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We theoretically study quadratic interactions in finite, one-dimensional,
photonic band gap structures with deep gratings, under strong pumping and
global phase matching conditions. For second harmonic generation, we find
that above a certain input intensity a dynamics reminiscent of a competi-
tive, multi-wave mixing process takes hold: the pump field is mostly reflected,
revealing a novel type of optical limiting behavior, while forward and back-
ward generation is generally balanced. We also study the case of parametric
down-conversion, where an intense second harmonic signal is injected in or-
der to control a much weaker fundamental beam. Our results reveal the onset
of a new process that has no counterpart in bulk materials: both transmis-
sion and reflection display an unexpected, unusual, resonance-like effect as
functions of input second harmonic power.

PACS numbers: 42.65.Ky

1. Introduction

For more than half century semiconductors have had a prominent role to
play in almost every field of technology thanks to the ability to tailor their con-
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ductive properties. Just as tailoring the properties of semiconductors constituted a
challenge several decades ago in solid state physics, today tailoring the properties
of photonic crystals (PC) may hold the key to achieving significant technological
advances in the field of photonics. For this purpose we believe that a new class
of materials, called photonic band gap (PBG) structures, appears to hold much
promise. One-dimensional (1-D) PBG structures are made by arranging macro-
scopic dielectric and/or metallic unit cells into a periodic or quasi-periodic array,
in order to affect the properties of the light in almost the same way that semicon-
ductor crystals affect the properties of electrons. The periodic arrangement results
in allowed and forbidden frequency bands and gaps for the light, in analogy to
energy bands and gaps of semiconductors.

The study of PBG materials as such began with the works of Yablonovitch [1]
and John [2] on spontaneous emission control and light localization. These con-
tributions gave way to an intense theoretical and experimental investigation of
PBG structures that has continued since. Some of the applications that have
been proposed over the years include photonic crystals fibers [3], photonic crystals
circuits [4], transparent metal-dielectric stacks [5], highly efficient micron-sized
devices for nonlinear frequency conversion [6—8]. An up to date review of recent
advancements in the field of PBG structures may be found in Ref. [9].

Although the number of experimental and theoretical reports on quadratic
interactions in PBG structures is significant [6-8, 10—-19], in our view the chapter on
quadratic interactions in PBG structures is still far from being considered closed.
For instance, the dynamics that takes place under strong pumping conditions,
or under conditions of pump depletion, leads to highly unusual and previously
unknown effects such as a novel y(?-based optical limiting that we will discuss
below.

The paper is organized as follows: in Sec. 2 we summarize a generalized
coupled mode theory, under the monochromatic approximation, that is valid for
arbitrary index modulation and profile, and in the depleted pump regime [20]. In
Sec. 3 we numerically integrate the coupled mode equations derived in Sec. 2 using
a shooting procedure [21], and study two different regimes characterized by strong
pumping conditions: (a) second harmonic generation (SHG), and (b) parametric
down-conversion.

2. The model

The scalar nonlinear Helmholtz equations governing the quadratic interac-
tions of two linearly polarized plane waves at fundamental frequency (FF) w, and
SH frequency 2w in a layered, 1-D, finite structure can be written as [14]:

d’E,  w?e,(z)
dz? c?

w2 )
Ew:_Qc_zd (2)E} Eay, (1la)
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dzEzw 4w2€2w(2)
dz2 c?

gjw(#) (j = 1,2) are the spatially dependent, linear dielectric functions for the

w? o 2
By = —4=d(2) BT, (1b)

FF and SH fields. In general, ¢;,(2) are assumed to be complex functions. The
condition £, (z) # £2,(z) takes into account possible material dispersion. Finally,
d(z)(z) is the spatially dependent quadratic coupling function.

