̃�, A�, y�) ·

∇yG1(A�, y�)
∇yG2(A�, y�)
∇yH(A�, y�)

 = −JyF (x�, µ̃�, A�, y�) =

 0
Γ2 µ̃

�AT2
0

 ,
where the fact that Γ1 = 0 is used. Therefore, we have ∇yG1(A�, y�) = 0, and(

∇yG2(A�, y�)
∇yH(A�, y�)

)
=

[
Γ−12 + µ̃�AT2 A2 AT2 (A�x� − y�)
(A�x� − y�)TA2 0

]−1
·
(
µ̃�AT2

0

)
.

In what follows, define b := AT2 (A�x� − y�) 6= 0 and M := Γ−12 + µ̃�AT2 A2, which is
positive definite.

For each i ∈ J c, define qi(A, y) := (a�i )
T (y−A ·x∗(A, y)). It suffices to show that

∇y qi(A�, y�) 6= 0 for each i ∈ J c, where∇y qi(A�, y�) = (a�i )
T (I−A2 ·∇y G2(A�, y�)).

Direct calculations show that

I −A2 · ∇y G2(A�, y�) = I − [A2 0] ·
[
M b
bT 0

]−1
·
(
µ̃�AT2

0

)
= I −A2M

−1
(
I − bbTM−1

bTM−1b

)
µ̃�AT2 = I −A2M

−1µ̃�AT2 + µ̃�
A2M

−1bbTM−1AT2
bTM−1b

.

By the definition of M and the Sherman–Morrison–Woodbury formula [20, section
3.8], we have I−A2M

−1µ̃�AT2 = (I+µ̃�A2Γ2A
T
2 )−1, which is positive definite. Hence,

I − A2 · ∇y G2(A�, y�) is positive definite and thus invertible. Since a�i 6= 0, we have
∇y qi(A�, y�) 6= 0 for each i ∈ J c. Consequently, |supp(x∗(A, y))| = N for almost all
(A, y) ∈ Rm×N × Rm.

5. Extensions and comparison. This section extends the least sparsity results
to constrained measurement vectors for p > 1, and compares these results with those
from `p minimization for 0 < p ≤ 1; the complex setting is also considered.

5.1. Extensions to constrained measurement vectors and the noisy
case. In the previous sections, we consider general measurement vectors in Rm. How-
ever, in many applications, such as compressed sensing, a measurement vector y is
restricted to a proper subspace of R(A), to which the results in section 4 are not
applicable since this subspace may have dimension less than m so that it has zero
measure in Rm. In what follows, we extend the least sparsity results in section 4
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2744 JINGLAI SHEN AND SEYEDAHMAD MOUSAVI

to this scenario. For simplicity, we consider the generalized basis pursuit BPp (2.1)
with p > 1 only, although its result can be extended to the other problems, e.g.,
the BPDNp, RRp, and ENp; see Remark 5.2 for discussions on the generalized ridge
regression.

Theorem 5.1. Let p > 1, N ≥ 2m− 1, and I ⊆ {1, . . . , N} be a nonempty index
set. Then there exists a set SA ⊂ Rm×N whose complement has zero measure such
that for each fixed A ∈ SA, the unique optimal solution x∗ to the BPp (2.1) satisfies
|supp(x∗)| = N for almost all y ∈ R(A•I).

Proof. For the given p > 1, N,m ∈ N with N ≥ 2m − 1, and the index set I,
we consider two cases: (i) |I| ≥ m and (ii) |I| < m. For the first case, let SA be
the set of all A ∈ Rm×N such that any m ×m submatrix of A is invertible. Clearly,
the complement of SA has zero measure in the space Rm×N . Further, since |I| ≥ m,
R(A•I) = Rm for any A ∈ SA. Hence, by Corollary 4.4, the desired result follows.

We then consider the second case, where |I| < m. Define r := |I| and let S̃A
be the set of all A ∈ Rm×N satisfying the following condition: for any index set J
with |J | = r, the r × r matrix (A•I)T · A•J is invertible. Note that for any index
set J with |J | = r, det((A•I)TA•J ) = 0 gives rise to a polynomial equation of the
elements of A. Hence, we deduce that the complement of S̃A has zero measure in
Rm×N . Further, for any A ∈ S̃A, the columns of A•I must be linearly independent.
Therefore, for any y ∈ R(A•I), there exists a unique zy ∈ Rr such that A•I · zy = y.
This shows that Ax = y in the BPp (2.1) can be equivalently written as[

(A•I)TA•I
]−1 · (A•I)T ·Ax = zy.

