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Abstract

Machine learning-based wearable human activity recognition (WHAR) models enable the de-

velopment of various smart and connected community applications such as sleep pattern moni-

toring, medication reminders, cognitive health assessment, sports analytics, etc. However, the

widespread adoption of these WHAR models is impeded by their degraded performance in the

presence of data distribution heterogeneities caused by the sensor placement at different body

positions, inherent biases and heterogeneities across devices, and personal and environmental

diversities. Various traditional machine learning algorithms and transfer learning techniques

have been proposed in the literature to address the underpinning challenges of handling such

data heterogeneities. Domain adaptation is one such transfer learning techniques that has

gained significant popularity in recent literature. In this paper, we survey the recent progress of

domain adaptation techniques in the Inertial Measurement Unit (IMU)-based human activity

recognition area, discuss potential future directions.

1. Introduction

The swift development and exceptional user-feasibility of commercial off-the-shelf (COTS)

inertial measurement unit (IMU) devices have created a tremendous surge in smart device

applications that aim to make our everyday lives easier and more automated. Most IMU devices

are equipped with multi-sensors, i.e. (accelerometer, magnetometer, and gyroscope), muscle,

tactile, etc.) that enable us to accumulate massive temporal data simultaneously. As a result,

the compiled multi-sensors have contributed to the development of novel data-driven machine-

learning techniques in wearable human activity recognition (WHAR). In addition, the collected

multi-sensor data often contains the latent characteristics of our everyday personal events and

activities, which can be effortlessly learned and predicted by sophisticated machine learning

algorithms. This results in the development of various ubiquitous computing applications such
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as elder caring [1], monitoring and predicting diseases [2, 3], analyzing sports activities [4, 5, 6],

developing smart home environments [7], and many more.

Because of privacy concerns, IMU-based sensors have proven trustworthy compared to other

modalities for human activity recognition and learning the distinctive and generalized patterns of

human actions and behaviors. Human activity recognition (HAR) recently has been a heavily

investigated topic in the past decade, especially after transfer learning, deep learning, etc.

techniques gained popularity due to their ability to learn the representation from the high-

dimension sparse dataset. However, the explosion in the amount of collectable data and their

potential application in ubiquitous applications has raised concerns about the scalability of the

machine learning (more recently, deep learning) approaches used to build such applications.

Furthermore, the performance of most machine learning models is heavily reliant on how much

the data samples during the inference phase (i.e. test samples) match the distribution of the

training samples used initially to train the machine learning model, and more often than not,

the distributions differ considerably.

Transfer learning is a machine learning mechanism that aims to leverage a labeled dataset

to learn a model for a task (i.e. classification, regression) and leverage the learned model for

a similar but different task. There are many state-of-the-art methodologies through which

transfer learning can be accomplished. Still, before we prospect down on the hierarchy of the

transfer learning mechanism, we need to define two core notions: Domain and Task . The

term domain collectively refers to the input data samples and the underlying distribution that

generates them. Task is defined by a tuple that consists of a label space and the predictor

function [8]. The label space defines the number of classes the associated predictor function

attempts to predict/classify. Formally, [8] refers the domain to as a two-tuple 〈X,P (X)〉 where

X and P represent feature space and a marginal probability distribution of X respectively.

Feature space, X consists of the data samples x1, x2, ...xn ∈ X. A task is formally defined

by two-tuple 〈Y, P (y|x)〉, where Y and P (y|x) represents the label space and the predictor

function. The predictor function is learned in a conditional probability distribution where

y ∈ Y and x ∈ X. In the predictor function P (y|x), y, and x present a single label and data

sample respectively. In short, we refer to the data samples (labeled or unlabeled)

and the inherent data distribution as the domain. As transfer learning leverages the

learned knowledge of the existing labeled data source to accomplish a similar but different task

on a new data source. The existing labeled and new data sources are colloquially referred to

as the source and target datasets. Throughout this survey, we refer to the source and target
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Settings Domain Similarity Task Similarity

“Usual” Learning

Setting

(XS == XT ) and

P (XS) == P (XT )

(YS == YT ) and

P (YS |XS) == P (YT |XT )

Inductive TL
XS == XT and

P (XS) == P (XT )

YS ! = YT or

P (YS |XS) ! = P (YT |XT )

Transductive TL
XS ! = XT or

P (XS) ! = P (XT )

YS == YT and

P (YS |XS) == P (YT |XT )

Unsupervised TL
XS ! = XT or

P (XS) ! = P (XT )

YS ! = YT or

P (YS |XS) ! = P (YT |XT )

Table 1: Notational tabulation of different transfer learning settings. (TL refers Transfer Learning)

datasets as the source and target domain (respectively) [9, 10, 11]. Depending on the domain

and task similarity between two domains, different transfer learning settings emerge that are

categorized as depicted in Figure 1 [12]. Table 1 tabulates the notation for different transfer

learning settings.

Deep learning methods often result in a drop in performance under such heterogeneous data

distribution scenarios. To mitigate this shortcoming, researchers have started to increasingly

rely on transfer learning techniques that leverage the learned knowledge (which is learned to

accomplish a specific task, often referred to as the source task) to accomplish a similar but

different task (referred to as the target task). Here, the machine learning model that is trained

for the source task is referred to as the “Pre-trained model”. In a typical transfer learning

scenario, a pre-trained model is either partially or fully fine-tuned or re-trained, respectively [13,

14]. In the deep learning-based pre-trained model, the earlier feature extracting layers are

assumed to capture the generic features embedding (consider the lines, curves, colors in object

recognition task in Computer Vision) that helps in the layer layers to perform the task (example:

classification/regression). Often, these approaches require a small fraction of labeled data1 for

re-training the pre-trained model such that it performs well for the target task. However, data

annotation might not always be ideal, and annotating even a fraction of data labels can be costly

and cumbersome. To circumvent the data labeling problem, a particular branch of the transfer

learning approach known as “Domain Adaptation” is widely practiced in literature. According

to the categorization, domain adaptation is a transfer learning setting where the marginal

distributions of two domains are different even though the intended task is identical. However,

1https://cs231n.github.io/transfer-learning/
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we also acknowledge that different assumptions [15, 16] on the source and target domain label

space and target domain label availability have generated different domain adaptation variants,

which we enumerate in Table 2. While not comprehensive, these variations demonstrate the

challenging scenarios arising from heterogeneity in the feature and label embedding spaces.

