
 

 

 

 

Distributed System for Domestic Robot Operation Using Computer Vision 

 

Marcel-Titus Marginean 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Science in Information Technology 

 

Department of Computer and Information Sciences 

The Jess & Mildred Fisher College of Science & Mathematics 

 

  



ii 

 

 

Towson University 

2016 

  



iii 

 

 

 

 

Acknowledgements 

 

 

I want to express my gratitude first and foremost to Dr. Chao Lu for his precious 

guidance and ideas offered during the doctoral program. 

I want to also thank Dr. Marius Zimand for his guidance in navigation of the processes 

and procedures. 

A special thank you goes to my wife Angela and my son Mihai who tolerated me through 

a lot of mood changes while working in the doctoral program and picking up the slack for 

household tasks. Your help made this thesis possible. 

A big thank you goes to my mother, poet Maria Marginean from whom I inherited the 

dedication and grit to cope with difficult moments while keeping sustained efforts on 

polishing my work towards perfection. 

And in the end, I am dedicating this thesis to the memory of my father Titu Ioan 

Marginean who instilled in me from an early age the ardent passion for science, 

technology and engineering. 

 

 



iv 

 

ABSTRACT 

Anticipated for a long time in science-fiction literature, domestic robotics are timidly 

starting to appear. While the first applications, like vacuum-cleaners or toys, do not share 

much of the versatility of the robotic servants envisioned in literature and movies, it is 

just a matter of time before more useful robots appear, mainly driven by the demand for 

help for the aging population in the industrialized world. 

 This dissertation research aims to study, propose, and start to develop an 

integrated home automation (domotic) system in the form of an Intelligent House 

infrastructure. We envision the model of the fully integrated Smart House of the future as 

being a self-sufficient intelligent system able to take care of the inhabitants, with the 

robots becoming just the autonomous mobile components of the assisted living 

environment. So far Computer Vision (CV) seems to be the most promising technology to 

allow robot navigation in domestic environments, therefore a large part of the works is 

focusing on the aspects of using CV for domestic robot operations and addressing 

challenges that come with it. 

The work began by proposing a distributed processing architecture for controlling 

a robot operating in a domestic environment and navigating it using computer vision. The 

system is composed of a set of fixed cameras mounted on the walls near the ceiling 

overlooking the various rooms, a set of networked computers located in the house, home 

automation devices communicating with domotic computers and one or more mobile 

units (robots) having on board their own camera and processing equipment. We are 

taking advantage of the already existing Wi-Fi and wired networks in any modern house 
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to provide the communication between equipment and this allows us to keep the cost of 

the system within an affordable range. 

As a basic implementation of the proposed architecture we experimented with a 

set of software components called Camera Module processing data from fixed cameras, a 

Situation Awareness Module integrating data from all the rest of the modules and 

building a map of the environment and the robot control software. The robot control 

software is in itself distributed between the computer board located on the robot and a 

part running on the base station. The components of the robot control software are in 

constant communication between themselves over Wi-Fi. 

The first task we handled on the Computer Vision side of work was to implement 

an object tracking algorithm by fusing together multiple well knows CV operations into a 

multi-paradigm tracker.  The MP-Tracker algorithm developed runs inside a Camera 

Module receiving images from a fixed camera, detecting moving objects, and sending 

information about them to other components in the system. 

Situation Awareness Module (SAM) uses homographic projection to create a map 

of the environment. Once the model is built, the same equations are used to translate the 

coordinates of the moving objects received from the tracker into absolute coordinates in 

the room. The Robot Module is part of the robot controlling software that runs on the 

Base Station and uses the data model built by SAM to perform path planning and sends 

navigation commands to the Autonomous Robot Module. 

Autonomous Robot Module (ARM) is the part of robot control software that runs 

on the robot itself. Besides translating the high level navigation commands from Robot 
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Module in hardware control signals, it also processes video from the on-board camera. 

Images from the mobile camera are used to both calculate optical-flow for low level 

navigation and for maintaining a trajectory, as well as providing upon request to other 

modules for epipolar geometry calculations. 

To tie all the modules together, we developed a new communication protocol 

sDOMO designed from the beginning as a protocol for domestic home automation and 

robotic systems. A major area of concern for using robots and generally any automation 

device in domestic environments is the security and privacy of the inhabitants. To address 

this concern we designed sDOMO to implement a self-sufficient home-centered 

automation network where the devices are able to perform their duties over the house 

network and any access to the outside world would be strictly controlled. The protocol 

has multiple layers of security and privacy protection and is being offered as an open 

source project for general purpose home automation and building of robotic systems. 

A new framework for processing multiple messages in parallel is being proposed 

as a new design pattern. The Multi-Threaded Message Dispatcher framework is a 

generalization of the mono-threaded Reactor design pattern to work on a heavy multi-

threaded environment while encapsulating all the logic required to provide guaranteed 

deadlock avoidance. The framework will take care of all low levels details about locking 

and unlocking the access to critical resources allowing the programmer to focus on the 

problem he needs to solve instead of being distracted with critical section management. 

To be able to test the system we built from scratch a small domestic robot 

powered by a Raspberry PI 2 embedded computer board and an Arduino-Nano micro-

controller to access the hardware in real-time. The robot is based on a differential drive 
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platform with two DC motors commanded by Arduino via H-Bridges circuits. The robot 

Camera is mounted on a Pan-Tilt mechanism powered by two servo-motors. The 

embedded computer board is running the ARM software communicating with the rest of 

the system via sDOMO on Wi-Fi network. Current dissertation provides most of the 

information required for our robot to be replicated by other researchers. 
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1 INTRODUCTION 

1.1 Why 

Anticipated for a long time in science-fiction literature, domestic robots are timidly 

starting to appear. While the first applications, like vacuum-cleaners or toys, do not share 

much with the versatile robotic servants envisioned in literature and movies, it is just a 

matter of time before more useful robots appear, mainly driven by the demand for help 

for the aging population in the industrialized world. 

 The UN report [22] presented by the Population Division on the 2002 World 

Assembly on Aging and their follow-up documents highlight an unprecedented level of 

aging showing that the population aged 60 and over is expected to grow from about 600 

million at the beginning of the year 2000 to 1.5 billion in 2025. This demographic trend is 

also expected to coincide with a slower growth in young population driving up the 

percentage of elderly in the industrialized world from around 20% in 2000 to 30% in 

2025 and about 35% in 2050 with certain regions experiencing much higher percentage. 

For example, in Europe in the year 2025 it is projected that there will be 2.6 elderly over 

65 for every child bellow 15 years old. In the United States over the 2012–2022 period, 

driven mainly by elderly care, the national health spending is projected to grow at an 

average annual rate of 5.8 percent. By 2022 health spending financed from public dollars 

alone is projected to account for 49 percent of national health spending and reach a total 

of $2.4 trillion as reported in [23]. These trends have the potential to put to the test the 

industrialized nation’s ability to provide assistance to their aging population. 

 In this context, the technology is expected to play a major role in elderly care and 
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assisted living. An active area of research is already taking place for technologies to 

achieve what is called “Independent Assisted Living” where the senior citizens are 

enabled by technology to live alone in their own houses, as opposed to being moved into 

an assisted living facility, while being able to receive help as needed [14]. Domestic 

robots are expected to play a prime role in this field in the not so distant future [14, 12] as 

part of an integrated Domotic environment. 

 The task of providing Independent Assisted Living is eased also by the recent 

“silent revolution” in embedded systems and mobile devices helping the concept of 

Intelligent Houses to become a reality. Combining a ubiquitous sensor network in the 

house, with wearable devices and robots as the mobile component, for the first time in 

history, the concept of a house smart enough to take care of the residents is finally within 

reach.  Just in time to help address the challenges we are facing due to a worldwide aging 

population. However, a few hurdles still remain that need to be overcome by engineering 

and research work. 

 One of the main obstacles faced by the development of mobile robots is the ability 

to properly operate in domestic environments where they must be able to safely navigate 

and avoid objects, people or pets [13]. While non-visual methods have been attempted, 

computer vision emerges as the most promising technology [3, 4, 5, 6, 15] but this brings 

with it the major challenge of processing in real-time the humongous amount of 

information captured by cameras on an energy efficient embedded computer. 

 A second major difficulty stems from the lack of a unified communication method 

between various home automation devices produced by different vendors. Nowadays, 

most manufacturers of home automation (domotic) devices rely on their own proprietary 
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communication protocols between devices. This approach has two major drawbacks: 

First, it limits the functionality that can be implemented into a domotic system to the 

capabilities provided by a particular vendor; a system cannot be extended with devices 

from another vendor if a particular function is not available from the original company 

because the device is not able to communicate with the rest of the system. The fact that 

the consumer is limited to the devices offered from the vendor of the system already 

installed in the house, does not provide the real competition required to bring the prices 

down. 

 As a direct result, today's market of domotic systems is composed of overly 

expensive disjoint subsystems that do not provide advanced functionality as needed for 

the vision of Independent Assisted Living to truly take place. New approaches to the 

problem are needed to provide an interoperable infrastructure allowing various 

subsystems to inter-operate seamlessly. 

 Another major problem with the home automation system is the problem of 

security and privacy. Domotic systems brings a whole new dimension to the security and 

privacy problem, very rarely encountered in computer security before. Since a home 

automation system can directly affect the living environment, a security breach from a 

person with malicious intent can do property damage and bodily harm to residents. With 

the advent of domestic robots, the problem is exacerbated by the fact that a compromised 

robot can even kill the unsuspecting inhabitants while asleep or eating food that has been 

tampered with.  The big push from the industry toward the over-hyped “Cloud Based 

Internet of Things (IoT)” can be a recipe for disaster. The “Cloud Based IoT” has been 

shown to have multiple security and privacy issues needed to be fixed [24, 25, 26, 27, 28, 
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29, 30] and they can represent serious threats for smart homes of the future. Solutions 

that alleviates some of these concerns has been offered in many of the paper cited above, 

but so far most of the problems persist. 

1.2 Contributions 

In the current dissertation research, we studied, proposed and started to develop solutions 

to address many of the concerns above in order to help further development of domestic 

robotics and home automation systems. Our work resulted in four published research 

papers and some of the software has already been made available to the interested public 

under a liberal open source license. 

 We began by proposing a distributed computing architecture for domestic robot 

navigation. In this work we envisioned a system model where we proposed using various 

equipment already existing in a modern house (camera, wired and wireless network and 

house based computers) in order to aid robot navigation using both internal (on the robot) 

and external (fixed on the walls) cameras. The rationale for this architecture has been to 

take advantage of already existing equipment to keep the cost down, to outsource as 

much as possible of CPU intensive Computer Vision processing into the Base Station 

allowing us to drive the robot with cheap energy efficient embedded boards and provide a 

better situation awareness by integrating images from multiple cameras overlooking the 

same scene. The proposed architecture has been presented in our first paper from 2013: 

“A Distributed Processing Architecture for Vision Based Domestic Robot Navigation”. 

 During implementation of one of the components presented in this design, 

Camera Module (CM), we performed our major work in computer vision by creating the 
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MP-Tracker algorithm. MP-Tracker is an algorithm for detection and tracking of multiple 

object moving into the field of view of a fixed camera. The results of the tracking 

algorithm are to serve as the input for the robot situation awareness, being used by the 

robot both to detect its location and direction and to be aware about the other people, pets 

or robots moving inside the same room. Our second paper “A Multi-Paradigm Object 

Tracker for Robot Navigation Assisted by External Computer Vision” describes the 

algorithm that has been presented at ACM RACS conference in 2014. 

 Having multiple modules located across various computers in the network which 

need to cooperate with each other our project was in need of a communication protocol 

specially tailored for the task of home automation and robotic systems. After 

experimenting for quite some time with the well-marketed AllJoyn protocol specifically 

developed for the Internet of Things we found it severely inappropriate for the task, and 

decided to implement our own protocol specially designed for this kind of applications. 

The work resulted in what we consider our most important contribution so far within the 

scope of this dissertation: the sDOMO communication protocol. As a communication 

protocol specially developed for home automation and building of the robotic systems 

and released under an open source license, sDOMO is highly suited to provide the back-

bone for a highly integrated system for the intelligent homes of the future. Being 

optimized for small devices, sDOMO allows some 8 bit microcontrollers to be a full 

featured, independent node in the domotic network, yet the protocol is powerful enough 

to provide soft-real-time communication for our computer-vision distributed system for 

domestic robots. 

 SDOMO is not only a communication protocol but defines a data model for 
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highly integrated smart homes, where special software modules like House Intelligence 

Unit can be choreographed into coordinated actions between multiple devices and 

external information to achieve holistic behavior of the living environment. Using 

protocol adapters, sDOMO allows devices speaking through third party protocols to be 

integrated into the system appearing as sDOMO devices. 

 Being designed with security and privacy concerns in mind, sDOMO has unique 

features to protect the residents, some of them are not matched even by heavy-weighted 

competing protocols. For example, by protocol design sDOMO guarantees that any 

attempt to hijack a sDOMO device from a Trojan Horse or Virus infiltrating behind 

firewall in the domotic network will trigger automatic retaliation from the system against 

the attacker. From a privacy point of view, the protocol has provisions that makes it 

difficult for the manufacturers to attempt to spy on their customers, standardized XML 

files for automatically shaming on public forums rough companies are being considered 

as part of the protocol specification.   

 The work with sDOMO resulted in a companion website where the code and 

demos are being released. It also resulted in two papers “sDOMO – A Simple 

Communication Protocol for Home Automation and Robotic Systems” presented at IEEE 

International Conference on Technologies for Practical Robot Applications and “sDOMO 

Protocol in the context of the Internet of Things” accepted at CSTA-2016. I would like to 

mention that the work on sDOMO is planned to continue beyond the scope of this 

dissertation and will be released as an open source protocol for general purpose home 

automation and the building of robotics systems. 

The usage of well-tried software design patterns and application frameworks is 
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often encountered in Mission Critical and Safety Critical Applications development due 

to the high stakes involved in case of failures. To increase reliability, some frameworks 

attempt to separate the implementation of business logic and low level implementation 

details and move the latter inside of framework-implementation in order to allow the 

developers to focus as much as possible on the problem to be solved, while still providing 

the necessary infrastructure for easy to use API’s. 

 In a paper pending for submission, we proposed a brand new design pattern for 

Message Dispatching and Processing in a heavy multi-threaded application. The Multi-

Threaded Message Dispatcher algorithm (MTMDispatcher) is a reusable set of classes 

that implements an enhancement of well-known Reactor [56] design pattern so that it 

operates in a multi-threaded environment while using the Partial-Ordering Deadlock 

Avoidance algorithm to guarantee that no two threads dead-locks during process. The 

framework design uses modern C++11 techniques to encapsulate all the required mutex 

locking/unlocking in the resources access API managed by the Dispatcher itself 

preventing the users from making mistakes that can lead to a dead-lock. This way, junior 

programmers can take the task of implementing mission critical applications without 

risking the introduction of hard to debug anomalous interlocking behavior. 

We fully derived the analytic geometry equations for landmark based localization 

with the camera located on the robot both for multiple landmarks and a stationary robot 

and for a single landmark and a mobile robot. The result of this work has been presented 

in this dissertation. 
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Another algorithm we created from scratch and is being presented in this dissertation is 

the Vector Classifier Algorithm capable of processing the noisy input results from the 

Optical Flow calculation from the moving robot camera, eliminating outliers and 

providing a clean set of motion vectors that can be used for visual odometry. 

1.3 Literature Review 

Robot navigation is a complicated problem and various solutions have been attempted to 

try to solve it, as we reviewed in our first paper. The computer vision however, eventually 

augmented with other equipment appears to be the leading technology for the task. 

 A combination of ultrasonic sensors, laser range-finders, and RFID tags were used 

[13] for indoor robot navigation without using computer vision. Stereo vision has been 

used for mapping [16] the data being structured as a 2.5D occupancy, elevation and slope 

grid. Davidson [17] presented a method to do real-time localization and mapping of the 

environment using a monocular camera, while [18] artificial landmarks are placed on the 

ceiling and a vertical looking camera is used to detect their position and orientation and 

infer the pose of the robot. 

 Visual sonar [21] is a relatively new technique which attempts to recover a depth 

of information from monocular images by deriving cues based on real life constraints 

used to eliminate the ambiguity inherent in monocular vision. Due to the large amount of 

processing required for computer vision, researchers have always tried to employ a whole 

plethora of methods to improve the localization by using various pre-defined or innate 

sets of knowledge about the environment, or by aiding the visual localization system with 

external information. 
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 In [1] outdoor navigation and mapping, the computer vision is aided by a 

differential GPS and location information is processed by a distributed Extended Kalman 

Filter. Dead-reckoning is used by Cobos et al. [2] beside the Visual Odometer to help 

with robot localization. In Cluj-Napoca [3] they used a laser beam to detect dynamic 

obstacles, while a laser scanner has been employed by Biber, Fleck, and Duckett [4] to 

collect data for model building. High level prior-knowledge of the environment has been 

employed [15], where the indoor space has been modeled as horizontal and vertical 

planes having different orientations while the obstacles (objects) have not been modeled, 

only noted in the grid. 

 In line with our research, Pizarro et al. [5] used a rig of calibrated and 

synchronized cameras to achieve robot and obstacle localization with a collaborative 

system employing external cameras, also presenting a mobile robot in [6]. 

Tracking multiple persons / robots / pets and moving objects is an essential task 

for situation awareness in robot navigation and operation. It is also a relatively 

complicated problem of computer vision and multiple solutions have been proposed in 

literature. We approached the problem is our second paper [?] too. In the following 

paragraphs a short review of related work is presented. 

 The most common tracking methods are based on a variation of Multiple 

Hypothesis Tracking (MHT) [31] developed originally for RADAR by Donald Reid in 

his seminal paper from 1979 and adapted by later researchers for tracking using computer 

vision [32]. While deeply rooted in the theory of probabilities, MHT also needs to 

accumulate a relatively lengthy history before it can decide with a good enough 

confidence that a particular detected signal can be associated with a previously detected 
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one. As a result, MHT based trackers may exhibit a delay that is less than desirable in 

real-time tracking in close call situations. 

 The background subtraction and segmentation method has been presented in an 

introductory material in [33] and has been used by [34] for tracking vehicles on a 

highway, while an algorithm based on direct searching and failure recovery using 

histogram matching in HSV color space has been presented in [35]. Grouping features on 

hierarchical levels and using simulated annealing to find optimal configurations at object 

level has been presented in [36]. Lucas-Kanade method for tracking has been used in [37] 

taking advantage of a dedicated hardware to perform computationally intensive task 

while in [38] it has been combined with Histogram of Oriented Gradient based detection. 

Today’s market for domotic systems is dominated by proprietary communication 

protocols incompatible with each other. This not only prevents engineers from building 

highly integrated home automation and domestic robotic systems, but keeps prices 

artificially high due to lack of competition in the market since the customers have to 

restrict their choices to components compatible with the system already deployed. By 

developing sDOMO [62,63,64], we propose a communication protocol for fully 

integrated domotic systems running on top of house network, protocol which is simple 

enough to accommodate as peer’s micro-controller based sensors but scalable enough to 

handle a house wide distributed computer vision system for domestic robot assisted 

living. Based on a house centered philosophy, the protocol is putting emphasis on privacy 

and protection of the residents.   

 A relatively similar architecture with ours has closely related security goals, has 

been presented in [39], however their reliance on public key infrastructure will not permit 
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smaller devices to connect directly with the rest of the network, therefore the system must 

employ Room Bridge acting as protocol adapters. While bridging architecture it is also 

supported by sDOMO for devices that are unable to speak to the protocol, our work 

reduced the protocol requirements to the basics, allowing much smaller devices to be part 

of the network directly. 

 To solve the interoperability problem between otherwise incompatible platforms 

in [40] the idea of a SOAP based middle-ware was proposed. A similar SOAP based 

middle-ware was presented in [44]. The high overhead and verbosity associated with 

SOAP however would require that any small sensor or device to depend on a more 

powerful adapter. 

 In [45] a microcontroller based module was presented but it relied on external 

serial-to-lan converter and no overall domotic network architecture has been attempted. 

An IP based home automation system was presented in [46] but the reliance on ssh 

excluded microcontroller based devices from working as peers. 

 A similar idea with our Home Intelligence Unit (HIU) was presented in [41] by 

Kao and Yuan where they developed a more elaborated and complex set of meta-rules 

than our HIU. We may be looking more in depth at their ideas for our future development 

of HIU. 

 The idea of a framework for developing domotic systems by following the model 

driven approach was introduced in [42] while [43] presented a state of the art report on 

home automation technologies. 

The concept of the Internet of Things is a very broad concept covering various aspects 
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from embedded RFID tags to clothing till fully integrated city wide utility information 

systems [54]. Therefore, the scope of communication protocols used in IoT is equally 

wide. A summary overview of some of the architectures used in IoT has been presented 

in [55] while in [27] we see few critical considerations about the design of smart homes. 

 A survey [26] conducted at the university of Essex highlighted the major concerns 

of the people in regard with intelligent homes, among which are important to notice: The 

feeling of being in control, Privacy and Cognitive Workload. As we are headed toward 

pervasive intelligent environments, the human factor must be considered and I believe 

more studies of this kind are necessary for us, engineers, to understand the response of 

the users of our smart environments. Another interesting point about management of trust 

in “Cloud based IoT” has been made in [30] where they highlight that because some IoT 

company uses third party services for authentication (like for example Facebook or 

Google) if the user of the IoT service trusts the third party used for authentication it tends 

to project the same trust onto the Cloud service provider, despite the fact that there is no 

relationship between the two. This is yet another way in which Cloud based service 

providers can mislead users, with or without intent. 

 Extensible Messaging and Presence Protocol (XMPP) [47] developed originally 

for Instant Messenger - “Jabber” provides near-real-time data exchange via XML based 

messages. The protocol is implemented as an open standard, using a client-server 

architecture. Systems speaking, the protocol can be isolated from the internet by 

implementing them behind a firewall in a private XMPP server. However, the verbosity 

of XML and the lack of native binary data transfer (which must be encoded base64 inside 

XML) makes it difficult for it to be used for small microcontroller based devices.  
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 Nest Service Data Model [48] is tied to direct Internet access. All Nest devices, 

connect directly to Nest Service which is hosted online by company servers which it uses 

to access the devices via web-site or applications. The system relies on JSON data 

packing using REST interface over HTTPS excluding small microcontroller devices from 

being able to speak to the Nest API directly. Hosting the data services on company 

websites also raises questions of privacy and security of personal information. 

 The Constrained Application Protocol (CoAP) [49] is a very interesting recent 

development in IoT. It appears to be even more compact than sDOMO fitting inside 8-bit 

microcontrollers. The minimally binary packed header allows very small CPU and 

bandwidth overhead but it lacks security and privacy features. The Message size in CoAP 

is also limited to the datagram size (about 1.1KB over UDP) while sDOMO uses the 

Message Carrier Packs to allow messages with a theoretical limit of 4GB. CoAP was 

designed to have its message be easily translated to HTTP by an adapter but does not in 

itself define a network model beyond that of device to device communication. However, 

some authors [50, 51] are working on expanding CoAP so this protocol's evolution may 

be of interest. 

 In [52] there was a framework presented, for connecting devices to “the cloud” 

via REST Web Services. In the proposed architecture sensors speaking their own native 

protocol are connected to the Internet via an adapter connected to an open source 

“Internet of Things” website that allows publishing sensor data using HTTP. 

 Originally, accepted with enthusiasm without too much attention to security and 

privacy, in recent years IoT has finally started receiving the needed scrutiny. In [53, 24, 

25] the authors analyze the current state of cloud-based IoT and discuss a number of 
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considerations about it. 

Taking advantage of the lesson learned from others engineers, experience is the 

main driver for using well known design patterns instead of “reinventing the wheel from 

scratch” and running the risk of wasting time solving the same problems and making the 

same mistakes. A whole set of design patterns are well known in literature from which 

here we are reviewing a few related with our work. 

 Reactor Pattern [56] handles concurrent requests delivered to an application, by 

synchronous demultiplexing them within the context of a single thread and delivering 

them to appropriate service handlers. The Reactor it is a very influential pattern and our 

MTMDispatcher can be viewed as a multithreading extension of it. 

 To handle concurrency Monitor Object Pattern [58] synchronizes execution to 

ensure only one method runs within an object at any given moment in time. Active Object 

Pattern [57] provides each object its own thread of control and decouples method 

invocation from method executions. A review of other very useful concurrency design 

patterns can be found in [59].   
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2 CONCEPTS ABOUT DISTRIBUTED SYSTEMS 

A distributed computing system is a system in which the software required to solve a 

given problem runs on separate machines connected to each other over a network. In 

order to allow a problem to be solved on a distributed system, the problem is divided into 

a set of tasks and each task is allocated to one or more computers in the systems. 

