
This work is on a Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC
3.0) license, https://creativecommons.org/licenses/by-nc/3.0/. Access to this work was
provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC
digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository
by emailing scholarworks-group@umbc.edu and telling
us
what having access to this work means to you and why
it’s important to you. Thank you.

https://creativecommons.org/licenses/by/4.0/
mailto:scholarworks-group@umbc.edu

8 The Open Virtual Reality Journal, 2009, 1, 8-17

 1875-323X/09 2009 Bentham Open

Open Access

A Review of Spatial Sound for Virtual Environments and Games with
Graphics Processing Units

Foad Hamidi
1
 and Bill Kapralos*

,2

1
Department of Computer Science and Engineering, York University, 4700 Keele Street North, Toronto, Ontario, Can-

ada, M3J 1P3;
2
Faculty of Business and Information Technology, University of Ontario Institute of Technology, 2000

Simcoe Street North, Oshawa, Ontario, Canada, L1H 7K4

Abstract: The generation of spatial audio and audio processing in general using traditional software-based methods and

techniques is computationally prohibitive thereby limiting the number of, and type of auditory effects that can be incorpo-

rated into applications. In contrast to consumer-grade audio cards, the graphics processing units (GPUs) of video cards

have moved away from the traditional fixed-function 3D graphics pipeline towards a flexible general-purpose computa-

tional engine that can currently implement many parallel algorithms directly using the graphics hardware resulting in tre-

mendous computational speed-ups. Various spatial audio applications are well suited for GPU-based processing providing

developers of virtual environments and games with the possibility of incorporating real-time, spatial audio into their simu-

lations. This paper presents an overview of the research efforts that have utilized the GPU for the implementation of spa-

tial sound for virtual environments and games. Approaches to GPU-based spatial sound are summarized and their advan-

tages and disadvantages are presented.

Keywords: Graphics processing unit (GPU), spatial sound, real-time, virtual reality, virtual environment, video games.

1. INTRODUCTION

 A virtual (or three-dimensional (3D), or spatial) audio
system (or audio display) allows a listener to perceive the
position of a sound source(s), emanating from a static num-
ber of stationary loudspeakers or a pair of headphones, as
coming from arbitrary locations in three-dimensional space.
Spatial sound technology goes far beyond traditional stereo
and surround sound techniques by allowing a virtual sound
source to have such attributes as left-right, back-forth, and
up-down [1]. Incorporating spatialized auditory information
in an immersive virtual environment and video games is
beneficial for a variety of reasons. Spatial auditory cues can
add a better sense of “presence” or “immersion”, compensate
for poor visual cues (graphics), and at the very least, add a
“pleasing quality” to the simulation [2, 3]. Despite these
benefits and despite the fact that spatial sound is a critical
cue to the perception of our environment, it is often over-
looked in immersive virtual environments and video games
where, historically, emphasis has been placed on the visual
senses [1, 4]. That being said, the generation of spatial sound
for dynamic, and interactive virtual environments using tra-
ditional software-based methods and techniques is computa-
tionally very expensive except for trivial environments
which are typically of little use.

 Driven by the gaming industry, consumer computer
graphics hardware has greatly advanced in recent years, out

*Address correspondence to this author at the Faculty of Business and In-

formation Technology, University of Ontario Institute of Technology, 2000

Simcoe Street North, Oshawa, Ontario, Canada, L1H 7K4;

Email: bill.kapralos@uoit.ca

performing the computational capacity of central processing
units (CPUs). A graphics processing unit (GPU) is a dedi-
cated graphics rendering device whose purpose is to provide
a high performance, visually rich, interactive 3D experience
by exploiting the inherent parallelism in the feed-forward
graphics pipeline [5]. In contrast to the processors on-board
consumer-grade audio cards, the GPUs available on all mod-
ern video cards have moved away from the traditional fixed-
function 3D graphics pipeline towards a flexible general-
purpose computational engine that can currently implement
many parallel algorithms directly using graphics hardware.
This results in tremendous computational speed-ups. Due to
a number of reasons including the explosion of the consumer
video game market and advances in manufacturing technol-
ogy, GPUs are, on a dollar-per-dollar basis, the most power-
ful computational hardware, providing “tremendous memory
bandwidth and computational horsepower” [6]. GPUs are
also becoming faster and more powerful very quickly, far
exceeding Moore’s Law applied to traditional microproces-
sors [7]. In fact, instead of doubling every 18 months as with
CPUs, GPU performance increases by a factor of five every
18 months or doubles every eight months [8]. In contrast to
older GPUs that contained a fixed-function pipeline with
output limited to 8-bits-per-color-channel, current GPUs
include fully programmable processing units which support
vectorized floating point operations [6]. As a result, a num-
ber of high level languages have been introduced to allow for
the control of vertex and pixel pipelines [9].

 Given the typically large computational requirements
associated with spatial sound generation and audio process-
ing in general, the GPU is an economical and computation-
ally feasible alternative to traditional software-based meth-

GPU-Based Spatial Sound The Open Virtually Reality Journal, 2009, Volume 1 9

ods and techniques. With respect to the potential computa-
tional efficiencies that GPUs offer and their applicability to
audio processing, this paper reviews the research efforts that
have examined the application of the GPU to the generation
of spatial sound and audio processing for virtual environ-
ments and video games. Various approaches will be summa-
rized and in the process of doing so, advantages, disadvan-
tages, limitations, drawbacks, and trade-offs will be pre-
sented. Being an overview, this paper does not introduce any
new research results. Rather, it presents a general review of
GPU-based spatial sound and audio processing compiling
the relevant information available from a variety of sources,
providing the reader with a summary of the technological
literature relevant to the creation of spatial sound using the
GPU. The foundation of spatial sound rests on the ability to
control the auditory signals arriving at the listener’s ears
such that these signals are perceptually equivalent to the sig-
nals the listener would receive in the environment being
simulated [10]. However, a review of human auditory per-
ception is beyond the scope of this work (an excellent over-
view of human auditory perception is available in [11]).
Similarly, a complete overview of spatial sound will not be
described here but a recent review is available in [12].

1.1. Paper Organization

 The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief introduction and background informa-
tion to graphic processing units (GPUs). A brief description
of general purpose GPU or GPGPU whereby the GPU is
applied to non-graphics applications, is also provided with
an emphasis on general audio-based methods and techniques.
Section 3 begins with an introduction to auralization fol-
lowed by various research efforts that have applied GPU
technology to auralization and more specifically, to the gen-
eration of spatial sound. Finally, concluding remarks and
possible future directions of GPU-based spatial sound tech-
nology are discussed in Section 4.

2. BACKGROUND

 In computer graphics, rendering is accomplished using a
graphics pipeline architecture whereby rendering of objects
to the display is performed in stages and each stage is im-
plemented as a separate piece of hardware. The input to the
pipeline is a list of vertices expressed in object space while
the output is an image in the framebuffer. The stages of the
pipeline and their operation are as follows (see also Fig. 1)
[6]:

 Vertex Stage i) Transformation of each (object space)
vertex into screen space, ii) formation of triangles from the
vertices, and iii) per-vertex lighting calculations.

 Rasterization Stage i) Determination of the screen posi-
tion covered by each of the triangles formed in the previous
stage, and ii) interpolation of vertex parameters across the
triangle.