Same

Source and Target Marginal Distribution 

on X

Same Task

on Source and Target 

Domains

"Usual" 

Learning Setting

Inductive 

Transfer Learning
Transductive

Transfer Learning

Unsupervised

Transfer Learning

Transfer Learning

Domain Adaptation

YESNO

NO

NOYES

YES

Same Task

on Source and Target 

Domains

Figure 1: Marginal distribution and task similarity-based transfer learning hierarchy [12]

IMU-based activity recognition introduces more real-life practical scenarios that engender

data distribution heterogeneity due to (i) device-placement variations (e.g., hand, chest, an-

kle), (ii) user behavioral traits (e.g., activity execution manner, different age groups), and (iii)

sensor-data acquisition methodology differences among different device manufacturers. To com-

prehend the overall development of the domain adaptation approaches in IMU-based human

activity recognition, we survey the existing IMU-based domain adaptation techniques, identify

the existing gaps, and provide guidelines for future exploration. In addition, we also discover

a few potential challenges within IMU-based activity recognition. The contributions of this

survey are as follows:

• We systematically categorize the domain adaptation literature centered on human activity

recognition according to a few consequential criteria, such as the mechanism of hetero-

geneity reduction and the heterogeneity being addressed. For the convenience of the

readers, we have summarized the approaches, and datasets, and addressed heterogeneities

in tabular form.
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DA Type Assumption

Closed-set DA [15] All the domains have the same set of classes [15]

Open-set DA [15] Presence of classes in the target domain that are absent

in the source domain

Partial DA [16] Target label space is a subset of the source label space [16]

Universal DA [17] - Source label set and a target label set may contain a

common label set and hold a private label set respec-

tively [17]

- UDA requires a model to either (1) classify the target

sample correctly if it is associated with a label in the com-

mon label set, or (2) mark it as “unknown” otherwise [17]

Zero shot DA [18] Neither target data sample nor label is available for pa-

rameter learning [18]

Semi-supervised DA [19] A small amount of labeled data from the target domain

is available [19]

Weakly Supervised DA [20] Source domain carries coarse labeling or corrupted data

One shot DA [21] Only one unlabeled target data sample is available [21]

Few shot DA [22] Only a few labeled target domain data samples are avail-

able

Incremental DA [23] Target data samples usually arrive in an online and con-

tinually evolving manner

Heterogeneous DA Source and target domain feature representation is het-

erogeneous or dissimilar

Federated DA [24] Aims to align the representations learned among the dif-

ferent source nodes with the data distribution of the tar-

get node where each node represents a domain (feature

space) [24]

Source Free DA [25] Only unlabeled target data is available for adaptation of

source prediction model and Source data is unavailable

during adaptation

Table 2: Different variants of domain adaptation. (DA refers to Domain Adaptation)
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• We highlight the existing limitations of domain adaptation approaches with respect to the

datasets, evaluation process, scalability, real-time adaptation and lay out the guidelines

for future improvements. We also discuss the research challenges that are inherent from

the application perspective such as cross-modality adaptation, heterogeneous label, and

task adaptation. We remark that a large majority of these challenging scenarios are yet to

be thoroughly explored, and have the potential to drive innovative new research endeavors

in sensor-based activity recognition if taken up by the research community.

The survey paper is organized as follows - in section 2, we discuss the current progress in

sensor-based domain adaptation approaches based on data distribution alignment techniques

and scenarios that generate heterogeneity. We provide the future guidelines and challenges of

domain adaptation from an IMU-based activity recognition perspective in section 3 . Finally,

we conclude the survey in Section 4.

2. Survey

In this section, we discuss the literature of IMU-based domain adaptation based on the

adopted methodology and the considered heterogeneous environment in detail.

2.1. Methodology

Several categories of domain adaptation techniques have been proposed in the IMU-based

domain adaptation literature, and these approaches mostly fall under aligning domain features,

leveraging statistical normalization, inter-domain transformation of the data samples, and en-

sembling mechanisms. In the following sections, we discuss each of these categories and the

literature associated with them.

2.1.1. Domain Invariant Feature Learning

The goal of the domain invariant feature learning technique is to align the data distribution

of both source and target domains as a means of reducing the domain gap. Domain invariant

feature refers to the common features from the source and target domain that are robust to the

data distribution heterogeneity and the features contain task-relevant (classification/regression)

information. A very common approach is to train a model using the labeled source domain and

adapt the trained model using the target domain. This adaptation is guided via measuring

the distribution divergence using a divergence metric, enforcing the model to learn the domain

invariant features as well is maintaining the class boundaries among different classes, reducing

the distribution gap through statistical normalization.

6



Divergence: Divergence is a statistical scoring mechanism of how one data distribution is

similar to or different from another distribution. In domain adaptation problem scenario, diver-

gence is used to measure how the target domain data distribution is different from the source do-

main data distribution. Statistically different divergence measures such as KL-Divergence [26],

and JSD-Divergence [27] are used. Similar to the divergence, another approach to measuring

the distribution difference is MMD distance [28]. Here, note that MMD distance can be con-

sidered a means of divergence, but not all the divergence measures are considered as distance

because the divergence measures do not always satisfy the condition of symmetry and triangle

equality. KL-Divergence [26] is not symmetric, where one data distribution acts as a reference

data distribution and the distribution difference against it by the second data distribution,

not the other way around. In divergence minimization-based approaches, domain adaptation

is achieved by reducing the calculated divergence score between the source and target domain

features [29, 30, 31, 32, 33, 34, 34, 35]. TNNAR [29] reduces the domain gap by adapting fully

connected layer via reducing the (MMD) distance between the fully-connected layer computed

features of the source and target domain data whereas HDCNN [31] deploys separate feature

extractors for the source and target domain and adapts both the Convolutional Neural Network