2.1 Distributed Systems Architectures 

Availability of network connectivity enable software designers to create distributed 

systems where data processing afferent to a single computing goal is no longer 

constrained to take place on a single machine. There are various rationales for choosing 

the distributed computing model, among them we note: 

 Management of access to resources that need to be shared between multiple 

computing nodes. 

 Proximity to data resources. A node can engage in processing of a large amount of 

data locally then send it to the data integration node in a smaller amount as 

essential data derived from the larger input. 

 Insufficient computing resources available in a given system. A node sends data to 

be processed to either a node that has higher computational resources or to a node 

that has a smaller workload. 

 Real-Time requirements. The node must be able to receive and pre-process 

incoming data in real-time and then unload the workload to other machines for 

further processing to free resources to be able to receive new data. 
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 Redundancy for safety critical applications. The same set of data is sent to a 

(usually odd) number of machines implementing code intended to achieve exactly 

the same functionality but written by separate teams without any algorithm-

design/implementation “cross pollination” between them. The results of the 

computation are compared by a voter machine accepting the data output generated 

by the majority of systems. 

 Classified systems (Red-Black separation). Some algorithms or some special 

information (for example encryption keys) used to process the incoming data can 

be having a higher level of secrecy. The main computer after doing its own task 

will send data to be processed to a special classified computer (with self-destruct 

circuitry if tampered with) which is running the secret algorithms. 

By looking at what operations are being performed on a distributed system we can 

classify them as two types: 

 Specialized systems: Are systems where on each node only a certain subset of 

operations is taking place, for example an SQL server performing only database 

management or a classified system performing only data encryption. 

 General system with pre-planned functionality: Are systems on which each node 

can perform all the functions required and what actually gets processed is based 

on the incoming request. For example, an enterprise portal in which each server 

has access to the same database and executes the request received from the user. 

 General purpose systems with user programming: Are systems able to process any 

type of functionality by the virtue of its ability to receive scripted command or 
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programs to be executed along with the request.   

The architecture of a distributed system describes the topology of the connected 

components and how they interact. There are a relative largely number of potential 

distributed architectures, here we are mentioning the most important of them. 

2.1.1 Client Server Architecture 

In Client-Server model, one or more nodes called Clients are configured to request 

computing services from a well-known machine called a Server. Due to its simplicity and 

robustness it is one of the most used models for distributed computing and it also serves 

as a variation to many other architectures. 

The server typically implements a set of well-known services and upon receiving a 

request it starts a procedure to perform the processing and return the results back to the 

client. The data to be processed can be received from the client, can exist onto a local 

data store like a file or a database or the server can also request-it from another server. 

 One of the disadvantages of the client-server model consists in the fact that the 

service becomes unavailable if the server is not functioning properly or if there are too 

Figure 1 Client-Server Architecture 
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many client requesting simultaneously services from the server. To handle this challenge 

often the schema of Server-Replication is employed. In this schema multiple servers, 

sometime known as the Server Farm, are able to provide the same service and each 

requests are addressed to one of the servers based on it health and work-load. To 

implement this, various methods are available like a Facade server, Dynamic DNS 

queries or Load Aware routers. 

 Based on how the processing of the data is distributed between the client and 

server two major types of architectures are often recognized. 

 Thin Client (Fat Server) model uses the server to perform most processing, 

the client is usually just requesting what type of operation is necessary. 

 Fat Client (Thin Server) uses the server mainly as a provider/arbiter to the 

data resources performing most of the processing on the client itself. 

2.1.2 Service Oriented Architecture (SOA) 

It is a generalization of the Client Server model in which multiple servers can server data 

to multiple clients over the network. A Service is often described as a stand-alone 

function that can be invoked by the clients. 

 To facilitate discovery of what services are available instead of having the client 

know before-hand the full list of services, a server is providing discovery services. The 

client will query the discovery service with full or partial information about of what 

services it requires and receives in response the list satisfying the query. 

 In order to allow inter-operability between services offered by various vendors, 

standard protocols and meta-data defining the interface of services has been developed. 
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 A Cloud Computing model is in essence just SOA distributed over the Internet 

offering: data-storage, specialized or raw processing or even full software packages as a 

service often on subscription basis. 

2.1.3 Peer-To-Peer 

 

 

It is also a generalization of the client-server architecture, in which each computing node 

is running both as client and server on the same machine. The types of services offered by 

each node can be identical or different types of services can be offered by different nodes. 

 In addition to offering services to others, each peer can also implement operations 

to discover and keep the list of services offered by other nodes, presence and health 

monitoring and sometimes even providing dynamic load balancing of requests. 

It is not necessary for each node to requests services from all the others however, that is 

definitely an option. A totally connected peer to peer networks of N nodes will have each 

node maintaining N-1 connection with its peers resulting in a total number of 

Figure 2 Peer-To-Peer Network 
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bi-directional connections. 

2.1.4 Clusters and Grids 

A computer cluster is a distributed system composed of multiple computers connected 

over a network and configured in such a way as to perform as a single large computer 

system. The most common application of clusters is high-performance computing (super-

computers) with applications in scientific research and military applications. 

 

Other applications include high availability (fault redundant) systems and load balancing 

server farms. Usually, each computing node in a cluster performs the same type of 

operation and they are located in relative proximity of each other connected by a high 

speed LAN and belong to the same administrative domain. The amount of inter-node 

Figure 3 Cluster Computing System 
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communication can be significant in clusters. Computing nodes in a cluster (Slaves) are 

often managed by a server called Master and the outside communications happen 

exclusively with the Master. 

 By contrast, Grid computing is a method to bring together computers from various 

administrative domains for the purpose of executing a particular task. In grids usually 

each node executes a different type of task and the communication between nodes is 

usually much reduced. 

2.2 Data Exchange Models 

A distributed system can also be regarded as a concurrent collection of processes 

interacting with each other over a communication medium. Therefore, a very important 

aspect of communication is the data exchange models implemented for Inter Process 

Communication (IPC). In a distributed system IPC it is used for both data exchange and 

for timing coordination between different processes, referred to as synchronization.  

While at the lowest levels, the communication mechanism relies on packet exchange over 

underlying network technology, at the highest level there are three major IPC paradigms: 

Message Passing, Remote Procedure/Method Call and Distributed Shared Memory 

2.2.1 Message Passing 

The message is defined as a standalone block of information passed between processes. A 

message can be sent directly from a process to another in what is called a Point-to-Point 

Message Passing or it can be broadcast into the system in what is often referred to as a 

Publish-Subscribe model. 

 In the Point to Point (P2P) exchange, the message carries some information to 
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identify the intended target and is then delivered by the network stack to the target 

process. A popular variation of P2P method is the Request-Reply exchange in which 

messages are categorized as either a request for action or a reply to it and for each request 

received by a process it emits a reply either confirming the action or reporting an error. 

 The Publish-Subscribe method, the Subscribed process expresses its intention to 

receive a particular type of message while the Publisher broadcasts the message tagged 

with the mentioned type. The network stack looks up the list of subscribers for each 

message and delivers the message to them. The implementation of Publisher-Subscriber 

mechanism can either rely on a middle-ware (bus, message broker) or they can use the 

direct underlying broadcast or multicast capability of the network layer to distribute 

messages without the need for a middle-ware. While the second method can provide 

faster communication it requires the client to have the capability to implement more 

complex algorithms and be able to allocate enough resources to manage the 

subscriptions, especially if it is a protocol that requires a certain guarantee for Quality of 

Service (QoS). By contrast if a middle-ware is employed the clients can have very small 

capabilities since the middle-ware server (Hub) handles all the QoS requirements. This is 

the model implemented by our sDOMO protocol which allows very small devices to be 

full peers on the network. 

2.2.2 Remote Procedure Call 

The Remote Procedure Call (RPC) and its Object Oriented Equivalent Remote Method 

Call have been designed as a way to abstract the call of a procedure (function, method) 

across the network between two processes. In order to preserve the function, call 
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semantic, a client stub is implemented on the client side which serializes the parameters 

and initiates the call to the server. The server stub receives the data deserialization and it 

calls the actual procedure, the reply being sent back in the same way. 

 An important problem in implementing a RPC consists in the necessity to 

guarantee semantics of the function call that it either succeeds or returns an error code 

despite the unreliability of the underlying network. For example, a request for an 

operation reached the server but the response is lost on the network; in which case the 

client believes the operation never gets executed while the servers have the update 

already done. To solve the problem, most systems employs: Unique Request ID, 

Retransmission on Timeout and Acknowledgements. 

 Each request from the client to a server is allocated to a unique ID guaranteed to 

not roll-over into the amount of time a packet can still survive on the network. Each 

request it is ACK-ed by server upon reception and resources to hold the results are 

allocated. Then the server proceeds to execute the request. Once finished, the results are 

sent back to client which have to ACK the reception of the results. 

Only when the server receives the ACK from the client the allocated resources 

used to store the results of the operation are finally released. If the client does not receive 

the ACK for the request it re-sends with the same id. The server recognizes a previously 

received request and will not execute the operation again but just re-send the cached 

results. 

2.2.3 Distributed Shared Memory 

It is a generalization over the network of Shared Memory paradigm implemented by 
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many operating systems as a form of Inter Process Communication.  In most 

implementations the physical memory is not entirely replicated on every node but the 

system only implements a common logically shared memory space. The requests for a 

block of memory that is not located on the current system will be forwarded over the 

network to the node that actually manages it and only the requested block will be cached 

on both nodes. 

 The biggest advantage of Distributed Shared Memory is the fact that the details of 

communication are totally hidden from the programmer which does not have any more of 

the job to handle the data communication. However, this is also the biggest drawback 

because hiding the cost of communication can lead to inefficient algorithms if the 

programmer writes the code under the assumption that the cost of accessing any block of 

memory is virtually free. 

 

2.3 Distributed Computing Considerations 

2.3.1 To Distribute or not 

An important question in distributed computing is to find out if it makes sense to use a 

distributed processing model as opposed to local processing.  For example, let’s consider 

a server that is twice as fast as the client, sending an operation that takes 3 milliseconds 

on the client to the server does not produce any benefit if the time required to request the 

operation over the network takes 2ms since the answer will be received after 3.5 ms, later 

that if executed locally. However, for an operation that takes 1 second to be executed on 

the client it makes a lot of sense to request-it remotely because the response will be 
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received back in 0.502 seconds faster than if it was run locally. 

 Let’s consider a system consisting from a client C able to process NC 

instructions/second and a server S capable of Ns instructions per second, with NS > NC. If 

the average amount of time to transmit the data from client to server is TT and to get the 

results back is TR. If the problems to be solved need P operations to be performed, the 

times of solving it locally as opposed to solve it by server request will be: 

𝑇𝐶 =
𝑃

𝑁𝐶

𝑇𝑆 = 𝑇𝑇 + 𝑇𝑅 +
𝑃

𝑁𝑆

   

where TC and TS are the times of solving on the client and server respectively. 

It is obvious that it makes sense to send the problem to be solved on the server only if TS 

< Tc therefore it makes sense to request remote execution if: 

 

𝑃 >
(𝑇𝑇 + 𝑅𝑅)𝑁𝐶𝑁𝑆

𝑁𝑆 − 𝑁𝐶
 

When solving a problem composed from two independent sub-problems P1 and P2 the 

most important factor in deciding whether to distribute or not is the ability of the two 

problems to be solved independently. More precisely, if P2  needs as input the results 

generated by P1 then for each problem we have to apply the rationale from the equation 

above. 

However, in case that the two problems are independent of each other it often 

makes sense to send the longest problem P2 on the more powerful computer. The only 

time when this is not a good idea is when the transmission time over the network is very 
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high: 

 

𝑇𝑇 + 𝑇𝑅 >
𝑁𝑆𝑃1 + 𝑁𝑆𝑃2 − 𝑁𝐶𝑃2

𝑁𝑆𝑁𝐶
 

 

2.3.2 Data-link Considerations 

The transmission times TT and TR are dependent on the characteristics of the datalink. 

Any segment of the network is characterized by two main parameters: 

- Speed of the data-link – how fast a bit sent at the endpoint A reaches the other end B 

- Bandwidth – how many bits per second can be sent over the data-link (data rate of the 

link).   

For a simple data-link consisting by a simple transmission medium between 

points A and B the speed of the link is dictated by the wave speed (speed of light, c) on 

that particular medium. 

The propagation delay δ is the time that it takes for the signal to reach from point A to 

point B on a data-link having the length D. 

The transmission time τ is the time it takes to transmit a given amount of data Sz over a 

link with a given bandwidth Bw. 
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Table 1 Speed of Light on a Different Media 

Medium Speed of light (c) 

Vacuum 299792 km/s 

Air 299700 km/s 

Optical fiber 200000 km/s 

Cooper wire 230000 km/s 

 

Therefore, we have the basic network performance relations: 

δ =
𝐷

𝑐

τ =
𝑆𝑧

𝐵𝑤
Λ = δ + τ

 

which defines the Latency Λ as the time it takes for receiver B to get the data packet of 

size Sz transmitted by the sender A over the distance D. The values for TT and TR from 

the equations from the sub-chapter above are in fact just Λ for the given size of the 

transmitted respectively received data. 

Another important metric in networking is the link capacity or Delay x Bandwidth 

product.  It is often referred to as the amount of data that can “fill the line” or the number 

of “bits in flight” on the line between sender and receiver. Technically it represents how 

many bits of data the sender can put on the line before the first bit is received by the 

receiver. When designing a communication protocol that requires acknowledgements, it 

is important to have an understanding of the link capacity because defining the size of the 
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data packet that needs acknowledgement lower than the link capacity will just result in 

wasted bandwidth while waiting for the ACK for a packet that arrived properly. On the 

opposite approach, sending packets larger than the link capacity will just result in wasted 

bandwidth in case that the packet encounters transmission errors and a negative 

acknowledgement (NACK) is required. Therefore, it would be optimal to send data 

packets at exactly the link capacity. 

If the network contains one or more switches or routers the queuing and 

retransmission time must be added to the total value of Λ.  Let’s consider the following 

segment of the network where between transmitter and receiver there are N repeating 

switches each of them having a data queuing time Qi between receiving a packet until it 

starts retransmitting it. 

 

Figure 4 Network Segment with Switches 

If the transmitter starts sending a packet of P bits at the moment 0, it finishes 

sending at P/BW1 and the packet is received by the switch S1 at P/BW1+L1/c. S1 will 

therefore start sending at P/BW1+L1/c+Q1 and so on. The receiver R will therefore 

receive the packet addressed to it after: 

𝑇𝑇 =
𝑃

𝐵𝑊𝑛+1
+

𝐿𝑛+1

𝑐
+ ∑(

𝑃

𝐵𝑊𝑖
+

𝐿𝑖

𝑐
+ 𝑄𝑖)

𝑛

𝑖=1

 

therefore, the end to end link throughput will be calculated as the rate at which the P bits 

arrived from T to R therefore it is: 
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𝐵𝑊 =
𝑃

𝑇𝑇
=

𝑃

𝑃
𝐵𝑊𝑛+1

+
𝐿𝑛+1

𝑐 + ∑ (
𝑃

𝐵𝑊𝑖
+

𝐿𝑖

𝑐 + 𝑄𝑖)
𝑛
𝑖=1
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3 CONCEPTS ABOUT COMPUTER VISION 

Computer Vision is the method of processing images acquired by a camera in order to 

extract information that can be used directly by computers. Computer Vision is emerging 

as a leading technology in robotics. The main advantage is the fact that a single sensor, 

camera, can be used for multiple purposes including but not limited to: collision 

avoidance, Odometry, localization and object recognition. 

In this chapter we will provide an overview of major Computer Vision (CV) techniques 

used in this work. 

3.1 MOG Background Subtraction and Segmentation 

Background subtraction attempts to identify moving objects by integrating a model of the 

background over time and then subtracting the current frame from it, which will highlight 

the places in the image where change happened. The variation of the aspect of pixels in 

time and changing illumination conditions however makes the method difficult to apply. 

To solve these issues various ideas has been attempted from which one of the most 

successful [65] proved to be modeling the background as a Mixture of Gaussians (or 

often referred in literature a Gaussian Mixture Model).  In this method, each pixel is 

represented as a mixture of K Gaussians; at any moment in time t the probability of 

observing the current pixel value it is: 

𝑃(𝑋𝑡) = ∑ ω𝑖,𝑡 ∗ η(𝑋𝑡, μ𝑖,𝑡, Σ𝑖,𝑡)

𝑘

𝑖=1

 

where {X1...Xt} is the recent history of the pixel, ωi,t is the weight associated with the ith 
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Gaussian, μi,t being the mean value of the ith Gaussian, and Σi,t is the covariance matrix of 

the ith Gaussian. The Gaussian probability density function being given by the formula: 

η(𝑋𝑦, μ, Σ) =
1

√|Σ|(2π)𝑛
𝑒−

1
2

⋅(𝑋𝑡−μ𝑡)𝑇Σ−1(𝑋𝑡−μ𝑡)
 

The value of K – the number of Gaussians in the mixture is determined by the available 

CPU power and desired compromise between performances versus accuracy. In practice 

3 <= K <= 5 is often used. 

The update procedure for a new pixel value is using a running average formula to 

recalculate the weights: 

ω𝑘,𝑡 = (1 − α)ω𝑘,𝑡−1 + α𝑀𝑘,𝑡 

where α is the learning rate and M is 1 if the pixel matched the Gaussian in mixture and 0 

otherwise.  In Open CV C++ library the algorithm is implemented by the class 

cv:BackgroundSubtractorMOG . 

3.2 Shi-Tomasi Corner Detection 

Corners that are stable in respect to variations in image are an important feature for 

calculation of Optical Flow, Tracking and object matching. One of the earliest work in 

good features to track came from H. Moravec [66] and later improved [67] by Harris and 

Stephen. 

A corner is defined as a feature with a large variation of the weighted sum of square 

differences (SSD) when a patch of an image (u,v) is shifted by the vector (x,y). 
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𝑆𝑆𝐷(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑢, 𝑣) ⋅ (𝐼(𝑢 + 𝑥, 𝑣 + 𝑦) − 𝐼(𝑢, 𝑣))2

𝑣𝑢

 

which can be approximated by Taylor expansion as: 

𝑆𝑆𝐷(𝑥, 𝑦) ≈ (𝑥, 𝑦)𝐴(
𝑥
𝑦) 

where A being the structure tensor 

𝐴 = ∑ ∑ 𝑤

𝑣𝑢

(𝑢, 𝑣) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ] 

with Ix Iy being the partial derivatives of the image I. The matrix A should have two large 

eigenvalues λ1 , λ2 for any point of interest (a good corner). Shi-Thomasi algorithm 

computes directly the value of min (λ1 , λ2) and gets corners that are offers relative good 

stability for tracking. 

3.3 Lucas Kanade Sparse Optical Flow 

Lucas-Kanade method [68] uses spatial intensity gradient information to direct the search 

for the match of the features. The algorithm it is often used with Shi-Tomasi corners but 

other types of corners can be used too. 

In the simplest form, LK method attempts to minimize the error: 

𝐸 = ∑  [𝐹(𝑥 + ℎ) − 𝐺(𝑥)]2

𝑥

 

where G(x) is supposed to be the F(x+h), the image F shifted by the vector h. 

Approximating from truncated Taylor decomposition 
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𝐹(𝑥 + ℎ) ≈ 𝐹(𝑥) + ℎ
𝜕

𝜕𝑥
𝐹(𝑥) 

we get the solution for calculating the displacement vector as 

ℎ = [∑ (
𝜕𝐹

𝜕𝑥
)

𝑇

[𝐺(𝑥) − 𝐹(𝑥)

𝑥

] ]  [∑ (
𝜕𝐹 

𝜕𝑥
)

𝑇

(
𝜕𝐹

𝜕𝑥
)

𝑥

  ]

−1

   

The solution can be generalized for any linear transformation G(x)=F(xA+h) with A 

being a matrix expressing the transformation between F and G. A fast implementation 

using pyramids [69] of the solution for generalized problem has been discovered in 2001 

by J. Bouguet. 

3.4 Homography 

In Computer Vision homography refers to geometric transformation that relates two 

views of the same planar scene. More precisely, in homogenous coordinates a 

homography is a transformation given by the equation: 

[
𝑐𝑥𝑏

𝑐𝑦𝑏

𝑐
] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] ⋅ [
𝑥𝑎

𝑦𝑎

1
] 

One of the simplest methods to calculate the homography matrix (often named H) is 

Direct Linear Transform (DLT) algorithm. With elementary linear algebra operation, the 

equation above can be rewritten as:   Aih=0 where vector h is 

h=(h11,h12,h13,h21,h22,h23,h31,h32,h33)
T 

and matrix Ai will be defined by: 
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𝐴𝑖 = [
−𝑥𝑎 −𝑦𝑎 −1 0 0 0 𝑥𝑏𝑥𝑎 𝑥𝑏𝑦𝑎 𝑥𝑏

0 0 0 −𝑥𝑎 −𝑦𝑎 −1 𝑦𝑏𝑥𝑎 𝑦𝑏𝑦𝑎 𝑦𝑏
] 

Since the scale cannot be determined from any projection, in the equation above we 

practically have only 8 degrees of freedom, therefore we can calculate the Homography 

matrix having 4 matching points. 

3.5 EPIPOLAR Matching 

In the epipolar geometry technique two or more cameras oversee the same scene from 

two different points, they can have different orientations. It can be viewed as a 

generalization of homographic transformation by removing the requirement of the viewed 

points to all reside on the same plane. The name came from the epipole which is the point 

of intersection between the segment joining the camera centers and the plane of the image 

for each camera. 

 

Figure 5 Euclidean Relationship between Two Views, Epilolar Geometry 
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The point X is projected on the first image plane as x and on the second image as x’ 

respectively. The two points are being related by the equation 

x'
𝑇
Ex=0 

 where E is the Essential Matrix: 

E=𝑇̂𝑅. 

Another important matrix encountered in epipolar geometry is the Fundamental Matrix. 

The major difference between them is that an Essential Matrix is defined on a set of 

normalized coordinates while Fundamental Matrix does not need the cameras to be 

already calibrated. If we know the calibration matrices for both cameras, they being A1 

and A2 we can calculate the Fundamental matrix from Essential and reverse by the 

formula: 

𝐹 = 𝐴2
𝑇𝐸𝐴1

−1 

 Once a minimum of 8 matching pairs of points in the two images have been 

detected by a feature tracking algorithm the essential matrix E can be computed using the 

“Eight-point Algorithm” [19]; and from it the position and orientation of robot camera in 

respect to a fixed camera can be recovered using Singular Value Decomposition (SVD) 

method.   
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4 CONCEPTS ABOUT ROBOTICS 

Robotics and Automation are the fusion between computer science, mechanical 

engineering, electrical engineering and electronics. The difference of what a robot is and 

what an automaton is, is still subject to debates and each engineer has their own opinion 

about the subject. From my point of view, to declare an electro-mechanical system to be a 

robot, it needs the ability to adapt its modus operandi to (try to) cope with changes in the 

environment. 

 Regardless of the exact definition, robotics and automation both rely on 

controlling mechanical components with software via electronics. Therefore, a major part 

of the robotics consists in motor control, voltage conversion and trajectory calculations to 

allow a mobile robot to move at the intended destination. 

 In this chapter, we are looking at a few aspects of robotics that has been used in 

our work that resulted in building of our robot ROBI-1. 

4.1 Differential Drive Kinematic 

In the proposal from our first paper and our early experiments, we attempted to use a 

robot with Ackerman steering and not with differential drive. Our work was plagued with 

problems derived from this choice. First of all, we had a very hard time finding a decent 

mechanical platform with reliable Ackerman steering for our experiments. We ended up 

“hacking” remote controlled vehicles from various toy-shops and they proved to be 

unreliable. To make matters worse, all of those RC-cars we experimented with used 

proprietary steering servo-motors (not the standard hobby grade servos that are well 

documented) and we wasted a huge amount of time reverse-engineering those servos 
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(burning a couple of them in process), just to find the overall platform to not be reliable 

enough for our needs. 

 Even after we got it to work, we had found that the trajectory restrictions on 

Ackerman kinematics makes the robot very difficult to control on the domestic 

environment where it just ended up bumping into furniture. Long story short: We found 

out the hard way why no robot intended to operate in domestic environments (that we can 

find references about) has ever been built using an Ackerman drive.  We ended up buying 

a differential platform that worked as expected from day one. 

A Differential Steering Platform has two motor wheels commanded independently 

by two electric motors, and a third free running wheel which also freely rotates on the 

vertically mounted axis. Because of its free running, and ability to pivot to follow the 

motor wheels, the third Free Wheel has no role in steering and was exclusively added for 

the stability of the platform.  