 Fragment Stage Calculation of the color for each frag-
ment output in the previous stage. Often, the color values
come from textures which are stored in texture memory.
Here the appropriate texture address is generated and the
corresponding value is fetched and used to compute the
fragment color.

 Composition Stage Pixel values are determined from the
fragments.

 In contrast to the “traditional” fixed-function pipelines
with “modern” (programmable) GPUs, both the vertex and
fragment stages are user-programmable. Programs written to
control the vertex stage are known as vertex programs or
vertex shaders while programs written to control the frag-
ment stage are known as fragment programs or fragment
shaders. Early on, these programs were written in assembly
language. However, higher level languages have been intro-
duced, including Microsoft’s high level shading language
(HLSL), OpenGL shading language (GLSL) [13], NVIDIA’s
compute unified device architecture (CUDA), and NVIDIA’s
Cg [14]. Generally, the input to both of these programmable
stages is four-element vectors where each element represents
a 32-bit floating point number. The vertex stage will output a
limited number of 32-bit, four element vectors while the
fragment stage will output a maximum of four floating point,
four element vectors that typically represent color. The
fragment stage is capable of fetching data from texture
memory (i.e., perform memory gather) but cannot alter the
address of its output which is determined before processing
of the fragment begins (i.e., incapable of memory scatter). In
contrast, within the vertex stage, the position of input verti-
ces can be altered, thus affecting where the image pixels will
be drawn (i.e., the vertex stage supports both memory gather
and memory scatter) [6]. In addition to vertex and fragment
shaders, Shader Model 4.0 currently supported by Direct3D
10 and OpenGL 3.0 defines a new type of shader, the ge-
ometry shader. A geometry shader receives input from the
vertex shader, can be used to create new geometry and is
capable of operating on entire primitives [15].

 In order to take advantage of the power inherent in GPUs
in addition to their relatively low cost, recently, a number of
efforts have investigated the use of GPUs to a variety of non-
computer graphics applications. Collectively, this effort is
known as “general purpose computing on the GPU”
(GPGPU) and given the flexibility of GPUs, has led to a
number of GPU-based applications, outside the scope for
which GPUs were originally designed for [6]. Examples in-
clude solving differential equations and general linear alge-
bra problems [6], applications in computer vision [17], im-
age processing [18], implementation of fast Fourier trans-
form [9], the simulation of dynamic phenomena described by
partial differential equations (e.g., boiling, convection, and
chemical reaction diffusion) [19], database and data mining
[20, 21], and audio processing. That being said, currently

Fig. (1). The traditional computer graphics pipeline. Rendering is

divided into a number of stages and each stage is implemented as a

separate piece of hardware. Reprinted from [16].

������
��		��

����
��		��

������

������
���������

����������
�������
���������

10 The Open Virtual Reality Journal, 2009, Volume 1 Hamidi and Kapralos

GPUs do not support integers and associated operations in-
cluding bit-wise logical operations making them ill-suited
for a operations requiring such features (e.g., cryptography).
A thorough review including a detailed summary of
GPGPU-based applications is provided by Owens et al. [6]
and will therefore not be provided here.

2.1. GPU-based Sound Processing

 GPUs have also been applied to a wide variety of audio-
based applications. Von Tycowicz and Loviscach [22] de-
scribe the implementation of a flexible virtual drum that is
simulated in real-time and with low latency on the GPU. The
drum is modeled using a 64 64 mesh where each point is
connected to neighbor points with springs and dampers. Us-
ing the GPU has allowed the resolution of the mesh to be
increased. The user can modify the shape of the drum in real-
time. A MIDI controller with 16 pressure points is used for
pressure recognition and a finite difference method is em-
ployed to synthesize sound based on location and pressure
information.

 Matsuyama et al. [23], describe a method for the auto-
matic generation of real-time sound for graphics-based ani-
mation of sparks to simulate thunder and lighting effects.
The implementation also makes use of GPU-based numerical
methods introduced by Kruger and Westermann [24].

 There have been a number of efforts to utilize the GPU
for the implementation of a variety of digital signal process-
ing methods and techniques motivated by the fact that most
DSP functions are suitable for GPU-based processing (i.e.,
they are parallelizable, are highly arithmetic intense, have
limited data dependency, and make use of multiply-add
(MADD) calculation units that are part of the GPU architec-
ture). Using the Cg shading language, Whalen [25] imple-
ments seven common audio functions: chorus, compress,
delay, high-pass filter, low-pass filter, noise-gate and nor-
malization. A performance comparison was made between
the GPU and corresponding CPU implementation using a
Pentium IV (3.0 GHz CPU) and an NVIDIA GeForce FX
5200 video card. The GPU showed better performance for
several of the functions (compress and chorus with speedups
of up to a factor of four). However, the CPU implementation
was better for other functions (high-pass and low-pass
filters). It was suggested that GPU performance was poorer
for some algorithms given the implementation of these algo-
rithms was not suitable for GPU implementation given that
they required (computationally expensive) texture access.
With more modern video cards, texture access has been im-
proved and this will undoubtedly lead to greater improve-
ments in these methods. Trebien and Oliveira [26] propose a
GPU-based method for real-time sound generation and mul-
tichannel audio processing to be used in live music perform-
ances. The motivation behind the approach comes from the
observation that many DSP units include several independ-
ent units that work in parallel. They mapped a network
model of virtually interconnected software modules to the
GPU graphics pipeline. In their design, audio blocks are
stored in texture memory and are passed between modules as
texture coordinates. An audio sample corresponds to a frag-
ment with its amplitude stored as a luminance value. Since
GPU memory access is restricted, they use multi-pass access
to implement a “ping-pong” model whereby a register is

write-only in one pass and becomes read-only in the next
pass. Using this approach, several common audio algorithms
such as additive synthesis (used to generate new sound
waves from sinusoids), sawtooth, square or triangular waves,
feedback delay, gain, and envelope shaping (a variant of
amplitude modulation that scales each sample by a fast vary-
ing factor) were implemented. The system was tested on a
computer with an AMD 2.21GHz CPU and an NVIDIA Ge-
Force 8800 GTX video card. The GPU showed speed-ups of
up to four orders of magnitude (17,641) over a CPU im-
plementation. It is suggested that in the future, additional
algorithms that implement various filters and frequency
modulation can be developed using this approach.

 Gallo and Tsingos [27] considered the application of
GPUs to variable delay-line (delaying the signal of each
sound source by the propagation time of the sound wave)
and filtering (filtering the audio signal to simulate directivity
functions, occlusions, and interaction with the medium of
propagation). Variable delay line and filtering are two com-
mon spatial audio processing operations [27]. Delaying the
signal involved re-sampling the signal at non-integer index
values and was performed on the GPU using texture re-
sampling. Filtering was performed using a four-band equal-
izer and implemented on the GPU using a four-component
dot-product. Sound signals were stored as RGBA textures
where each of the components held a band-pass copy of the
original signal. Experimental results indicated a performance
increase associated with the GPU-based implementation
when compared to optimized software implementations on a
standard CPU. Despite the promising results, their work also
showed that there are still a number of shortcomings that
limit the efficient use of GPU processors for “mainstream”
audio processing. In particular, long 1D textures cannot be
accessed easily, and infinite impulse response filters (com-
monly used in audio processing) cannot be implemented
efficiently. The scheme was implemented on a Pentium IV
1.8 GHz CPU and an ATI Radeon 5700 graphics card. Each
sound event was a three sub-band monaural signal at 44.1
kHz and was processed in blocks of 1024 samples. A scene
with approximately 70,000 polygons was rendered concur-
rently with audio. One shortcoming of the implementation is
that since each cluster’s signals are premixed, bus traffic is
increased. Also, because the GPU only supported 8-bit mix-
ing as opposed to the CPU’s 32-bit support, the quality of the
GPU rendered signal was not as good as the signal processed
on the CPU. However, the processing required 38% of the
CPU’s processing time. Without the use of the GPU, the
scheme can render 50 to 60 sources while using the GPU
allows for rendering of more than 160 sources possible.