Define the r × N matrix Ã := [(A•I)TA•I ]−1(A•I)TA for each A ∈ S̃A. It follows
from the property of A ∈ S̃A that any r × r submatrix of Ã is invertible. Hence, for
any A ∈ S̃A and any y ∈ R(A•I), the original BPp (2.1) is converted to the following
equivalent optimization problem: for a given z ∈ Rr,

(5.1) min
x∈RN

‖x‖p subject to Ãx = z.

For a fixed Ã obtained from a given A ∈ S̃A, by applying Corollary 4.4 to (5.1), we
deduce that |supp(x∗(z))| = N for almost all z ∈ Rr. Since A•I has full column rank,
the same conclusion holds for almost all y ∈ R(A•I).

The following corollary can be easily established with the aid of Theorem 5.1 and
the extension of Proposition 3.1 to (5.1); its proof is thus omitted.

Corollary 5.2. Let p > 1, N ≥ 2m− 1, and 1 ≤ s ≤ N . The following hold:
(i) There exists a set SA ⊂ Rm×N whose complement has zero measure such that

for each fixed A ∈ SA and any index set I with |I| ≤ s, the unique optimal
solution x∗ to the BPp (2.1) satisfies |supp(x∗)| ≥ N −m+1 for any nonzero
y ∈ R(A•I).

(ii) There exists a set ŜA ⊂ Rm×N whose complement has zero measure such

that for each fixed A ∈ ŜA and any index set I with |I| ≤ s, the unique
optimal solution x∗ to the BPp (2.1) satisfies |supp(x∗)| = N for almost all
y ∈ R(A•I).

Remark 5.1. The least sparsity results can be extended to the case in which mea-
surement vectors are polluted by noise or errors. Specifically, consider the measure-
ment vector y = w + e, where w ∈ R(A) and e ∈ Rm denotes noise or an error. It
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follows from Corollary 4.4 that for a given A ∈ Rm×N satisfying a suitable condition
stated in Corollary 4.4 and any given w ∈ R(A), the optimal solution x∗(A,y) to the

BPp (2.1) has full support for almost all e ∈ Rm. For comparison, see relevant re-
sults on robust sparse recovery using `1-norm based basis pursuit denoising [3] and
`p-minimization with 0 < p < 1 [23, 28].

5.2. Comparison with p-norm based optimization with 0 < p ≤ 1.
For a given sparsity level s with 1 ≤ s ≤ N (especially s � N), we call a vector
x ∈ RN s-sparse if |supp(x)| ≤ s. Furthermore, we say that a measurement vector
y is generated by an s-sparse vector if there is an s-sparse vector such that y = Ax.
Using these terminologies, we see that Corollary 5.2 states that when p > 1, for almost
all A ∈ Rm×N with N � max(m, s) and almost all y generated by s-sparse vectors,
the optimal solution x∗ to the BPp (2.1) is far from sparse, i.e., |supp(x∗)| � s.
Equivalently, it means that when p > 1, the BPp (2.1) might recover a sparse vector
x from y = Ax only for a set of A’s of zero measure in Rm×N , no matter how large N
and m are. Moreover, an arbitrarily small perturbation to a measurement matrix A
in this zero measure set will lead to a least sparse solution. This shows the extremely
weak robustness of the BPp (2.1) with p > 1 in terms of solution sparsity.

For comparison, it is interesting to ask what happens to the BPp (2.1) when
0 < p ≤ 1. We show below that when 0 < p ≤ 1, there exists a nonzero measure set
of A’s such that the BPp (2.1) recovers any sparse vector x from y = Ax. This result
also demonstrates the strong robustness of the BPp (2.1) for 0 < p ≤ 1. Toward this
end, recall that an m×N matrix A satisfies the restricted isometry property (RIP) of
order k if there is a constant δk ∈ (0, 1) such that (1−δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1+δk)‖x‖22
for all k-sparse vectors x ∈ RN .