The electric motors are in most of the cases DC motors due to their ability to be 

easily controlled in speed and torque by variation in the applied voltage and because the 

natural presence of DC from batteries. In most of the cases a reduction gear-box is used 

to decrease the angular velocity and increase the torque.  
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One of the first things we had to do was to derive the control equations for our 

differential drive which we present here. As a result of kinematic derivation we get two 

sets of equations: The Direct Equations allowing us to calculate where the robot ends if 

commanded with a well-known pair of velocities, and the Control Equations which tells 

us what velocities we should request in order to achieve a given trajectory. 

For deriving the kinematic equations, we select the center of coordinate at the 

center between the two motor wheels. Because the third wheel has no functional role in 

steering, it is not represented in the kinematic model and only the two motor wheels are 

taken into consideration. In the diagram below the left and right motor wheel of the robot 

are located at points PL and respectively PR, therefore the robot is facing the x axis 

positive direction. 

Figure 6 Classical Differential Drive 
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Each wheel is advancing with instantaneous velocity VL and VR respectively. 

Because the wheels have different velocities in the same amount of time, the robot will 

move on a circle centered in the point C. In the amount of time Δt the center of axis 

between wheels will travel from the point O to O' while the wheels will travel to the 

points PL' and PR' respectively. In the following derivation we will use the following 

notations: The distance between motor wheels |PLPR| called the width of the train is 

referred to as w while the radius of the circle of turn |CO| will be referenced as R. 

The first observation is that the triangle ΔCOO' it is isosceles because |CO|=|CO'| 

this allows us to calculate the measure of the angle |β|=|α|/2 having a positive value when 

VR>VL. If we represent the angle α in radians we can write the relationship between the 

length of the arc of circle: 

Figure 7  Differential Drive Kinematic 
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|𝑎𝑟𝑐𝐿| = 𝑉𝐿Δ𝑡 = α(𝑅 −
𝑤

2
)

|𝑎𝑟𝑐𝑅| = 𝑉𝑅Δ𝑡 = α(𝑅 +
𝑤

2
)
 

Without losing generality we can assume Δt =1 and after elementary transforms gives as 

the direct set of equations: 

α = 𝑉𝐿 − 𝑉𝑅 𝑤⁄

𝑅 = 𝑤
𝑉𝐿 + 𝑉𝑅

𝑉𝑅 − 𝑉𝐿

β =
α

2

 

Expressing VL and VR from Direct equations we get the set of Control equations, which 

allows us to calculate what commands we need to send to each wheel to reach the 

destination point with the desired velocity of the platform: 

𝑉𝑅 = 𝑉𝑂 + β𝑤
𝑉𝐿 = 𝑉𝑂 − β𝑤

 

Where VO is the intended instantaneous velocity of the robot, defined as the velocity of 

the median point between the 2 wheels. 
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4.2 Controlling DC Motors 

 

 

Each motor wheel of the robot is spun by a DC motor. Most DC motors for hobby 

applications use the classical design of a permanent magnet stator and a rotor switched by 

a rotary commutator mounted on the rotor axis. 

The movement is generated by the interaction between the magnetic field of the stator 

and the magnetic field created by the electric current passing through the coils of the 

rotor. 

A highly prized characteristic of the DC motors is the linear curve, i.e. the direct 

proportionality of the speed of the motor with the voltage applied for a given torque, 

direct proportionality of the torque with the current through the windings and linear 

Figure 8  Simple DC Motor.  (Courtesy Wikimedia Commons, Author: Webcaplet) 
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relation between the speed and the torque for a given voltage. 

These particularities combined with the fact that the direction of rotation can be 

controlled by polarity of the power, makes DC motors highly prized for controlling 

applications especially in vehicles, tools and robots. 

 

 

 Each DC motor is characterized by an EMF constant k and its magnetic flux Φ. If I is the 

current through it stator windings and V the voltage applied, the equations for the torque 

and angular velocity are: 

τ =
𝑘

2π
𝐼Φ

ω =
𝑉 − 𝑅𝐼

𝑘Φ

 

From the equations above we see that when the motor has no load, it can reach a 

maximum speed ωMax=V/(kΦ) while the maximum torque Tstale=kVΦ/(2πR) it achieved 

when the motor is prevented to rotate by an overload. 

Figure 9 Speed-Torque Characteristic Curve for DC Motor 
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The easier way to control a motor would be to insert a variable resistor (or resistor 

like circuit) in series with the motor, however this has a huge disadvantage. When the 

resistor is not toward zero a lot of the energy will be wasted on the resistor itself heating 

it. To solve this problem, most modern motor controller’s employs Pulse Width 

Modulation (PWM) technique.   

 

 

The Motor M is connected in the collector of a transistor T which receives PWM input 

via an optional resistor R. The role of the fast diode D is to protect the transistor against 

high EMF voltage induced into the coil of the motor when the voltage goes back to zero. 

The signal applied to the transistor on the base consists from a set of pulses (rectangular 

waveform) with the same frequency but with various fill factors (also known a duty 

cycle). The signal varies very fast between 0V (forcing the transistor to be cutoff), and a 

voltage high enough to send the transistor in saturation making the transistor to act as a 

Figure 10 Controlling a DC Motor with a Bi-Polar Transistor 
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switch. 

The fill factor (duty cycle) represents the percent of how long the signal is set to 

high in respect to the whole period of the signal. 

The frequency of the signal is selected to be high enough so that due to inductance inertia 

the current in the motor cannot follow the variation of the signal, practically the coil 

inside the motor is being used to integrate the signal into a voltage that is equivalent to: 

V = DuttyCycle * VCC 

 

Besides controlling the speed of rotation, the ability to control the direction of rotation is 

Figure 11 PWM Modulation (Courtesy to Arduino community from an article written by 

Timothy Hirzel) 
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essential for most robot operations. Since reversing the direction of rotation of a DC 

motor implies reversing the polarity of the applied voltage, a typical method employs an 

H-Bridge. 

  

 

The typical H-Bridge operations uses 4 transistors (operating in switching mode) to 

control the direction of current through the motor. For example, applying a high voltage 

on control point A and low voltage on B brings the transistors Q1 and Q3 in conduction 

and Q2 and Q4 in blocking state, forcing the current to flow through the motor from Left 

to Right. Similarly having A-Low and B-High forces the current to flow from Right to 

left having Q2 and Q4 in conduction while Q1 and Q3 being blocked.  Nowadays, H-

Bridges are available in integrated circuits including all the control logic inside a single 

chip. Various vendors sell ready to go modules containing the circuit and the protective 

diodes, dedicated logic to select the direction and PWM input for speed control and even 

Figure 12 Typical implementation of an H-Bridge. (Courtesy Next Electronics, Greece). 
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voltage stabilizers for powering up the TTL control circuitry. We are using such a module 

that is built around the Dual Bridge L298N for controlling our robot. 

4.3 DC-DC Buck Converter 

 

 

Most electronics need stable 3.3V or 5V; however, in order to drive robot motors often a 

battery with a higher voltage is required. Therefore, every robot needs circuitry to step 

down the voltage for the electronics and guarantee a fixed level. 

 

 

Figure 13  Typical Zener Circuit. (Courtesy Wikimedia) 

Figure 14 Typical Buck Converter. (Courtesy Instructables, Author:  

xKOBAYASHIMARUx) 
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The easiest way to achieve this, is to implement a linear regulator using a Zener diode. 

The drawback of a simple Zener regulator is its degree of high inefficiency. For example, 

providing 5V from a 12V source with a Zener circuit will never achieve a conversion 

efficiency above 40% at its peak, practically wasting over 60% of the power. On a device 

relying on batteries this amount of waste it is unacceptable. 

Buck DC-DC converters achieve efficiency from 90% to 98% by using switched 

mode conversion taking advantage of the inductance inertia. An electronic (often a FET 

transistor) switch is controlled by monitoring the voltage on the load connected in series 

with an inductance. When the switch allows the current from the source to flow the 

inductance stores energy in its magnetic field and releases it on the load via a diode when 

the switch is disconnected. Due to their efficiency Buck converters are ubiquitous in 

battery powered equipment. 

4.4 Controlling Servo-Motors 

Servo-Motors are composed of a DC electric motor, gear-box, an angle encoder (often a 

resistive potentiometer) and control circuit board all of them into a very convenient 

enclosure. Unless regular motors, servos are usually not providing continuous motion but 

proportional positioning often in the range 0...180o.  

  Most hobby grade servos are connected via three wires: Ground, Vcc and Control 

line where the commanded value of the angle is encoded as a PWM signal. The desired 

angle is commanded by the value of the fill-factor (duty cycle) of the PWM signal. 
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The servo motor it is powered by the voltage applied between Vcc and Ground lines and 

the Control line it is used to specify the desired angle. 

 

 

Figure 15 A Servo-Motor Disassembled. (Courtesy to Seattle Robotics Society) 

Figure 16 Servo Angle Control via Fill Factor.(Courtesy to Seattle Robotics Society) 
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The Control board inside the servo, usually implements a PID controller comparing the 

reading from the potentiometer with the prescribed value and adjusting the current passed 

to the motor to correct any discrepancy. 

Various sizes of servo motors are available nowadays on the market and they are essential 

parts for any robot. 

4.5 PID Controller 

The Proportional-Integrative-Derivative (PID) controller is a method used in the process 

control to maintain a prescribed value (setpoint) of a functional parameter of a process 

(often referred in literature as a plant).  

 

 

The PID controller is a feed-back mechanism continuously comparing the measured 

process parameter and the desired value. The difference is called the error and the 

controller tries to minimize the error by adjusting one or more input values into the 

process.  

The output of the process y is measured or estimated and subtracted from the 

desired value r. The difference e is used as the input of the controller which in turn 

generates the control signal for the process u. 

In PID controller the control signal is calculated as: 

Figure 17 Feedback Control System 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑥)𝑑𝑥
𝑡

0

+  𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 

Where the parameters KP, KI, KD are the weight coefficients for the proportional, 

integrative and respective derivative terms. These coefficients determine the behavior of 

the controller and are either calculated from the exact parameters of the plant or they are 

subject to tuning. 

In the case of digital control systems, like the one used in our robot, the integral is 

implemented as a summation of the product between error and the sampling time. 
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5 SYSTEM ARCHITECTURE 

Originally presented in our first paper [60] the system design consists on a set of 

independent software modules communicating with each other over the house network. 

The modules are communicating with each other via our sDOMO communication 

protocol presented in [62, 63]. 

5.1 Overview 

 

The proposed system consists of a fixed unit (computer system referred to as Base 

Station) connected to a number of wired and/or wireless IP cameras overlooking the 

operating space (inside of the building) and one or more mobile units (robots) navigating 

inside the building. The communication between Base Station and robot it is using 

Figure 18 Overview of the System 



52 

 

existent WiFi network inside the house. 

 Each robot is equipped with a (monocular or a stereo) camera, and optionally 

other sensors like ultrasonic proximity sensors or Inertial Measurement Unit consisting of 

MEMS accelerometers and gyroscopes. After originally experimenting with an Ackerman 

Steering we ended up switching to the classical Differential Drive which proved more 

appropriate for navigating on indoor environments. 

 The video feed from the fixed cameras is continuously received by the Base 

Station. The Base Station uses the video streams from fixed cameras to perform object 

tracking and recognition, and to maintain the current 3D model of the environment by 

keeping track of the objects or inhabitants.   

 The images from the robot camera are processed on board by the embedded 

computer which sends in real time to the Base Station only a status vector.  The robot is 

continuously doing on board optical flow calculations which are used to immediately 

react to potential collisions or to stay on the prescribed trajectory when out of sight from 

the fixed camera. 

 Base Station can request from the robot either the latest image or a specified sub-

region of the latest image in order to do epipolar calculations. Upon a successful 

matching, the Base Station provides the robot with better position estimates. The robot is 

capable of dual mode navigation: autonomous (reactive mode) and guided (map based). 

 Reactive mode navigation is used exclusively for short distances when the robot is 

outside of the view of fixed cameras. It mainly consists of maintaining the prescribed 

direction of movement by processing the Optical Flow while looking at the floor or walls. 

 In guided navigation, a component of Robot Control Software running on the 
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Base Station it is using the map of the environment to prescribe robot trajectory. It is 

important to know however, that even in map based navigation the ability of maintaining 

a given trajectory still depends on the on board optical flow processing since contrary to 

our original expectation, the ambiguity in tracking proved to be way too big to be able to 

control the robot trajectory by tracking alone. 

5.2 Software Architectures 

A modular software architecture has been developed where different tasks are assigned to 

specialized modules. The software modules communicate between themselves with the 

newly developed sDOMO protocol. 

 The images from fixed cameras are processed by Camera Module (CM) with a 

correspondence of one running module for each fixed camera. Each Camera Module, 

running on the Base Station, is responsible for image pre-processing and tracking of 

moving objects. At every frame CM emits a Notification, processed by the Situation 

Awareness Module (SAM), containing basic status information of each tracked object.    

SAM maintains a map of the environment, robots, and non-robot animated entities 

(humans, pets, or other moving objects) and as much information as the system is able to 

gather about the relatively fixed but movable objects (chairs, tables etc). When a new 

moving object is detected SAM can request from CM sub-images of moving objects for 

deeper analysis and eventually image recognition.   
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For each Robot a process called a Robot Module (RM) also runs on the Base Station. The 

RM is in constant communication with the software running on the embedded computer, 

on board of the robot called an Autonomous Robot Module (ARM). The RM is 

responsible for mission planning and doing epipolar localization if required by matching 

the image captured by ARM with images requested from CM. Practically, the robot’s 

visual processing and control software is distributed between base station (RM) and 

mobile unit (ARM).   

Figure 19 Main Software Modules 
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 Our Autonomous Robot Module, runs on the “Raspberry PI 2” embedded 

computer board mounted on the robot. It continuously captures images from the RPI 

Camera and performs optical flow calculation. It uses the results of OF processing to 

maintain the prescribed trajectory it receives from RM and answer to RM requests for 

images or extended information.   

During a typical navigation sequence, the RM interrogates SAM for a map of the 

grid between the current position and the target, and it plans a path. With the path 

selected, the RM commands ARM to maintain a particular trajectory. The robot navigates 

along the prescribed path driven by a PID controller using the direction feedback from 

the processing of the optical flow from the mobile camera. 

 RM constantly receives tracking information in the room as coordinates from 

SAM. They are used to periodically recalculate the robot trajectory, but this is done 

only when the distance from the last determined point is much larger than the uncertainty 

in location. As can be seen in the original paper, the initial idea was that tracking from the 

fixed camera can be used as real-time feedback for the robot position. The experiments 

we have done with this idea proved it to be unworkable because two reasons: Perspective 

error and blob fragmentation error. The fix we attempted was to use the robot camera OF 

processing for trajectory feedback and rely on the CM tracking only for rough periodic 

localization. 

 During navigation however, it’s possible that obstacles unknown to SAM may be 

encountered. For example, a table that has never been moved from its place has been 

interpreted as a pattern on the floor when the grid was built. When approaching the table, 

the optical flow on ARM detects it as obstacle, the robot stops and relies the information 
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to the RM. The RM can now map the object using epipolar geometry and send the 

information to SAM to update the occupancy grid. Then the navigation re-starts with a 

new path planning. 

5.3 Major Messages into the System 

 CMs uses HTTP to acquire images from IP cameras at the camera's maximum 

speed (around 6 frames / second), between modules sDOMO protocol is used to 

exchange information. There are two types of information exchanges employed by 

sDOMO: Notifications sent driven by an external event (example: a period of time passed 

or a moving object was detected on a previous scene) and Direct Messages used in the 

form of Request/Response to provide equivalent of method calls. 

 For every processed camera frame where at least a target is within view, a CM 

broadcast an ActiveTargetsMsg Notification containing a list of targets and basic 

information about them. SAM can ask with a Direct Message for extended info about a 

target and CM replies with an ExtenderTargetInfoMsg. SAM or RM can also use 

RequestCMImageMsg to request a whole or sub-image of interest and the requested is 

honored via the CapturedCMImageMsg reply. 

 For each ActiveTargetsMsg received, SAM performs a homographic transform 

from camera to room coordinates and the location of the targets in room coordinates are 

broadcast via SAMTargetsMsg Notification. Direct messages are used for model query 

and updates. 

 ARM broadcasts DynamicBasicInfoMsg received mainly by RM and contains 

current speed and direction of movement as commanded and detected by the robot. The 



57 

 

movement commands are done by the lonely direct message DynamicBasicCmdMsg sent 

by RM. This is a somehow odd message since it has no reply associated with it, but it is 

confirmed by an out of tempo DynamicBasicInfoMsg notification sent right away. 

CapturedARMImageMsg is a reply ARM sends in response to RM requesting an image 

from robot camera and the request RequestInformationMsg from RM is being honored by 

ARM with either RobotIdentityMsg or ConfigurationMsg depending on what info has 

been requested. 

 Developer console is a GUI based applications that can subscribe to all the 

notifications above and can send requests for testing and debugging purposes. It can also 

spoof RM commands toward ARM allowing the robot to be moved by remote control by 

an engineer. 

5.4 Environment Model 

 SAM is required to keep a live map of the operating environment. The map is 

represented as an occupancy grid representing the floor. Objects and people are modeled 

as prisms or as assemblies of prisms occupying a particular spot on the occupancy grid. 

The size of the grid cell is chosen to be about the size of the smallest object the robot is 

capable of manipulating. For each object besides the position and surface a radius of 

uncertainty is maintained which is expressed in multiple cell sizes because the objects not 

visited closely will have uncertainty in position that may be higher than the cell size. 

 We are using homography to project the images captured from fixed camera onto 

the room model. The homography matrix is calculated from the correspondence of well-

known points in the room coordinates versus the position of them on the camera images.   
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Having the homography matrix calculated for each camera we can easily translate the 

tracking information from the fixed cameras into absolute room coordinates to broadcast 

them to the Robot Module. 

 Right now, the only information stored about the objects in the occupancy grid is 

their height. For future enhancements we envision a fully 2.5 D model based on surfaces. 

The objects will be represented as prisms of elevated surfaces from a generator plane. 

More precisely for each surface we store the Euler Angles (φ,θ,ψ) defining the generator 

plane in which the elevation grid is located, the center of the elevation grid (x,y,z) and on 

each cell the height from the plane to the respective surface. Besides elevation, each cell 

contains information about the color, texture or sub-image mapping. 
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6 sDOMO PROTOCOL 

Created originally specifically to support this distributed architecture, sDOMO rapidly 

evolved during development as a general purpose protocol for home automation systems. 

Our vision regarding the whole intelligent home as an integrated domotic system working 

together to keep the inhabitants comfortable, the robot being just a mobile component of 

the smart house of the future. An integral part of our vision is the concept of a self-

contained domotic system which is able to solve most of the problems without any 

reliance on the internet or vendor’s sites.  Most of this chapter is based on our two papers 

[62, 63] presenting sDOMO protocol. 

6.1 Overview 

sDOMO protocol proposes a hybrid communication structure with a House Hub acting 

both as a central registry for all the devices and also providing reliable and secure 

communication between devices; and optional direct device to device communication 

channels. Besides the home automation devices and the House Hub, the system contains 

a few special software components like House Intelligence Unit (HIU), Internet Gateway 

and Administrative Console used to control or complete the functionality of the system. 

 A Device is the generic name for a node in a domotic network. It can be an 

embedded device like a microcontroller based thermometer having Ethernet connectivity, 

a serial device speaking sDOMO over SLIP or PPP and connected to a serial-to-lan 

converter or a program running on a laptop or tablet used to display data or to manage the 



60 

 

sDOMO network. Bluetooth and ZigBee are also potential candidates to be considered in 

the future. The network associated to a particular house is called a Domain and is defined 

by a Domain Name. A Device is identified by the Device Unique ID (DUID) which is a 

20 bytes alphanumeric string constructed based on a set of rules to insure uniqueness 

among vendors and/or hobbyists. Once a Device joins a Domotic Network by being 

accepted to a Hub, the Hub issues a Device Session ID (DID) and a Session Key is used 

to authenticate messages and eventually encrypt the communication between the Device 

and Hub. The type of devices is defined by the Spec ID. This is a string of up to 128 

characters that is define as a URL from where the Spec File can be retrieved. For 

example, if a Device advertises a Spec ID of: mezonix.com/sDOMO/devs/dev1 that means 

that a XML file defining the device can be downloaded either from: 

mezonix.com/sDOMO/devs/dev1/device.spec or from 

www.mezonix.com/sDOMO/devs/dev1/device.spec either by HTTP or HTTPS. 

A Spec File is an XML file describing the device, linking to user and developer 

documentation, defining connection requirements, and the interfaces of the software 

objects implemented in the device. For example, an indoor video camera can specify that 

it transmits sensitive data therefore the Hub may decide to require encryption. What types 

of encryption are available for a given device, their strength, and order of preference is 

also specified in the Spec file. For privacy enforcement, a Spec File also contains a list of 

the interfaces that state this device must connect as a client in order to perform its tasks. 

From the software architecture point of view, a Device is composed of one of more (up to 

255) Objects identified by a contiguous number between 0 to NoOfObjects. Each Object 

implements an Interface whose Definition File if referred by the Spec File. 
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 The Interface Definition File (IDF) is another XML file defining the list of all 

Messages understood and/or sent by a given Object, the way they can be associated to 

provide method calls and the events that triggers them. The Interface Definition file is 

used by the developer tools to generate code for a Client that connects to an Object or for 

the Stub that implement the respective functionality. It is also used by the Hub for privacy 

enforcement and by the House Intelligence Unit for alerts and adaptive automation. 

Each Device has a Device Main Key which is used by the Hub to encrypt the 

Session Key when it is delivered to the Device. A Hub that will accept a particular device 

must know the Device Main Key and its DUID, which is usually uploaded by an 

Figure 20  sDOMO - Hybrid Communication Architecture 
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administrative application scanning a QRCode or RFID tag attached to the device or 

typed in by the user.   

 Two sDOMO Devices can communicate either via Messages routed by the Hub 

either talking directly to each other or bypassing the Hub in what is called Streaming. 

Messages are blocks of data up to 4GB in size (subject to Hub/Device memory 

limitations) transmitted between Devices. Messages are carried as a payload in Packets. 

An sDOMO Packet is sent into a single UDP Datagram over the local LAN. Packets are 

sent between a Device and the Hub only, they are the backbone of connectivity and they 

can carry fragments of Messages as their payload. Messages are routed by the Hub from 

the source to destination Device. 

 There are two different types of Messages: Notifications and Direct Messages. A 

Notification is an sDOMO message sent by a device and received by any number of 

devices that were subscribed to it prior to the moment it was sent. A Direct Message is a 

one to one communication sent by an Object, part of a Device specifically towards 

another Object of a connected Device. Besides carrying Messages and acknowledgments 

for them there are various packets for device discovery, configuration, connection 

maintenance etc. The full definition of the packets structure and a C++ library for 

working with them is provided on the companion website for this paper. 

 A Virtual Device is a set of services provided by the Hub to the connected devices 

via Direct Messages and Notifications. In order to facilitate the process of discovery the 

Virtual Devices have well known DID’s allocated into a reserved range from 1 to 999 in 

which only Virtual Devices and Devices with Special Duties are allocated. The Virtual 
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Device No. 1 have the object #0 designated as the DeviceManagerInterface allowing 

other devices to list the connected devices and their objects and get extended information 

about them. The AdministratorServices object allows for a console program to upload 

devices keys and edit their parameters. The AnonymousServices allows a device with 

level of trust 0 (without a recognizable Main Key) to log in as a program with special 

access or administrative rights using a user/password credentials pair or presenting a PKI 

Certificate signed with an authoritative Private Key. The House Intelligence Unit (HIU) is 

a special device acting as a meta-rules processor and is responsible for handling out of 

ordinary conditions, issuing alerts and perform complex automation tasks coordinating 

multiple devices based on scripts. 

6.2 Data Communications 

6.2.1 Overview 

The preferred method of communication envisioned by our design is for devices to 

communicate with each other by Messages routed via the House Hub. The Hub receives 

packets, validates their authenticity, decrypts data payloads if necessary, assembles their 

payload into messages and delivers them to their destination device. While delivering 

messages, the Hub will enforce security and privacy rules on behalf of the devices, 

allowing small devices to benefit from the same level of protection as larger devices. 

 To support direct communications sDOMO allows for each device to advertise to 

other components in the network their own external/proprietary interfaces in this case 

sDOMO hub acting exclusively as a rendezvous server, allowing other devices to 

discover which peers are on the network and how to talk with them. This feature is 
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implemented in order to allow vendors a seemly transition from their current protocols to 

sDOMO, or to support special high throughput applications like High Definition Video 

Streaming for which the House Hub would just introduce unnecessary delays. The 

protocol allows for multiple computers running Hubs for a single Domain however from 

the software point of view this is transparent to the devices. 