 Modal synthesis is a physically-based audio synthesis
method to model sounds made by objects through a bank of
damped harmonic oscillators that are excited by an external
stimulus [28]. Zhang et al. [29] present a two-phase GPU-
based modal synthesis method based on a bank of damped
harmonic oscillators that are excited by an external stimulus
to model a vibrating object. Two sets of factors affect the
system: i) static factors, which are independent of interaction
and include geometry and material properties, and ii) dy-
namic factors, which depend on the interaction and include
contact location and external force. The first set of factors
are taken into account during a pre-computation stage and
the second set are incorporated during run-time. Each of the

GPU-Based Spatial Sound The Open Virtually Reality Journal, 2009, Volume 1 11

modes is precalculated in parallel and stored in 2D textures
for runtime retrieval. 10-30 sampling contact locations are
employed for common objects. In the first step, the response
for each individual mode for all sounding objects is calcu-
lated and is implemented as a dot product between two vec-
tors (performed efficiently on the GPU). The second step
involves summarizing the responses from the objects; it is
essentially a reduction operation that is implemented as a
multi-pass “ping-pong” process. For a texture with N N
resolution, log2 2N rendering passes are performed until the
final sum is obtained in a single pixel. Some experimental
results are presented but the experiments were restricted to a
maximum of 5000 modes due to hardware restrictions
(Pentium IV 2.8 GHz CPU and an NVIDIA GeForce 6800
GT video card). Although performance was not ideal, it is
suggested that this is due to the slow AGP memory bus of
the 6800 GT video card and results will improve by employ-
ing a video card that employs a PCI-Express bus.

3. GPU-BASED AURALIZATION

 Kleiner, Dalenbäck, & Svensson [30] define auralization
as “the process of rendering audible, by physical or mathe-
matical modeling, the sound field of a source in space in
such a way as to simulate the binaural listening experience at
a given position in the modeled space”. The goal of auraliza-
tion is to recreate a particular listening environment taking
into account the environmental acoustics (i.e., the “room
acoustics”) and the listener’s characteristics. Auralization is
typically defined in terms of the binaural room impulse re-
sponse (BRIR). The BRIR represents the response of a par-
ticular acoustical environment and human listener to sound
energy and captures the room acoustics for a particular
sound source and listener configuration. The recorded re-
sponse then forms the basis of a filter that is used to process
source sound material (anechoic or synthesized sound) via a
convolution operation before presenting it to the listener.
When the listener is presented with this filtered sound, the
direct and reflected sounds of the environment are repro-
duced in addition to directional filtering effects introduced
by the original listener [31].

 Although interlinked, for simplicity and reasons of prac-
ticality, the room response and the response of the human
receiver are commonly determined separately and combined
via a post-processing operation to provide an approximation
to the actual BRIR [30]. The response of the room is known
as the room impulse response (RIR) and captures the
reflection properties (reverberation), diffraction, refraction,
sound attenuation, and absorption properties of a particular
room configuration (i.e., the “room acoustics”). The response
of the human receiver captures the direction dependent ef-
fects introduced by the listener due to the listener’s physical
make-up (e.g., pinna, head, shoulders, neck, and torso) and is
known as the head related transfer function (HRTF). HRTFs
encompass various sound localization cues including inte-
raural time differences (ITDs), interaural level differences
(ILDs), and the changes in the spectral shape of the sound
reaching a listener. The HRTF modifies the spectrum and
timing of sound signals reaching each ear in a location-
dependent manner [32]. The process of collecting a set of
individualized HRTFs is an extremely difficult, time con-
suming, tedious, and delicate process requiring the use of
special equipment and environments such as an anechoic

chamber. Although the HRTF of individuals can vary
greatly, it is impractical to use individualized HRTFs and as
a result, generalized (or generic) non-individualized HRTFs
are often used instead. Non-individualized HRTFs can be
obtained using a variety of methods such as measuring the
HRTFs of an anthropomorphic “dummy” head, or of an
above average human localizer or averaging the HRTFs
measured from several different individuals (and/or “dummy
heads”). Several non-individualized HRTF datasets are
freely available [33-36] (see [12] for greater details regard-
ing the problems associated with non-individualized
HRTFs).

 The output of the methods used to determine the HRTF
and the RIR is typically a transfer function which forms the
basis of a filter that can be used to modulate source sound
material (i.e., anechoic or synthesized sound) via a convolu-
tion operation which is still primarily performed in software
in the time domain. When the filtered sounds are presented
to the listener, in the case of HRTFs, they create the impres-
sion of a sound source located at the corresponding HRTF
measurement position while when considering the RIR, the
filtered sounds recreate a particular acoustic environment.
However, convolution is a computationally expensive opera-
tion especially when considering the long filters associated
with HRTFs and RIRs (filters with 512 coefficients are not
uncommon) thus limiting their use to non-real-time applica-
tions. Performance improvements can be made by perform-
ing the convolution operation in the frequency domain [37].
In order to accomplish this, the input and filters must be con-
verted to their frequency domain representation using the
fast Fourier transform; a time consuming process when per-
formed in software making it impractical for real-time, inter-
active use. Recent work in image processing has established
a GPU-based convolution method capable of performing a
two-dimensional convolution operation in real-time [38, 39].
In addition to software-based convolution methods, pro-
grammable DSP cards are available which allow for hard-
ware-based convolution thus greatly improving performance.
However, these cards are very specialized and typically only
available to product developers and not the general consumer
[27].

 Cowan and Kapralos presented a GPU-based convolution
method using the OpenGL shading language (GLSL) [40,
41]. A comparison of the computational running time re-
quirements for both the conventional (software-based) and
GPU-based convolution method was made by measuring the
computational time requirements when convolving a partic-
ular input signal with an HRTF using two video cards
(GPUs) for further comparisons: the NVIDIA GTX 8800 and
the NVIDIA GTX 280 which supports double precision
floating point operations. Both video cards supported real-
time convolution for an input signal whose size ranged from
5,000 to 60,000 and a filter containing 200 samples; ap-
proximately four and two milliseconds (including any re-
quired CPU processing time) for the GTX 8800 and the GTX
280 respectively, in contrast to the software-based method
whose computational requirements increased linearly with
increasing input size (ranging from approximately 4 to 25
ms). With a constant running time of 2 ms for the convolu-
tion operation (the NVIDIA GTX 280 video card), realistic
spatial auditory cues can be incorporated into video games
and virtual environments in real-time.