In spite of their apparent simplicity, Egs. (1) admit no known, general an-
alytical solutions. Equations (1) can be integrated numerically by resorting to a
nonlinear matrix transfer technique [22], assuming no pump depletion and a weak
nonlinearity. Modifications of the matrix transfer technique have been performed
to take pump depletion into account [23, 24]. However, in our view those tech-
niques might become in some cases quite cumbersome to implement. The analysis
of Egs. (1) can be simplified considerably by identifying two different spatial scales
of variation of the electric fields: (i) a fast-scale, which accounts for oscillations
that may occur within a spatial scale on the order of the wavelength due to linear
interference effects; and (ii) a slow-scale, which takes into account the nonlinear
polarization source terms on the right-hand side of Eqs. (1): the role of the non-
linearity is to modulate the linear solution over a length scale much longer with
respect to the fast scale. In order to separate fast and slow-scale variations we
introduce a new set of independent variables, z, = A%z with a = 0,1,2. .. where
A is a dimensionless parameter. Once the multiple scales expansion [14, 25-27] has
been performed, the procedure calls for the application of the limit A — 1 to re-
store the original space variable z. The derivative operator is expanded according
to the new set of variables, namely:

d d 0 d
— = A AT — 2
dz  Jz + 0z + Ozs + (2)

The linear and nonlinear dielectric functions, ¢;,(z) and d(*)(z), respectively, will
be considered functions of the fast variable zg. The complex field amplitude func-
tions, which we introduce below, will be functions of the slowly varying variables
z1, 22, etc. The electric fields are also expanded in powers of the perturbing pa-
rameter A in a self-consistent manner:

ij = AE;}U)(ZO,Zl,Zz, . ) + AzE](»Z)(ZQ,Zl,Zz, . ) + .. .y _] = 1,2 (3)

Substituting Eqgs. (2-3) into Egs. (la-b), and collecting the terms proportional
to A we find that the first order expansion of the electric fields can be expressed
as follows:

E;.}j - Ag.j)(zl, o, .. .)gzs;j)(zo) + Ag.;)(zl, 2o, .)qu.;)(zo), (4)

where {@;i)} are the left-to-right (LTR) and right-to-left (RTL) linear modes

w
that are functions of fast variable zp. LTR and RTL modes can be calculated
using a standard linear matrix transfer technique, assuming a unitary electric
field is incident on the structure from LTR for the @;z) modes, and from RTL
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for @;;) the modes [28]. We note that @;i) carry information about the linear

localization properties of electric field inside the structure, and A;if)(zl, Zg,...) are
the complex amplitudes of the fields that depend on the slow variables z1, 29, . . ..
In case there are no nonlinear interactions, A;i)(zl, Za,...) represent constant
amplitudes of LTR and RTL incident fields. Then, (a) collecting terms proportional
to AZ; (b) projecting the resulting equations over the LTR and RTL modes using

the standard metric {f|g|) = (1/1) fo F*(2)g(2)dz; and (c) taking the limit A — 1,
we arrive at four coupled, nonlinear dlﬂerentlal equations:
dA 0w
l : 7D AR (D
Yo=Y I AnAl (5a)
= +,—- (k‘,l):(-l—,—)
da)
(- Y CHMTOPIOE
>k =i o I Asl A" (5b)
I=+,—- (k,D=(+-)
N dA(lu)) W k1
S P )d—j =i— S I ARAD, (5e)
I=+,— (& D)=(+,—)
_pdal)
S =is Y g Alal, (5d)
I=+,— (k,l):(-l—,—)

where p(k D <@§'i)|ﬁjw@§'2>’ for j = 1,2 and k, | = + —, F((:frll)) =

(@@L el ), T = (@4 [dPale()), for n, k, | = +,—. The p{L"
are matrix elements of the momentum operator p;, = —i(e¢/jw)d/dz calculated
over the RTL and LTR linear modes.

The overlap coefficients F( D are effective, complex coupling coefficients
that reflect the way in which the LTR and RTL modes sample ;he distribution of

the nonlinearity d(z)( ) over the structure. The values of F((].w ny are maximized,