 The sDOMO architecture defines a house-centered self-sufficient network model. 

Internet connectivity is allowed exclusively via an Internet Gateway which isolates the 

sDOMO network from the cloud. The Internet Gateway provides encrypted 

communication with the outside world and require authentication of the users requiring 

access. The access to information is controlled via Access Control Lists indexed in the 

user id. In order to allow remote sensors and sDOMO Devices, the Internet Gateway 

provides sDOMO tunneling toward a specified IP address. Supplementary, regular web 

application can run in the Gateway allowing controlled access via a regular browser to 

specific functionality. 

 There is no restriction for a sDOMO device to have other interfaces incompatible 

with sDOMO. For example, a Power Meter can have a totally proprietary interface to be 

accessible by the power company while also exporting an sDOMO device in order to 

inform the household monitoring software about their energy consumption. The sDOMO 

specifications are responsible for defining a house-centrist architecture and to not 

interfere with proprietary interfaces of leased devices. 
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6.2.2 Discovery and Configuration 

A Device starting up will use Multicast to the proposed sDOMO Local Multicast 

destination (224.68.12.8 port 1881) sending a “NewBabyBorn” Packet containing it's 

DUID, Spec ID and previous Domain and Given Name if any. A Hub that matches the 

Domain (if present) and wants that Device to join its network will send an 

“AdoptionOffer” Packet specifying an adoption bid between 0 and 255. The Hub that 

sends the highest bid will be selected by the Device to join by sending a “NetworkJoin” 

packet. The Hub accepting a Device replies with a “JoinAcceptedPack” which contains 

the Devices new DID and Session Key. 

 The reception of “JoinAcceptedPack” triggers the Device to send the 

“ConfigurationSummaryPack” containing some configuration parameters that can 

overwrite the default values specified in the Device Spec File. For each Object of the new 

device the Hub query for that object information and the Device replies with an 

“ObjectInfoPack”. Once all the Objects have been configured the Hub sends a 

Configuration Complete Packet which switches the Device to full operational mode. 

From this moment the device can start communicating with other devices via 

Notifications or Direct Messages. Having a Session Key received the device signs all 

outgoing packets and validates the signature of on any incoming packets. 

 A Device whose Device Main Key is unknown by the Hub will receive an 

adoption offer with a bid of 0. A regular device will ignore any bid with value of 0. 

However, an Administrative Console program or other GUI based device that can prompt 

the user to type in a username and password to join the hub at trust level 0 and use 
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Anonymous Services to upload its Main Key encrypted with the user’s credentials. Such 

GUI based application are then used to scan and upload to the Hub the DUID / Key pair 

for any new device that will be connected to the network. 

 

 

A second type of Main Key upload procedure was developed for the usage of sDOMO as 

a Robotic Systems Building Protocol. This is the case, for example, when an army unit is 

deployed on the battle field receives a new payload for one of their unmanned vehicles. 

Plugging in the payload will trigger a set of credential exchanges between the UAV and 

the new equipment, they then verify each other’s identity and then the payload will 

upload its main key to the vehicle’s hub. This procedure acts in the following way: the 

new device is connected with level of trust 0 and then uses the Anonymous Services to 

Figure 21 Device State Diagram while Connecting to the Hub 
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upload a certificate for the device public key and requests the certificate of the Hub for 

verification. Following a successful credential validation on both sides, the device 

uploads a newly generated Main Key to the system encrypted with Hub’s public key and 

signed with the Device’s private key. This procedure however is applicable only for 

devices having non trivial computing power on board since it involves CPU intensive 

public key cryptography. The devices and the hub must be prepared to handle multiple 

levels of certificates. As presented in the hypothetical example above, the manufacturer 

of the vehicle may not know about the manufacturer of the payload and reversal. 

However, both manufacturers will be able to provide an army certificate for the key they 

used to sign the key of the device and vehicle respectively. This dual level of certificates 

allows full validation since both the vehicle and the payload knows the armies public key. 

6.2.3 Packets and Messages 

An sDOMO Packet is carried on a single UDP Datagram. Each packet contains a header 

followed by a variable payload section. The Packet ID specifies the function of this 

packet. DID is set to 0 for packets that have not yet assigned a Device ID like 

“NewBabyBorn” or “AdoptionOffer”. Once a session is initiated the DID specifies the 

assigned Device ID. Packet numbers are unique values incremented at every sent packet, 

they are used to eliminate eventual duplicates on the network and to prevent reply 

attacks. Signature Type specify the HMAC algorithm used sign the packet. No 

signature=0, SHA1 HMAC=1, SHA256 HMAC=2. Encryption Type specify which 

encryption algorithm is used for the Packet: 0-No encryption, 1–XOR, 2-AES128, 3-

AES256 are currently defined. The signature value is dependent on the signature type, for 

no signature the length is zero, i.e. the packet body starts immediately after the 
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encryption type. For SHA1 based HMAC the signature is 20 bytes long and for SHA256 

it is 32 bytes. Numeric values are packet in network order i.e. big endian format. 

 The Packet Body is also a collection of network order fields. Strings are packed as 

zero terminates ASCII string, the byte 0 being required at the end of the string. Arrays are 

prefixed with the size encoded as variable-length code then the specified number of items 

follows. sDOMO does not send floating-point values over the wire but recommends to 

the message designers to use fixed point format represented as integers; for example, our 

thermostat demo sends the temperature in mili-Kelvin packed as an unsigned integer of 

32 bit size which is enough to encode any temperature reachable on Earth with precision 

more than enough for most practical applications. 

 Messages are sent as a sequence of one or more Message Carrier Packets. Each 

packet contains the start position of the current packet in the final message. Packets 

arriving in expected order are not ACK-ed until the final packet arrives and then the 

whole message is ACK-ed with a single ACK packet. However, any packet out of 

expected order triggers a negative ACK containing the expected sequence. The Hub will 

receive a whole message and ACK upon reception to the sender before being delivered to 

the intended recipient. It is important to notice that therefore receiving an ACK for a 

whole message does not mean that the receiver got it. That means a confirmation of 

delivery is required, the designer of an Interface must implement it at the message level. 

6.3 Security and Privacy Considerations 

Home automation and robotic systems bring a whole new dimension to the problem of 

security. In a smart house, a potential attacker can take control and alter the physical 
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aspects of the environment, potentially even inflicting bodily harm to the residents. In 

sDOMO we oppose the view of having each device individually connected to the Internet 

and we propose a House Centered, Self Sufficient domotic system. Putting the whole 

house network behind a firewall and controlling the access from outside via the Internet 

Gateway is the first step in security and privacy of the residents. However, as long as the 

desktop and mobile operating systems that needs to access the home network are still 

vulnerable, the threat of an intruder infiltrating behind the firewall is a likely possibility. 

To guard the domotic system against this probable scenario, a two tiered packet level 

system and message level security measures had been designed as part of the sDOMO 

protocol. 

6.3.1 Packet Level Security Considerations 

After a new connection has been established and a Session Key has been downloaded 

from the Hub to the Device each sDOMO packet exchanged between a Device and the 

Hub is signed with a Hash based Message Authentication Code (HMAC). The HMAC is 

calculated with the formula: 

HMAC(K,M) = H(K | H(K | M)) 

where H is the Hash function used, K is the Session Key and M is the message. The 

operator | specify byte stream concatenation. The Message subject to hashing consists on 

all the fields in the Packet Header (with the exception of the Signature itself) and all the 

fields on the Packet Body. In order to prevent reply attacks, when the highest 

“PacketNumber” of the incoming or outgoing packets is approaching the overflow limit, 

the Device shall re-send a Network Join packet that will renew the “SessionKey” and 
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reset the counters for “PacketNumber” to 0. By making sure that the combination 

(PacketNumber, Session Key) is unique and by not accepting Packet Numbers lower or 

equal than the previously received one, the system is protected against reply attacks. 

 To download a session key a Device is asked to generate a new 64-bit random 

number CR every time it sends a Network Join packet toward the Hub. The Hub will in 

turn generate its own 64-bit random number HR and encrypts the Session Key with a 

Download Key calculated as: 

DldKey=SHA1(CR | Device Main Key | HR) 

The HR is sent by the Hub toward the Device along with the encrypted key in the Join 

Accepted packet. The existence of both random numbers insure that the DldKey is unique 

every time a download happens and this prevents a reply attack in this stage in the 

connection process when a sequence number is not yet initialized. The fact that the 

DldKey is unique also allows usage of very small devices that have no encryption 

capabilities other than XOR. Since the encrypted SessionKey is a random number 

without any structure to reverse engineer having a size equal with the SHA1 hash, and 

since the Main Key is not known to the attacker the simple XOR with the unique DldKey 

is an approximation of one-time-pad encryption. 

 Streaming Interfaces as specified above are direct data connections between two 

Objects from different devices over the network, without the involvement of the Hub in 

communication process. The Hub however is involved in managing the security keys of 

the system. A procedure for allowing the Hub to manage and distribute the keys for 

streaming interface is being developed. While sDOMO allows for unsecured Streaming 
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Interface this is a feature that needs to be thought about very carefully. For example, if an 

attacker can spoof a thermometer sending data to a tablet, the worst that could happen is 

for the residents to get confused. However, if the same thermometer is also connected to 

the A/C control unit the results can have more serious implications. If a hacker sends to 

A/C unit a fake high temperature when the house is cold putting chilling in overdrive an 

eventual sleeping diabetic patient unable to properly sense the temperature may go into 

hypothermia. Therefore, for any control action secured communication via the Hub or 

encrypted Streaming Interface is highly recommended. 

 A unique security feature of sDOMO protocol, as far as we know, is the 

prevention of device kidnapping by the threat of disclosure of the attacker. If a dishonest 

neighbor or contractor is solicited to help with the installation of a new device, the 

installer will have access to the new Device Main Key in order to upload-it into the Hub. 

If the bad guy installs a Trojan Horse masquerading as a fake hub on the resident’s laptop 

there is nothing a cryptographic protocol can do to prevent the fake hub to take control of 

the device. However, as a deterrent for this kind of situations sDOMO specifications 

requires that the Network Join packet, containing the address of the Hub intended to be 

joined, to be sent by Multicast or Broadcast if the underlying network technology permits 

it. It also requires for any Hub to log all the Network Join events it receives and informs 

the House Intelligence Unit of anything it heard on the local network about something 

joining the hub that is not known to be part of this domain. That is, if a Trojan Horse 

attempts to hijack a device, this results in immediate disclosure of the Trojan and counter 

measures are going to be taken by the House Intelligence Unit. 
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6.3.2 Message Level Security Considerations 

Attacks on a domotic system are not necessarily done by outlaws penetrating the network 

but also by the legitimate software or devices. We are living in a world where many 

companies, some of them very large, generate most of their revenue from collection and 

selling personal information to whomever is willing to pay for it. Some of these 

companies have already entered the field of Domotics and Robotics. While putting a 

small-print note in the user agreement may give to the vendor legal rights to snoop on 

other devices, our approach to privacy does not agree with this practice and sDOMO is 

designed to take some steps toward protecting user privacy by protocol design. 

 The Interface Definition Files specify for each message the Security Level. 

Security level 0 are messages which even if sent maliciously to a device have totally 

benign results while the messages at level 3 must be permitted only by the authorized 

system administrator. Similarly, for outgoing messages, a level 0 means that any 

information in a message can be made public without any concern, while a level 2 or 3 

respectively means that this piece of information must be kept secret and received only 

by authorized devices and administrative programs respectively. Similarly, any Device 

connected to the system has to have an associated level of trust from 0 to 3. The level of 

trust 0-Anonymous, is assigned to devices that connect to the Hub but which do not have 

a Main Key uploaded into the Hub. Beside Hub’s Anonymous Services very few devices, 

if any, are expected to accept level 0 messages. When a device D1 sends a message to 

another device D2, or when D1 submits a request to subscribe to a notification emitted by 

D2 the message/request gets assigned a priority of: 
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MP=min(Device Trust Level, ACL(D1, D2)) 

where ACL(D1,D2) is returned from an Access Control List maintained in Hub’s 

Database. If MP >= Security Level, then the request is granted otherwise an error packet 

is sent back to the requester with an access denied error code. The ACL entries are 

assigned on a device to device basis, therefore a device wishing to snoop on the 

notifications sent by other devices will be denied unless the permission has been 

explicitly granted. 

 To facilitate the constructions of ACL’s by regular home-owners without training 

in computer security, sDOMO requires that any device that needs to communicate as a 

client with another must list the interfaces it needs to access in the Device Spec File. The 

<client> tag entry must also provide the level of access required for that device, if 

granting this right is mandatory for the functionality of the device and a clear text 

description of the reason why this access is required. The Console Application used to 

scan a new device will download the spec file and will initiate a user friendly dialog for 

granting the rights. If a particular interface is not listed on the spec file, no ACL entry will 

exist for that particular pair and therefore the access will not be possible for anything but 

Security Level 0. Of course a dishonest manufacturer can list in the Spec File all the 

possible devices it wants to snoop on, and here comes the first line of defense: Shame. It 

does not require a high level security training to understand that a thermostat does not 

need access to all the indoor cameras and microphones to “regulate the temperature 

inside the house”. It is hopeful that at least a small number of users take their ire to the 

blogosphere to make the manufacturer’s life harder. 
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 Of course, only reliance on shame alone is not good enough to protect the people 

privacy therefore sDOMO introduces a third XML file for Standardized Expert Advice. 

The Hub will maintain a list of web-sites and a database with PKI Certificates of experts 

publishing device reviews. These expert reviews will be presented as a signed XML files 

for each device that has been reviewed and will contain a set of proposed alternative 

ACL’s each of them with an explanation of what privacy problems it solved and what 

functionality shortcomings it will generate. The Console Application used for installing a 

new device will automatically download the reviews and present the home owner with 

alternative configuration options based on the compromise privacy/functionality they are 

willing to make. The Expert Advice Files can be automatically scanned by the online 

stores and provide ratings of the devices before purchase. This direct feedback can have 

the effect of making the vendors more privacy conscious. 

6.4 Additional Services 

sDOMO protocol has been designed to be compact, fast and efficient to allow small 

footprint devices while conserving network bandwidth therefore in order to perform the 

complex functions required by a domotic system additional services and information are 

needed. To handle these requirements a set of configuration files and additional services 

are implemented beside the House Hub and home automation devices. 

6.4.1 XML Files 

The Device Spec file contains documenting features, capability specifications and default 

configuration values, links to interfaces exported by the device (as a server) and to 

interfaces imported by the device (acting as client). Documenting features allows for 
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alternate language specifications for Device Name, short description and link to URLs for 

both user and developer documentation; icons for representing the device in management 

GUIs etc. Capability specifications contain the list of the configuration parameters of the 

Device, their valid ranges of values and default values for them. For example, a sensor 

for the door or windows is powered by a coin cell battery will want to stay in sleep state 

for up to 24 hours to preserve battery life. This device needs to specify in the Spec File 

that it can go idle for up to 90000 seconds at a time otherwise the Hub may attempt to 

ping it after 10 seconds of inactivity and disconnect it after a failure to respond to 3 

consecutive pings. 

 Interface Definition Files are referred from the Device Spec file and describes all 

the Messages and additional data structures used to build a Message as understood by a 

given software Object used in the device implementation. In addition to this, the Interface 

File specifies how the Direct Messages defined above are combined to provide Remote 

Method Calls. The Interface Definition file it is used by an Interface Compiler that parses 

it and generates classes used to communicate with the device (Proxy) or implement the 

specified service functionality (Stubs). Manufacturer proposed rules for HUI are also 

listed here. 

 A third XML file used by our domotic system is the Standardized Expert Advice 

File. This file is used by the specialists analyzing the devices existent on the market in 

order to eliminate potential privacy threats to users. Beside alternative ACL and 

explanations for their use the expert advice files can contain alternative default settings 

for the device (overriding parts the Spec file) and conditions when they are a better use 

that the one provided by the manufacturer. Another entry that may be added to the expert 



76 

 

files will be the rating of the device in accordance to various criteria to allow buyers to 

make more informed decisions while shopping for a new device. Scripts for House 

Intelligence as well as Unit and Internet Gateway can also be offered as part of the expert 

advice files. 

 All the files above are XML files which are signed using Public Key 

Cryptography. We are experimenting currently with “GnuPG clearsign” signatures but on 

a commercial system XML signature as specified by the W3C XML-Sig proposal are 

expected to be available too. Every sDOMO Hub is expected to maintain a database of 

PKI certificates along with a list of servers for expert advice and methods for querying 

them for a given file. 

6.4.2 House Intelligence Unit and Internet Gateway 

The House Intelligence Unit (HIU) is a special device having a close relationship with the 

Hub with which share access to the Hub Database. HIU is responsible for handling out of 

ordinary conditions that need special attention. This handling is achieved by a set of 

processing rules allowing HIU to monitor notifications emitted by various devices, and 

when certain conditions are met emit alerts or handle the condition by either using plug-

ins or scripting. To aid the automated building of the HIU rules for a device, the 

manufacturer can add into the interface definition file potential alerts which upon a 

device start-up are loaded by the HIU. Besides rules from interface files, HIU can have 

its own set of rules added by the console from a system administrator or from the expert 

advice files for this device. 
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Figure 22  Intelligence Tag for Washing Machine Example 

In the simple example from the figure above, HIU subscribes for the “CycleCompleted” 

notification emitter by the washing machine. Based on the condition tag, when 4 minutes 

passed and the notification is still being broadcasted HIU will start emitting a text alert 

with the first line of text: “Washing machine needs your attention” and having on the next 

line the content of the field Text from the notification sent by the washing machine. Since 

HIU alerts are most likely displayed by all GUI based devices into the house, the 

distracted housekeeper will be notified about the washer’s need for attention while 

watching her favorite show on the smart-TV. 

 By specifying various criticality levels and domains of actions, HIU can alert a 

nurse about the fall of a resident as detected by a computer vision enabled surveillance 

camera or send to the home-owner vacationing out of town a text message in the same 

time with calling the fire-fighters with a prerecorded message if the smoke detector and 

heat sensors simultaneously detects activity in a room. Scripts in HIU can also monitor 

the humidity level of the soil, query the weather channel web site for the forecast and 

decide whether to turn on the irrigation or not in the garden, etc. HIU is also the first line 

of defense against device hacking, being the one alerting the users and the company 

installing the system about the attempt of device hijacking as detected by sDOMO device 

hijacking prevention schema. 
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 The Internet Gateway is the only point of access from the outside world into the 

domotic system. The house automation network contains sensitive information and can 

harm the residents if misused with intention or by accident. However, the home owner 

should be able to watch his surveillance cameras when a motion alert text message is 

received or a nurse should be able to take control of a robot from an independent living 

assisted house when an emergency condition has been detected. To allow for these 

contradictory requirements, the Internet Gateway will be able to tunnel sDOMO 

messages towards devices located outside the house network. The communication is 

taking place over an encrypted network connection and the tunneling connection is 

opened only for limited amounts of time subject to periodic re-authorization between the 

remote device and the gateway. The original authorization for opening the connection 

must be done via a separate communication channel like HTTPS or SSH and a Tunneling 

Session Key is issued for the other end of the tunnel (the Remote Device Service). The 

RDS in turn will establish an encrypted communication with the Gateway encrypting the 

channel with the Tunneling Session Key and authenticating with the gateway with a 

separate key pre-assigned to that device. Once the tunnel is opened the Device software 

located in the mobile device will be able to connect to the Hub like any regular sDOMO 

device from the local network. 

6.4.3 Data Integrators and Adapters 

 While some microcontrollers like AVR used by Arduino Uno provide persistent 

EEPROM memory the microcontroller can be used to store persistent data and 

configuration parameters, other microcontrollers of interest for small sensors like 

“STM32 Value Line” do not have this capability. To allow these kinds of devices to have 
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persistent configurations, a new type of packet, “ConfigurationParamsPack” has been 

added to the protocol. This packet is sent by the Hub to the device immediately after 

connection during the configuration phase and is also sent by the device toward the Hub 

when it needs to update a particular persistent parameter. The Hub stores the 

configuration parameters for each device in the Hub Database allowing either the 

Administrative Console or the HIU to modify them. If an allowed program modifies a 

parameter, the HUB will send that immediately to the device which can be then 

reconfigured on-the-flight if the device firmware implements that capability. 

 Unless some other popular protocols in embedded world, originally sDOMO did 

not provide a Topic-Based method for integration of messages across devices, under the 

assumption that HIU can handle any type of choreographing between multiple devices. 

While this is still true, driven mainly by DDS, the Topic-Based data model is gaining 

traction especially with people having programming experience in the defense industry.  

To avoid overloading HIU with these new capabilities, we decided to implement a 

separate service to provide this functionality: The Topic Manager Server. This server 

software runs on the Base Station and creates a set of Virtual (software only) Devices that 

will subscribe to data streams from real devices. The virtual devices provide data 

integration driven by configuration files or dynamic requests and expose the same 

interface as a regular sDOMO device. That way, Topic-Based integrated data crosses 

multiple devices can be accessed using the regular sDOMO API without any modification 

to the protocol or devices. 

 Very similar to the Topic Server, an Adapter Server is being proposed with the 

only differences being that it will collect data from devices that speak other protocols not 



80 

 

sDOMO.  Originally we proposed that manufacturers will add sDOMO protocol as an 

optional alternative to their current protocol allowing a device to speak sDOMO if it’s in 

an sDOMO network otherwise it uses the manufacturer protocol. However, we found this 

idea to be difficult to be accepted, since for the manufacturers to have financial incentives 

to do this work there must be a relative large base of sDOMO networks. But in the same 

time, one cannot build sDOMO networks without having sDOMO devices. The Adapter 

server is the tool that we hope to provide the resolution to this dilemma. The Adapter 

Server allows construction of sDOMO networks without having any native speaking 

sDOMO device, while at the same time it will offer all the benefits that our protocol has 

to offer. A device speaking a different protocol is going to talk exclusively with the 

Adapter in its natural language while the adapter presents itself as an sDOMO device 

offering the same functionality as the original device. The Adapter Server is a container 

managing a set of plug-ins (drivers) that implements the specific protocol of each device 

to be integrated. 
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7 MULTI-THREADED MESSAGE DISPATCHER 

To implement House Hub and House Intelligence Unit from sDOMO system presented in 

our previous paper [62] we designed a Multi-Threaded Message Dispatcher 

(MTMDispatcher) framework to support Messages and sDOMO Packet processing. The 

framework has been designed to be reusable for other applications that require message 

processing and is being offered as open-source. 

 The core idea behind the design of this framework has been the suitability for 

Safety and Mission Critical Application development therefore attempting to aid with a 

few of the challenges encountered during application development: Deadlock Prevention, 

Separation Of Concerns and Software Testability. 

7.1 Problem 

The typical problem this framework addresses is the problem of multiple devices sending 

data in messages toward a central message processor (MP) which has to process the 

information and eventually send messages toward the devices in response. In the figure 

below the main architecture is presented. 

The Devices are software components able to send messages, the system accepts 

multiple devices of the same kind as well as different kind of devices. A “kind” of device 

is characterized from the types of messages that it emits and receives. Some devices can 

be just simple software components either one way like a logger or two ways like a 

database or other type of data store. Since devices send messages asynchronous from one 

another and some messages can be just re-routed to other device with little or no 

processing, it makes sense for the message router and processor to operate using multi-
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threading in order to make best use of CPU cores and achieve higher throughput.   

 

 

Because the message processing may require access to shared data, mutual 

exclusion has to be implemented in order to avoid race-conditions and whenever multiple 

threads and mutexes are employed there always exists the possibility of deadlock. 

Having the software engineers constantly switch their attention between the 

business logic and the implementation details (like for example the deadlock-prevention 

or validating pointers) opens opportunities for mistakes to slip in. The principle of 

Separation of Concerns recommends to clearly separate the two, allowing the 

programmer to focus on and address a single class of concerns at a time. 

Despite most design and implementation efforts, errors are highly likely to slip in 

and software testing it is the most common way used to detect them in order to be 

eliminated. Unit testing emerged as a very good testing strategy allowing small units of 

the program to be independently put into a test harness and exercised independently into 

Figure 23 Multiple Message Sources and Shared Data Talking to One Message Processor 
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a controlled way. Unfortunately, unit testing is neither easy not cheap when the program 

has not been designed with unit testing in mind, because usually each unit makes 

references to other units and this increase in cascade making good tests harnesses 

notorious hard to write. 

7.2 Proposed Solution 

As depicted in the sketch from Fig. 24, the main entities of the system are a set of 

message sources S1. Sn which asynchronously adds Messages into the Priority Queue. 