12 The Open Virtual Reality Journal, 2009, Volume 1 Hamidi and Kapralos

 Rather than using measured HRTFs (individualized or
non-individualized), Röber [42] et al. describe an alternative
approach whereby the HRTF is modeled using GPU-based
ray tracing techniques using a 3D mesh model of the upper
torso including the pinna. The HRTFs are approximated by
simulating an impulse response that is recorded by a semi-
spherical surface placed inside the ear canal of the model.
The 3D mesh can be changed easily making the method suit-
able for measuring individual HRTFs. The sound source is
approximated by a point light and the microphone is repre-
sented by a hemispherical camera surface. To simplify com-
putation, the algorithm is applied to high frequencies only,
since high frequencies hold important spatialization cues.
The lower frequencies usually bend around the head and are
not as important for spatialization and therefore are ap-
proximated by amplitude and time shifts. Verification of the
method with human participants is required to compare the
resulting HRTFs with existing non-individualized HRTFs
given the assumptions made (e.g., ignoring the lower fre-
quencies).

3.1. GPU-Based Acoustical Modeling - Modeling the RIR

 There are two major approaches to computationally mod-
eling the RIR i) wave-based modeling where numerical solu-
tions to the wave equation are used to compute the RIR, and
ii) geometric modeling where sound is approximated as a ray
phenomenon and traced through the scene to construct the
RIR.

3.1.1. Wave-Based Modeling

 The objective of wave-based methods is to solve the
wave equation (also known as the Helmholtz-Kirchoff equa-
tion [43]), to recreate the RIR that models a particular sound
field. An analytical solution to the wave equation is rarely
feasible hence wave-based methods use numerical approxi-
mations such as finite element methods, boundary element
methods, and finite difference time domain methods instead
[44]. Numerical approximations sub-divide the boundaries of
a room into smaller elements (see Fig. 2).

 By assuming that the pressure at each of these elements
is a linear combination of a finite number of basis functions,
the boundary integral form of the wave equation can be
solved [43]. The acoustical radiosity method, a modified
version of the image synthesis radiosity technique, is an ex-

ample of such an approach [46, 47]. The numerical approxi-
mations associated with wave-based methods are computa-
tionally prohibitive making the use of traditional software-
based methods impractical except for the simplest static en-
vironments. Aside from basic or simple environments, such
techniques are currently beyond our computational ability
for real-time, interactive virtual environment and video game
applications.

 That being said, the processing power inherent in GPUs
has been exploited in a number of wave-based methods.
Röber et al. present a (low-frequency) wave-based acoustical
modeling method that made use of the GPU and in particu-
lar, fragment shaders, 3D textures, and the OpenGL frame-
buffer objects extension, in order to take advantage of the
inherent parallelism of wave-based solutions to acoustical
modeling [48]. The one-dimensional mesh is extended by
constructing a digital mesh from bi-linear delay lines that
connect junctions that act as temporal and spatial sampling
points. The programmable vertex shader is used to imple-
ment computations on a per vertex basis on a 3D space and
the fragment shader is used to compute the final pixel color.
Waveguide node data is stored in three buffers that are com-
bined into one RGB texture with the data stored in the red
and blue components and the geometry and boundary coeffi-
cients in the green channel. During each time frame, the
fragment shader computes the difference equations for each
node in the mesh and stores the result in the buffer. They
have used a body centered cubic grid (BCC) which is an
hexagonal lattice that requires only 70% of the sampling
points compared to the usual rectilinear grid which is a cubic
cartesian lattice. This data structure reduces the computation
load by 2 and can be decomposed into cubic grids that
make the GPU implementation straightforward. The limita-
tions of this approach are a direction dependent dispersion
error and the finite mesh resolution to model boundary be-
havior. Also, the approach implements 2D meshes only. The
system was tested on a PC with an AMD64 4000+ dual-core
CPU and an NVIDIA GeForce 7900 GT video card and
showed speed-ups of factors of from 4.5 to 69 when com-
pared to a software-based implementation. However, the
CPU implementation was not optimized.

 Tsingos et al. [49] present a new approach for high-
quality modeling of first-order sound propagation. The
method employs a surface-integral formulation and Kirch-

Fig. (2). Wave-based acoustical modeling. Reprinted from [45].

GPU-Based Spatial Sound The Open Virtually Reality Journal, 2009, Volume 1 13

hoff approximation, which can be viewed as a hybrid be-
tween geometric acoustics (ray tracing) and wave acoustics.
In contrast to other sound propagation techniques, it is capa-
ble of rendering very complex scenes and implements both
diffraction and reflection in a unified manner. The method
maps well to graphical hardware since it computes the
scattering from detailed, dynamic geometry. It combines the
Helmot-Kirchhoff theorem with the Kirchhoff approxima-
tion to derive an expression for first order scattering effects.
A GPU implementation in this case is suitable because the
above formulation is similar to the reflective shadow map
that is introduced to compute interactive first order global
illumination effects. It also allows the implementation of a
level-of-detail approach that reduces the geometry process-
ing for audio rendering while preserving the scattering be-
havior of complex surfaces by allowing bump or displace-
ment mapping. There are two steps in the computation: i)
during the first step, all scattering surfaces visible from the
source are determined and sampled, and ii) in the second
step, the evaluation and summation of the differential contri-
bution of clocked plus reflected wavefronts for all surface
samples is made. The first task is implemented using a com-
puter graphics shadow mapping source-view technique that
renders the scene from the location of the sound source. For
the second task, a hierarchal integration method known as
“mip-mapping” is used that requires log(rez)/log(k) render
passes where rez is the rendering resolution and k is the re-
duction factor. At each pass a k k block of values is
summed to give a single value which is recursively inte-
grated in the next pass until the value of the integral is
reached. Both visual rendering and the calculation of audio
scattering coefficients are done on the GPU. The auralization
is achieved by re-equalizing performed asynchronously on
the CPU. The method was tested on a Pentium IV 3.4GHz
CPU and an NVIDIA GeForce 8800 GTX graphics card and
was compared to a C++ implementation on the CPU. For an
interactive scenario the GPU-based method was found to be
40 times faster. The limitations of this method are that it is
prone to aliasing due to insufficient sampling at high fre-
quencies and is also limited to first order scattering and
therefore cannot be used for some audio effects such as re-
verberation and occlusion. Also, by using a frequency do-
main approach, essential for an efficient implementation, this
method introduces an approximation because of the limited
number of frequency bands.

 Despite the progress to-date, plenty of work remains to
allow for real-time, accurate, wave-based acoustical model-
ing on the GPU. Of course, depending on the application,
completely and faithfully recreating the acoustics of a par-
ticular environment may not be necessary; hearing is a per-
ceptual process and there is no one-to-one mapping between
physical acoustical phenomena and our perception of these
phenomena. Therefore, accuracy may not always be neces-
sary. Greater work needs to be conducted to examine this
issue more carefully. Finally, although the number of efforts
investigating wave-based acoustical modeling using the GPU
are limited, extensive work has been carried out using such
techniques for the computation of global illumination. A
number of wave-based techniques utilizing the GPU are
available including radiosity [50], etc. If suitably modified,
these techniques could be applied to acoustical modeling
applications.