(CNN) layers and the fully connected layer by reducing the KL-divergence. STL [30], minimizes

MMD distance between the feature distribution of the source domain and pseuo-labeled target

domain features (more on pseudo-labeling in subsection 2.1.3). Whereas AugToAct [32] deploys

different feature extractors for the source and target domain and achieves the adaptation via

minimizing the Jensen-Shannon Divergence [27] between extracted features of the pre-trained

source network and target domain dedicated network. AugToAct [32] performs better than

HDCNN [31] which deploys a KL-Divergence metric. Jensen-Shannon Divergence should re-

sult in stable performance for both the source and target domains because it measures the

divergence of one probability distribution (P) from another (Q) in a bi-directional manner. In

aligning CNN layers for domain adaptation, we believe that as the earlier CNN layers capture

the domain-invariant features, the later layers should be aligned.

Adversarial: The adversarial learning mechanism attempts to align the feature distribu-

tion of the source and target domains using a domain discriminator component. The domain

discriminator component can be viewed as a 2-class classifier that processes the deep extracted

features from both the source and target domains and aims to predict the domain origin of

the incoming features [36, 37, 38, 39, 40]. The goal of the domain discriminator is to correctly

predict the feature origin whereas the feature extractor aims to negate the domain discrimina-
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tor’s capability by generating a domain invariant feature representation [41, 42]. Contrast to

the general adversarial training in using the feature extractor as the feature generator, Genera-

tive Adversarial Networks (GAN), attempts to generate targeted domain data samples from a

fixed-length random vector as input [43, 44, 45]. The proposed XHAR distance [37] performs

better than MMD and CORAL loss. [40] aims to boost adversarial-based domain alignment by

utilizing pseudo-labeled target domain samples. MotionTransformer [43] employs a generative

adversarial training mechanism to generate target domain IMU data of the walking activity.

SA-GAN [46] interestingly generated fake target domain samples by adding noise to the source

data samples. The key difference between MotionTransformer [43] and SA-GAN [46] is that

the former does not generate samples from a random noise data distribution whereas the latter

utilizes noise data to generate fake data samples. [44, 45] both deploys Bi-GAN architecture

to accommodate the source and target sample transformation, [44] combines non-parametric

distribution matching mechanism and [45] deploy a contrastive learning-base mechanism for

better performance.

2.1.2. Normalization Statistics

Normalization is a statistical scaling tool that serves the purpose of removing systematic

variation and reducing noise in the data. The normalization layer is often used in the deep

learning network. In deep learning networks, the batch normalization [47] technique standard-

izes the batch input in the deep learning network training process, which subsequently helps

the network to converge faster [47] and increases network parameter sensitivity [47]. Such a

mechanism has been explored to reduce the domain gap in domain adaptation [48, 49, 50]. In

batch normalization, mean and variance are computed over the input batch for the respective

layer during each training iteration. An exponential average of these statistics over subsequent

batches is computed to be used as a global estimate for mean and variance in the testing

phase [50]. Instead of applying the global estimates of mean and variance, [50] proposes to

compute target-domain specific estimates using the fully available unlabeled target test data.

Therefore, both the source and target domains are normalized using their domain-specific statis-

tics, imposing the same target distribution on the features. The intuitive idea is that different

datasets have different means and variances, and if the datasets are standardized with their

corresponding means and variances, then the resulting feature space would lie under a similar

data distribution [48, 49].

8



2.1.3. Semi-supervised Techniques

A number of proposed approaches explore semi-supervised techniques to infer the label

information of the unlabeled data samples. Common approaches are active learning [51, 52, 53]

, co-training mechanism [30, 54, 34, 40, 55], clustering-based similarity matching [56, 57]. The

active learning approach determines the most uncertain and informative data samples and asks

the user or Oracle for label information. Co-training mechanism trains one or more classifiers

using the labeled source domain and use the classifier(s) to infer the label information based

on the majority voting [30, 54, 34], classifier threshold. Co-training mechanism-provided labels

are known as “pseudo labels”. Pseudo-labeled data samples help in aligning the conditional

distribution [58].

Akbari et al. [51, 52] explore active learning techniques in a model personalization framework

to identify the ground truth labels for the most informative samples. [55] proposes a teacher-

learner framework, PECO, where a source data trained model predicts the pseudo-label for the

target domain data using a co-training mechanism. [30, 54] adopts a co-training mechanism

where multiple classifiers are trained with the source data and used to generate pseudo-levels

for the target data based on the majority voting from the classifiers. [54] further extend [30]

by considering multiple source domains and selecting the most relevant domain based on the

proposed stratified distance that accounts for the semantic and kinetic similarity between the

source and target domain data. Whereas [57] adopts a clustering-based teacher-learner learning

mechanism where the source domain acts as the teacher by providing a semi-level to the target

domain for the target domain data itself. In the adaptation process, source and target data are

clustered, and the clusters and labels form a complete bipartite gap where the association is

achieved through the Hungarian algorithm [59].

Table 4 tabulates the existing literature in details based on the proposed methodology,

heterogeneity, model architecture, key learning component, and experimental datasets for the

readers convenience. Key takeaways are:

1. “Component” and “Arch” columns from the table indicate that a significant number of

proposed approaches rely on the CNN layer for feature extraction and deploy a feed-

forward network for overall data processing. Very limited approaches have explored the

Recurrent Neural Network (RNN) and different variations that are well known to achieve

strong results in time series and sequential data.

2. Literature has explored several loss functions (“Loss” column) that are aimed at regular-

izing different aspects of the learning process. Even though these loss functions are often

9



dependent on the deployed methodology, it is important to note that the performance

behavior of the combination of these loss functions has not been studied yet. For exam-

ple, it is possible to deploy divergence, adversarial, reconstruction, and contrastive loss

functions together in a deep-learning based framework.