The Message Dispatcher owns one or more threads which extract the next Message (in 

the order of priority) from the queue. Upon successfully validating a Message the 

Dispatcher looks-up the all the Message Handling Entries registered for this particular 

message. A Message Handling Entry consist on a Message Handler Function (Handler 

1() ... Handler m ()) and a tuple of references to Shared Data Objects (D1...Dp). 

For each Entry, the Dispatcher will lock the mutex associated with each Data 

Object using the “partial ordering deadlock avoidance algorithm” as proposed by Dijkstra 

as solution to “Dinning Philosophers Problem”. Once all the resources are acquired, the 

Dispatcher calls the function handler passing a reference to Data Objects as parameters to 

the function. 
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7.3 Mission Critical Application Support 

The proposed design has a set of features to provide support for development of 

applications that are vital for an organization or system.   

7.3.1 Dealing with Race Conditions and Deadlock Prevention 

The main goal in designing this framework has been the ability to allow multithreaded 

message processing while making sure the access to shared resources would never result 

into a deadlock situation that will make the system unresponsive and unable to perform 

Figure 24 Dispatcher Main Components 
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its mission critical role. The framework implements a deadlock avoidance procedure that 

guarantees a deadlock-free dispatching how long the accesses to Data Objects are non-

blocking, i.e. implementing request/completion asynchronous operations.  The algorithm 

for deadlock avoidance works as following: 

1. All Data Objects are made inaccessible from regular user code using 

DataProtector template class, this makes race condition impossible since any 

attempt to access a Data Object outside of the framework control results in a 

compiler error 

2. For each Message that needs to be handled a function handler must be declared 

and registered with the Dispatcher 

3. Handler registration specify for each Handling Function the set of Data Objects 

that should be bound to it parameters during a call 

4. When a Message is handled, the Dispatcher will lock the Data Objects in the 

order of their unique locking priority, avoiding the possibility of deadlock by the 

partial ordering solution 

5. The references to Data Objects are retrieved by the ExecCaller object created by 

Dispatcher which have Friend Relationship with DataProtectors and passed to the 

Handler Function as parameters. 

7.3.2 Support for Separation of Concerns 

Separation of Concerns is a design principle in software engineering that asserts the need 

to minimize the amount of time the mind of the programmer performs context switches 
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like for example between high-level business logic and low-level implementation details.  

It is believed from the psychology studies that these constant context switches are 

a weak link in the process of focus, allowing programming errors to slips in. The 

presented framework design attempts to aid the programmer in the task by taking a small 

set of tasks on its own and enforcing others. 

The fact that messages are sequenced in a priority queue guarantees that lower 

priority processing will not delay critical messages from being handled. Once the 

software engineer determined the priority of each message, either role based or by RMS, 

the framework will take care of handling the proper task with the appropriate priority 

without further programmer’s attention. 

Instantiating each of the Data Objects under the control of a DataProtector 

prevents the programmer from accessing them directly enforcing them to rely on the 

framework in order to access each Data Object. This eliminates the need for the 

programmer to care about Critical Section problem outsourcing it to the framework. As a 

matter of fact since all the handlers registered for a particular message are called 

sequentially under the context of a single thread this also eliminates the need for the 

programmer to write Message Handler Functions to care about multithreading entirely, 

from the programmers point of view there is no difference between the fact that a 

particular handling function is called from the Multithreaded Dispatcher or just called 

from a regular function into o mono-threaded program. All the synchronization and 

deadlock avoidance procedures are hidden inside the framework. 
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7.3.3 Support for Unit Testing 

Having all shared Data Objects constructed under a protector, forces the programmer to 

declare the required shared objects as parameters to message the handler function in order 

to be provided by the framework. As a result, all message handler’s functions are self-

sufficient pieces of code that can be tested individually in a test harness that just passes 

the required parameters to the handler subject to testing. Because the framework also 

takes care of all the multithreading and synchronization issues hiding this aspect from the 

handler programmer, all the message handler’s unit tests can be performed into a single-

threaded easy to use environment. 

7.4 Design Details 

Two interfaces serve as the base for the Data-Protectors. LockableObjectInterface is the 

base for any class that the MTMDispatcher class is supposed to lock it before calling the 

handler and release it after. DataProtectorInterface, it is a template abstract class 

parameterized with a data type that will be passed to the message handler function. The 

DataProtectorInterface have two protected member functions returning pointers to a 

LockableObjectInterface and the data type used to instantiate the template. 

An auxiliary template interface SelectiveDataProtectorInterface serves as the base 

class for registering arrays of shared data-objects in order to pass to the handler one of 

them based on some information from the incoming message that is being processed. 
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When a handler function is being registered, the references of the classes extending 

DataProtector template class or SelectiveDataProtectorInterface are being passed to the 

registration procedure. The framework uses a friend relationship with the protectors in 

order to access the methods that provide a pointer to data or associated locking 

mechanism. 

The abstract class MsgSourceInterface is the base for all the objects that will send 

messages to be handled by function handlers. A message is a class inheriting an 

instantiation of template Message with two integer parameters, CategoryID and 

MessageID, and then defining their own data. Message Sources have the ability to 

enqueue into the Dispatcher MsgHandle which references an actual Message that needs 

to be sent. When the Dispatcher dequeues a message reference, it uses it to get access to 

Figure 25 Class Diagram related to Safe Data Access 
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the actual Message via the method getMessage() from the MsgSourceInterface. This 

twostep access (using a handle that resolves to message instead enqueuing a direct 

pointer to the message) have been implemented to address two important problems: event 

cancellation and messages instantiated in special memory segments. 

 

 

Event Cancellation is best understood considering a time-out timer started when the 

request is lunched and which calls a time-out function if the answer has not yet received 

in time. If the response is received the reception handler will cancel the timer. However, 

if the queue is not empty when the reply is received, the message is enqueued at the end 

of the queue and until it will be served it is possible that the time-out event will be also 

enqueued to be executed later. Without the two step look-up both reception and time-out 

handlers must perform extra accounting steps to keep track of a particular request/time-

out pair since just canceling the event have no effect the event being already enqueued as 

a message. With a two-step look-up, when the answer handler is processed it cancels the 

timer and when the t/o event reaches the execution state the source will just return a null 

Figure 26 Class Diagram for Message Management 
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message avoiding the time-out handler from taking place, so event cancellation is 

achieved without any external codding from the point of view of the application 

programmer, in direct accordance with the Separation of Concerns principle. 

Dual step look-up also allows large messages to be kept in a memory managed by 

the Message Source itself which can, for example, manage blocks of data in shared or 

non-uniform memory blocks. When the look-up of the handle is performed the right 

block can be mapped into the process address space and a pointer being returned. 

Enqueueing directly a pointer to the memory would require the memory to be mapped 

early and stay idle for all the period the pointer it is enqueued or would require data copy 

into process memory. 

With every call to the template method registerHandler of the MTM_Dispatcher a 

new DeferredCaller entry it is added to the map indexed on the pair CatID,MsgID. The 

DeferredCaller entries holds the pointer to the function handler to be called and 

references to the data protectors associated with the data that needs to be passed to the 

function. 

The Dispatcher starts one or more dispatching threads. Each thread will dequeue a 

MsgHandle and from the owning message source a pointer to the actual message is 

retrieved. If the resolved pointer is not null, each DeferredCaller entry associated with 

this message is called with the message. Beside the Message pointer, a pointer to the 

DispatcherLocker object owned by every thread is passed along to the call(…) method of 

the DeferredCaller. The DeferredCaller uses the DispatcherLocker and the Functor it 

holds to instantiate on the stack an ExecCaller functional object. The ExecCaller 
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performs object locking in accordance to partial ordering solution and then call the actual 

function handler with the values retrieved from the protectors. 

 

  

The rationale for having the intermediary ExecCaller instantiated on the stack 

instead of allowing the DeferredCaller itself to perform locking is to assure that the same 

DeferredCaller can be simultaneously called from two or more threads. Calling the 

functor with the expansion of the Tuples as a variable list of arguments while holding a 

lock on all the arguments requires that the object performing the call do locking before 

call and hold a pointer to the Locker to perform unlocking after the function handler 

returns. Keeping the pointer in the DeferredCaller would make impossible for it to 

participate simultaneously in different threads since each thread have a different 

DispatcherLocker. Creating the intermediate object ExecCaller on the stack solves the 

problem in an elegant manner. 

After all the handlers have been successfully called, the dispatching thread 

Figure 27 Class Diagram for Message Dispatching 



92 

 

releases the Message data with the source and waits on the MsgHandler queue for the 

next message. 

7.5 Typical Usage 

Using the MTMDispatcher framework to implement a Message Handling Application 

consists into a set of standardized steps: 

1. Defining the Messages that are being processed by the application. The 

Framework defined messages as parametric templates with two integer 

parameters, named as CategoryID and MessageID allowing flexibility in mapping 

the messages ID coming from various device types 

2. For each Message defines the Shared Data Structures required to process it. The 

Shared Data usually is a struct element grouping together various pieces of data 

that make semantic sense to be associated from the point of view of the business 

logic 

3. Write function handlers for each message, having as first parameter a reference to 

the Message class and followed by references to all shared data objects that need 

to be accessed by the function handler 

4. Instantiate Data Objects inside a protector as Protected Data Object variables 

5. Write Message Sources Servers as active objects inheriting MsgSourceInterface 

6. Instantiate Message Sources 

7. Register the handlers and the corresponding protected data objects with the 

Dispatcher  
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8. Call the method start() of the Dispatcher 

9. Call the start() method for all the Message Sources 

There is a possibility for a Data Object to extend the MsgSourceInterface allowing 

Messages to be posted when certain conditions are met, as a matter of facts most of the 

Data Objects would probably be implemented this way allowing a three step process that 

brings the Separation of Concerns as “first class citizen”. More precisely, message 

Handlers functions can be divided in three categories:  Incoming Handlers, Business 

Logic Handlers, and Outgoing Handlers. 

When an incoming message comes from an external source, the set of Incoming 

Handlers will just receive the data and unpack-it into the appropriate data objects. As a 

result of changing the state of data objects, they emit various business logic messages like 

posting an alert condition, requesting an adjustment to another value, etc. These messages 

are handled by the BL set of Handlers which implement domain specific knowledge to 

assess and react to BL events. Either as a result of processing BL or by timers, a set of 

Outgoing Request Messages are emitted which are used by the Outgoing Handlers to 

pack and send the data to external devices. The clear separation between the operations of 

Handling External Data and Business Logic processing allows different team members to 

focus on their specific tasks reducing the cross-domain coupling. 
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8 MULTI-PARADIGM OBJECT TRACKER 

This chapter presents the MP-Tracker algorithm developed to provide real-time tracking 

data about the objects moving in the view of a fixed camera. The algorithm has been 

presented in the paper [61] presented at ACM RACS in 2014. 

8.1 MP-Tracker Introduction 

An important component of the software architecture for domestic robot navigation 

presented in our previous paper [1] is the external vision (exovision) based Object 

Tracker located on the Camera Module (CM) on the Base Station. The Camera Module is 

a piece of software associated with each fixed camera overlooking the scene being 

responsible for image pre-processing and tracking of moving objects. At every frame the 

CM broadcasts the status of each tracked object in a Tracking Message, to the Situation 

Awareness Module (SAM). 

 The Tracking Message contains a list of tracked objects (referred to from now on 

as the Targets) with the specified location, movement vector, and the size of the bounding 

rectangle around the tracked object. Upon request from other components CM will 

provide a variety of information including a polygonal approximation of the Target, its 

Fuzzy Histogram, or even partial or full images. SAM integrates information received 

from multiple CM and builds a 3D model of the environment in the form of a live-map. 

The model built by SAM is used to provide navigation and localization assistance to the 

robot.   

 The role of the Object Tracker as a part of the CM is to provide real-time tracking 

information of the objects “seen” by each fixed camera to aid the robot in determining its 
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own position and to avoid collisions with other moving objects, persons, or pets.   

 The main problem with the tracking operations is Data Association, i.e. if at the 

moment t we are having a set of N targets 𝑇𝑖
𝑡, 0 ≤ 𝑖 < 𝑁and at moment t+dt we detect M 

blobs 𝐵𝑗
𝑡+𝑑𝑡, 0 ≤ 𝑗 < 𝑁the problem consists of determining a set of P pairs 𝑃 ≤

𝑚𝑖𝑛(𝑁, 𝑀)such that a pair (𝑇𝑖
𝑡, 𝐵𝑗

𝑡+𝑑𝑡)have the meaning that the target i at t moved at the 

position where the blob j has been detected at the moment t+dt. Once an association has 

been made the position and other information about the target are updated with the new 

data acquired from the new detection and then we can talk about the target i at the 

moment t+dt.  A Track is defined as a sequence of consecutive positions occupied by a 

target during its life time, i.e. the ordered sequence  𝜏𝑖 = (𝑇𝑖
𝑡0, 𝑇𝑖

𝑡1, . . . , 𝑇𝑖
𝑡𝑘)with t0 and tk 

𝑡𝑘 = 𝑡0 + 𝑘 ⋅ 𝑑𝑡respectively being the moment when a target has been taken into account 

(target initialized) and removed from the tracking accounting (target destroyed).    

8.2 Method 

  We took a multistage approach to the problem by generating a set of “one to 

many” hypothesis of association between Targets and Blobs and later refining them in 

subsequent steps using various image processing and data association methods.     

 The main program flow is given in Fig.2. After the image capture background 

subtraction is performed using the OpenCV’s class BackgroundSubtractorMOG which 

uses a Gaussian Mixture Model of the background and the result of the subtraction is a 

binary image representing the modified foreground as a set of blobs. The contours of 

blobs are found and an array of data structures is built holding for each blob the position, 

area, bounding rectangle and an RGB space Fuzzy Histogram. A data structure part of 
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this array will be referred from now on as a Blob. The histogram is built from the RGB 

values of the pixels inside the found contours providing an easy way to compare the 

visual aspect of two blobs.   

A second array of data structures called Targets is used to keep information about 

detected objects. Each Target contains a Kalman filter user for tracking the movement, a 

list of associated blobs and trajectory history.  On every frame, each Target uses the 

Kalman filter to predict the expected position into the new frame then it lays a claim on 

the newly detected blobs that may be located around the expected position. A claim, 

named in code a Hypothesis, associates one Target to one or many Blobs and a 

confidence score. 

 Based on the prediction from the Kalman filter on each step an Expected 

Bounding Rectangle (EBR) of the target in the next frame is calculated and all the blobs 

intersecting the Expected Bounding Rectangle are selected to be part of the hypothesis 

for this Target. 

 Because with each Kalman filter we have an uncertainty in location, a blob can 

intersect more than one EBR resulting in an ambiguous Hypothesis. The next steps are 

dedicated to refine the confidence and provide hypothesis disambiguation. 

 On the confidence refining step we attempt to eliminate the claimed Blobs by a 

Target that are not grouped together close enough to form a single object. For some 

Hypothesis that will also result in disambiguation, however the next steps are purposely 

performed to eliminate any remaining ambiguities. 
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The first attempt of disambiguation employs Fuzzy Histograms. For each blob 

While (true): 

    capture Frame 

    Background Subtraction 

    extract Contours,  build Blob Array   

    for each (existing Target): 

          predict next position and uncertainty using Kalman filter 

          create a Data Association Hypotheses 

     Attempt to disambiguate Hypothesys array using: 

         Fuzzy Histogram Matching 

         Area Matching        

         Lucas-Kanade Optical Flow Matching when needed 

         MSER Segmentation  to break ambiguous Blobs 

   Pick unambiguous hypothesis having confidence > treshold1 

   Pick ambiguous hypothesis having confidence > treshold2 while no contender exists with confidence > threshold3 

    Run Second Chance Tracking Algorithm 

    Attempt Target  Splicing 

    form pairs from Leftover Blobs in current & last frame 

    assign score to each pair based on: 

         Fuzzy Histogram Matching 

         Area Matching 

         Lucas-Kanade Optical Flow Matching 

    Create new Targets from pairs whith score > threshold1 

    save all unmatched Blobs for next frame Leftovers 

      for (all unmatched Targets): 

           increase the uncertainty rectangle & increment age 

           if (trajectory took them out of frame or spliced) delete it 

           if (age > age_treshold) delete it 

    for(all matched Targets): 

          set age to 0 

          update Kalman filter position and uncertainty equation 

 

Figure 28 MPTracker Algorithm 
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claimed by more than one target a score is calculated comparing the histogram of the 

ambiguous blob with all the blobs previously associated with a target in the previous 

frame. The score from histogram matching is combined with a score calculated from the 

matching of the area of the blobs in question using a weighted sum. The weight attributed 

to the area score is much smaller than that of the Fuzzy Histogram score because the area 

can vary due to occlusions much steeper than other visual characteristics. 

 For all the ambiguous claims that fell below the confidence threshold and were 

not picked, Lucas-Kanade’s optical flow tracking is used to update the confidence in the 

claims, and a second run of the matching algorithm is used to pick Target with Blobs 

pairs based on the newly updated confidence. 

 Finally, the last attempt at Hypothesis disambiguation employs the Maximally 

Stable Extremal Regions (MSER) operator. A sub-image surrounding each Blob that was 

ambiguously claimed up to this point is segmented using MSER algorithm and an AND 

operation is applied between the segmented regions, and the original binary image of the 

ambiguous Blob. The resulting set of contours are used to update the old Blob and the 

rest are added as new Blobs, then the Hypothesis are recreated from scratch and updated 

using the steps described above with the exception of Lucas-Kanade matching. Since the 

resulting new blobs will all be within the boundaries of the old Blob there is nothing new 

LK can find and therefore its usage at this point will be a gratuitous waste of CPU power.  

After the hypothesis updates the data association procedure is run again to pick new 

association Hypothesis. 

 The Second Chance Algorithm investigates the possibility that the association 
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between Target and Blobs has not been possible up to this point, because multiple blobs 

are too close together both in position and color to be distinguished even after MSER 

segmentation, or because Kalman prediction failed to estimate their position. Raw Lucas-

Kanade matching is run on bounding rectangles of the last known position of the Target 

and an estimated Searching Rectangle whose calculation is described later in the paper. 

The Target Splicing Algorithm investigates the possibility that unassociated 

Targets might have just been fragments of a bigger Target that was tracked individually 

because of partial occlusions and now their blob merged. Target Breaking Algorithm 

looks at the targets whose new bounding rectangle grew much faster than the sum of 

areas of the associated blobs. It attempts to find targets that were mistakenly associated 

with blobs moving in different directions than the rest of the Target and remove them 

from it.   

 All the unmatched Blobs in the current frame up to this point are compared 

against all unmatched blobs from the previous frame using both Fuzzy Histogram and 

Lucas-Kanade Sparse Optical Flow and the good pairs are used to initialize new Targets. 

Any blob that has not been matched up to this point becomes part of the list used to 

initialize targets in the next frame. While this is similar to MHT method, it is important to 

notice that we never keep more than a single frame of Leftover Blobs for matching 

therefore avoiding the exponential growth of hypothesis specific to MHT. 

8.3 Target Modeling 

Each Target contains a Kalman Filter used to model and predict the movement of the 

targets in time.  
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The Kalman state equation: 

[

𝑥𝑡+1

𝑦𝑡+1

𝑑𝑥𝑡+1

𝑑𝑦𝑡+1

] = [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

] ⋅ [

𝑥𝑡

𝑦𝑡

𝑑𝑥𝑡

𝑑𝑦𝑡

]             

is the standard equation for a body in motion in 2D space without a control signal. The 

Kalman filter is used to a predict / update cycle: On every frame the filter predicts where 

the new position of the object should be and if the center of a blob is found within an 

expected rectangle around the predicted position a level confidence is associated with this 

prediction and the filter is updated with the new measurement. The expected rectangle 

center is provided by the Kalman filter while the size of it is provided by a confidence 

equation and previously detected bounding rectangles of all the Blobs that are part of the 

Target. At every update step, the distance between the predicted center and the real center 

is calculated and the uncertainty in position is updated using the exponential averaging  

(
𝑥𝑠𝑧

𝑦𝑠𝑧
) = (

𝛼 0
0 𝛼

) ⋅ (
𝑥𝑠𝑧

𝑦𝑠𝑧
) + 𝐾 ⋅ (

1 − 𝛼 0
0 1 − 𝛼

) ⋅ (
𝑑𝑥
𝑑𝑦

)         

where the vector [dx dy] is the distance between the predicted and measured center, while 

the resulting “sz” vector is the size of the Uncertainty Rectangle.    

The Uncertainty Rectangle expresses the uncertainty of the location of the predicted 

center of the Target in the next frame and is used to calculate the Expected Bounding 

Rectangle (EBR) of the next predicted position. More precisely if the Target currently has 

a bounding rectangle TBR, EBR is going to be the rectangle having:  

𝑐𝑒𝑛𝑡𝑒𝑟 = (𝑥𝑡+1, 𝑦𝑡+1)
size = (𝑥𝑠𝑧 + 𝑤𝑖𝑑𝑡ℎ𝑇𝐵𝑅 , 𝑦𝑠𝑧 + ℎ𝑒𝑖𝑔ℎ𝑡𝑇𝐵𝑅)
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 Beside the position and location uncertainty, a Target object contains the last 

measured area, bounding rectangle and a fuzzy histogram of all the blobs associated with 

the Target in the last frame. Both of them are used to calculate the confidence in a match. 

Given the At and Ab the area of the Target and all the considered Blobs respectively the 

confidence in matching by area is calculated as: 

𝑐𝐴 =
𝑚𝑖𝑛(𝐴𝑡, 𝐴𝑏)

𝑚𝑎𝑥(𝐴𝑡, 𝐴𝑏)
 

 The fact that each Target can be associated with more than one Blob allows us to 

handle Target fragmentation that is occurring when a Target passes in front of background 

spots having similar color and texture as the Target or when it is partially occluded by 

small objects in front of it. Since a Target needs to have a well-defined center in order to 

be used in Kalman filter calculation and determination of EBR, the center of a multi-blob 

Target is calculated as: 

𝐴 = ∑ 𝑎𝑖
𝑁−1
𝑖=0

𝑥𝑇 =
1

𝐴
⋅ ∑ 𝑥𝑖 ⋅ 𝑎𝑖

𝑁−1
𝑖=0

𝑦𝑇 =
1

𝐴
⋅ ∑ 𝑦𝑖 ⋅ 𝑎𝑖

𝑁−1
𝑖=0

                  

where xi, yi and ai are the coordinates and respective the area of a blob composing the 

Target. 

 Another type of problem arises when two targets come so close together that their 

blobs get generated by background subtractions forming a single bigger blob. If the 

conjoined blob is part of the two already initialized targets, one of them is going to lose 

tracking then an increase about its uncertainty rectangle will follow. When the Targets 

separate the matching algorithms will find the blob within its (very large now) EBR and 
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usually Lucas-Kanade and other matching functions will be able to correctly assign the 

blob back to the right Target. 

 A much more difficult problem arises when a new object with a color close to an 

existing Target but is a size bigger than it enters the Target’s EBR. The new object fails to 

initialize as a new target and will be adopted by the existing one, resulting in false 

tracking. The only partial solution we have at this moment to this problem is when the 

new blob is much bigger than the existing one. We can avoid some false tracking with 

much bigger objects by imposing a restriction that we will not disambiguate a hypothesis 

that makes a given blob grow 2 times or more unless the two subsequent blobs overlap. 

However, an object that is just marginally bigger than the existing Target and that has a 

relatively close color can still generate false tracking. This remains an open problem as of 

this moment. If the new object is smaller than the target, the algorithm will stay fixed 

with the current Target when they split and the problem does not arise at all. 

8.4 Target Life Management 

 New Targets are created from the “LeftOver Blobs” i.e. from the Blobs that were 

not assigned to any existing Target by the end of the frame processing. At the end of each 

frame, all left-over Blobs are paired with all the leftover Blobs from the previous frame 

and then the pairs are refined consecutively by Fuzzy Histogram matching, Area 

matching and Lucas-Kanade matching. The best matching pairs over a certain threshold 

are selected to initialize new Targets. 

 Each Target keeps a frame number with the value of the last frame when a 

position updates i.e. a successful matching has taken place. Using the saved frame 
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number and the number of the current frame each Target has a calculated Age which is 

defined as the number of frames passed from the last successful update. A Target that 

failed to be updated for one or more frames is called a Lost Target. The age of a Target is 

directly correlated with the uncertainty in position. While after a successful update the 

size of the uncertainty rectangle is calculated as described above, for a lost target the size 

of uncertainty rectangle is each frame until is size equals frame size. 