3.1.2. Geometric-Based Modeling

 Many acoustical modeling approaches adopt the hy-
pothesis of “geometric acoustics” that assumes that sound is
a ray phenomenon. The acoustics of an environment is then
modeled by tracing (following) these “sound rays” as they
propagate through the environment while accounting for any
interactions between the sound rays and any objects/surfaces
they may encounter (see Fig. 3). Mathematical models are
used to account for sound source emission patterns, atmos-
pheric scattering, and the medium’s absorption of sound ray
energy as a function of humidity, temperature, frequency,
and distance [51]. At the receiver, the RIR is obtained by
constructing an echogram which describes the distribution of
incident sound energy (rays) over time. The equivalent room
impulse response can be obtained by post-processing the
echogram [52].

Fig. (3). Ray-based acoustical modeling. Reprinted from [45].

 Audio-based ray tracing using the GPU was implemented
by Jedrzejewski to compute the propagation of acoustical
reflections in highly occluded environments and to allow for
the sound source and the listener to move throughout the
simulation without the need for a long pre-computation
phase [53]. The method consists of six phases, the first four
of which constitute a short pre-computation stage. Jedrze-
jewski takes advantage of the fact that in acoustics, as op-
posed to graphics, objects other than walls do not contribute
significantly to the sound wave modifications and therefore
can be ignored during the computation. Because of this, only
polygons that represent walls are taken into account. Fur-
thermore, to make the system more efficient, each ray is in-
tersected with a plane rather than a polygon. A comparison
of the method implemented on a GPU and a CPU (2GHz
AMD CPU and an ATI Radeon 9800 video card) demon-
strated that the GPU-based implementation was much more
computationally efficient (32 vs. 500 ms to trace a ray of
order 10 on the GPU and CPU respectively). Röber et al.
[54] describe a ray-based acoustical modeling method that
employed the GPU to allow for real-time acoustical simula-
tions. Their framework was designed along existing (com-
puter graphics) GPU-based ray tracing systems suitably
modified to handle sound wave propagation. The system
accepts a 3D polygonal mesh of up to 15,000 polygons and
pre-processes it into an accessible structure. All signal proc-
essing, including HRTF convolution and delay filtering, is
programmed as fragment shaders and for each task a single
shader is developed. The 3D scene data along with sounds
and frequency band decomposed HRTFs are loaded into tex-

14 The Open Virtual Reality Journal, 2009, Volume 1 Hamidi and Kapralos

ture memory and decomposed into 10 bands that are as-
signed positions and an emittance pattern within the virtual
room. Rays are cast into the scene and the value of acoustic
energy received per frequency band is accumulated and
stored within cubemaps. Each ray is then filtered and delayed
using HRTFs according to its position and wavelength. Us-
ing this method every cast ray is traced through the virtual
scene and its acoustic energy is accumulated and stored per
frequency band. A frame-rate of up to 25 fps was achieved
using a detailed model of a living room containing 1,500
polygons (using an NVIDIA GeForce 8800 GTX video
card).

 One problem associated with ray-based approaches in-
volves dealing with the large number of potential interac-
tions between a propagating sound ray and the surfaces it
may encounter. A sound incident on a surface may be simul-
taneously reflected specularly, reflected diffusely, be re-
fracted, and be diffracted. Typical solutions to modeling
such effects include the generation and emission of multiple
“new” rays at each interaction point. Such approaches lead to
exponential running times making them computationally
intractable except for the most basic environments and only
for very short time periods, particularly for traditional (non-
GPU) methods. Although this situation is remarkably im-
proved upon with the use of GPU-based acoustic ray tracing
techniques, the problem still remains. As with wave-based
methods, greater work can be done to take advantage of the
human auditory perception system thus avoiding computa-
tions that have minimal (if any), perceptual consequences.
For example, it is not necessary to account for non-audible
reflections.

 Finally, photon mapping is a popular two-pass “particle-
based”, probabilistic global illumination method that is inde-
pendent of the scene geometry [55]. Being probabilistic, the
solution can be made more accurate by increasing the num-
ber of samples at various points of the computation allowing
for an accuracy vs. efficiency trade-off. Despite the compu-
tational improvements over many other global illumination
methods such as ray tracing, software-based photon mapping
is still computationally prohibitive for dynamic, interactive
virtual environment and game applications. However, a
“compute bound” GPU implementation whose performance
will continue to improve with improving GPU floating point
operations was introduced in by Purcell et al. [56]. Although
the GPU-based photon mapping has not been applied to
acoustical modeling, sonel mapping is the application of the
(original) photon mapping method to acoustical modeling
and has led to great computational savings [57]. Future work
can include further computational savings to sonel mapping
by appropriately modifying and incorporating Purcell’s
GPU-based solution.

3.1.3. Acoustical Occlusion and Diffraction Modeling

 Diffraction can be defined as the “bending mode” of
sound propagation whereby sound waves go around an ob-
stacle that lies directly in the line of straight propagation
allowing us to hear sounds around corners and around barri-
ers [58]. Diffraction is dependent on both wavelength and
obstacle/surface size, increasing as the ratio between wave-
length and obstacle size is increased [58]. The frequency
spectrum of audible sound ranges from approximately 20 to
20 kHz, corresponding to wavelengths ranging from 17 to

0.02 m (with a velocity of vc = 343 m·s
1

for sound in air and
a frequency of f Hz, wavelength = vc f [58]). Since the
dimensions of many of the objects/surfaces encountered in
our daily lives is within the same order of magnitude as the
wavelength of audible sounds, diffraction is an elementary
means of sound propagation, especially when there is no
direct path between the sound source and the receiver, such
as in buildings [59] (see Fig. 4 for a graphical example). De-
spite the importance of diffraction, modeling occlu-
sion/diffraction effects is a difficult and computationally
intensive task (using traditional software-based methods) and
as a result, typically ignored in virtual audio applications
including games and virtual environments. However, the use
of GPU for modeling occlusion/diffraction effects shows
promise.

Fig. (4). Occlusion example. The direct path between the sound

source and the listener is occluded by the wall. Despite the absence

of the direct path, sound can still reach the listener indirectly via

diffraction.

 Tsingos and Gascuel developed an occlusion and diffrac-
tion method that utilizes computer graphics hardware to per-
form fast sound visibility calculations that can account for
specular reflections (diffuse reflections were not considered),
absorption, and diffraction caused by partial occluders [60].
Specular reflections are handled using an image source ap-
proach [61] while diffraction is approximated by computing
the fraction of sound that is blocked by obstacles in the path
from the sound source to the receiver by considering the
amount of volume of the first Fresnel ellipsoid that is
blocked by the occluders. A visibility factor is computed
using computer graphics hardware. A rendering of all oc-
cluders from the receiver’s position is performed and a count
of all pixels not in the background is taken (pixels that are
“set” i.e., are not in the background, correspond to occlud-
ers). Their approach handles a discrete set of frequency
bands ranging from 31 to 8 kHz and is primarily focused on
sounds for animations. Although experimental results are not
extensive, their approach is capable of computing a fre-
quency dependent visibility factor that takes advantage of
graphics hardware to perform this in an efficient manner.
Although their approach is not completely real-time, it is
“capable of achieving interactive computation rates for fully
dynamic complex environments” [60].

 Tsingos and Gascuel later introduced another occlusion
and diffraction method based on the Fresnel-Kirchoff optics-
based diffraction approximation [59, 62]. The Fresnel-
Kirchoff approximation is based on Huygens’ principle [63].