Proposition 5.3. Fix p ∈ (0, 1], γ ∈ (0, 1), and s ∈ N. Suppose m = dγNe.
Then for all N sufficiently large, there exists an open set UA ⊂ Rm×N such that for
any A ∈ UA and any index set I with |I| ≤ s, the optimal solution x∗ to the BPp
(2.1) satisfies |supp(x∗)| = |I| for all y ∈ R(A•I).

Proof. Consider p = 1 first, which corresponds to the `1-optimization based basis
pursuit [14]. For the given constants γ ∈ (0, 1), the sparsity level s, and δ3s ∈ (0, 1/3),
it is known via a random matrix argument that for all N sufficiently large with s� m,
there exists a matrix A� ∈ Rm×N which satisfies the RIP of order 3s with constant
δ3s(A

�) < 1/3 [1, 4]. Hence, the BPp (2.1) recovers any s-sparse vector x exactly
from y = A�x [14, Theorem 6.9] or [4]. Furthermore, in view of |‖Ax‖2 − ‖A�x‖2| ≤
‖A−A�‖2 ·‖x‖2 for any A and x, we see that there exists η > 0 such that δ3s(A) < 1/3
for all A’s with ‖A−A�‖2 < η. Let the open set UA := {A ∈ Rm×N | ‖A−A�‖2 < η}.
This shows that for any A ∈ UA, every s-sparse vector x can be recovered from y = Ax
via the BPp (2.1). Finally, when 0 < p < 1, it follows from [14, Theorem 4.10] that
for any A ∈ UA, the BPp (2.1) recovers any s-sparse vector x from y = Ax.

Remark 5.2. We consider the generalized ridge regression RRp (2.4) and compare
the sparsity property for p > 1 with that for 0 < p < 1. It is shown in [9, Theorem
2.1(2)] that when 0 < p < 1, for any A ∈ Rm×N , y ∈ Rm, and λ > 0, any (lo-
cal/global) optimal solution x∗ to the RRp (2.4) satisfies |supp(x∗)| ≤ m. In contrast,
Theorem 4.5 shows that when p > 1, an optimal solution x∗ to (2.4) has full support,
i.e., |supp(x∗)| = N , for almost all A and y.

5.3. Extension to complex measurement matrices and vectors. This sub-
section extends the previous results for the real setting to the complex setting, i.e.,
(A, y) ∈ Cm×N × Cm. In the latter setting, each of the problems BPp (2.1), BPDNp
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(2.2) and (2.3), RRp (2.4), and ENp (2.5) seeks a complex optimal solution x∗ ∈ CN ,
which is also unique under similar conditions to those stated in Propositions 2.1 and
3.2. Let ı denote the imaginary unit. For a complex matrix A = AR + ıAI ∈ Cm×N
with AR, AI ∈ Rm×N , define the real matrix Ã := [Ã1:2, . . . , Ã2N−1:2N ] ∈ R2m×2N ,
where

Ã2k−1:2k :=

[
(AR)•k −(AI)•k
(AI)•k (AR)•k

]
∈ R2m×2 ∀ k = 1, . . . , N.

Here (AR)•k and (AI)•k denote the kth columns of AR and AI, respectively. For a
complex N -vector x = u+ ıv with u, v ∈ RN , define x̃ := [x̃1:2; . . . ; x̃2N−1:2N ] ∈ R2N ,
where x̃2k−1:2k := (uk, vk)T ∈ R2 for each k = 1, . . . , N . Similarly, we define ỹ ∈ R2m

for y ∈ Cm. Note that supp(x) = {k | x̃2k−1:2k 6= 0} (but supp(x) 6= supp(x̃)). Based
on the definitions of Ã, x̃ and ỹ, the following facts can be easily established:

(i) ‖Ax− y‖22 = ‖Ãx̃− ỹ‖22, and Ax = y if and only if Ãx̃ = ỹ;

(ii) ‖x‖pp =
∑N
k=1 |xk|p =

∑N
k=1(u2k + v2k)p/2 =

∑N
k=1 ‖x̃2k−1:2k‖

p
2; and

(iii) for an index subset I ⊆ {1, . . . , N}, the columns of A•I are linearly inde-
pendent (over the complex field C) if and only if the columns of the matrix
[Ã2k−1:2k]k∈I ∈ R2m×2|I| are linearly independent (over the real field R).