3. “Heterogeneity” and “Dataset” columns depict that the proposed approaches tackle dif-

ferent heterogeneity and evaluate the methodology with different sets of datasets, which

makes it really difficult to compare them. Based on observation, we note a recommenda-

tion guideline for the evaluation process discussed in subsection 3.1.

Table 5 tabulates the different properties of the existing datasets that have be experi-

mented to evaluate the performance of the proposed approaches. We note that HAR and

WISDM datasets offers meximum experimental flexibility in terms of the user. OPPORTU-

NITY, DSADS, and MHEATH datasets offer flexibility in terms of body position variations.

We also note that the OPPORTUNITY, PAMAP2, and DSADS datasets have been widely

used in the evaluation process. Future literature should consider evaluating on the Opportu-

nity, PAMAP2, and DSADS datasets to ensure consistency in the evaluation process.

2.2. Heterogeneity

In wearable human activity recognition, there are several practical scenarios that cause data

distribution heterogeneity, such as user diversity, behavior, device placement variation, data

sampling variations, and different data collection protocols for different datasets. Three com-

monly occurring scenarios are cross-person, cross-position, and cross-sensor/device heterogene-

ity, as depicted in Figure 2. A example of domain adaptation settings for various heterogeneities

is tabulated in Table 3. We discuss these heterogeneities in details in the following.

Cross-Person Heterogeneity

(a) Cross-person

Cross-Position Heterogeneity

(b) Cross-position
Cross-Device Heterogeneity
(c) Cross-device

Figure 2: Different types of heterogeneity at a glance

2.2.1. Cross-person Heterogeneity

Cross-person heterogeneity in wearables refers to the variability in sensor data and human

movement patterns across different individuals, i.e. data collected from wearable devices can

10



Heterogeneous Scenario Cause of Domain Gap Source Domain Target Domain

Cross-person Person Person-A Person-B

Cross-position Position Hand Ankle

Cross-dataset Dataset PAMAP DSADS

Cross-device Device LG Nexus Samsung Galaxy

Cross-modal Feature Representation Acoustic IMU

Table 3: IMU-based domain adaptation scenarios with examples.

vary significantly from person to person. Differences in body size, shape, movement patterns,

and behavior traits cause this significant discrepancy. In the literature, the problem of cross-

person heterogeneity in wearables is often referred to as model personalization. Several different

approaches have been proposed to address cross-person heterogeneity. Along with deep learning-

based approaches, there are several non-deep learning-based approaches for addressing cross-

person heterogeneity [56, 52, 53]. The major drawback of [56, 52] lies in the evaluation process.

The corresponding proposed methodology is evaluated on a single dataset using the leave one

subject out (LOSO) validation strategy. LOSO is more similar to the traditional machine

evaluation approach and does not truly represent effectiveness in tackling the data distribution

heterogeneity.

In contrast, several deep learning-based approaches are proposed that aim to reduce the

distribution heterogeneity that can be discussed under unsupervised and semi-supervised learn-

ing mechanism [32, 51, 29, 45, 67]. Unsupervised approaches assume the availability of the

labeled source domain sample and the unlabeled target domain sample during the adaptation

process. Among the unsupervised approaches, there are approaches that attempt to measure

the domain gap via a distance metric calculation between the source domain feature and target

domain feature, and by reducing that gap, aim to reduce the heterogeneity [29]. Adversarial

techniques are another approach that has recently been investigated for tackling cross-person

heterogeneity [46, 37, 45, 44]. [46] leverages a general GAN-based approach whereas [45, 44]

deploy a bi-directional GAN architecture in the corresponding methodology. Although these

approaches share the goal of reducing cross-person heterogeneity, comparing them is difficult

due to differences in the evaluation procedure. For instance, the evaluation procedure differs in

terms of the considered dataset(s), number of activities, compared baselines, and experimental

design. For the sake of comparison, if we consider [29, 45] as a representative of distance-based

11



Work
Primary Method Component Arch Losses/Optimizaton Criteria Heterogenity Datasets

(Activities)

D
is

ta
n

ce
M

in
im

iz
a
ti

o
n

G
en

er
at

iv
e

A
d

ve
rs

a
ri

a
l

/
G

en
er

a
ti

ve
A

d
v
er

sa
ri

a
l

C
o
n
tr

as
ti

ve

D
a
ta

A
u

gm
en

ta
ti

on

A
d

a
p

ti
ve

B
a
tc

h
N

or
m

a
li

za
ti

o
n

C
o-

tr
ai

n
in

g
(P

se
u

d
o

L
ab

el
in

g
)

A
ct

iv
e

L
ea

rn
in

g

C
lu

st
er

in
g

S
u

b
sp

ac
e

A
li

g
n

m
en

t

C
N

N

R
N

N
/G

R
U

/L
S

T
M

k
N

N
/
D

T
/

O
R

F
/
S

V
M

/
A

d
a
B

o
os

t/
E

n
se

m
b

le

G
ra

p
h

ic
a
l

M
o
d

el
s

G
au

ss
ia

n
M

ix
tu

re
M

o
d

el

F
ee

d
F

or
w

a
rd

E
n

co
d

er
-D

ec
o
d

er

V
ar

ia
ti

on
a
l

M
M

D
/K

L
D

/
J
S

D

C
ro

ss
E

n
tr

o
p
y

A
d

ve
rs

ar
ia

l

R
ec

o
n

st
ru

ct
io

n
/
R

eg
re

ss
io

n

C
o
n
tr

a
st

iv
e

C
lu

st
er

A
ss

o
ci

at
io

n

C
os

in
e

S
im

il
ar

it
y

O
th

er

E
n
v
ir

o
n

m
en

t

P
os

it
io

n

P
er

so
n

D
ev

ic
e/

S
en

so
r/

D
a
ta

se
t

TNNAR [29] O O O O O O O O O O O O O O O O O O O O O O O OPP (4),PAMAP2 (18),DSADS (19)