and can be greater than the magnitude of d(*)(z), when the fields interact coher-
ently inside the structure. Since no assumptions were made regarding the type
of grating, Eqs. (5) are valid for arbitrary index profiles and tuning conditions.
We note that this formulation allows analytical solutions in the undepleted pump
regime [20]. We also note that Eqs. (5) are valid when the steady state regime is
approached. In general, the steady state regime is approached when the interaction
time (dwell time) of an input pulse in the PBG structure is much shorter than
the duration of the pulse itself. In the case of transform limited pulses, this means
that the spectral bandwidth of the pulse should be much narrower than the spec-
tral bandwidth of each transmission resonance. In the PBG structure we consider
(see Fig. 1), the maximum interaction time 7int & 1/Awresonance at the band edge
resonance is approximately 1 ps. This means that for all intents and purposes the
dynamics of input pulses of a few tens of picoseconds can be considered to be in
the steady state regime.
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Equations (5) may be recast in a simpler form, provided we restrict our at-
tention to the case when both the FF and SH modes are tuned to transmission
resonances, and the structure 1s not absorptive. We choose these tuning conditions
because off-resonant interactions become quite inefficient for at least two rea-
sons: (a) impossibility to find phase matching conditions, and (b) poor field lo-
calization inside the structure [8, 10, 13]. Therefore, if resonant tuning condi-
tions restrictions are imposed, the diagonal matrix elements of the momentum
operator can be calculated analytically: p(+ - <§Z5(+)| ]w@(+)> =1, p§; =) =
(@12 D)) = —1.

Further simplifications can be performed by considering symmetric or pe-
riodic structures. The off-diagonal elements of the momentum operator can be
estimated as p; w’+) [p(+’_)] (A/2wjL)sin[¢:(jw)] [20], where L is the total
length of the structure, and ¢¢(jw) is the phase of its linear transmission function,
tjw = \/Kexp [i¢:(jw)]. For periodic structures under resonant conditions, the
phase of the transmitted field is proportional to multiples of = [29, 30]. There-
fore, the off-diagonal elements of the momentum operator become negligible with
respect to the diagonal ones. For symmetric PBG structures, the off-diagonal el-
ements are also negligible, provided A < 27L (X is the wavelength of the FF
field in vacuum). Simply stated, this amounts to choosing a structure that is at
least several wavelengths long. Finally, neglecting the off-diagonal elements with
respect to the diagonal ones, the coupled mode equations can be rewritten in the
following simplified form:

At W D 4 41

=i Yo LA AL (6a)
(kvl):(‘l'v_)

a4 W (k1) (k) 4(D)%

=T 2 TwSmeAl, (6)
(kvl):(‘l'v_)

dalh (D) 40) 4G

=i Yo Il AR Al (6¢)
(kvl):(‘l'v_)

dA(zZ)_ W (B, 4(k) 4(D

T = —lz Z F(Zw,—)Aw Aw . (6d)
(kvl):(‘l'v_)

We stress that if one wishes to investigate structures such that the fields
are not resonant or absorptive, one should resort Eqgs. (5), which retain their
general validity in the steady state regime. Analysis of deep grating and model
equations in quadratically nonlinear periodic media has been reported for the first
time in Ref. [31, 32], where the field is expanded in term of Bloch modes according
to the approach used by de Sterke and Sipe [26] for cubically nonlinear periodic
media. We indeed pursue solutions based on LTR and RTL linear modes of the
structure that explicitly take into account the boundary conditions at the input and
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the oulpul interfaces, as explained atl length in Ref. [20]. Once again, we siress
that our approach is valid for any kind of index modulation (periodic or not).

3. Results and discussion
3.1. SHG

As an example, let us consider a PBG structure composed of 59 alternat-
ing layers of air (index unity at all frequencies) and an ideal, generic, quadratic
dielectric material. The index of refraction of the material at A = 1.55 pym is
ni(w) = 3.342, and its index of refraction at the SH frequency is ni(2w) = 3.61;
the nonlinear coefficient is assumed to be d(*) = 120 pm/V1. The structure under
consideration is symmetric, and more details are described in the caption of Fig. 1.
The FF field is tuned at the first transmission resonance near the first order band
gap, and the SH field is tuned at the second transmission resonance near the sec-
ond order band gap (see Fig. 1). Tuning in this fashion, the SH field is globally
phase-matched with the FF field [13].

FFl 7lSH

—

T(linear)

=
9

0 # 0
0.635 0.645 1.286 1.290
o/o,

Fig. 1. Linear transmittance vs. normalized frequency w/wo, wo = 27¢/ Ao, Ao =1 pm.
The structure is composed of 59 alternating layers of air and a dielectric material. The
index of refraction of the dielectric material at FF (A = 1.55 um) is n1(w) = 3.342 and
its index of refraction at the SH frequency is n1(2w) = 3.61. The layers have thicknesses
a = 90 nm (air) and b = 150 nm (dielectric material), the total length of the structure

is L =7.11 pm. The arrow identifies the tuning of the FF and SH field, respectively.