Let p > 1. Define the functions g̃ : R2 → R2 and h̃ : R2 → R2 as follows: for any
z = (z1, z2)T ∈ R2,
(5.2)

g̃(z) :=

{
p · ‖z‖p−22 · z if z 6= 0,
0 if z = 0,

h̃(z) :=

{
1

p1/(p−1) · ‖z‖
2−p
p−1

2 · z if z 6= 0,

0 if z = 0.

These functions are analogous to those defined in (4.1) in the real setting. It is easy to
verify that h̃ is the inverse function of g̃ and that g̃ and h̃ are positively homogeneous of
degree p−1 and 1/(p−1), respectively. Letting f(x̃) :=

∑N
k=1 ‖x̃2k−1:2k‖

p
2, where x̃ =

[x̃1:2; . . . ; x̃2N−1:2N ] ∈ R2N , we have ∇f(x̃) = [g̃(x̃1:2); . . . ; g̃(x̃2N−1:2N )]. Additional

properties of g̃ and h̃ are given in the following lemma.

Lemma 5.4. When p ≥ 2, g̃ is continuously differentiable on R2; when p > 2, its
Jacobian Jg̃(z) is positive definite at any z 6= 0, and Jg̃(0) = 0. When 1 < p ≤ 2, h̃

is continuously differentiable on R2; when 1 < p < 2, its Jacobian Jh̃(z) is positive
definite at any z 6= 0, and Jh̃(0) = 0.

Proof. When p = 2, Jg̃(z) = 2I and Jh̃(z) = I/2 for all z ∈ R2. A straightforward
but lengthy computation shows that (i) when p > 2, Jg̃(0) = 0, and for any z =
(z1, z2)T 6= 0,

Jg̃(z) = p · ‖z‖p−42 ·
[
(p− 1)z21 + z22 (p− 2)z1z2

(p− 2)z1z2 z21 + (p− 1)z22

]
= p · ‖z‖p−22 ·UT diag(p−1, 1)U,

where the orthogonal matrix

U := ‖z‖−12 ·
[
z1 −z2
z2 z1

]
;

and (ii) when 1 < p < 2, Jh̃(0) = 0, and

Jh̃(z) =
1

p
1

p−1

·‖z‖
2−p
p−1−2
2 ·

[
z21
p−1 + z22

2−p
p−1z1z2

2−p
p−1z1z2 z21 +

z22
p−1

]
=

1

p
1

p−1

·‖z‖
2−p
p−1

2 ·UT diag
( 1

p− 1
, 1
)
U
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for any z = (z1, z2)T 6= 0. It follows from the above results that Jg̃(z), Jh̃(z) are
positive definite at any z 6= 0, and g̃, h̃ are continuously differentiable on R2.

Define the following set in Cm×N × Cm with N ≥ m, which is analogous to the
set S defined in (3.1):
(5.3)

SC :=
{

(A, y) ∈ Cm×N×Cm | every m×m submatrix of A is invertible, and y 6= 0
}
.

In many important applications such as compressed sensing, a complex matrix A satis-
fying the condition specified in (5.3) can be obtained by uniformly at random choosing
from a square Fourier matrix of prime order [10] using row-repetition free Bernoulli
selectors or a random subset model [3]. The following result extends Proposition 3.1
to the complex setting.

Proposition 5.5. Let p > 1. For any (A, y) ∈ SC, the following hold:
(i) The minimizer x∗ ∈ CN of the BPp (2.1) satisfies |supp(x∗)| ≥ N −m+ 1.

(ii) If 0 < ε < ‖y‖2, then the minimizer x∗ ∈ CN of the BPDNp (2.2) satisfies
|supp(x∗)| ≥ N −m+ 1.

(iii) For any r > 0, λ1 > 0, and λ2 ≥ 0, each nonzero minimizer x∗ ∈ CN of the
ENp (2.5) satisfies |supp(x∗)| ≥ N −m+ 1.

(iv) For any λ > 0, the minimizer x∗ ∈ CN of the RRp (2.4) satisfies |supp(x∗)| ≥
N −m+ 1.

(v) If 0 < η < minAx=y ‖x‖p, then the unique minimizer x∗ of (2.3) satisfies
|supp(x∗)| ≥ N −m+ 1.