MotionTransformer [43] O O O O O O O O O O O O O O O O O O O O O O O O Inertial Tracking (1)

SA-GAN [46] O O O O O O O O O O O O O O O O O O O O O O O O OPP (4)

XHAR [37] O O O O O O O O O O O O O O O O O O O O O O
Sport Activities (6),

Gesture Activities (5)

PTN [60] O O O O O O O O O O O O O O O O O O O O O O O MHEALTH (12), WISDM (18), SPAR (7)

Hetero-DNN [61] O O O O O O O O O O O O O O O O O O O O O O O O MHEALTH (12), WISDM (18), SPAR (7)

Online DA-BN [50] O O O O O O O O O O O O O O O O O O O O O O O O O WISDM (6)

HDCNN [31] O O O O O O O O O O O O O O O O O O O O O O O
Self Collected (8), HHAR (6),

Position aware activity recognition [62] (8)

Lin et al.[63] O O O O O O O O O O O O O O O O O O O O O O O DSADS (19), OPP (4), SAD (7)

Akbari et al.[51] O O O O O O O O O O O O O O O O O O O PAMAP2 (8), MoST (8)

ActiveHARNet [64] O O O O O O O O O O O O O O O O O O O O O O O O O HHAR (6), Notch (5)

UDAR [65] O O O O O O O O O O O O O O O O O O O O O O CASAS (6), WSN Dataset [66] (7)

Shift-GAN [44] O O O O O O O O O O O O O O O O O O O O O
PAMAP (), DSADS (),

Uni. of Armsterdam ( HA, HB, HC)

CoTMix [67] O O O O O O O O O O O O O O O O O O O O O O O SSC, UCI HAR, HHAR, WISDM

SWL-Adapt [39] O O O O O O O O O O O O O O O O O O O O O O O O SBHAR (), OPP (), RealWorld ()

Contras-GAN [45] O O O O O O O O O O O O O O O O O O O O WISDM (18), DSADS (19), PAMAP (12)

SLARDA [40] O O O O O O O O O O O O O O O O O O O O O HAR, SSC, MFD

AEDA [33] O O O O O O O O O O O O O O O O O O O O O CASAS, PAMAP

LDA [34] O O O O O O O O O O O O O O O O O O O O O O PAMAP, DSADS

Xia et al. [68] O O O O O O O O O O O O O O O O O O O O O O O O PAMAP, RealWorld, OPP

Akbari et al. [35] O O O O O O O O O O O O O O O O O O O O O O HHAR (5), MoST (10), PAMAP2 (10)

Plug-n-learn [57] O O O O O O O O O O O O O O O O O O O O O O O O O O DSADS (15)

Fallahzadeh et al. [56] O O O O O O O O O O O O O O O O O O O O O O O O DSADS (15)

STAR [69] O O O O O O O O O O O O O O O O O O O O O O O O O OPP (4), WISDM (6), SPAD (4)

Minh et al. [70] O O O O O O O O O O O O O O O O O O O O O O O O O PAMAP (12)

STL [30] O O O O O O O O O O O O O O O O O O O O O O O OPP (4), PAMAP2(18), DSADS (19)

Wen et al. [71] O O O O O O O O O O O O O O O O O O O O O O O O O SAD (7), HAR (6),OPP (Fine-grained)

Mannini et al. [52] O O O O O O O O O O O O O O O O O O O O O O O O O
Adult & Youth

Dataset [72]

Sztyler et al. [53] O O O O O O O O O O O O O O O O O O O O O O O O O O [62]

PECO [55] O O O O O O O O O O O O O O O O O O O O O O O O O CASAS PUCK, CASAS Parkinson

Table 4: Brief summary of IMU-based wearable domain adaptation literature.

and adversarial-based approach where both consider DSADS and PAMAP dataset in the eval-

uation process, from the reported results, we observe that GAN-based approach [45] performs

superior than the distance-matric-based approach [29] by a significant margin. In addition, the

ablation study in [45] shows that the ensemble of losses with the GAN loss increases the per-

formance. Different from these works, [50] tackles real-time domain adaptation using statistical

batch normalization-based techniques.

On the other hand, a number of semi-supervised approaches have been proposed in the lit-

erature [32, 51, 31, 67, 40, 73, 34] that vary in terms of the target domain labeled sample usage.

One of the most common approaches is to use a small amount of labeled data from the target
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domain together with a larger amount of labeled data from the source domain to train a model

that can effectively generalize to the target domain [31, 32, 73, 63]. This approach reduces

the need for large amounts of labeled data in the target domain, which can be difficult and

expensive to obtain. In AugToAct [32] proposed an data augmentation-based semi-supervised

approach and AugToAct [32] performs better than [31] in the similar experimental settings.

In both approaches [31, 32], 20% labeled target domain data retains high classification perfor-

mance. Self-training is another variation of semi-supervised approach that leverages labeled

source domain samples to train a model, and then uses the model to predict the labels of the

unlabeled target domain samples, which are often known as Pseudo-labels [58]. Pseudo-labeled

data samples are then used to further improve the model [30, 40, 34]. Even though [30, 34]

both operate on the manually extracted features, from the reported results on the cross-person

heterogeneity, it is apparent that the clustering-based pseudo labeling technique performs better

by significant margin. In addition, active learning is also explored to reduce the data distribu-

tion heterogeneity, where a trained model (trained with labeled source data samples) is able to

actively choose the examples it wants to be labeled next by the oracle (human or other source

of ground truth) rather than passively relying on a fixed set of labeled examples. The model

uses the information it has learned so far to identify examples that it is uncertain about and

would most benefit from having labeled [51]. In comparison between active learning [51] and

self-learning [34] approach, [34] yields more reliable performance on the commonly experimented

PAMAP dataset. Even though [51] outperforms [34] by 14.88% but [51] trains the source model

using the combined data from multiple users whereas [34] trains the source model using a single

user data. Here, [51] allows the source model to observe more data variations compared to [34].