 When a Lost Target ages over a certain limit, the Target is eliminated from the 

array of active Targets, this is called a Target being destroyed. If the same object is 

detected later, it will be reinitialized as a new Target and unfortunately all the previous 

trajectory information will be lost. A Target is also destroyed when it is Lost and the 

projected Trajectory is determined to be out of the frame. In that case we do not have to 

wait for the maximum age before Target elimination. 

 When a Target is Lost while its EBR is intersecting another Target’s EBR the 

Target is marked as Occluded. Occluded Targets are permitted to reach an older age 

before they are removed from the system.  Active research is currently done to an 

algorithm to detect occlusion with fixed objects (non-Targets) from the environment that 

are located between the Targets and the camera. 

 Finally, a target that is declared to be Spliced into another by the Breaking and 

Splicing algorithm is also destroyed immediately to avoid generating false hypothesis. 

8.5 Fuzzy Histogram 

 Fuzzy Histograms (FH) are used as a fast method to increase confidence that a 

particular blob located within the expected rectangle predicted by the Kalman Filter is the 



104 

 

tracked object. For each detected Blob a Fuzzy Histogram is calculated automatically 

when a Blob object is created from a detected contour. Whenever a Blob is assigned to a 

Target the Blob’s main data including the Fuzzy Histogram is carried inside the Target. 

The disambiguation algorithm for a Blob claimed by two or more Targets first makes use 

of the FH for a quick comparison. FH is also used as the fast way to filter away candidate 

pairs used for Target initiation. 

Unless other work done with FH we are not converting the RGB color space to 

HSV space but we are using a three dimensional histogram for each color component of 

RGB space while also using a much larger interval between bars.  That is, we are using 

only 4 to 6 bars for each color component and we normalize the values of the histogram 

in the interval [0, 1] to make it independent of the number of pixels.  While this approach 

is more sensitive to changes in brightness it is also more robust in matching variation in 

color and is faster. 

  

   

For updating FH with pixel values we are using a trapezoidal membership 

function allowing for small variation around the main histogram bars, as shown in Fig. 4. 

Figure 29 Fuzzy Histogram Membership Function 
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If the pixel values are falling in the collar C vicinity of the histogram bar, then only the 

given bar is updated otherwise both bars bounding the pixel will be updated 

proportionally with the distance from the pixel to the neighboring bar collars. 

 Comparison of two histograms A and B is done by returning a matching score 

calculated according to the formula: 

 𝑠 = 1 −
∑ |𝑏𝐴

𝑖−𝑏𝐵
𝑖|𝑁−1

𝑖=0 +|𝑔𝐴
𝑖−𝑔𝐵

𝑖|+|𝑟𝐴
𝑖−𝑟𝐵

𝑖|

6
         

where r,g,b are the normalized values for Red, Green and Blue respectively and N is the 

number of bars in the histogram. 

8.6 Lucas-Kanade Tracking 

 The LK method provided by OpenCV library implements a sparse iterative 

version of the Lucas-Kanade optical flow with pyramids. This function is used to find a 

set of matching features (corners) in two consecutive images in order to increase the 

confidence that the object located around a detected Blob is a match for a given Target or 

the previous frame Blob. 

 If Fuzzy Histogram and Area matching methods did not provide enough accuracy 

to unambiguously pick or reject all the generated Hypotheses we use an implementation 

of Lucas-Kanade method to increase the confidence in a particular Hypothesis.   

 Because LK calculations are CPU intensive we are making two major 

optimizations in using it. First, we use LK only when it is impossible to disambiguate a 

Hypothesis without it, i.e. only after using Fuzzy Histogram and Area matching, if we 
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still don't have a clear cut on the set of data association hypothesis. Second, we are not 

calculating LK optical flow on full size image but we are cropping sub-images around the 

Blobs and the Target of interest and apply the algorithm for LK matching only on the 

selected sub-images as seen in Fig. 30. 

 

 

To perform LK matching we select 2 images of the size a bit larger than the maximum 

size of bounding rectangles of both Target and Blob(s) and on the Target image detect 

Shi-Tomasi features. We retain for matching only those features that are located either 

inside or at the borders of the binary masks of the blobs that are part of the Target. 

Figure 30 LK Cropped Window and Mask 
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Then we calculate the vector of matching features using Lucas-Kanade optical flow 

method. The returned matching score is the number of features detected on the second 

image divided by the number of the featured that were passed to the matching algorithm, 

i.e. located inside or at the border of the Target’s blobs in the first image.  The procedure 

is illustrated in pseudo-code in Fig. 31. 

8.7 Hypothesis Management 

 For each frame, the Targets already tracked will lay claims to all the Blobs 

detected by the subtraction of the current image from the Gaussian Mixture Model of the 

background. Each claim is called a Hypothesis and it is a triplet {TargetId, set<BlobId>, 

confidence}.  The set of Blobs in the hypothesis is all the blobs that intersect the EBR of 

the Target. 

 It is quite possible at this point that if two or more Target EBR's intersect the same 

Blob than it will be assigned to multiple hypothesis. This is called an Ambiguity and it is 

the job of Ambiguity Resolving Algorithm to try to resolve them.  

lkMatchingScore(Target, Blob): 

    rectSz=max(TargetRectSz, BlobRectSz)+SmallBorder 

    tgtImg=ImageAroundTarget(rectSz); 

    blbImg=ImageAroundBlob(rectSz); 

    mask=binaryImageOf(AllBlobsInTarget) 

    goodFeaturesToTrack= Shi-Tomasi(TargetRect) 

    usedFeature =  goodFeaturesToTrack & mask 

    resFeatures=calcOpticalFlowPyrLK(tgtImg, blbImg, usedFeatures) 

    return count(resFeatures)/count(usedFeatures) 

Figure 31 LK Tracking Procedure 



108 

 

 The original confidence associated with a hypothesis is calculated based on the 

size of the Uncertainty Rectangle calculated with formula (2). The bigger the Uncertainty 

Rectangle the smaller the confidence that is associated to that hypothesis when the claims 

are laid. 

 Ambiguity Resolving Algorithm will list all the Hypotheses that share one or 

more Blobs and for each shared Blob a score is calculated based on Fuzzy Histogram and 

Area. The common Blob is then assigned to the clear winner. If there is not a clear winner 

(i.e. having a score with at least 20% higher than the next contender) and if the size of the 

Blobs in question is over a minimal size required for LK to provide meaningful results, 

Lucas-Kanade matching is employed to update the confidence.  After a particular blob 

has been removed from a multi-blob Target the confidence is re-initialized at the value 

resulting from EBR size and updated back with the score from FH and Area for the 

remaining Blobs. LK is not used again at this point until required because of the 

remaining ambiguities. 

 The confidence in the hypothesis is never assigned from scratch but is updated 

from the previous one based on the formula: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = (1 − 𝛼) ⋅ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛼 ⋅ 𝑠𝑐𝑜𝑟𝑒 

where Confidence is the confidence already assigned to the Hypothesis and the score is 

the result from the last test performed. The alpha coefficient is dependent of the level of 

trust on the particular test. The value for alpha is small for the Area Match because the 

area of a detected blob can vary wildly due to occlusion and high for FH and LK match 

which have proved to provide high quality results. 
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 There are two methods for picking a hypothesis in order to perform data 

association between Targets and Blobs: Unambiguous picking and Ambiguous picking. 

 Unambiguously picking is the method of first choice. We select a hypothesis with 

a confidence over a certain threshold such that no Blobs associated with this hypothesis 

are claimed by any other hypothesis. It is employed early on after just FH and Area 

updates. If ambiguities persist another attempt for Unambiguous picking is attempted 

after LK update. 

 Ambiguous picking is used as the solution of last resort before labeling all the 

remaining Blobs as leftover and resort to Second Chance Algorithm.  Ambiguous picking 

selects Hypothesis with confidence above a given high-threshold given that no other 

competing hypothesis containing a Blob shared with this one have a confidence over a 

low-threshold. All the hypotheses that were not accepted by the Ambiguous picking will 

be discarded since no further Hypothesis processing will happen after this point. 

8.8 Second Chance Algorithm 

 The Second Chance Algorithm assumes that matching between the Target and 

Blobs failed because either multiple Blobs are located too close for the Background 

Subtraction and Segmentation to differentiate between them; or because the Target took a 

movement incompatible with Kalman Filter prediction. This latest case can happen for 

example when a ball hits a wall and the trajectory diverges significantly from what 

Kalman Filter’s state equation can handle. The Second Chance Algorithm will use the 

Search Rectangle defined as the rectangle containing the Target if it would move from the 

previous known position at what is assumed to be the maximum speed.  More precisely, 
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if the last confirmed position of the target center was (x,y) and the Target was contained 

in a rectangle with dimensions (w,h) the Search Rectangle is centered at (x,y) and has 

dimensions: 

(𝑠𝑊, 𝑠𝐻) = (𝑤 + 2 ⋅ 𝑣𝑋 ⋅ 𝑑𝑡, ℎ + 2 ⋅ 𝑣𝑌 ⋅ 𝑑𝑡)                

where vX, vY are the maximum expected speed (in pixel / second) for a Target on the 

respective coordinates and dt is the duration of a frame.   

 Here the algorithm makes use of innate knowledge about the environment, in the 

form of a function provided by the Settings class which based on the position and size of 

an object will estimate a maximum speed expected for that object. The method assumes 

that small blobs are farther away while very large blobs are closer to the camera, and 

returns an expected maximum speed for each Blob. This expected maximum speed is 

used in the calculation of the search rectangle as described above. 

 The Second Chance Algorithm relies on brute-force Lucas-Kanade matching to 

find the image of the last known Target into the Search Rectangle. At this point we may 

not have distinguishable Blobs to update the tracking based on their center. To update the 

Kalman filter with the new position estimate E(xE,yE) we first calculate the center of 

mass of the LK matching points in the new frame C2(x2c, y2c) and in previous frame 

C1(x1c, y1c) then we calculate the point E such that the offset from E to C2 is the same 

as the offset from L to C1, L(xL,yL) is the previous known position. 
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(𝑥1𝐶 , 𝑦1𝐶) =
1

𝑁
⋅ ∑(𝑥1, 𝑦1)𝑖

𝑁−1

𝑖=0

(𝑥2𝐶 , 𝑦2𝐶) =
1

𝑁
⋅ ∑(𝑥2, 𝑦2)𝑖

𝑁−1

𝑖=0

(𝑥𝐸, 𝑦𝐸) = (𝑥𝐿, 𝑦𝐿) + (𝑥2𝐶 , 𝑦2𝐶) − (𝑥1𝐶 , 𝑦1𝐶)
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9 VISION BASED NAVIGATION 

A camera mounted on the robot offers a whole new set of opportunities for the robot to 

navigate the environment. Among them we will be focusing on localization of the 

stationary robot by recognizing multiple landmarks with well-known positions, 

localization of the moving robot by repeated angle measurements from a single known 

landmark and maintaining a prescribed trajectory by using a PID (Proportional-

Integrative-Differential) controller using as feedback information the optical flow vectors 

measured while looking at the floor. 

9.1 Multiple Landmark Localization of a Stationary Robot 

 

In multiple landmark localization, the robot is able to recognize a set of already known 

landmarks (doors, windows or wall mounted pictures) in the environment and knowing 

Figure 32 Geometric Locus of a Robot Keeping the Same Angle of Sight between Two 

Landmarks 
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their location on the map of the room will be able to calculate its own position by 

measuring the angles of view between the known landmarks. It is easy to see that 

only two landmarks are not enough for localization if only their two dimensional position 

in the room coordinates is known. 

Let’s consider two landmarks A and B with their well-known position A(XA, YA) 

and B(XB,YB) in the room coordinates. The robot located at point R(x,y)  sees them at the 

constant angle θ. 

From the Figure above we can derive the set of equations: 

tanα =
𝑌𝐵 − 𝑌𝐴

𝑋𝐵 − 𝑋𝐴

tan(α + γ) =
𝑦 − 𝑌𝐴

𝑥 − 𝑋𝐴

β = α + γ + Θ

tanβ = tan(α + γ + Θ) =
𝑦 − 𝑌𝐵

𝑥 − 𝑋𝐵

 

Using the trigonometric identities to split the last equation and replacing the values from 

the previous relations in it, after algebraic manipulations, we obtain the equation of the 

geometric locus of the points R(x,y) which are able to see the landmarks A and B under 

the angle θ as: 

𝑥2 + 𝑦2 + (
𝑌𝐵 − 𝑌𝐴

tanθ
− (𝑋𝐴 + 𝑋𝐵))𝑥 + (

𝑋𝐴 − 𝑋𝐵

tanθ
− (𝑌𝐴 + 𝑌𝐵))𝑦 + (𝑋𝐴𝑋𝐵 + 𝑌𝐴𝑌𝐵

+
𝑋𝐵𝑌𝐴 − 𝑋𝐴𝑌𝐵

tanθ
) = 0 

Which is the equation of a circle, therefore the robot R can be located on any point 

around this circle having the center (X0,Y0) and radius r: 
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𝑋0 =
𝑋𝐴 + 𝑋𝐵

2
−

𝑌𝐵 − 𝑌𝐴

2 ⋅ tanθ
 

𝑌0 =
𝑌𝐴 + 𝑌𝐵

2
−

𝑋𝐴 − 𝑋𝐵

2 ⋅ tanθ 

𝑟 = √𝑋0
2 + 𝑌0

2 − (𝑋𝐴𝑋𝐵 + 𝑌𝐴𝑌𝐵 +
𝑋𝐵𝑌𝐴 − 𝑋𝐴𝑌𝐵

tanθ
)

 

The equations above allows us to define half of the geometric locus of the points able to 

see the two landmarks under a constant angle. 

Beside the circle (X0, Y0, r) there is another circle that is also a valid solution to 

the locus problem above. It is the circle that has the same radius r and has its center at the 

reflection of point (X0, Y0) on the segment AB as depicted bellow in the figure (33). 

To find the reflected point we write the equation of the segment on the mid-point 

of the segment AB which should contain the point (X0, Y0) and calculate the (X’
0, Y

’
0) 

such as the midpoint of AB is also the midpoint of (X0, Y0) (X
’
0, Y

’
0). 
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The position of the robot on the above circle is however subject to a restriction stemming 

from the fact that in robotic vision, landmarks have a distinct identity and we can put the 

restriction based on the map that one landmark must be seen in the right side of the other 

if the robot is located upside-up on the room. It is also possible to eliminate all the 

segments of the arch of the circle that will fall outside of the geometry of the room. This 

Figure 33 Complete Locus as a Reunion of Two Circles 
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can reduce the localization possibilities and may ease computations. 

 

Unfortunately, even with the above restrictions the location of the robot can be anywhere 

on the allowed arch, therefore supplementary information is required for position 

calculation. 

One of the possibilities can be the usage tracking information from a fixed 

camera, as provided by the MP-Tracker algorithm. For example, in the figure on the side, 

the tracking algorithm detected four targets A, B, C and D and their uncertainty in 

location, while the camera on the robot used two landmarks to calculate the potential 

location along the large circle depicted in Fig. 34. Since the only blob intersecting the 

Figure 34  Disambiguation Using External Blob Tracking Information 
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locus is the one associated with the target D, the robot can now unambiguously identify 

itself as being target D located somewhere around point A on the allowed arch. While this 

is not a precise point location, it can be good enough for many practical applications. 

However, if the robot has the ability to detect a third landmark in the 

environment, we can theoretically collapse the space of solutions to a set of maximum 8 

points that can therefore be disambiguated by restrictions and/or external information.  In 

the derivation of the equations below, we ignore the reflections and we consider a single 

circle as a locus for each pair of landmarks. On the real algorithm however we will 

consider all the reflections, resulting in a set of 8 distinct cases that each of them shall 

apply the equations that are being derived below. 
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Figure 35 Exact Localization with Three Landmarks 

In three landmarks localization, the robot located at the (to be determined) point R sees 

three landmarks A, B, and C and measures the angle Θ between A and C, Ψ between B 

and C and finally the angle Θ + Ψ between A and C. Each of the three known angles and 

their associated landmarks allows us to use the equation derived above to write a system 

defining the three circles determined by each triad (angle, landmark coordinates) as: 

𝑥2 + 𝑦2 + 𝑚1𝑥 + 𝑛1𝑦 + 𝑝1 = 0

𝑥2 + 𝑦2 + 𝑚2𝑥 + 𝑛2𝑦 + 𝑝2 = 0

𝑥2 + 𝑦2 + 𝑚3𝑥 + 𝑛3𝑦 + 𝑝3 = 0
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Where the parameters m, n and p can be calculated from the two measurements of angles 

and known landmark position: 

 

𝑚1 = (
𝑌𝐵 − 𝑌𝐴

tanΘ
− (𝑋𝐴 + 𝑋𝐵))  

   𝑛1 = (
𝑋𝐴 − 𝑋𝐵

tanΘ
− (𝑌𝐴 + 𝑌𝐵))   

  𝑝1 = 𝑋𝐴𝑋𝐵 + 𝑌𝐴𝑌𝐵 +
𝑋𝐵𝑌𝐴 − 𝑋𝐴𝑌𝐵

tanΘ 
 
 

𝑚2 = (
𝑌𝐶 − 𝑌𝐵

tanΨ
− (𝑋𝐵 + 𝑋𝐶)) 

   𝑛2 = (
𝑋𝐵 − 𝑋𝐶

tanΨ
− (𝑌𝐵 + 𝑌𝐶))  

  𝑝2 = 𝑋𝐵𝑋𝐶 + 𝑌𝐵𝑌𝐶 +
𝑋𝐶𝑌𝐵 − 𝑋𝐵𝑌𝐶

tanΨ
    

 
 
 

𝑚3 = (
𝑌𝐶 − 𝑌𝐴

tan(Θ + Ψ)
− (𝑋𝐴 + 𝑋𝐶)) 

 𝑛3 = (
𝑋𝐴 − 𝑋𝐶

tan(Θ + Ψ)
− (𝑌𝐴 + 𝑌𝐶))

 𝑝3 = 𝑋𝐴𝑋𝐶 + 𝑌𝐴𝑌𝐶 +
𝑋𝐶𝑌𝐴 − 𝑋𝐴𝑌𝐶

tan(Θ + Ψ)

 

To solve this system, we subtract one of the equations from the other two. The resulted 

system: 

(𝑚2 − 𝑚1)𝑥 + (𝑛2 − 𝑛1)𝑦 + 𝑝2 − 𝑝1 = 0
(𝑚3 − 𝑚1)𝑥 + (𝑛3 − 𝑛1)𝑦 + 𝑝3 − 𝑝1 = 0

 

represents the equations of the two lines determined by the points of intersection between 

first circle with each of the other two, in the figure above the straight lines: AR and BR. 

These two lines will intersect at the location of the robot, point R which is therefore 



120 

 

described by the coordinates: 

 

𝑥 =
(𝑛3 − 𝑛1)(𝑝2 − 𝑝1) − (𝑛2 − 𝑛1)(𝑝3 − 𝑝1)

(𝑛2 − 𝑛1)(𝑚3 − 𝑚1) − (𝑛3 − 𝑛1)(𝑚2 − 𝑚1)
 

𝑦 =
(𝑝2 − 𝑝1) + (𝑚2 − 𝑚1)𝑥

𝑛1 − 𝑛2

 

For a robot in our line of work, which is operating inside a house with a well-known 

floor-plan, the preconditions to know exactly the position of a certain number of 

remarkable landmarks (windows, doors, room corners, picture frames mounted on the 

wall or active landmarks that the robot can control) is easily achievable.   

The algorithm that uses these equations for landmark based localization will 

calculate the pairs of two mirror circles for each pair of landmarks and will form all 8 

possible combinations. For each combination the equations above will be calculated. In 

the first step of elimination we will discard the solutions of the circles that do not 

intersect. This is required since the subtraction of two circle equations generates the 

equation of the radical-line (or power-line) of two circles which is an equation that 

exists even if the circles does not intersect. However this case has no meaning in our 

localization so it should be discarded up-front.  

From the remaining results we eliminate the cases where the point defined by the 

intersections of the radical-lines does not reside on all three circles, because the only 

acceptable solutions to our problem has to be located at the intersection of all three 

circles. To do this, we evaluate each point result from the equations above to verify each 

circle equation. Finally, we check the remaining points against the geometry of the room 
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and any external inputs we have in order to eliminate all the unsuitable solutions.  

9.2 Localization of a Mobile Robot Using a Single Landmarks 

(Running Fix) 

In this scenario, the robot it is able to maintain a straight line during navigation and is 

capable to measure the distance it travels by an accurate odometer. The position of a 

landmark L(xL, yL) is also known and a set of angle measurements from the robot to the 

landmark are taken along the way. 

 

  

More precisely, the robot sees the landmark L at an angle λ0 from it direction of 

movement, then it moves in straight line for a distance l1 as measured by the on board 

odometer then determine the landmark to be visible under the angle λ1. The situation 

Figure 36 Moving Robot and One Landmark in Robot Coordinates 
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from the robot point of view, i.e. in robot coordinates, is depicted in the figure bellow. 

Considering the system of coordinates (u,v) having as origin the original location 

of the robot we have can write the trigonometric equations: 

 

tanλ0 =
𝐿𝑣

𝐿𝑢

tanλ1 =
𝐿𝑣

𝐿𝑢 − 𝑙1

 

From this system of equations, we can calculate the position of the landmark from the 

robots point of view as: 

𝐿𝑢 = 𝑙1

tanλ1

tanλ1 − tanλ0

𝐿𝑣 = 𝑙1

tanλ1tanλ0

tanλ1 − tanλ0

 

Switching back to room based coordinates where the position of the landmark 

L(Lx, Ly) is known the above results defines the position of the robot as the geometric 

locus of the points R located at Lu distance on any straight line tangent at a circle of 

radius Lv around the landmark L. This definition is in itself a circle therefore the position 

of the robot cannot be fully known from this single observation. 

It is easy to see that taking any more measurements along the way just generate 

new equations that are a linear combination of the original two points, therefore they add 

nothing new in respect to localization. External information is therefore needed to 

collapse the robot position to a single point. 
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Figure 37  Moving Robot and One Landmark in Room Coordinates 

 One possible source of such information can be the direction of the movement 

which for a robot moving outdoor can be obtained via a digital compass (magnetometer) 

or from an indoor robot by averaging the tracking information from an external camera. 

 If the angle γ specifying the direction of robot movement is known, from the 

triangle ALA' we can calculate the position of the point of the tangency between the robot 

line of movement and the circle on which this point can be located based on the 

difference in landmark position: 
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|𝐴𝐴′| = 𝐿𝑣sin(
π

2
− γ) = 𝐿𝑣cosγ

|𝐿𝐴′| = 𝐿𝑣cos(
π

2
− γ) = 𝐿𝑣sinγ

 
𝐴𝑥 = 𝐿𝑥 + 𝐿𝑣sinγ
𝐴𝑦 = 𝐿𝑦 − 𝐿𝑣cosγ

 

and these relations then allows us to calculate the exact robot position R in the first spot 

as: 

𝑅𝑥 = 𝐿𝑥 + 𝐿𝑣sinγ − 𝐿𝑢cosγ
𝑅𝑦 = 𝐿𝑦 − 𝐿𝑣cosγ − 𝐿𝑢sinγ 

Once the first position has been determined, the robot can easily calculate all the 

subsequent positions on the trajectory. 

 As an interesting fact we can notice here that in maritime navigation a graphic 

method to determine the position of a ship on the map only by a single landmark and the 

reading of the magnetic compass, time and ship speed over the water is called a “Running 

Fix”. Practically, the ship captain solves the equations above with a ruler and compass on 

the map. 

9.3 Visual Odometry by Optical Flow 

One of the important problems in robot navigation it is the ability to estimate the change 

in position over time, also known as odometry. In the case of our robot, the on-board 

camera can successfully be employed for this task. 
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9.3.1 Method 

Once we determine the velocity vector field from the robot camera point of view, we can 

back-project it using the Homography Matrix onto a model of the flat floor. The result is 

a vector field representing the movement of the robot in reference to the floor. This vector 

field can be used to calculate the robot’s movements in reference to the floor, using the 

method we present here. 

 As already derived in the chapter, in differential kinematics sub-chapter, the robot 

is moving in a circle with a radius determined by the difference in the wheel speed. When 

the two wheels of the differential drive have the same speed the radius of the circle is 

infinite, therefore the robot is navigating a straight line. We derive here the general 

equation for the case. 

 In visual odometry we have to calculate both the position of the center of the 

rotation and the angle of rotation. Therefore, a minimum of 2 different point pairs must 

be detected by the Optical Flow algorithm to allow calculation. In practice however, a 

larger number of correspondence are needed, to calculate the parameters for all possible 

sets of 2 points then eliminate outliers and average the position to be able to cope with 

the high level of imprecision in the visually acquired data. 
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Figure 38 Calculating Visual Odometry 

In theory however, a single pair of independent points is required for calculations. 