Proof. For each (A, y) ∈ SC, let (Ã, ỹ) ∈ R2m×2N × R2m be defined as be-
fore, where Ã = [Ã1:2, . . . , Ã2N−1:2N ]. Hence, ỹ 6= 0, and [Ã2k−1:2k]k∈I is invert-
ible for any index set I with |I| = m. For any x ∈ CN satisfying Ax = y,
x̃ = [x̃1:2; . . . ; x̃2N−1:2N ] ∈ R2N satisfies Ãx̃ = ỹ and supp(x) = {k | x̃2k−1:2k 6= 0}.
Recall that f(x̃) =

∑N
k=1 ‖x̃2k−1:2k‖

p
2 = ‖x‖pp. We sketch the proofs for (i)–(v) as

follows.
(i) The vector x̃∗ ∈ R2N associated with the unique nonzero minimizer x∗ ∈ CN

of the BPp (2.1) satisfies the KKT condition: ∇f(x̃∗)− ÃT ν = 0 and Ãx̃∗ = ỹ, where
ν ∈ R2m is the Lagrange multiplier, and ∇f(x̃∗) = [g̃(x̃∗1:2); . . . ; g̃(x̃∗2N−1:2N )] with g̃
defined in (5.2). Suppose x∗ has at least m nonzero elements. Then there exists an
index set I with |I| = m such that x̃∗2k−1:2k = 0 for each k ∈ I. By the properties of g̃,
we have g̃(x̃∗2k−1:2k) = 0 for all k ∈ I. Since [Ã2k−1:2k]k∈I is invertible, it follows from
the KKT condition that ν = 0 so that ∇f(x̃∗) = 0. Therefore, x̃∗ = 0 or equivalently
x∗ = 0, which is a contradiction.

(ii) Define θ(x̃) := ‖Ãx̃−ỹ‖22−ε2 for any x̃ ∈ R2N associated with x ∈ CN . Hence,
θ(x̃) = ‖Ax− y‖22 − ε2. By a similar argument to that for (ii) of Proposition 3.1, we
deduce that the vector x̃∗ ∈ R2N associated with the unique nonzero minimizer x∗ ∈
CN of the BPDNp (2.2) satisfies the KKT condition: ∇f(x̃∗) +µ∇θ(x̃∗) = 0 and 0 ≤
µ ⊥ θ(x̃∗) ≥ 0, where the multiplier µ > 0. It follows from ∇θ(x̃∗) = 2ÃT (Ãx̃∗ − ỹ)
and a similar argument to that for (ii) of Proposition 3.1 that |supp(x∗)| ≥ N−m+1.

(iii) For an arbitrary r > 0, we have ‖x‖rp = [f(x̃)]r/p. Hence, the ENp (2.5) is

equivalent to minx̃∈R2N
1
2‖Ãx̃− ỹ‖

2
2 + λ1[f(x̃)]r/p + λ2‖x̃‖22. For a nonzero minimizer

x∗, its corresponding x̃∗ is also nonzero and satisfies the optimality condition:

ÃT (Ãx̃∗ − ỹ) + λ1(r/p)[f(x̃∗)](r−p)/p∇f(x̃∗) + 2λ2x̃
∗ = 0.
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Applying a similar argument to that for (iv) of Proposition 3.1 leads to |supp(x∗)| ≥
N −m+ 1.

(iv), (v) These proofs are omitted as they resemble those for case (ii) and Propo-
sition 3.2, respectively.

Theorem 5.6. Let p > 1. The following hold for almost all (A, y) ∈ Cm×N×Cm.
(i) Let N ≥ 2m − 1. The unique minimizer x∗ ∈ CN of the BPp (2.1) satisfies
|supp(x∗)| = N .

(ii) Let N ≥ m and λ > 0. The unique minimizer x∗ ∈ CN of the RRp (2.4)
satisfies |supp(x∗)| = N .

(iii) Let N ≥ m. If y 6= 0 and 0 < ε < ‖y‖2, then the unique minimizer x∗ ∈ CN
of the BPDNp (2.2) satisfies |supp(x∗)| = N .

(iv) Let N ≥ m, r ≥ 1, and λ1, λ2 > 0. The unique minimizer x∗ ∈ CN of the
ENp (2.5) satisfies |supp(x∗)| = N .