Compared to unsupervised approaches, semi-supervised approaches align both the marginal

probability and conditional probability distributions of source and target domain data samples.

2.2.2. Cross-position Heterogeneity

Cross-position heterogeneity in wearables refers to the variability in sensor readings when the

sensor is placed in different positions on the body. This variability can arise from factors such

as the sensor placement location, the sensor orientation, and the body movement. For example,

the readings from an accelerometer placed on the wrist will be different from the readings of the

same accelerometer placed on the ankle due to the different movement patterns of these body

1Back, Right Upper Arm, Right Lower Arm, Left Upper Arm, Left Lower Arm
2Torso, Right Arm, Left Arm, Right Leg, Left Leg
3Right Pocket, Left Pocket, Belt, Right Upper Arm, Right Wrist
4Pant Pocket, Jacket Pocket, Hand Bag, Shoulder Bag

13



Dataset
Sensors Sampling

Rate
Body Position User Activities Literature

A G M

OPPOTUNITY [74, 75, 76] 30 [BACK, RUA, RLA, LUA, LLA]1 4 4 [74, 69, 55, 54, 46, 77, 29, 78, 30]

PAMAP2 [79] 100 Hand, Chest, Ankle 9 18 [54, 29, 78, 51, 30, 80]

DSADS [81] 25 [TORSO, RA, LA, RL, LL]2 8 19 [54, 29, 78, 56, 82, 30, 83]

MHEALTH [84] 50 Chest, Right Wrist, Left Ankle 10 12 [54, 83]

HHAR [13] O 25-200 Waist, Arms 6 9 [64, 31]

HAR [85] O 50 Waist 30 6 [86, 31, 83]

WISDM [87] O 20 Pant Pocket, Waist 51 18 [69, 82]

Susses-Huawei Dataset [88] 100 Torso, Backpack, Hand, Pocket 3 8 [89]

SAD [90] 50 [RP, LP, BELT, RUA, RW]3 10 7 [89]

SPAD [91] O O 5 [PP, JP, HB, SB]4 8 4 [69]

Notch Dataset [92] O O 31.25 Wrist 7 5 [64]

CASAS [93] O O - Wrist, Heap 10 6 [55]

Everyday Activities [94] O O - Smartphone 41 7 [95]

Smartphone Dataset[96] 50 Arm, Belt, Waist, Pocket 4 6 [71]

Table 5: IMU-based wearable datasets (A, G, M in the sensor column refers to accelerometer, gyroscope and

magnetometer respectively).

parts. To address this issue, researchers have proposed a variety of techniques to reduce the

cross-position heterogeneity by aligning the sensor readings across different positions [44, 45, 29,

43, 34, 30, 54, 33]. Among the unsupervised approaches, a handful of Generative Adversarial

Networks (GANs) have been proposed as a technique to tackle cross-position heterogeneity in

wearables [44, 45, 43]. In domain adaptation settings, where the generator component of the

GAN architecture is trained to align the feature distributions between the source and target

domains, it generates synthetic samples from the source domain that are similar to the real

samples from the target domain. By training the generator network to generate synthetic

readings that are similar to real readings from different sensor positions, the model can learn to

reduce the cross-position heterogeneity and improve the performance of the activity recognition

system when applied to different sensor positions. Among the GAN-based approaches, [43]

considers single dataset with only one activity where the device is placed at different body

positions whereas [44, 45] considers multiple datasets in the evaluation process. Both [44, 45]

leverages Bi-GAN architectures but differs in the distribution alignment component where [44]

deploys Kernel Mean Matching (KMM) [97] and [45] leverages a combination of contrastive,

discrepancy and MMD losses. Overall, [45] evaluates more cross-positional heterogeneity from

the DSADS and PAMAP datasets and performs better than [44, 29].
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Compared to the unsupervised approaches, even though semi-supervised approaches leverage

labeled target domain data, the reported experimental results on the similar datasets are less

convincing. [34, 30, 54] performance on the DSADS and PAMAP dataset ranges between 40-

60%. We speculate that as these approaches generate pseudo-label for the target domain data,

incorrect label predictions on the target domain sample might have contributed to negative

learning and hence such relatively lower performance compared to the unsupervised approaches.

In contrast, [33] proposes to leverage 10% labeled data in a encoder-decoder-based architecture

that adopts Gradient Reversal Layer for data distribution alignment, achieves 92.1% accuracy

on PAMAP dataset.

2.2.3. Cross-device Heterogeneity

Cross-sensor heterogeneity in wearables refers to the variability in sensor readings when

different device-integrated sensors are used to measure the same physical activity. For example,

if two smartphones use the same accelerometer, the sensor readings may be different due to

factors such as measurement ranges, sensor manufacturer, sensor model, and sensor calibration.

Note that from the experiment design perspective, cross-sensor heterogeneity is also be referred

as cross-device and cross-dataset heterogeneity. Even though, in cross-dataset heterogeneity

the data distribution heterogeneity between two dataset arises due to the variability such as

differences in the population of subjects, differences in the environment in which the data was

collected, and differences in the protocol used to collect the data. Due to the integrated nature

of the WHAR, we discuss these heterogeneities together. We list the common scenarios below

that could raise four types of heterogeneity:

1. similar sensor but different devices [30, 73, 37, 45]. Example - Wrist-worn Smartwatches

from multiple manufacturers carry IMU sensors. Example - (devices can be treated as

source and target device), here, body position is fixed

2. same device but different sensors [71]. Example - A general smartphone has multiple

sensors (IMU and Gyroscope) that are capable of collecting data (sensors can be treated

as source and target sensors), here, body position is fixed

3. similar sensors but different devices [31, 35]. For example - Smartphones and smartwatches

are typically carried IMU sensors but worn at different body positions. In this case,

different body positions are used.