GPU-Based Spatial Sound The Open Virtually Reality Journal, 2009, Volume 1 15

The total unoccluded sound pressure level at some point p in
space is determined by calculating the sound pressure of a
small differential area dS and integrating over the closed
surface enclosing p (see Tsingos and Gascuel for further
details regarding this calculation in addition to an algorithm
outlining the method [62]). After determining the total unoc-
cluded sound pressure arriving at point p from a sound
source, diffraction and occlusion effects are accounted for by
computing an occlusion depth-map of the environment be-
tween the sound source and the receiver (listener) using
computer graphics hardware to permit real-time operation.
Once the depth-map has been computed, the depth of any
occluders between the sound source and the receiver can be
obtained from the Z-buffer [64] whereby “lit” pixels corre-
spond to occluded areas. The diffraction integral described
by the Fresnel-Kirchoff approximation is then approximated
as a discrete sum of differential terms for every occluded
pixel in the Z-buffer. Given the use of graphics hardware,
their method is well suited to the interactive auralization of
diffracted energy maps [62]. Comparisons for several
configurations with obstacles of infinite extent between their
method and between boundary element methods (BEMs),
gives “satisfactory quantitative results” [62].

 Gallos and Tsingos [65] aim to improve audio rendering
for virtual environments where sound propagation and sound
blocking by numerous occluders should be accounted for.
This problem is suitable for GPU implementation because it
requires a large number of geometric calculations that can be
computed in parallel and uses multiply-add (MADD) in-
structions. In this work, two common algorithms are imple-
mented. Variable delay line is used to simulate the propaga-
tion time of an audio signal and is implemented using texture
resampling. The filtering algorithm is used to simulate direc-
tivity, occlusion, and interaction with a medium and is im-
plemented using a four component dot product function.
Sound signals are stored as RGBA textures where each of
the components holds a band pass copy of the original sig-
nal. Experimental results with a Pentium IV 3.0 GHz and an
NVIDIA GeForce FX 5950 graphics card showed that the
GPU performed 20% slower than the CPU. The authors sug-
gest that the main bottleneck of the system is the lack of effi-
cient floating-point texture support and that the performance
of the GPU would improve by 50% if this issue is resolved.
They also suggest a better use of pixel throughput and tex-
ture addressing as ways to improve the performance. This
problem may be overcome using a newer video card such as
the NVIDIA GTX 280 which supports double precision
floating point numbers.

 Cowan and Kapralos [66] introduced a GPU-based oc-
clusion method capable of approximating plausible acousti-
cal occlusion/diffraction. Experimental results of several
simulations indicate that the method conforms to theoretical
sound propagation and diffraction models which state that
diffraction effects increase as obstacle size decreases and/or
frequency decreases. Furthermore, the method is computa-
tionally efficient allowing for occlusion effects to be mod-
eled in real-time for use in interactive and dynamic virtual
environment and game applications.

4. SUMMARY

 This paper has provided a summary of the GPU-based
spatial sound techniques that can provide spatial sound for

dynamic and interactive virtual environments and games.
The methods and techniques described here are the outcome
of a great interest in the possibility of utilizing graphics
hardware technology for efficient implementation of com-
plex and costly software-based spatial sound algorithms that
currently cannot provide real-time performance except for
trivial environments that are of limited use. Despite the com-
putational speed-ups afforded by GPUs, they are currently
far from perfect. A major bottleneck in GPU performance is
the slow data transfer between the GPU and the CPU. The
current accelerated graphics port (AGP) bus is not capable of
handling the large amount of data transfers many of the pro-
posed techniques require. In much of the work described
here, slow bus traffic is explicitly identified as a performance
bottleneck. Many researchers have expressed hope that with
the arrival of the upcoming peripheral component intercon-
nect (PCI)-express bus the situation would improve
significantly. Also, one of the design goals behind Intel’s
new Larrabee chip is to minimize communication between
units by having a single multicore hybrid unit [67]. Further-
more, the limited programmability of GPUs has been a major
obstacle in the way of general application development for
this technology. While previous GPGPU research has re-
sulted in an accumulated body of knowledge that is of im-
mense help to developers, GPU programming is not yet as
accessible as many developers might wish for. To overcome
this problem, new programming capabilities are added with
each new generation of GPU technology. One approach is to
develop high level programming environments such as Mi-
crosoft’s high-level shading language (HLSL), the OpenGL
shading language, and NVIDIA’s compute unified device
architecture (CUDA) that add some CPU functionality to
GPU architecture. Another approach, on which Intel’s up-
coming Larrabee chip is based, is to combine the functions
of the CPU and the GPU in a hybrid multicore general-
purpose GPU design which can be programmed in the famil-
iar x86 environment. These two approaches are very differ-
ent. But regardless of which one will become dominant in
the future, it seems that GPUs or other new parallel process-
ing units will become easier to program for general applica-
tions. This will provide developers of audio applications for
virtual environments and games with a host of exciting pos-
sibilities and opportunities.

 Even with the tremendous computational performance
improvements afforded by GPUs, considerable research and
development remains to be done to facilitate the generation
of convincing virtual sound for use in interactive virtual en-
vironments and games. The large computational require-
ments for physically accurate real-time acoustical modeling
for complex, dynamic environments is still out of reach even
with the latest GPUs. That being said, completely and faith-
fully recreating the acoustics of a particular environment
may not be necessary; hearing is a perceptual process and
there is no one-to-one mapping between physical acoustical
phenomena and our perception of these phenomena. There-
fore, accuracy may not always be necessary. Greater work
needs to be done to take advantage of the human auditory
perception system thus avoiding computations that have
minimal (if any), perceptual consequences. A large problem
of spatial sound generation is the customization of the HRTF
for specific individuals [68]. Although preliminary, some
work has investigated the use of individualized HRTF cus-

16 The Open Virtual Reality Journal, 2009, Volume 1 Hamidi and Kapralos

tomization by modeling the interaction of sound with a
model of the individual’s pinnae [42]. Accurately tracing
sound through an accurate ear model is still computationally
expensive for real-time applications (see [69] for some work
in this area) but as GPU technology improves, perhaps such
an approach may prove to be more feasible. Although not
specific to auralization, the generation of “contact sounds”,
sounds that correspond to the complex contact interactions
between animated objects, is another open problem [70].
This is yet another area that stands for improvement with the
improving GPU technology.

 Finally, hardware technology is evolving at a tremendous
pace and the success of GPU technology might motivate the
design and production of other dedicated hardware solutions
whose specialized design might later be exploited for solving
these relevant problems. The widespread use of an analogous
audio processing unit, with specialized computational power,
may ultimately pave the way for innovative audio applica-
tions that can change our experience of computer usage in
unforeseen ways.

ACKNOWLEDGMENTS

 The financial support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) in the form
of a Discovery Grant to Bill Kapralos and is gratefully ac-
knowledged.

REFERENCES

[1] M. Cohen, and E. Wenzel, “The design of multidimensional sound

interfaces,” in Virtual Environments and Advanced Interface De-
sign, W. Barfield and T. Furness, Eds. New York, NY. USA: Ox-

ford University Press Inc., 1995, ch. 8, pp. 291-346.
[2] N. I. Durlach, and A. S. Mavor, Virtual Reality: Scientific and

Technological Challenges. Washington, DC. USA: National
Academies Press, 1995.