(v) Let N ≥ m. If y ∈ R(A) and 0 < η < minAx=y ‖x‖p, then the unique
minimizer x∗ ∈ CN of (2.3) satisfies |supp(x∗)| = N .

Proof. Letting ỹ ∈ R2m be the unique correspondence of y ∈ Cm defined before,
we define the set S := {(AR, AI, ỹ) | (AR + ıAI, y) ∈ SC}. Clearly, S is open and its
complement has zero measure in Rm×N ×Rm×N ×R2m. For any A = AR + ıAI given
from SC, we write Ã(AR, AI) as Ã to simplify notation when the context is clear. For
any (unique) minimizer x∗ ∈ CN associated with (A, y) ∈ SC in each problem, let

J := {k |x∗k 6= 0} = {k | x̃∗2k−1:2k 6= 0} ⊆ {1, . . . , N},

and define I := {2k − 1, 2k | k ∈ J c}. Partition Ã as Ã = [Ã1 Ã2], where Ã1 :=
[Ã2k−1:2k]k∈J c and Ã2 := [Ã2k−1:2k]k∈J . Note that Ã has full row rank and |J c| ≤
m− 1 by Proposition 5.5. Hence, the columns of A•J c are linearly independent, and
so are the columns of Ã1.

(i) Consider p > 2 first. For any (AR, AI, ỹ) ∈ S, (x̃∗, ν∗) ∈ R2N × R2m is
a unique solution to the equation F (x̃, ν, AR, AI, ỹ) := [∇f(x̃) − ÃT ν; Ãx̃ − ỹ] =
0. Let Λ(x̃∗) := diag(Jg̃(x̃∗1:2), . . . ,Jg̃(x̃∗2N−1:2N )) = diag(Λ1,Λ2), where Λ1 :=
diag(Jg̃(x̃∗2k−1:2k))k∈J c = 0, Λ2 := diag(Jg̃(x̃∗2k−1:2k))k∈J , and Jg̃(x̃∗2k−1:2k) is posi-
tive definite for any k ∈ J . Using this result, we can show J(x̃,ν)F (x̃∗, ν∗, AR, AI, ỹ)
is invertible and x̃∗(AR, AI, ỹ) is a local C1 function. Following a similar argument to
that for Proposition 4.1, it can be further shown that for any i ∈ I, ∇ỹ x̃∗i (AR, AI, ỹ)
is nonzero. This yields the desired result.

Consider 1 < p ≤ 2. In this case, x̃∗2k−1:2k = h̃(ÃT2k−1:2kν) for each k =
1, . . . , N , where the multiplier ν ∈ R2m satisfies the equation F (ν,AR, AI, ỹ) :=∑N
k=1 Ã2k−1:2k · h̃(ÃT2k−1:2kν) − ỹ = 0. Then Q := JνF (ν,AR, AI, ỹ) = ÃΘÃT ,

where Θ := diag(Jh̃(ÃT1:2ν), . . . ,Jh̃(ÃT2N−1:2Nν)), and Ã has full row rank. When
p = 2, Θ = I/2 so that Q is positive definite. When 1 < p < 2, we have wTQw =∑N
k=1(ÃT2k−1:2kw)T ·Jh̃(ÃT2k−1:2kν)·(ÃT2k−1:2kw) for any w ∈ R2m. By Lemma 5.4, the

property of S, and a similar argument for Proposition 4.2, we see that Q is positive
definite for 1 < p < 2. Since each column of A from the set SC is nonzero, each column
of Ã is also nonzero. This, along with a similar argument for Proposition 4.2, shows
that ∇ỹÃT•iν(AR, AI, ỹ) = ÃT•iQ

−1 6= 0 for each i = 1, . . . , 2N at any (AR, AI, ỹ) ∈ S.