4. different sensors with different devices [98, 55, 65]. Example - Smartphones and smart-

earable are typically carried IMU and microphone sensors respectively and worn at dif-

ferent body positions. In this case, different body positions are used.
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Note that the following heterogeneity scenarios can include/exclude similar body positions,

the same person, or both. If multiple datasets carry similar data then more complex hetero-

geneous cross-dataset heterogeneity will arise [45]. Different experimental settings for cross-

sensor heterogeneity vary the complexity of the data distribution heterogeneity, however, it is

a very challenging task compared to cross-person and cross-position heterogeneity. [30] eval-

uates the proposed approach for a limited transfer learning setting whereas comparison be-

tween [45]and [37] is not straightforward due to the differences in the evaluation datasets.

However, [45] performed better in terms of the reported F1-score and the considered activ-

ity set in [45](9-10 activities) and [37](5 activities). In Case 3, the generative unsupervised

approach [35] outperforms the semi-supervised approach [31] on the cross-device heterogeneity

evaluation on the HHAR dataset. In case 4, [65] reported a detailed cross-sensor heterogeneity

evaluation that considers 6 different datasets and achieves a 78.5% F-1 score. In general, it is

seen that generative approaches outperform other techniques in tackling cross-sensor or relevant

heterogeneity. Apart from transfer learning approaches, there are approaches that deploy data

augmentation, and active learning to tackle the sensor heterogeneity [61, 64]. By increasing

the size of the training dataset, data augmentation [99] can help reduce the impact of sensor

heterogeneity by increasing the diversity of the training data. Apart from these heterogeneous

scenarios, [100] mention the “Concept drift” which is a phenomenon that occurs when the

underlying probability distribution of the data changes over time. In the context of wearables,

concept drift can occur when the sensor readings change due to factors such as device wear

and tear, changes in the environment, or changes in the wearer’s behavior, which can lead to

a mismatch between the training data and the test data. [69, 57] focused on activity recogni-

tion under evolving data stream, however, we note that a longitudinal dataset is a significant

component to validate such methodologies that aim to can withstand the concept drift.

3. Potential Future Directions

In this section, we iterate several unexplored directions that can serve as a potential guideline

in sensor-based domain adaptation.

3.1. Comprehensive Empirical Study

We observe that different literatures follow different experimental designs in the evaluation

process. Often, the evaluation is based on selective settings of cross-person and cross-position

heterogeneity instead of an exhaustive one. To elaborate, the Opportunity dataset is collected

from 4 users, where each user carries 5 devices at different body positions. If we consider only
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cross-position heterogeneity, there would be 80 domain adaptation settings from 4 users in total

(for each person, there are 20 possible combinations of positions, with different positions as the

source and target domain). Similarly, for cross-person heterogeneity for a fixed body position,

there are a total of 60 possible domain adaptation combinations. However, we observe limited

evaluation reports in the published literature. In addition, we observe disagreement in other

aspects of the evaluation process: adapting different experimental designs (splitting user groups

into two - one is used as the source, the other as the target domain), different numbers of

considered activities from the considered datasets [35, 67], different evaluation metrics [45, 30].

To bring the chaotic evaluation process into a standardized procedure, we suggest evaluat-

ing the proposed approach on three datasets among the OPPORTUNITY, PAMAP2, DSADS,

MHEALTH, HHAR, Susses-Huawei, CASAS, and WISDM datasets for cross-person, cross-

position, and cross-sensor heterogeneity due to their diverse number of users, positions, and

sensors (devices). Regarding the experimental design, we note that if a combination of distinct

user/position/sensor data is used as the source and target domain, it creates robust evaluation

settings for any wearable domain adaptation approach. Finally, we recommend F1-score as the

evaluation metric instead of accuracy, as it does not consider the class distribution. Due to the

above-mentioned differences in the evaluation settings, it is not trivial to compare the proposed

approaches. [101] investigated three different wearable domain adaptation methodologies (data

augmentation, distance minimization, and adversarial learning) on a fixed CNN-based architec-

ture, and [102] developed a benchmarking suit for time series domain adaptation approaches.

[101, 102] contribute significantly towards the comparive study of various approaches. How-

ever, [101] acknowledged the use of a single framework, and [102] considered approaches mainly

developed for computer vision domain adaptation problems; adapting for the time series domain

approach requires substantial network and learning-related hyper-parameter tuning, which is

another challenge in itself. According to the literature, 20–30% labeled target domain data

improves the model’s performance significantly. We envision that the benchmarking efforts on

the unsupervised approaches can be further improved by incorporating our recommendation

on the evaluation process and extending the baseline adaptation methods by incorporating

distance and correlation-based feature alignment, adversarial and GAN-based approaches, and

normalization-based approaches. Such efforts would be a significant contribution toward better

understanding the strengths and weaknesses of each approach and building upon existing work

in the field.
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3.2. Real-time Domain Adaptation and System Development

Traditional domain adaptation approaches the availability of the target domain data prior

to any domain adaptation process. Whereas there are certain circumstances when the target

domain data arrive sequentially at large volume and it is unfeasible to store all the data. Given

such scenario, it is important to perform domain adaptation in a real-time manner. To the

best of our knowledge, the performance and aspects of wearable domain adaptation approaches

under such circumstances have not been well investigated. The following challenging aspects

of the proposed approaches need to be broadly studied: the requirement for low latency and

high computational efficiency, the amount of required labeled and unlabeled target domain

data, feasibility of the necessity of the device data storage, and maintaining the performance

on the source and target tasks. Regarding the computation efficiency, batch normalization [47]

is known for faster training and quick network convergence [103]. Such parameter-free batch

normalization-based approaches [49, 48] can be investigated to develop novel real-time domain

adaptation approaches. [50] adopted AdaBN [49] in developing an incremental domain adapta-

tion approach. [50] assumes that no samples from the target user are available in advance, but

they arrive sequentially, which is substantially different than the traditional domain adaptation

assumption. Thus, the authors traded off adapting to new and forgetting old information, and

the proposed unsupervised approach does not involve any label information from the target

user in the adaptation process. [50] performs the domain adaptation task on-the-fly, which is

very crucial in certain circumstances, for example when the unlabeled data can not be stored.