[3] R. D. Shilling, and B. Shinn-Cunningham, “Virtual auditory dis-
plays,” in Handbook of Virtual Environment Technology, K. Stan-

ney, Ed. Mahwah, NJ. USA: Lawrence Erlbaum Associates, 2002,
pp. 65-92.

[4] S. Carlile, Virtual Auditory Space: Generation and Application.
Austin, TX. USA: R. G. Landes Company, 1996.

[5] D. Luebke, and G. Humphreys, “How GPUs work,” IEEE Comput.,
pp. 96-100, 2007.

[6] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computa-

tion on graphics hardware,” Comput. Graph. Forum, vol. 26, no. 1,
pp. 80-113, 2007.

[7] M. Ekman, F. Warg, and J. Nilsson, “An in-depth look at computer
performance growth,” Comp. Arch. News, vol. 33, no. 1, pp. 144-

147, 1994.
[8] D. Geer, “Taking the graphics processor beyond graphics,” IEEE

Comput., pp. 14-16, 2005.
[9] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hous-

ton, and P. Hanrahan, “Brook for GPUs: Stream computing on
graphics hardware,” ACM Trans. Graph., vol. 23, no. 3, pp. 777-

786, 2004.
[10] D. B. Ward, and G. W. Elko, “A new robust system for 3D audio

using loudspeakers,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2000), 2000,

vol. 2, pp. 11781 -11784.
[11] J. Blauert, The Psychophysics of Human Sound Localization, re-

vised ed. Cambridge, MA. USA: MIT Press, 1996.
[12] B. Kapralos, M. Jenkin, and E. Milios, “Virtual audio systems,”

Presence-Teleop. Virt., vol. 17, no. 6, pp. 524-549, 2008.
[13] R. Rost, OpenGL Shading Language, 2nd ed. Boston, MA. USA:

Addison-Wesley Professional, 2006.
[14] W. R. Mark, P. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a

system for programming graphics hardware in a C-like language,”
in Proc. ACM International Conference on Computer Graphics

and Interactive Techniques SIGGRAPH 2003, San Diego, CA.

USA, July 27-31, 2003, pp. 896-907.
[15] A. Sherrod, Game Graphics Programming. Boston, MA USA:

Course Technology, Cengage Learning, 2008.
[16] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.

Lefohn, and T. J. Purcell, “A survey of general-purpose computa-
tion on graphics hardware,” Comput. Graph. Forum, vol. 26, no. 1,

pp. 80-113, 2007.
[17] J. Fung, F. Tang, and S. Mann, “Mediated reality using computer

graphics hardware for computer vision,” in Proc. 6th IEEE Interna-
tional Symposium on Wearable Computers, 2002 (ISWC 2002), Se-

attle, WA. USA, October 7-10, 2002, pp. 83-89.
[18] R. Yang, and G. Welch, “Fast image segmentation and smoothing

using commodity graphics hardware,” J. Graph. Tools, vol. 7, no.
4, pp. 91-100, 2003.

[19] M. J. Harris, W. Baxter, T. Scheuermann, and A. Lastra, “Physi-
cally-based visual simulation on graphics hardware,” in Proc. 2002

ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, Saarbrucken, Germany, 2003, pp. 109-118.

[20] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha,
“Fast computation of database operations using graphics proces-

sors,” in Proc. 2004 ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pp. 215-

226.
[21] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, “Fast and

approximate stream mining of quantiles and frequencies using
graphics processors,” in Proc. 2005 ACM SIGMOD International

Conference on Management of Data, Baltimore, MD. USA, June
14-16, 2005, pp. 611-622.

[22] C. von Tycowicz, and J. Loviscach, “A malleable drum,” in Proc.
35th Annual Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH 2008 Posters), Los Angeles, CA. USA,
August 11-15, 2008, Article No. 74.

[23] K. Matsuyama, T. Fujimoto, and N. Chiba, “Real-time sound gen-
eration of spark discharge,” in Proc. 15th Pacific Graphics Confer-

ence, Maui, Hawaii, October 29, November 2, 2007, pp. 423-426.
[24] J. Kruger, and R. Westermann, “Linear algebra operators for GPU

implementation of numerical algorithms,” in Proc. 30th Annual
Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH 2004), San Diego, CA. USA, July 27-31, 2003, pp.
908-916.

[25] S. Whalen, “Audio and the Graphics Processing Unit,” Author
report, University of California Davis, 2005.

[26] F. Trebien, and M. M. Oliveira, “Real-time audio processing on the
GPU,” in ShaderX 6: Advanced Rendering Techniques, W. Engel,

Ed. Boston, MA. USA: Charles River Media, 2008, pp. 583-604.
[27] E. Gallos, and N. Tsingos, “Efficient 3D-audio processing with the

GPU,” in Proc. ACM Workshop on General Purpose Computing on
Graphics Processors, Los Angeles, CA. USA, August 7-8, 2004.

[28] K. Doel, P. G. Kry, and D. K. Pai, “Foleyautomatic: Physically-
based sound effects for interactive simulation and animation,” in

Proc. 28th Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH 2001), Los Angeles, CA. USA,

August 12-17 2001, pp. 537-544.
[29] Q. Zhang, L. Ye, and Z. Pan, “Physically-based sound synthesis on

GPUs,” in Proc. 4th International Conference on Entertainment
Computing, Sanda, Japan, September 19-21, 2007.

[30] M. Kleiner, D. I. Dalenback, and P. Svensson, “Auralization - an
overview,” J. Audio Eng. Soc., vol. 41, no. 11, pp. 861-875, 1993.

[31] R. Väänänen, “Parameterization, Auralization and Authoring of
Room Acoustics for Virtual Reality Applications,” Ph.D. disserta-

tion, Helsinki University of Technology, Helsinki, Finland, May
10, 2003.

[32] R. Begault, 3-D Sound for Virtual Reality and Multimedia. MA.
USA: Academic Press, 1994.

[33] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano,
“The CIPIC HRTF database,” in Proc. 2001 IEEE Workshop on

Applications of Signal Processing to Acoustics, New Paltz, NY.
USA, October 21-24, 2001, pp. 111-123.

[34] W. G. Gardner, and K. D. Martin, “HRTF measurements of a KE-
MAR,” J. Acoust. Soc. Am., vol. 97, no. 6, pp. 3907-3908, 1995.

[35] E. Grassi, J. Tulsi, and S. Shamma, “Measurement of head-related
transfer functions based on the empirical transfer function esti-

mate,” in Proc. 2003 International Conference on Auditory Dis-
play, Boston, MA. USA, July 6-9, 2003, pp. 119-122.

GPU-Based Spatial Sound The Open Virtually Reality Journal, 2009, Volume 1 17

[36] Ircam, and AKG Acoustics, “LISTEN HRTF Database,” 2002,

http://www.ircam.fr/equipes/salles/listen/index.html
[37] W. G. Gardner, “Efficient convolution without input-output delay,”

J. Audio Eng. Soc., vol. 43, no. 3, pp. 127-136, 1995.
[38] O. Fialka, and M. Cadik, “FFT and convolution performance in

image filtering on GPU,” in Proc. Conference on Information
Visualization, Washington, DC. USA, June, 15-17, 2006, pp. 609-

614.
[39] K. Moreland, and E. Angel, “The FFT on a GPU,” in Proc. 2003

ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, San Diego, CA. USA, July 26-27, 2003, pp. 112-119.