In light of sgn(x̃∗i ) = sgn(ÃT•iν) for each i = 1, . . . , 2N , the desired result follows.
(ii) Consider p > 2. The vector x̃∗ ∈ R2N associated with the unique minimizer

x∗ ∈ CN satisfies the equation F (x̃, AR, AI, ỹ) := λ∇f(x̃) + ÃT (Ã − ỹ) = 0, where

Jx̃F (x̃, AR, AI, ỹ) = λD(x̃) + ÃT Ã, and D(x̃) is a block diagonal matrix. Partition

D
ow

nl
oa

de
d 

11
/0

7/
18

 to
 1

30
.8

5.
19

3.
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEAST SPARSITY OF p-NORM OPTIMIZATION 2749

D(x̃) = diag(D1, D2) as before, where D1 = 0, D2 is positive definite, and Ã1 has
full column rank. Using these results and a similar argument to that for case (i) in
Theorem 4.5, we have that Jx̃F (x̃∗, AR, AI, ỹ) is positive definite and each row of
∇ỹ x̃∗I(AR, AI, ỹ) is nonzero at any (AR, AI, ỹ) ∈ S. The case in which 1 < p ≤ 2 can
be shown via a similar but lengthy computation and is thus omitted.

(iii) Consider p ≥ 2 first. For any (AR, AI, ỹ) ∈ S, (x̃∗, µ∗) ∈ R2N ×R is a unique
solution to the equation

F (x̃, µ,AR, AI, ỹ) := [∇f(x̃) + 2µÃT (Ãx̃− ỹ); ‖Ãx̃− ỹ‖22 − ε] = 0,

where µ∗ > 0. It can be shown that J(x̃,µ)F (x̃, µ,AR, AI, ỹ) is invertible and each row
of ∇ỹ x̃∗I(AR, AI, ỹ) is nonzero at each (AR, AI, ỹ) ∈ S. When 1 < p < 2, it can be
shown via a similar argument to that for Proposition 4.8 that x̃∗(AR, AI, ỹ) is a local

C1 function. Further, using ÃT1 (Ãx̃∗− ỹ) = 0, ÃT2 (Ãx̃∗− ỹ) 6= 0, and each Ã•i 6= 0, it
can be shown that for any i ∈ I, we have ∇ỹ qi(AR, AI, ỹ) 6= 0, where qi(AR, AI, ỹ) :=
ÃT•i(ỹ − Ã · x̃∗(Ã, ỹ)). In light of sgn(x̃∗i (AR, AI, ỹ)) = sgn(qi(AR, AI, ỹ)) for each
i = 1, . . . , 2N , the desired result follows.

(iv), (v) These proofs are omitted as they are similar to those for Theorems 4.6
and 4.10, respectively.

The extension of Theorem 5.1 and Corollary 5.2 to the complex setting can be
made similarly.

6. Conclusions. This paper provides an in-depth study of sparse properties of
a wide range of p-norm based optimization problems with p > 1 generalized from
sparse optimization and other related areas. By applying optimization and matrix
analysis techniques, we show that optimal solutions to these generalized problems
are the least sparse for almost all measurement matrices and measurement vectors.
We also compare these problems with those when 0 < p ≤ 1. This paper not only
gives a formal justification of the usage of `p-optimization with 0 < p ≤ 1 for sparse
optimization but it also offers a quantitative characterization of the adverse sparse
properties of `p-optimization with p > 1. These results will shed light on analysis and
computation of general p-norm based optimization problems. Future research includes
the compressibility of `p minimization with p > 1 and extensions to matrix norm
based optimization problems. Our preliminary results show the poor compressibility
for p > 1; a further study of this property will be reported in a future work.

7. Appendix. We show that the function ‖ · ‖pp with p > 1 is strictly convex.

Proof. Let p > 1. By the Minkowski inequality, we have ‖x+ y‖p ≤ ‖x‖p + ‖y‖p
for all x, y ∈ RN , and the equality holds if and only if y = µx for µ ≥ 0. For any
x, y ∈ RN with x 6= y and any λ ∈ (0, 1), consider two cases: (i) y = µx for some
µ ≥ 0 with µ 6= 1, (ii) otherwise. For case (i),

‖λx+ (1− λ)y‖pp = ‖λx+ (1− λ)µx‖pp
= [1 · λ+ µ · (1− λ)]p · ‖x‖pp
< [λ+ µp(1− λ)]‖x‖pp
= λ‖x‖pp + (1− λ)‖y‖pp,

where we use the fact that |x|p is strictly convex on R+. For case (ii), we have
‖λx+ (1− λ)y‖pp <

(
λ‖x‖p + (1− λ)‖y‖p

)p ≤ λ‖x‖pp + (1− λ)‖y‖pp. This shows that

‖ · ‖pp is strictly convex. This result can be easily extended to CN .
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