We have numerically integrated Egs. (6)* using a shooting procedure [21]. In
Fig. 2 we show the reflected and transmitted FF field, the backward and forward

tHere we refer to an ideal, generic, quadratic material with a relatively high nonlinearity,
and ignore two-photon absorption and Kerr effect. These effects might become important under
strong pumping conditions, as might be the case in AlGaAs, for example. The study of competing
nonlinearities is beyond the scope of the present work.

{For the PBG structure we consider the off-diagonal elements of the momentum operator
which are approximately two or three orders of magnitude smaller than the diagonal ones. Hence-
forth, we carry out the numerical integrations of Eqs. (6) instead of Eqs. (5)
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Fig. 2. Forward SH conversion efficiency nd; = |A(2j))(L)|2/|A£u+)(0)|2 (filled
circle-solid line), backward SH conversion efficiency ngy = |A(2;)(0)|2/|A£)+)(0) ? (open
squared-short dashed line), reflected FF field Rrr = |AE‘,_)(0)|2/|AEJI')(0)|2 (open

circle-long dashed line), and transmitted FF field Trr = |AEJI')(L)|2/|AEJI')(0)|2 (open
triangle-solid line) vs. input FF intensity [P — (1/2)e0 C|A£,+)(0)|2. The FF intensity
is incident from vacuo on the PBG structure in the LTR direction. The nonlinear co-
efficient of the dielectric material is d(® = 120 pm/V. The symbols (circles, triangles,
and squares) represent the values calculated by numerically integrating Eqs. (6) via a
shooting procedure. Note that the energy among the four channels is conserved, as one
might expect: Rer + T¥r + 9dy + 153 = 1. Inset: Magnification of the forward and
backward SH conversion efficiencies in the region of negligible depletion of the FF field.

SH conversion efficiencies as a function of the intensity of the incident FF field.
The following are, in our view, the most salient points of Fig. 2:

(i) The forward and backward SH conversion efficiencies are approximately
the same at all times. This is a consequence of the fact that the structure has strong
feedback due to the high-index contrast between layers. Choosing smaller index
contrasts between adjacent layers causes an imbalance between forward and back-
ward generation. In the limiting case where there is no index mismatch (i.e., bulk)
SHG occurs entirely in the forward direction.

(ii)) Even under global phase matching conditions, SH conversion efficiency
does not increase monotonically to deplete the pump, as one might be tempted
to think since that is how bulk materials behave. We calculate a total maximum
conversion efficiency of roughly 50%, equally distributed between the forward and
the backward SH channels, for input FF intensities of approximately 0.6 GW /cm?.
The total conversion efficiency then decreases to about 40% for input FF intensities
of ~ 10 GW/ecm? This behavior is unusual if one thinks of a phase-matched
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process and neglects the various components, or channels, that compete for the
same available energy.

(iii) In fact, the forward FF channel is not only converting energy into SH
forward and backward channels, but it is also strongly coupling to the backward FF
channel, leading to excess reflections. This result is new and unexpected. Therefore,
the process of SHG in a PBG structure under conditions of pump depletion should
be more appropriately regarded as a multi-wave mixing process. Quite surprisingly,
the process that is privileged under strong pumping conditions is not the SH
generation; in fact, most of the energy is converted from the FF forward channel
to the FF backward channel. The figure suggests that pump reflections exceed
60%), while its transmission drops to approximately 5%.

(iv) The dynamics outlined above is also strongly suggestive of a novel,
unusual optical limiting behavior. Using quadratic interactions for optical limiting
purposes would result in much faster devices compared with other, more traditional
schemes of optical limiters based on cubic nonlinearities. In addition, the device
would not suffer from the detrimental effects typical of cubic materials, such as
absorption, heating or saturation, since energy is always stored in the field, and
not transferred to the material: our proposed optical limiter would act on the
transmitted FF (see Fig. 2) by limiting its energy on the basis of a purely quadratic
interaction. More specifically, it can be shown that for our structure the output

FF intensity scales approximately as follows: Ié%utput) & aw/[&?put) with a =
0.19 (GW)'/2/cm.