[40] B. Cowan, and B. Kapralos, “Efficient HRTF interpolation in 3D
moving sound,” in Proc. ACM FuturePlay 2008 International Con-

ference on the Future of Game Design and Technology, Toronto,
Canada, November 3-5, 2008, pp. 166-172.

[41] B. Cowan, and B. Kapralos, “Real-time GPU-based convolution: A
follow-up,” in Proc. ACM FuturePlay @ GDC Canada Interna-

tional Conference on the Future of Game Design and Technology,
Vancouver, British Columbia, Canada, May 12-13, 2009.

[42] N. Rober, S. Andres, and M. Masuch, HRTF Simulations Through
Acoustic Raytracing, Fakultat fur Informatik, Otto-von-Guericke

Universitt Magdeburg, Tech. Rep. 4, 2006.
[43] N. Tsingos, I. Carlbom, G. Elko, T. Funkhouser, and B. Kubli,

“Validation of acoustical simulations in the “Bell Labs Box”, IEEE
Comput. Graph. Appl., vol. 22, no. 4, pp. 28-37, 2002

[44] L. Savioja, “Modeling techniques for virtual acoustics,” Ph.D.
dissertation, Helsinki University of Technology, Telecommunica-

tions Software and Multimedia Laboratory, Helsinki, Finland,
1999.

[45] N. Röber, U. Kaminski, and M. Masuch, “Ray acoustics using
computer graphics technology,” in Proc. 10th International Confer-

ence on Digital Audio Effects, Bordeaux, France, September 10-15,
2007.

[46] E. Nosal, M. Hodgson, and I. Ashdown, “Improved algorithms and
methods for room sound-field prediction by acoustical radiosity in

arbitrary polyhedral rooms,” J. Acoust. Soc. Am., vol. 116, no. 2,
pp. 970-980, 2004.

[47] Shi, A. Zhang, J. Encarnacâo, and M. Göbel, “A modified radiosity
algorithm for integrated visual and auditory rendering,” Comput.

Graph., vol. 17, pp. 633- 642, 1993.
[48] N. Röber, M. Spindler, and M. Masuch, “Waveguide-based room

acoustics through graphics hardware,” in Proc. International Com-
puter Music Conference 2006, New Orleans, LA. USA, November

6-11, 2006.
[49] N. Tsingos, C. Dachsbacher, S. Lefebvre, and M. Dellepiane, “In-

stant sound scattering,” in Rendering Techniques (Proc. Euro-
graphics Symposium on Rendering), 2007. [Online]. Available:

http://www-sop.inria.fr/reves/Basilic/2007/TDLD07
[50] N. A. Carr, J. D. Hall, and J. C. Hart, “GPU algorithms for radios-

ity and subsurface scattering,” in Proc. 2003 ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, San

Diego, CA. USA, July 26-27, 2003, pp. 51-59.
[51] H. E. Bass, H. J. Bauer, and L. B. Evans, “Atmospheric absorption

of sound: Analytical expressions.” J. Acoust. Soc. Am., vol. 52, no.
3B, pp. 821-825, 1972.

[52] K. H. Kuttruff, “Auralization of impulse responses modeled on the
basis of ray-tracing results,” J. Audio Eng. Soc., vol. 41, no. 11, pp.

876-880, 1993.

[53] M. Jedrzejewski, “Computation of Room Acoustics on Program-

mable Video Hardware,” Master’s thesis, Polish-Japanese Institute
of Information Technology, Warsaw, Poland, 2004.

[54] N. Röber, U. Kaminski, and M. Masuch, “Ray Acoustics Using
Computer Graphics Technology,” in Proc. 10th International Con-

ference on Digital Audio Effects, Bordeaux, France, September 10-
15, 2007.

[55] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping.
Natick, MA USA: A. K. Peters, 2001.

[56] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P.
Hanrahan, “Photon mapping on programmable graphics hardware,”

in Proceedings of the 2003 ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, San Diego, CA. USA, July 26-

27, 2003, pp. 41-50.
[57] B. Kapralos, M. Jenkin, and E. Milios, “Sonel mapping: A prob-

abilstic acoustical modeling method,” Build. Acoust., vol. 15, no. 4,
pp. 289-313, 2008.

[58] L. Cremer, and H. A. Müller, Principles and Applications of Room
Acoustics. Barking, Essex, Britain: Applied Science Publishers

LTD., 1978, vol. 1.
[59] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, “Modeling

acoustics in virtual environments using the uniform theory of dif-
fraction,” in Proc. 28th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH 2001), 2001, pp. 545-552.
[60] N. Tsingos, and J. D. Gascuel, “Soundtracks for computer anima-

tion: Sound rendering in dynamic environments with occlusion,” in
Proc. Graphics Interface ’97, Kelowna, BC. Canada., May 21-23,

1997, pp. 9-16.
[61] J. B. Allen, and D. A. Berkley, “Image method for efficiently simu-

lating small-room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4,
pp. 943-950, 1979.

[62] N. Tsingos, and J. Gascuel, “Fast rendering of sound occlusion and
diffraction effects for virtual acoustic environments,” in Proc. 104th

Convention of the Audio Engineering Society, Amsterdam, The
Netherlands, May 16-19, 1998, pp. 1-14.

[63] E. Hecht, Optics, 4th ed. San Francisco, CA. USA: Pearson Educa-
tion Inc., 2002.

[64] F. J, A. van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips,
Introduction to Computer Graphics, Reading, MA. USA: Addison-

Wesley Publishing Co., 1994.
[65] E. Gallos, and N. Tsingos, “Efficient 3D-audio processing with the

GPU,” in Proc. ACM Workshop on General Purpose Computing on
Graphics Processors, Los Angeles, CA. USA, August 7-8, 2004.

[66] B. Cowan, and B. Kapralos, “Real-time acoustical diffraction mod-
eling using the GPU,” in Proc. 10th Western Pacific Acoustics Con-

ference, Beijing China, September 21-23, (to appear) 2009.
[67] W. G. Gardner, “Multicore made simple,” IEEE Spectrum, pp. 33-

36, January 2009.
[68] D. Zotkin, R. Duraiswami, and L. Davis, “Rendering localized

spatial audio in a virtual auditory space,” IEEE Trans. Multimedia,
vol. 6, no. 4, pp. 553-564, 2004.

[69] M. Dellepiane, N. Pietroni, N. Tsingos, M. Asselot, and R.
Scopigno, “Reconstructing head models from photographs for indi-

vidualized 3d-audio processing,” Comput. Graph. Forum, vol. 27,
no. 7, pp. 1719-1727, 2008.

[70] C. Picard, N. Tsingos, and F. Faure, “Retargetting example sounds
to interactive physics-driven animations,” in Proc. AES 35th Inter-

national Conference on Audio for Games, London, UK, February
11-13 2009.

Received: July 05, 2009 Revised: July 30, 2009 Accepted: September 01, 2009

© Hamidi and Kapralos; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

	ScholarWorksCoverSheetCC
	TOVRJ-1-8