As seen from the side figure, we detected two points A and B which in the subsequent 

image we found them shifted at the position A' and B' respectively. 

Because of the differential drive, we know that the robot moved on a circle around the, to 

be determined, center of rotation O. 

To determine the position of the point O we first calculate the slopes and the mid 

points of the segments AA' and BB' respectively, as: 
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𝑚𝐴 =
𝑦𝐴′ − 𝑦𝐴

𝑥𝐴′ − 𝑥𝐴
; 𝑥𝑀𝐴 =

𝑥𝐴′ + 𝑥𝐴

2
; 𝑦𝑀𝐴 =

𝑦𝐴′ + 𝑦𝐴

2

𝑚𝐴 =
𝑦𝐴′ − 𝑦𝐴

𝑥𝐴′ − 𝑥𝐴
; 𝑥𝑀𝐵 =

𝑥𝐵′ + 𝑥𝐵

2
; 𝑦𝑀𝐵 =

𝑦𝐵′ + 𝑦𝐵

2

 

with these parameters we can write the equations of the two perpendicular bisectors of 

the segments AA' and respectively BB' to be: 

𝑦 − 𝑦𝑀𝐴 =
−1

𝑚𝐴
⋅ (𝑥 − 𝑥𝑀𝐴)

𝑦 − 𝑦𝑀𝐵 =
−1

𝑚𝐵
⋅ (𝑥 − 𝑥𝑀𝐵)

 

These two lines intersects at the point O(xO,yO) whose coordinates are calculated by 

solving the system of equations above resulting in: 

𝑥𝑂 =
𝑚𝐴𝑚𝐵(𝑦𝑀𝐵 − 𝑦𝑀𝐴) + 𝑚𝐴𝑥𝑀𝐵 − 𝑚𝐵𝑥𝑀𝐴

𝑚𝐴 − 𝑚𝐵

𝑦𝑂 = 𝑦𝑀𝐴 −
1

𝑚𝐴
(𝑥𝑂 − 𝑥𝑀𝐴)

 

The remaining problem is to calculate the rotation angle. In the image above this is either 

the angle α or β since regardless of the point in question they all rotate with the same 

amount in the same given interval of time. 

 Therefore, for example from the triangle AOMA we have: 

tan
α

2
=

|𝐴𝑀𝐴|

|𝑂𝑀𝐴|
 

which results in: 
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α = 2 ⋅ 𝑎𝑡𝑎𝑛(
√(𝑥𝑀𝐴 − 𝑥𝐴)2 + (𝑦𝑀𝐴 − 𝑦𝐴)2

√(𝑥𝑀𝐴 − 𝑥𝑂)2 + (𝑦𝑀𝐴 − 𝑦𝑂)2
) 

9.3.2 Optical Flow Vector Classifier Algorithm 

One of the problems we faced during implementation of visual odometer was coping with 

the errors generated by the optical flow detection algorithm. These errors in finding the 

right corresponding pairs appears in the form of vectors having a magnitude or an 

orientation “out of place” when compared with the large majority of the vectors 

surrounding them. They are called Outliers and unless eliminated they can significantly 

reduce the accuracy of calculations. 

 To help with the task of outlier’s elimination we developed our Vector Classifier 

algorithm that inspects the optical flow vector and attempts to provide as output a smaller 

set of vectors that are equivalent with the average movement into the image minus the 

errors. 

The core idea in developing this algorithm was the fact that outliers are a small 

percentage of the overall optical flow vectors and they have direction and/or sizes that are 

quite different from the rest of the vectors nearby. 
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 In the beginning, we are dividing the camera field of view into a number of cells 

and we treat the vectors that originate from one cell as a group. For each vector group we 

use k-mean clustering algorithm to partition the set of vectors in k (in our case 3) groups 

such that each vector is located into the group with the nearest mean value. We eliminate 

the groups that either have too few elements or whose mean is too different from the 

other cluster from the same or surrounding cells. 

For the remaining groups we calculate the mean vector and origin points which is 

the output of the algorithm. Prior to odometry calculation the vector field must be 

translated into floor coordinates to be agnostic of perspective camera projections. The 

perspective projection between the plane of the flat floor and the camera image is a 

homography described by the camera matrix. Before we pass the vectors to the visual 

Figure 39 Optical Flow (velocity vector field) from a Forward Moving Camera Looking 

at the Floor with a Few Marked Outliers 
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odometer algorithm, we apply a homography transformation to translate the vector space 

in the coordinates of the floor. 

  

For homography transformation we use the OpenCV built-in function 

perspectiveTransform(...) to transform the vectors values output by the classifier and 

respectively warpPerspective(...) to transform images. 

These two functions require the homography matrix to be known. 

 

 

for v in opticalFlowVectors: 

    cell=cells[v.x*XNo/width, v.y*Yno/height] 

     cell.insert(v) 

 

for cell in cells: 

    cell.groups=calculate_k-mean(cell) 

    group=lowestCount(cell.groups) 

    if(group.size() <  3): delete group from cell; 

 

for cell in cells: 

    for group in cell.groups: 

         keep=false 

         for g in groups_in_surrounding_cells(cell) 

              if(group.dx near g.dx && group.dy near g.dy): 

 keep=true 

 break 

         if (not keep): delete group from cell 

  

Figure 40  Pseudocode for Vector Classifier Algorithm 
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To “ease our lives” we used a little trick to allow the robot to be “taught” the 

matrix instead of us having to calculate it. OpenCV provides the function 

getPerspectiveTransform(…) which calculates the homography matrix from a set of four 

corresponding points. We take advantage of the model of flat floor and use a piece of 

paper positioned at the known distance from the robot. We command the camera of the 

robot at a particular angle and mark on the image the points corresponding to the corners 

of the paper, then we provide the real-world coordinates of the paper corners in meters 

from the center of the robot. Then getPerspectiveTransform() will calculate the exact 

correspondence between the real world coordinates and the image, we inverse the matrix 

calculated by the method above and save it in a database indexed by the angle of sight at 

which we commanded the camera. We repeat the procedure for a few angles of interest. 

Figure 41 Optical Flow from a Rotating Camera Showing the Result of the Classifier 

(purple vectors). After a homography transform, “purple vectors” are ready for 

odometry computation as presented above 



132 

 

When in need of visual odometry, we just command the camera at one of the 

saved angles and retrieve its corresponding matrix from the database. Of course, this 

procedure would be in trouble outdoors on an irregular, sloped terrain. But for indoor 

robots always moving on a flat floor it is a quick and easy solution. 

9.3.3 Homography in Speed Measurements 

On the embedded board from the robot itself, the main computer vision processing task is 

to calculate the movement of the robot in order to provide an estimation of the direction 

of movement and speed.  The results of this repeated set of measurements will be used to 

keep the robot on a prescribed trajectory for navigation since the experiments from 

tracking from fixed cameras showed that the imprecision of tracking measurement it is 

too big to be relied upon it for real-time PID feedback. 

In order to ease the tasks for optical flow based measurements we are taking 

advantage of some prior-known or assumed conditions. First, we assume that being a 

domestic robot the environment we are operating into it features a flat horizontal floor. 

The second precondition is that the height of the robot is well known and that the servo 

motors running the pan-tilt mechanism of the robot camera will reliable position the 

camera reliably at the same angle for the same command. Based on these two 

assumptions we can take the short-cut to calibrate the robot camera directly by 

calculating the homography matrices for a set of well-known angles and store them on 

the robot flash card. When measurements need to be taken we just command the camera 

to one of the pre-selected angles and take the measurements. 
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While on the classic projection, there is no way to determine the real distances/sizes (the 

geometry is determined up to scale) in our case based on knowledge of the size of 

calibration figure and on the assumption of flat floor and constant height of the camera in 

respect to the floor, we are able recover the full size of objects. Therefore, from the size 

of the calculated optical flow vector back-projected on the floor plane we are able to 

calculate the real speed of the robot.     

Because there is always the possibility that moving objects can be present into the 

field of view of the robot the optical flow calculation will be taken with the robot camera 

oriented toward the floor to minimize the probability of false reading. We also implement 

an algorithm for clustering of the measurements and keep for the OF calculation only the 

major clusters that have a somehow similar orientation. This algorithm is also useful in 

eliminating the outliers inherent in any optical flow algorithm. 

Figure 42 Robot Camera Calibration 
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On the Calibration phase we are placing a rectangular sheet of paper on the floor (with 

corners labeled as the points P1, P2, P3, P4) and identify them in the picture as (P1', P2', 

P3', P4'). Using DLT algorithm we calculate the homography matrix H such that: 

𝑃1 = 𝐻𝑃1′

𝑃2 = 𝐻𝑃2′

𝑃3 = 𝐻𝑃3′

𝑃4 = 𝐻𝑃4′

 

where the points P1...P4 are expressed in the real-world coordinates. 

We are saving on the permanent storage the calculated H for each orientation of 

the robot camera that we plan to use in odometry. When performing navigation, the robot 

camera is commanded to one of the saved positions the H matrix retrieved and used to 

calculate the floor coordinate from the image points. 
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10 THE ROBOT – ROBI-1 

 

Figure 43 ROBI-1 
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ROBI-1 is the name given to the mobile robot built in order to test our system. The robot 

main embedded computer board is a Raspberry Pi 2 having a BCM2836 ARMv7 Quad 

Core Processor. It runs at 900MHz having 1GB RAM and 16GB mini-SD card as 

permanent storage.   

Communication between robot and the rest of the system is taking place using sDOMO 

protocol over UDP/IP via an USB WiFi dongle connected to the RPI. 

 

Figure 44 Raspberry PI2 - the Main Computer Board of the Robot. 
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10.1 ROBI-1 Hardware  

Robi-1 has been implemented using MAX-97 base from Zagros Robotics. The base is a 

two deck with 10 inches’ heights between decks and having the base a square with the 

edge of 12 inches. The base features a differential drive with two 12V DC-Motors 

capable of 20 in*lb maximum torque. The drive wheel has a 6-inch diameter allowing the 

robot to achieve a maximum speed of 39 feet/minute. 

 

 

 
 

 

The 12 V battery is connected directly to dual H-Bridge Module build around the L298N 

circuit which is connected to the two drive motors. This module is also providing a 5V 

output which is used to power the micro-controller board and the servo-motors for the 

camera mount. 

Figure 45 MAX-97 Base Figure 46 Pan-Tilt Mechanism for  

Raspberry PI Camera  
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The 5MP RPI-Camera (2592 x 1944 max static resolution) is mounted on a mini pan-tilt 

module powered by two 9G mini-servo-motors. This allows the robot to adjust it line of 

sight about 60o vertically and 90o horizontally. 

The WiFi USB dongle used to communicate with the rest of the system is 

identified as Ralink Technology RT5370 bought from CanaKits. Unless some other 

common WiFi dongles, this one is properly supporting multicast which is a requirement 

for sDOMO protocol. 

 

Figure 47 ROBI Hardware Block Schema 
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Figure 48 Arduino Nano Microcontroller Board 

The PMW signals for controlling the servo motors from the camera mount and 

commanding H-Bridges for the wheels are generated by an Arduino Nano 

microcontroller board. The Arduino is connected via an USB cable to Raspberry PI.  

 

 

In the implementation of the drive, we used two H-Bridge Modules built around the 

L298N circuit. While this module is practically a dual H-Bridge that can be used to drive 

Figure 49  L298N Dual H-Bridge Module 



140 

 

two independent motors on its own, we choose to use two of them and use a single bridge 

from each module.  The rationale for that was to avoid the need for a cooling fan for the 

heat-sink of the L298N circuit. By using only half of the power the bridge is capable to 

control, the heat-sink that came with the module is good enough to dissipate all the 

generated heat without forced air cooling. And because of the low price of these 

standardized modules, it was just easier to use two of them instead of crafting a new 

mount for a cooling fan. 

 

 

The 2 H-Bridge Modules along with the mini-servos from the camera mount are driven 

by PWM generated by an Arduino Nano version 3.0 board powered by an Atmel 

ATmega328 microcontroller.   

 

 

Figure 50 DC-DC Step down Converter 
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 Table 2 Wiring Table for Arduino Microcontroller 

Arduino Pin 4 Bridge 1 IN 2 

Arduino Pin 5 Bridge 1 IN 1 

Arduino Pin 6 Bridge 1 EN A 

Arduino Pin 2 Bridge 2 IN 2 

Arduino Pin 12 Bridge 2 IN 1 

Arduino Pin 3 Bridge 2 EN A 

Arduino Pin 10 Pan-Tilt Vertical Servo Signal (Orange wire) 

Arduino Pin 11 Pan-Tilt Horizontal Servo Signal (Orange wire) 

Arduino GND Pin Bridge 1 GND, Bridge 2 GND, 

Vert Servo GND, Horiz Servo GND (Brown wires) 

Arduino 5V+ Bridge 1 +5V, 

Vert Servo V+, Horiz Servo V+ (Red wires) 

12 V Battery - Bridge 1 GND, Bridge 2 GND 

12 V Battery + Bridge 1 12V+, Bridge 1 12V+ 
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To power the Raspberry PI2 we used a 12 V 10 A/h sealed lead-acid battery which is 

often used in electric skateboards and telecommunication equipment. The battery is 

providing power to a 12V to 5V / 3A DC-DC converter which offers regulated voltage to 

the computer board via a Micro USB connector. The Wi-Fi dongle is connected to one of 

the main USB ports of the RPI2 which also provide it with power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51 12 V Sealed Lead-Acid Battery 
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10.2 ROBI-1 Software Infrastructure 

We used the same operating system Raspbian that came with RPI2 and we just installed 

development packages and other libraries that were needed. The version of Raspbian used 

features a Linux Kernel 3.18.7 compiled with PREEMPT-RT patches to provide real-time 

capabilities. 

We compiled from sources OpenCV libraries version 2.4.10 and RaspbiCam 

library for OpenCV. This library is used to process images from the standard Raspbery PI 

Camera, we wrote an adapter around it to integrate it into Autonomous Robot Module. 

Communication with the Arduino board is taking place over it FT232 USB-Serial 

converter available on the Arduino Nano board. This chip is presented on Linux as the 

serial port /dev/ttyUSB0 and is opened and worked with using regular Serial Port system 

calls. We used for communication 115200 bauds with 8-bit character size 1 stop bit and 

no flow control. 

The WiFi dongle is seen by the operating system as the interface wlan0 and it IP 

address is automatically configured by the DHCP server on the local network. Unless 

other protocols that requires well known addresses, sDOMO employs its own procedure 

of discovery and self-configuration which allows us to just plug and play any computer 

into the robotic network regardless how its IP address has been configured. 

For the firmware running on the Arduino, we used the Servo Motor library for controlling 

the camera pan-tilt mechanism. Because Servo library is internally using one of the 

microcontroller timers, using this library can interfere with the analogWrite() function 

used to generate PWM for the differential drive. Only certain configurations for pin 
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assignment can be possible that can allow the generation of usable PWM while the servo 

library is used. The assignment provided in the wiring table above where we are using 

pins 3 and 6 for H-Bridge PWM and pins 10 and 11 for Servo PWM has been proven to 

work. Notice that the pins 2, 4, 5, 12 in our set-up are simple GPIO lines and are not used 

for PWM generation. 

The firmware written for Arduino is a simple loop reading inputs from the serial 

line which specify the speed of each motor wheel as a percent of the maximum speed 

possible and the absolute angles for the camera in horizontal and vertical set-up. As soon 

as a command has been received the firmware commands the hardware accordingly and 

also provides acknowledgement by sending back the current commanded values to the 

ARM. If no command has been received (on idle) the same previous report is sent back to 

RPI at 0.33 Hz. 

In order to be able to control the microcontroller software both from a terminal 

during development and from Autonomous Robot Module during regular operations the 

commands we sent to the microcontroller are an ASCII string with a very simple structure 

to be easily parsed by the resource constrained microcontroller. The format of command 

consists on four 2 digit numbers each prefixed with a sign (+/-) contained between 2 

special characters. The generic command line sent from ARM to Arduino is described as: 

@sLLsRRsVVsHH& 

Where LL, RR, VV and HH are 2 digits’ percent of the commands to control the speed of 

Left and Right wheels and the Elevation and Azimuth of the Pan-Tilt mechanism 

respectively. Each number is prefixed with a sign denoted by s. The two special 
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characters @ and & are the delimiters of the command string and are used by the parsing 

procedure to detect the boundaries of the command. 

  The report from Arduino to RPI is in human readable format since on RPI we 

have enough computing resources to engage in parsing of more complex strings.  

The RPI keeps sending the command string at 2Hz in order to keep the robot running. If 

no command has been received for over a second, the firmware stops the robot 

immediately. This is done to prevent the robot to keep moving and bumping into 

furniture, people or pets in the case that the main control software running on RPI crashes 

or otherwise became unresponsive. The software running on the Raspberry PI keeps 

sending the commands twice a second how long it intends to keep moving to make sure it 

prevents the firmware from stopping the motion. 

10.3 ROBI-1 – Autonomous Robot Module 

Autonomous Robot Module (ARM) is the software running on the RPI2 on the robot 

having as main functions: 

 Communicate with Robot Module to receive commands and provide status and 

requested images 

 Translate high level navigation commands into the command parameters for 

Arduino Microcontroller and send them to it 

 Acquire images from mobile camera and calculate optical flow 

 Process optical flow with the Vector Classifier algorithm and calculate visual 

odometry from it 
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 Use the odometry data to maintain a prescribed trajectory or rotate with a 

requested angle 

 Autonomous Robot Module is using sDOMO protocol to communicate with RM and 

with an Engineering Console used to test it during development. The main Messages 

implemented by ARM are: 

 RequestInformationMsg, replied by ARM with either RobotIdentityMsg or 

ConfigurationMsg based on the content of request 

 RequestARMImageMsg replied by ARM with CapturedArmImageMsg 

 DynamicBasicCmdMsg used to specify speed and direction and 

CameraMoveCmdMsg to orient the robot camera, both of them are acknowledged 

with the same response DynamicBasicInfoMsg that contain the status of both the 

movement and pan-tilt mechanism 

 CameraCalibCmdMsg it is used to perform camera calibration and will result in 

saving an entry into the Homography matrix to be used later for translating the 

Optical Flow Vectors in floor coordinates. 

Maintaining a trajectory is achieved by 2 independent PID (Proportional Integrative 

Derivative) controllers one for the angle and one for the speed. The inputs for the 

controllers are the commands received by ARM from the RM and the results of the Visual 

Odometry calculation from the Optical Flow, the inputs are subtracted and the controller 

is trying to minimize the error between the prescribed and actual value. 
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11 EXPERIMENTS AND RESULTS 

After an overview of the System Implementation and its status, some results and 

experiments are presented and ending highlighting the envisioned follow-up work. 

The results of a few components like the sDOMO protocol and MP-Tracker algorithm are 

presented in details with the conclusion chapters from the published work where they 

were presented.  

11.1 System Implementation 

 

 

To test the designed architecture and the software we used a room of 20 x 12 feet in 

Figure 52 DCS-932 L WiFi Camera overlooking the room 
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which we installed two DCS-932 L WiFi cameras in the two opposite corners of the room 

near the ceiling overlooking the room. The two cameras provide opposite images that can 

be used to build a 3D model of the room after homographic correction. 

Data from the camera is being processed by a laptop with a quad core Inter I3 @ 2.3 Ghz 

running Mageia Linux. On the laptop for each camera we ran a Camera Module (CM) 

configured to capture data and run MP-Tracker algorithm. Besides running the CM 

software, the same laptop is also running the House Hub required by sDOMO protocol.  

An E5200 dual core desktop at 2.5 Ghz is running Situation Awareness Module 

(SAM) and the Robot Module (RM) also on Mageia Linux. All the modules are 

communicating using sDOMO with messages routed by the Hub.  

An optional Engineering Console is also running on a separate Laptop to monitor the 

system. 

 The software has been developed using C++ programming language (GNU g++ 

compiler) and OpenCV 2.4 libraries for basic Computer Vision algorithms. The 

Engineering Console has been developed using QT 5 cross platform GUI library. 

 The status of the implementation of system is as follows: 

1. Camera Module implementation is complete. It acquires data from the cameras, 

runs MP-Tracker algorithm and broadcast over sDOMO the notifications with the 

moving objects.  The other modules can request full images from CM as needed. 

2. Situation Awareness Module exists as a minimal implementation. Right now it 

receives the notifications from CM’s, can request images from CM and using for 
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each camera a Homography Matrix calculated offline by hand is able to convert 

the motion vectors in absolute room coordinates. Implementing the algorithms for 

automatically generating the 3D model of the room and the ability to 

automatically identify the obstacles in the room it is left to further work due to the 

huge complexity of this task. 

3.  Robot Module (the part of robot control software that runs on the base station) is 

implemented at the minimum required for the rest of the system to work. Right 

now it is just receiving absolute coordinate tracking information from SAM and 

attempts to use them to have the robot following a prescribed trajectory by 

running a PID controller on the trajectory. Also pending is the ability to use image 

recognition for Visual Landmark based Localization. This will be subject to 

follow-up work. 

4. Autonomous Robot Module (the part of robot control software that runs on the 

robot itself) is capable to convert the commands from RM into hardware-control 

signals and drive the robot. It is also able to: 

o capture images 

o calculate optical flow and execute our vector classifier algorithm 

o apply homography transform to translate vectors in room coordinates  

o calculate visual odometry from them 

o It also responds to requested images from other modules  

o Receive commands to orient the camera and work in conjunction with 
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Engineering Console to calibrate the camera matrix. 

There is work in progress to have a PID controller capable to utilize visual 

odometry to maintain a precise trajectory. 

5. The robot hardware is fully implemented, tested and proven to work at nominal 

parameters. 

6. sDOMO House Hub and application libraries are complete and work as expected.  

11.2 sDOMO Protocol 

We successfully demonstrated the implementation of a native speaking sDOMO 

thermometer based on an Arduino Uno (2 KB SRAM and 32 KB Program Flash) a 

WS5100 “Ethernet Shield”, TMP-102 I2C temperature sensor and LEDs as placeholders 

for controls. This implementation proved that the sDOMO it is scalable enough to 

accommodate small devices as full nodes on the network while sending packets 

authenticated with SHA1 HMAC. The devices emit a notification either as a reply to a 

direct message from the GUI either once every second if no control message arrived. The 

notification message contains both the temperature in milli-Kelvins and the state of the 

three controls pins, connected in the demo to first 3 LED’s. The control message from the 

GUI contained a new state of the control pins which turns on or off the LED’s connected 

to the pins. The demo source code and schematic for the Arduino thermostat is available 

on the companion website. 

The second demo from the companion website implements an elementary file 

transfer server and client pair which allowed us to perform a set of performance 
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measurements by comparing the download speed achieved by our demo against the FTP 

software that came with Mageia Linux (pure-ftp for server and lftp as client). 

Table 3 Performance of sDOMO File Transfer vs. FTP Software 

File  Size 

(bytes) 

Transfer Speed MB/s 

sDOMO Demo FTP Software 

 11461 0.91 N / A 

 3785652 1.48  1.99 

77594624 1.48 2.10 

 

The measurements show that our non-optimized “proof of concept” demo 

program performed decently while compared with the mature, highly optimized FTP 

software for Linux despite the fact that the FTP it is a direct transfer between the client 

and server while in our demo the messages carrying the files were passed between the 

server and client using the House Hub as intermediary. If we also consider the fact that 

FTP it is an unsecured connection, vulnerable to a “Man in the Middle” (MiM) attack 

while all sDOMO packets were signed with SHA1 HMAC and verified at both ends 

making such an attack impossible, we see that our claims about the efficiency of sDOMO 

protocol are validated by this measurement. 
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11.3 Message Dispatcher 

The presented framework has been used to rewrite the House Hub from sDOMO project 

in order to allow scalable processing of multiple devices once the original proof of 

concept implementation reached it limits. It is being used also in the implementation of 

House Intelligence Unit from the same project. 

The framework implements unique features for mission and safety critical 

applications being able to offer compile time checking of errors in message registration, 

enforce the usage of a deadlock avoidance protocol that guarantees the system will not 

deadlock due to a programming mistake and enforce separation of concerns allowing the 

implementer to focuses on the problem at hand instead of low level mutual-exclusion 

problems. Because the framework uses handler registration, messages and share objects 

that can be easily defined at any time MTM-Dispatcher framework it is highly extensible 

and can be successfully employed in projects that are envisioned to need to scale a lot in 

the future. The separation of concerns implemented by this framework allows each 

handler to be written as a standalone piece of code, avoiding coupling that reduces the 

scalability. This aspect of enforcing stand-alone handlers that are fully defined by their 

parameters, make the framework highly suitable for test-driven development which is a 

practice highly regarded in safety critical applications.  

