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Abstract

Computing solutions to intractable planning problems is par-
ticularly problematic within real-time domains. One ap-
proach to this problem includes off-line computation of con-
tingency plans. However, because complex domains preclude
creating a comprehensive library, a system must choose a sub-
set of all possible plans to include. Strategic selections will
ensure that the library contains an appropriate plan for en-
countered situations.
This work discusses preliminary investigations into a scheme
in which problem space analysis drives the creation of an ef-
ficient plan library. For complex problems, an exact analysis
of the problem space is not feasible, and an efficient means
of creating an approximate analysis is required. Thus, this
work proposes the development of algorithms to efficiently
generate and leverage the problem space analysis of complex
planning problems.

Introduction
Many visitation planning problems can be mapped to a Dy-
namic Traveling Saleman Problem (DTSP), in which a sys-
tem must plan a route to visit a set of potentially changing lo-
cations. When a new location becomes known, DTSP plan-
ners typically use heuristics to append the new locations to
the previously computed route. Depending on the placement
and quantity of these new locations, the accuracy of the ap-
proximate solution degrades. Instead of computing solutions
at runtime, an alternate approach is to precompute solutions
prior to runtime. One could imagine ideally precomputing a
solution for every possible combination of potential new lo-
cations, but this is obviously impractical for large problems.
However, it is upon this ideal that this approach is based.

This paper describes early experiments with creating a
mapping between a sampling of problem instances and their
solutions, with the intent of interpolating for the remain-
der of the problem space. These preliminary experiments
demonstrate that a perfect library includes only a small per-
centage of all possible solutions. More importantly, exper-
iments show that approximations of reasonable quality can
be obtained from a small number of samples. The promise
of these early results suggest that more sophisticated sam-
pling techniques that leverage information acquired in previ-
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ous samples, such as importance sampling and active learn-
ing, would lead to better results. Finally, this domain ex-
hibits problem-specific hints can also assist with generating
the problem space analysis.

Related Work
Minimizing the solutions required to achieve competent cov-
erage of a problem space is well studied within Case-Based
Reasoning (CBR) literature. Typically, a CBR system will
encounter a problem and store the solution for future use.
CBR is normally used in domains with discrete representa-
tions, although this is not always the case (Ram & Santa-
maría 1997). In most cases, CBR does not truly pre-plan;
rather, all its solutions are generated during runtime.

Contingency planning is an alternative approach for gen-
erating plans for situations in which a plan may fail. One
classic approach to contingency planning is Schopper’s uni-
versal plans (Schoppers 1987) in which a solution to every
possible situation is stored in a plan library. However, the
potential drawback for this technique is the sheer number of
states that must be considered. One alternative is to deter-
mine the necessary contingencies to plan for by calculating
an expecteddisutility for an action that fails (Onder & Pol-
lack 1996).

Problem Space Analysis
The problem space analysis currently consists of three maps:
the Problem-Solution Map (PS Map), the Solution-Problem-
Utility Map (SPU Map), and the Solution-Similarity Map
(SS Map). For brevity, only the PS Map will be discussed in
detail, and the other maps will be briefly mentioned.

An example of a PS Map is shown in Figure 1. This map
shows the solutions for a set of 5-city DTSP problems. Four
of the cities are fixed, as indicated by diamonds, and the
axes represent the potential locations of the fifth city. The
path starts in the middle at (0,0). For each of the possi-
ble locations of the fifth city (assuming integer coordinates),
the shortest route is generated as the solution. Finally, each
unique solution, consisting of a sequence of city identifiers,
is assigned a color and plotted. For example, instances of the
problem with the solution 0-1-5-3-2-4 might all be colored
yellow.

This map assists with plan library creation by showing the
minimum number of solutions required for optimal compe-



Figure 1: Problem-Solution Map of 5-city DTSP with
marked city locations and solutions

tency across the problem space. We see that only eight so-
lutions are required, representing just fewer than 7% of the
120 possible solutions. This is encouraging, but, for large
problems, storing 7% of the possible solutions is not feasi-
ble.

The SPU map addresses this by suggesting regions in
which several optimal solutions can be replaced with fewer
suboptimal solutions while preserving reasonable plan qual-
ity. The SS Map attempts to further reduce the library size
by discovering two or more solutions that are similar enough
to be combined into one parameterized solution.

Preliminary Work & Results
Preliminary work using random sampling demonstrates that
an accurate map can be generated with relatively few sam-
ples. In one experiment, the PS Map from figure 1 is sam-
pled at various rates ranging from .0001 to .9, and solution
interpolation is done by polling neighbors within a 15-unit
radius. Finally, the percentage of correct solutions when
compared to the original PS Map is plotted against the sam-
ple rate. Sampling at a .0001 rate yielded an accuracy rate
of .544, while a .05 sample rate resulted in a .913 accuracy.
The results of a follow up three-trial experiment focus on
the sample rate between .0001 and .01 are shown in figure 2.
Here we see that a .005 sample rate can generate a PS Map
approximation that is a 80% match of the ideal PS Map.

Summary & Future Directions
This work presents preliminary work toward approximating
the solution space for a complete array of problem instances
using sampling and interpolation. These early experiments
show that high solution accuracy can be obtained from a
small sample of problem instance solutions. These exper-
iments also suggest approaches for increasing the accuracy
of the approximation, such as biasing samples towards areas
of higher interest. Allocating additional samples near these
typically heterogeneous regions seems a promising means
of increasing the approximation accuracy. Also, replacing
nearest neighbor classification with a more sophisticated ap-
proach will likely lead to better results. Finally, blending the

Figure 2: PS Map approximation accuracy at various sample
rates (3 trials)

sampling and solution generation steps through active learn-
ing or importance sampling techniques is another considera-
tion. It is currently unclear how well these techniques extend
to the higher dimensions of more complex problems. In this
case, finding an efficient means to accurately approximate
the problem space analysis with a low sample rate becomes
critical.

The application of these techniques to other domains is
another consideration. For example, a wireless sensor net-
work (WSN) must reconfigure itself to maintain a commu-
nications topology as targets move and sensor energy levels
fluctuate. A predetermined library consisting of mappings
from environment conditions to network configuration could
reduce the amount of coordination necessary within the net-
work, thus reducing communications needs and extending
the life of the network. The interdependence of individual
sensor policies may result in irregularities in the problem
space, creating challenges when approximating the problem
space analysis maps.
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