The physical mechanism that in this case leads to optical limiting is different
than the physical mechanism required for the onset of optical limiting in the case
of cubic nonlinearities. In the latter case, optical limiting can occur because of
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Fig. 3. Absolute value squared of the FF field (thin solid line) and of the SH field
(thick solid line) inside the PBG structure, for different values of the input intensity;
(a) I}(?i;put) =0.05 GW/cm?, (b) I}(?i;put) = 0.5 GW/cm?, (c) I}(?i;put) = 4.8 GW/cm?.
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dynamical, spectral band-shift in the location of the band gap [33], and/or in
combination with nonlinear absorption. In our case, the mechanism of the optical
limiting process consists of an energy exchange between the FF forward and the
FF backward channels, mediated by the SHG process.

To highlight the different mechanisms that drive optical limiting in the case
of quadratic and cubic nonlinearities, in Figs. 3 we show the FF and SH field
profiles inside the PBG structure during the SHG process, for different values of
the input intensity. The Figures suggest that the FF remains well localized inside
the structure, even when its transmission drops to values less than 10% (Fig. 3¢).
We do not record any exponentially decaying tails in the FF mode, which are
typical of cubic nonlinearities that cause shifts of the band edge, and push the
FF inside the gap [33]. Finally, the dynamics described in Fig. 2 also suggests
another application, namely a phase-insensitive, nonlinear reflector. In our case,
the reflection coefficient can be approximately described by the following scaling

law: Rpp =~ b{/ Té%lput), where b = 0.28 (cm?/GW)Y/3. A more detailed analysis
of SHG under pump depletion conditions will be presented elsewhere [3]].

Limiting effects during SHG have also been discussed in context of the so-called
“parametric gap solitons”, the reader interested may consult the review article by
Trillo et al. [35] and the extended list of references cited therein.

3.2. Parametric down-conversion

We now investigate the parametric down-conversion regime that arises when
an intense SH field is injected together with a weak fundamental field. The tuning
conditions are the same as those outlined in Fig. 1 for the SHG process. When
both the input FF and SH field are present, the interaction will be dependent
on the relative phase difference between the input fields. In Figs. 4 we show the
reflected and transmitted FF fields vs. the relative input phase difference for fixed
input FF and SH fields. Taking the SH input intensity to be at least eight or-
ders of magnitude greater than the FF input intensity (Isg = 13.27 MW /cm?
and Irp = 0.132 W/cmz), our calculations show that the SH field remains prac-
tically undepleted at all times. Figures 4 suggest that transmission and reflec-
tion coefficients are periodic functions of 8¢ [22], as one might expect. In addi-
tion, the FF transmitted and reflected fields undergo an amplification process
that is enhanced for ¢ = 3x/4 + mm, while de-amplification takes place for
§¢ =n/d+mmr (m=0,12...).

In Figs. 5 we show: (a) the reflection and transmission, and (b) the phases
of the FF output field vs. the SH input intensity. The phase difference of the in-
put fields is chosen to be §¢ = 37/4. The Figures also show a new and interesting
phenomenon: the FF field displays an unusual, resonance-like dynamics by increas-
ing reflection and transmission (as a function of input SH intensity) first sharply
followed by an equally sharp decrease beginning ~ 170 MW /cm?. This behavior
indicates an inversion of the gain process, which favors energy flow from the FF
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Fig. 4. (a) Rer = [ALD(0)2/]ASP(0)]> (dashed line) and (b) Trr =
|AEJI')(L)|2/|AEJI')(0)|2 (solid line) vs. the phase difference of the input fields §¢ =
(;55;")(0) — (;5(22)(0) The input fields intensities are respectively Ipr = 1.32 % 107! W /cm?
and Isp = 13.27 MW /cm?. Note that in our case the amplification process is enhanced

for input phase differences around 37/4 + mr.
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Fig. 5. (a) Rrr = |AE‘,_)(O)|2/|AEJI')(0)|2 (open squared-dashed line) and Trr =
JAST(L)2/]1ASH(0)] (filled circle-solid line) vs. SH input intensity. (b) Phase of the FF
field upon reflection ¢: = arg[AE‘,_)(O)/AE‘,H(O)] (open squared-dashed line) and phase
of the FF field upon transmission ¢; = arg[AE‘;I')(L)/AE‘,H(O)] (filled circle-solid line) vs.
SH input intensity. The FF input intensity is Irr = 1.32 x 107" W/cm? and the phase
difference of the input fields is 6¢ = 37 /4. The symbols (circles and squares) represent

the values calculated by numerically integrating Eqs. (6) via a shooting procedure.
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back to the SH field. The inversion of gain is accompanied by a 7 phase shift in
both reflected and transmitted fields.