Existing incremental learning [104, 105] and continual learning-based [106, 107] approaches can

be explored to fullfill the requirement of a real-time systems. Further, to accommodate the deep

models in the resource constrained environments, the investigation of the model compressing

techniques [108, 109, 110, 111, 112, 113] with the domain adaptation techniques can be a sig-

nificant contribution to the WHAR research and help take a step towards developing a system

that is close to the benefit for the human beings through various applications.

3.3. Investigation on Pseudo-label Generation

In the literature review, the semi-supervised approaches acquire labeled target domain data

in three approaches - 1) prior availability of the labeled target domain data, 2) asking the oracle

for the label information for the most informative target domain data samples, 3) training a

model with source domain data and leveraging the trained model to predict the label informa-

tion of the target domain data. Indeed, label information aids in the alignment of the marginal

and conditional distributions. However, we note that the pseudo-labeled-based co-learning ap-
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proaches relatively underperform compared to the unsupervised approaches [30]. We previously

mentioned that the incorrect pseudo-labeling might trigger negative transfer learning. Along

with the pseudo-label generation, it is important to ensure its correctness. Novel pseudo-labeling

techniques for wearables will definitely help reduce the overhead of asking the label information

from the oracle or the end-user while improving the performance.

3.4. Novel and Scalable Architecture Development

The majority of the proposed wearable domain adaptation approaches have several algo-

rithmic limitations in their assumptions, which consider a single labeled source domain and one

target domain, and that all data domains are homogeneous. The number of considered source

domains is a potential limitation of the framework regarding its scalability, as the performance

of those frameworks under multiple source domains is unknown. There are several approaches

to dealing with multiple source domains: 1) selecting the most relevant source domain with the

target domain [54], 2) combining all source domain data into one [114], 3) concurrently process-

ing all the source domains during the domain adaptation [38, 115, 116]. Concurrent processing

of multiple source domains is known as multi-source domain adaptation (MSDA) [117, 118, 119].

MSADA assumes that the labeled training data can be collected from multiple data sources,

whereas most of the current wearable domain adaptation approaches assume that source sam-

ples are collected from a single domain. As the wearable devices are used by a diverse end-user

community in a diverse environment, the underlying data distributions across the collected data

sources are heterogeneous. Indeed, MSDA is a very challenging task due to the simultaneous

consideration of multiple heterogeneous distributions, but at the same time, it provides an

opportunity to leverage the target domain-relevant domain knowledge shared across multiple

source domains. The assumption of homogeneous features across all the domains is another

limitation and opportunity to improve for future research work [120, 121, 122, 123, 124, 125].

We note that an inherent challenge in both of the improvements over the existing approaches is

the early detection of transfer learning feasibility among multiple domains during the adapta-

tion process. Because attempting to accomplish transfer learning between (among) non-related

domains would cause the “catastrophic forgetting” and the initial non-relevancy might

be caused by the data distribution heterogeneity. More investigation and study is needed to

develop novel, scalable wearable domain adaptation approaches.

3.5. Robust Dataset Collection

Table 5 tabulates the widely used datasets in the wearable domain adaptation evaluation

process. We note several limitations in the existing datasets: 1) The majority of the datasets
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consider the common macro activities (activities that require whole-body movements, such as

running or playing a sport), and the micro activities (fine-grained movements and gestures, such

as typing on a keyboard or playing an instrument) are omitted, 2) lack of multi-modal datasets

with heterogeneous feature space (for example: datasets with concurrent activity data from

paired data modalities such as IMU and Wi-Fi data, IMU and acoustic, IMU and radar, and

IMU and image, 3) lack of a longitudinal dataset, which is essential to evaluate the “concept

drift” [126, 127], and 4) missing interleaved activities such as cooking activities in the existing

dataset. Fulfilling the existing dataset limitations would create a significant opportunity to

understand the synergy between the data modalities and to explore the solution ideas discussed

in the literature [126, 127].

4. Conclusion

Deep learning-based approaches outperform the traditional machine learning approaches

using automatic feature extracting capability and the feasibility of transferring the learned

knowledge from one domain to another. However, in the presence of data distribution hetero-

geneity between training and test data samples, machine learning approaches perform poorly.

In this survey, we explain a transfer learning technique called domain adaptation that focuses

on alleviating data distribution heterogeneity and tabulates various types of domain adaptation

problems. We concentrated on the heterogeneity observed in wearable IMU-based human activ-

ity recognition. We discuss the current literature based on the methodology existing approaches

follow, the observed heterogeneity, and we concisely tabulate them. In the existing literature,

we note that adversarial and generative adversarial-based approaches perform superiorly among

the unsupervised approaches. Among the semi-supervised approaches, the pseudo-labeled-based

approaches perform relatively lower than other semi-supervised methodologies (we speculate

that it is because of “confirmation bias” of the pseudo-labeled data samples). However, we

observe that the existing approaches lack commonality in the method evaluation process (see

the “Heterogeneity” and “Dataset” columns from Table 4). Due to differences in the training

mechanism, number of considered heterogeneity, evaluation dataset, and considered activities,

it is still difficult to compare the approaches comprehensively. We have developed a guideline

based on our observations to aid in the development of a comprehensive empirical study of

wearable domain adaptation approaches. In addition, we have listed several potential future

guidelines - developing the real-time domain adaptation techniques for faster adaptation in a

real-life scenarios, investigating more on to self-supervised learning technique such as correctly
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generating pseudo labels for the unlabeled data samples, extending current approaches and de-

velop novel scalable architecture such that multiple heterogeneous datasets can be leveraged for

the domain adaptation purpose, preparing a robust dataset such that it can be experimented for

multiple heterogeneity evaluation. From the discussed literature, we also note that the various

types of domain adaptation variations tabulated in Table 2 have not yet been well explored.

We hope that this survey will provide the reader with a comprehensive overview of the cur-

rent progress on wearable IMU-based domain adaptation approaches and provide guidelines for

potential future developments.
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