While it 1s not atypical for # phase shifts to occur when the inversion of
the quadratic process takes place in bulk materials, under perfect phase matching
conditions [36-38], we find that = phase shifts also occur under resonant conditions
in a PBG structures. The reflected and transmitted FF fields reach their maxima
(Ixsfected oy pfransmitted ~ 10=1 MW /cm?) for Isy ~ 170 MW /em?. Even in this
case the SH field remains practically undepleted due to the inversion of gain. This
result is also new and unexpected.
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Fig. 6. Absolute value squared of the FF field inside the PBG structure, for different
values of the input SH intensity; (a) Iisri{put = 50 MW /cm?, (b) Iisri{put =110 MW/cm?,
(c) IP™ =169 MW /cm?, (d) I5P" = 200 MW /cm?.

In Fig. 6 we show the absolute value squared of the FF field inside the
PBG structure, for different values of the input SH intensity. The Figures suggest
that the FF remains well localized inside the structure for SH intensities beyond
Isg ~ 170 MW/cmz, with tuning conditions that remain consistent with the
peak of the first resonance near the band edge. Once again we do not record any
exponentially decaying tails in the FF mode, or a push of FF toward the gap. The
Figures also suggest another application: an intensity-controlled, true time, optical
delay line. As outlined in Ref. [39], the tunneling time of a quasi monochromatic
pulse that traverses a finite barrier is directly proportional to the electromagnetic
energy density stored within the barrier. Figure 6 thus suggests that the group
velocity of the FF pulse may be modulated by controlling SH pumping levels: the
pulse is slowed down for intensities below Isg ~ 170 MW /cm?, and speeded up
above these values. Following Ref. [35], the tunneling time of the transmitted FF
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field can be calculated as follows:
dE, |”

; /LE()IEIZJrcz
Tw = —————F—— wlZ w —
2 20 o 22| e

Finally, in Fig. 7 we show the transmitted and reflected FF fields for an input phase
difference é¢ = w/4. We note that the interaction is quite inefficient compared to
the case just studied, i.e., Fig. 5. Figure 7 also suggests that the transmitted FF
field monotonically decreases, while the FF reflected field monotonically increases:
no # phase shift occurs to invert energy flow, and the FF tends to be reflected for
the most part.
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Fig. 7. (a) Rrr = |AE‘,_)(O)|2/|AEJI')(0)|2 (open squared-dashed line) and Trr =
|AST (0)2/]1A5P(0)]? (filled circle-solid line) vs. SH input intensity. (b) Phase of the FF
field upon reflection ¢: = arg[AE‘,_)(O)/AE‘,H(O)] (open squared-dashed line) and phase
of the FF field upon transmission ¢; = arg[AE‘;I')(L)/AE‘,H(O)] (filled circle-solid line) vs.
SH input intensity. The FF input intensity is Irr = 1.32 x 107" W/cm? and the phase
difference of the input fields is ¢ = « /4.

4. Conclusions

In summary, we have analyzed the properties of nonlinear quadratic in-
teractions near the photonic band edge under strong pumping and global phase
matching conditions. Our results reveal that, if the pump is allowed to deplete,
several new phenomena can be identified, including a novel, y(?)-based optical
limiting behavior for SHG, and an unexpected saturation of the up-conversion
process. For parametric down-conversion processes, we find that above a certain
threshold value an inversion of gain occurs, and the FF field gives energy back
to the SH field. Both transmitted and reflected FF field components then display
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sharp resonance-like behavior, which does not allow the pump to become depleted
at any time. Nevertheless, this dynamics can lead to a gain-modulated true time
delay line.
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M. Centini thank the U.S. Army and the Army Research Laboratory-Furopean
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