To assess the performance of the MTM-Dispatcher a set of tests has been run on a 

multiprocessor computer having 12 CPU cores. The main question to be answered by the 

performance testing was if the new multithreaded dispatching frameworks scales well 

with the number of dispatching threads. The test employed 10 Message handlers all of 
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them subscribing for the same message from a single message source that has been 

implemented both as an Active Object without the need to have the Dispatcher lock it 

during dispatching of the message and respectively as Data Object requiring the 

Dispatcher to lock it for the duration of dispatching. There were three tests run to assess 

the performances.  

Test #1 had the handlers printing a message then idling for the required amount of 

time while Test #2 had the handlers performing CPU intensive calculations for the same 

amount of time. For Test #3 we use the same handler functions as for Test #1 but the 

Source emitting the message to be delivered to handlers was as of this time a Data Object 

which required the Dispatcher to lock it therefore preventing other threads to run on the 

same time. This is a degenerated case that transformed the MTM-Dispatcher behavior in 

something similar with Reactor framework. For each test we run the dispatcher 32 times 

with a number of dispatching threads from 1 to 32 with the same workload each time.  

As can be seen from the graphic highlighted on Figure 53, for the tests #1 and #2 

the amount of time required to terminate the work decreased very fast until all the 

available CPU’s cores (12) has been used by the Dispatcher. After that the curve leveled 

as expected. There were no noticeable difference between the behavior of I/O and CPU 

intensive handlers that took the same amount of time to complete.
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Figure 53 MTM-Dispatcher Performance Graph 

By contrast for the Test #3 where we used a Blocking Source forcing all the 

threads to wait for the current one holding the lock, the curve is almost flat as we would 

expect also from the Reactor pattern which is using a single dispatcher thread. In theory, 

the same way as Reactor is using a single thread to perform all the dispatching in the 

degenerated case of MTM-Dispatcher we would expect the curve to be absolutely flat 

regardless of the number of threads employed. 

However, a closer look at the graph above shows that even for this Test #3 there is 

an, at the first glance, unexpected very small improvement in performance with 

increasing number of threads. The explanation for this improvement is that besides the 
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work required to be performed by the handlers (on which the resources are locked), the 

Dispatcher itself has to perform some “house-keeping” overhead to manage the 

messages. While in the case of Reactor pattern this overhead is executed on the same 

thread as the handler, in the case of MTM-Dispatcher the overhead work performed 

before the resources are locked and after they are unlocked takes place on a parallel 

thread to the one currently holding the lock and operating inside the handler. Therefore, 

even in the absolute worst case scenario when due to resource management our 

dispatcher degenerate into Reactor behavior, MTM-Dispatcher still outperform Reactor 

due to the ability to parallelize the overhead work.  

The venerable Reactor design pattern [56] has been with us for over 20 years and 

used to implement countless projects in mission critical applications, bur today due to the 

advancements in C++ language we are able to provide a much better alternative that not 

only outperforms it in every aspect but also improves the safety and speed of code 

development by strong enforcement of the separation of concerns. 

The only drawback to MTM-Dispatcher is that it requires advanced C++ 

techniques that are available only in the compilers that implements the C++ 2011 

standard and newer, while the Reactor can be implemented in any older dialect of C++ 

language and even in less evolved languages like Java, C or Ada. There is however a 

follow-up effort to research Java Reflection technique as a potential means to provide 

help in porting a “light-weight” version of MTM-Dispatcher to Java. But as of this 

moment, C++11, C++14 and the forthcoming C++17 are the only languages in which 

MTM-Dispatcher can be implemented and even for the foreseeable future they can 

remain the only languages that can be used to write a complete (“heavy-weight”) 
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implementation of this framework.  

As far as interpreted languages like Python, while they will never be able to 

support compile time checking of correctness (due to inherent nature of weak-typed 

interpreted language) they shall have relative little problems to implement deferred 

calling of a functional-object with a tuple, therefore a “light-weight” version of the 

dispatcher should be implementable in these languages too. 

11.4 MP-Tracker 

The tests run showed our method to be able to track two RC vehicles and a person 

walking inside a room using an IP camera mounted at the corner of a room near the 

ceiling. The camera provided 640x480 JPEG images accessible via HTTP with an 

average frame rate of 5 frames a second. 

 During experiments, it was noticed that our optimization worked as expected. 

While tracking only one or two RC vehicles the LK matching algorithm is very rarely 

called, for over 92% of the time the tracking has been performed exclusively with FH and 

Area matching alone. Even small occlusions are being resolved without the need to 

invoke LK in over half of the instances. 

 For example, while tracking a single vehicle alone for a duration of about 800 

frames a single invocation of LK matching has been performed when the RC car took a 

semi-circle at high speed. With two vehicles LK is being invoked mostly when vehicles 

EBR intersects. 

 Bringing a person in the scene changes the things radically due to the much larger 
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size of the person and more fluid changes in shape. Due to severe occlusions LK is being 

invoked around every next frame when the persons walk in front or in the back of the 

other targets.    

 The experiments showed that it is much easier to track vehicles than persons. 

Vehicle tracking has been showed to recover very easily from occlusions, while tracking 

of a person occluded by fixed objects often fails when the person came back into the 

view, creating spikes in CPU usage. The low frame rate provided by the IP camera is 

another source of problems for tracking the person. Often the person is able to turn fast 

enough such that into a frame the view is sideways while we have a front view in the next 

frame and LK matching fails to find enough corresponding points. A better IP camera 

capable of higher frame rates is expected to allow improvements in human tracking. 

 To perform performance comparison, a video 1100 frames @ 640x480 has been 

recorded to a file allowing us to run the algorithms without any network latency into a 

repeatable manner. We run the measurements on a Pentium E5200 @ 2.50GHz and 

compared MP-Tracker performance against Raw Lucas-Kanade Optical Flow with 400 

Shi-Tomasi points distributed across the image. 

The experiment shows that on the average MP-Tracker is about three times more 

efficient than Raw Lucas-Kanade Optical Flow calculation across the whole image. The 

spikes observed in MP-Tracker coincide with the person walking relatively close to the 

camera occluding both vehicles. In that case MP-Tracker lunches the MSER 

segmentation and restarts LK matching afterward to resolve remaining ambiguities. 

 



158 

 

Table 4 MP-Tracker Performance Comparison Summary 

 MP-Tracker Raw LK OF 

Min 33 ms 114 ms 

Avg 39.4 ms 121.5 ms 

Max 289 ms 171 ms 

 

 

    

Active research is being done to solve this set of problems with person tracking 

by exploring contour tracking and hierarchical region grouping an idea inspired from [7].  

An alternative idea that is in research as of this moment is the ability to perform Target 

Figure 54 MP-Tracker Performance Measurement 
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merging when two or more Targets exhibit trajectories that can be interpreted with high 

confidence as a perspective projection of parallel tracks. In the main program flow, as 

shown in Fig. 2, this is referred as the Splicing part in Target Breaking and Splicing. 

 However, the fact that the average time for processing is below 50ms allows us to 

provide real-time tracking information for multiple objects while running multiple 

trackers connected to separate cameras on the same multi-core computer on the Base 

Station. 

11.5 Localization Experiment Using Pre-existing Landmarks 

The first experiment to be performed was localization using vision based detection of the 

already existing landmarks inside the house, (furniture and fixtures) using optical flow to 

attempt to identify a few features in the rooms that were selected and mapped up-front. 

The attempt used an algorithm derived from the standard application of optical flow to 

detect objects in two slightly moved images:  

 Calculating Shi-Tomasi  corners in the source image (where landmarks were 

mapped) 

 Choosing only those that lies within the boundaries of the rectangle defining the 

landmark 

 Use Lucas-Kanade algorithm to find the corresponding points in the new image 

 Use the detected corresponding points to calculate the corners of the landmark in 

the new image 

Unfortunately, the experiment failed to provide consistent recognition of the 
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landmarks with a repeatability good enough to perform localization, where for each 

position we needed four landmarks as explained in the localization chapter above. As can 

also be seen from the picture, the algorithm failed to reliably match three of the 

landmarks with a probability high enough to declare a landmark match.  

Only a single landmark (the electric guitar) was perfectly identified over and over 

again in all the performed tests. The three drawer dressers were exactly at the opposite 

end, never being correctly matched by the algorithm. The two shelves were sometimes 

matched but not consistently enough to be reliably used for localization. 

 

Figure 55 Lucas Kanade Landmark identification 

A possible explanation for this results could be the fact that significant corner 

information were lost during data compression. Because LK matching is very CPU 

intensive, the work has not been performed on the embedded computer board on the 

robot itself but it was implemented on one of Base Station computers by the so called 

Robot Module (RM). The images captured by the robot camera had to be uploaded into 
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RM, and this was done using JPEG compression.  JPEG compression divided the image 

into small cells and performed approximations on the content of the cells, these 

approximations introduced fake artefacts that the Shi-Tomasi corner detector could 

mistake for a true corner in the image. The dresser had relatively uniform colors making 

them get smoothed out of way to much by the compression algorithm that no feature of 

interest had been left out. The two book shelves having horizontal shelves and vertical 

books provided a lot of edges parallel with the JPEG cells allowing false corners to 

appear. On the other side, the electric guitar with its fluid forms gave a hard time to the 

JPEG optimizer which had to preserve most of the original artefacts of the image. This 

preserved good corners at the price of less efficient compression on that part of the 

image. The preservation of the original corners provided good ground for Shi-Tomasi 

corner detector allowing the guitar to be correctly identified in experiment over 

experiment. 

An interesting lesson that was learned from this experiment was that the reliability 

of the algorithms using corners to identify objects is strongly affected by image 

compression and new algorithms have to be developed for this situation. This will 

definitely be an interesting line of follow-up research work. 
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11.6 Localization Experiment with Active Artificial Landmarks 

 

 

After the hard time with previous localization attempts, an alternative idea for landmark 

localization has been to take advantage of the integrated domotic network we developed 

to allow the robot to control artificial landmarks that act as beacons.  

The active artificial landmarks are devices speaking sDOMO protocol allowing 

the robot software to control their LED by turning them on and off. The active landmarks 

are best placed at the same height from the floor as the robot camera for optimal viewing 

Figure 56 Active Landmark 
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condition.  

For this experiment, we reused the same hardware as in the sDOMO speaking 

thermostat that we developed for our paper [62] presenting sDOMO protocol at the IEEE 

TEPRA conference. The thermostat have four GPIO pins connected to red LEDs as a 

placeholder for relays that can be used to control the A/C units. We just tapped the 

thermostat on the furniture and therefore transformed it in an active landmark by adding 

an sDOMO Hub rule allowing the robot full control rights of the device.  

The procedure for detecting the landmark consists in using the robot camera to take a 

series the images with a particular landmark as follow:  

1. Turn landmark OFF and take first image OFF1=RedChannel(image) 

2. Turn landmark ON and take first image ON1=RedChannel(image) 

3. Turn landmark OFF and take first image OFF2=RedChannel(image) 

4. Turn landmark ON and take first image ON2=RedChannel(image) 

5. DIFF1=BinaryThreshold(abs(ON1-OFF1)) 

6. DIFF2=BinaryThreshold(abs(OFF2-ON1)) 

7. DIFF3=BinaryThreshold(abs(ON2-OFF2)) 

8. Result= BinaryThreshold((DIFF1-DIFF2) & DIFF3) 

The result of this processing sequence has been found to be very consistent, a single 

dot on the result image at the exact location of the landmark. In case that due to 

movement or due to other blinking lights more than one landmark is detected, the robot 
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can repeat the measurement with a slight different timing to avoid stumbling on the same 

periodic blinking lights. 

The imprecision in identifying the landmark as pixel in the image is 1 centimeter at a 

distance of 2.7 meters from the robot, this corresponds with an imprecision angle of 0.21 

degree. However the result of measured angle is subject to camera calibration, and the 

0.125 imprecision in pixel size, therefore the final result may have a higher imprecision 

varying from measurement to measurement. 

The reliability of the active landmark detection is a very nice result, validating the 

whole concept of using an integrated domotic system where the robot is just one 

component of the system. The ability of the robot to control the equipment from the 

house as needed truly gave it a whole new set of capabilities.  

It is also important to notice that the processing described above uses only basic 

computer vision operations which are very efficient. As opposed to the Lucas-Kanade 

which had to be executed on the base station due to high CPU requirements, this set of 

operations has been executed on the embedded computer board of the robot using a single 

core of the 4 that are available on RPI2 and performed at a frame rate of 1.5 

frames/second. It is expected that with future optimization of using all 4 cores of the CPU 

this algorithm can perform in real-time on RPI2. 
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Figure 57 Original Image 

 

Figure 58 Red Channel 

 

Figure 59 Diff1 

 

Figure 60 Result 
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11.7 Static Landmark Localization Experiment  

 

 

The focus of this experiment has been to use the active landmarks developed above to 

perform localization of the robot inside the room by processing a single image. To allow 

room for error we used four active landmarks that were detected very clearly as seen 

from figure 61 (right). 

The landmarks were detected at the horizontal pixel numbers of 339, 255, 64 and 560 

corresponding in order to landmarks id as L1, L2, L3 and L4.  

 The landmark numbering is based on the order the robot did the reading and has no rela-

tionships with their physical localization of them. The position information about the 

landmarks are presented in the table below. The distances are in centimeters and the cor-

ner (0, 0) has been selected to be a right hand Cartesian system. For the scope of this 

Figure 61 Four Active Landmarks Detected 
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static localization test, the Robot has been located at the fixed position of (59.5, 116.0) 

centimeters from the room corner selected as the origin of the Cartesian axes. 

 

Table 5 Results of First 3 Landmark Localization Experiment 

Landmark ID Position (x,y) centimeters Horizontal Pixel 

L1 (319.0, 128.0) 339 

L2 (319.0,162.0) 255 

L3 (323.0,243.0) 64 

L4 (251.0, 60.0) 560 

 

Because for landmark based localization accurate measurements of the angles between 

landmarks are necessary, the first step has been the horizontal calibration of the camera. 

The purpose of the calibration was to be able to provide a mapping that translates a pixel 

number into an angle value in respect to the camera axis. 
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The calibration has been performed holding a piece of paper 28 centimeters long with 2 

marks at 7 cm from the center at a distance of 50 centimeters from the camera and taking 

a picture of it. Using the arctangent function the angles of the marks and end of the pa-

per has been calculated.  

Having identified the horizontal pixel locations of the marks and that of the end of 

the paper, a mapping function between the pixel values and the angle of sight has been 

implemented. 

After taking a set of measurements the eight potential points were calculated and 

those that resolved for all the criteria were checked against the room geometry, and the 

points that were not located inside the room were also discarded. Each pair of marks had 

Figure 62 First Camera Calibration 
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associated a reflecting index 0 being the point calculated originally with the formulae de-

rived, while 1 denoted the calculated reflection of that point in the respect to the segment. 

For the first measurement the Landmarks L1, L3 and L4 had been chosen for lo-

calization and the calculation of angles from the pixel locations gave the values:  theta= 

26.182 and psi= 20.061.  

After running the localization algorithm from the 8 possible equations 5 of them 

resolved with valid solutions but one was eliminated as being out of the room area. 

The values obtained from the first test were: 

Table 6 Results of Second 3 Landmark Localization Experiment 

Reflection ID  Calculated Location  Error 

0 0 1 (320.801 127.402) 261.999 

0 1 0 (321.680, 244.297) 292.292 

1 0 0 (245.095, 59.822) 194.342 

1 1 1 (285.957, 291.032) 286.571 

 

Which was nowhere near the actual location of the robot, rendering the results totally 

useless. 

Running the test with L2, L3 and L4 provided the same type of results way off, 

even if apparently marginally better. In this test 3 of the 8 possible solutions resolved but 
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one has been automatically discarded by the program because its answer was located out-

side of the room boundaries.  The calculated angles for this test were: theta= 18.250 

psi=27.993 and the two passing solutions: 

Table 7 Results of Third 3 Landmark Localization Experiment 

Reflection ID  Calculated Location  Error 

0 0 1 (326.604, 158.799) 270.956 

1 1 1 (70.405, 229.509) 114.076 

 

The first suspect in this embarrassing result was the possibility that I've made 

some math mistakes while deriving the localization equations. After reviewing them and 

not finding anything wrong a simulation test has been attempted in an effort to prove or 

disprove the validity of equations. 

The first tuple landmarks (L1, L3, L4) used in the previous experiment and the ac-

tual position of the robot has been plotted in GeoGebra which calculated the expected an-

gles as theta=23.12 psi=18.99.  

Plugging in these values in the localization algorithm in lieu of the values detected 

by the computer vision algorithm, the calculated position for the index 1 1 1 was:  

(60.047, 115.857) located at a distance of barely 0.56 cm from the real location.  

The same result has been replicated using the second set of simulated landmarks 

(L2, L3, L4) for which the GeoGebra calculated values were theta= 15.70 psi= 26.41 re-

sulting in localization with only 1.1 cm error in distance. 
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The localization within millimeters into the simulation program showed that the 

problem is not with the correctness of the localization equations which provided practi-

cally perfect localization within the error generated by the truncation of the angles with 2 

decimal digits in GeoGebra display.  

 

Figure 63 GeoGebra Simulation of Localization Experiments 

  The next focus point in the quest for an explanation for these results was the cali-

bration process. It appeared that calibrating the camera while holding a sheet of paper in 

hands may not have be accurate enough. There are some differences (3.06 degrees in 

theta and 1.07 degrees in psi) in the calculated angles and the measured ones.  

However the fact that this differences are small also means that besides improving cali-

bration we have to take a look at the stability of the localization equations under noise 

generated by real-world measurements.  
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A second calibration task has been attempted by placing 2 chairs at 174 cm in 

from on the camera, one exactly on the median pixel and another at 87 cm distance paral-

lel with the camera sensor plane, then identifying the pixels on the image. Special care 

was taken to distance measurement, placement of the objects and pixel identification. To 

avoid any vibrations the servo-motors of the robot were turned off and the orientation of 

the camera set by hand. 

After the higher precision calibration, the set of landmarks L2, L3, L4 showed a 

discernible improvement for index 1 1 1, however nowhere near as being usable for real-

life robot navigation in domestic environments. 

Table 8 Results of Fourth 3 Landmark Localization Experiment 

Reflection ID  Calculated Location  Error 

0 0 1 (324.508, 159.497) 268.998 

1 1 1 (41.925, 181.477) 67.680 

 

Unfortunately, no discernible improvements have been seen in localization with 

the set of landmarks L1, L3, L4 where the best improvement has been a drop in 1 1 1 er-

ror from 286 cm to 208 cm, still ridiculously off. 

The failure to see any substantial improvement with the best calibration I was able 

to achieve prompted an investigation into the stability of the localization equations under 

noise generated by the errors in real life angle measurement. 
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Analysis of the stability of the localization equations 

Looking at the lack of improvement in the localization accuracy after the second calibra-

tion it became clear that an analysis of the stability of the localization equations is re-

quired. The calculated angles after the second calibration are very close to the theoretical 

values that provided perfect spot-on localization within the simulated environment. 

For the set (L1, L3, L4) the real measurements were theta= 23.565 psi= 18.938 and the 

theoretical values of 23.12 psi=18.99 differs by a totally insignificant 0.44 and 0.05 de-

grees respectively while the calculated localization is completely out of any acceptable 

ballpark.  

As far as the angle measurement is concerned, these are the best measurements 

that are expected to ever get in a real life situation with a 640x480 pixel camera mounted 

on top of a Pan-Tilt mechanism powered by two hobby-grade servo motors. Due to vibra-

tion of the motors a 0.5 to up to 1 degree error in measurement is not an outrageous oc-

currence so the stability of the equations to measurement noise is essential for practical 

purpose. 

 



174 

 

 

Figure 64 3D Stability Plot of the Static Landmark Based Equations in Respect to the 

Landmark Set (L1, L3, L4). The axis for theta and psi are in 1/10 of a degree. 

To plot the graph of the stability of the equation to the measurement noise we've 

started with the position of the first set of landmarks (L1, L3, L4) and the theoretical val-

ues that achieve perfect localization. We wrote a simulation software that injects small 

changes from -5 to +5 degrees in both theta and psi with an increment of a 1/100 degrees 

and plotted in 3D the distance between the actual location and the calculated one. The 

large error is very easy to be seen in this plot while the sudden cliff in the middle repre-

sents the sudden drop to zero error for the exact values. Unfortunate the strange surface 

makes things very hard to see unless you can rotate the plot in real time.  
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Figure 65 Graph of the partial derivatives of the 3D stability plot at the center. The X 

axis is in 1/10 of a degree while Y axis represent the error in localization in centimeters. 

A more easily read plot can be obtained by looking the variation of each of the an-

gle individually while keeping the other one fixed at the theoretical value resulted from 

simulation.  

In this plot the values for theta and respective psi has been represented in 1/10 de-

gree increments around the theoretical value while keeping the other angle fixed at the 

theoretical value. The variation to be studied went from -5 to +5 degrees around the base 

values (-50 to +50 tenths of a degree in the plot). 

It is easy to see the very steep increase in the error even for the very small angles. 

For example an almost insignificant +0.5 degree in psi over the theoretical value will 
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make the error to reach the top (3 meters in error) even if theta stays at the exact theoreti-

cal value for perfect localization. A combination of small variation in theta and psi simul-

taneously will very easily throw the results outside any useful zone. 

In conclusion, the derived analytical equations for 3 landmark based static locali-

zation while they are a very elegant theoretical construct have no practical engineering 

application due to their extremely high sensitivity to measurement errors. They can still 

be used as a teaching tool to show a nice derivation, however unless we find ways to im-

prove their stability they have no practical application in robotics as they stand today. 

11.8 Running Fix Localization Experiment 

To test the equations derived for the Running Fix two experiments were performed. On 

both of them the robot started at the location of (58 cm, 115.5 cm) in room coordinates 

and after first landmark detection moved 50 cm along the X axis of the room to the sec-

ond position where another detection of the target took place.  From the target horizontal 

pixel coordinate an angle measurement was taken. 

 

Figure 66 Simulation of first Running Fix test 
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In the first experiment an active landmark was placed at (250 cm, 44.5 cm) in 

room coordinates and the robot camera was pointing forward along the X. A graphic de-

scription of the experiment can be seen in the drawing aside. 

The landmark has been detected at pixel horizontal position of 550 resulting on 

angle lambda0= -19.71 degrees. 

The robot moved 50 centimeters along X axis and then the landmark has been de-

tected again at pixel 620 corresponding to lambda1= -25.70 degrees. 

Applying the Running fix equations the calculated position of the robot resulted at 

(54.612, 114.495) therefore the error in localization from the real position was 3.53 centi-

meters. 

 

 

For the second experiment, we rotated the robot camera all the way to the right (at -90 de-

grees) and the active landmark has been placed in the camera view at (91, 27.5) centime-

ters in room coordinates. Starting at the same position (58,115.5) and advancing 50 cm 

the robot detected the landmarks at the horizontal 88 and respectively 446 corresponding 

Figure 67 Landmarks Detected in Side View Experiment 
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to angles 19.880 and -10.797 from the camera axis.  These two measurements translated 

in lambda0== -70.119 and lambda1== -100.797 from the robot axis. The results from 

Running Fix algorithm calculations determined the robot to be located at (58.264, 

118.025) a localization error of 2.54 cm from the real position. The fact that the landmark 

was closer resulted in a much wider angle in the test with the camera oriented sideways 

and this had a direct effect on improving the accuracy. 

The two experiments not only validated that our derivation of the equations for 

the localization by the Running Fix method are correct but also showed them to be di-

rectly usable for practical applications. The stability analysis shows clearly way. 

The study of the stability of the solution to the localization problem by Running 

Fix method started with sketch for the first test, where the camera was pointing forward. 

For the angles, the effect of the error in measurement has been studied for +/- 5 degrees 

Figure 68 Partial Derivative Stability Plot for Running Fix equations 
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and for the length of movement a 10% of the displacement (i.e. 5 cm error) has been 

scaled to cover the X axis. 

In the plot lambda0 and lambda1 are the angles under which the robot saw the landmark 

at original and respective second location, while gamma is the direction of movement of 

the robot and l is the length of the movement. The values for angles has been plotted from 

+/- 5 degrees in error while for the length the -50 to +50 of the X axis in plot is scaled to 

cover an error in measurement of +/- 10% of the motion length. 

As can be seen from the stability plot, the error for the measurement for the two 

lambda angles is relatively wide, that means small errors in measurement being tolerable. 

Both errors in the direction of movement (gamma) and measurement of distance (l) are 

even better tolerated by the algorithm, as their slope is very small. 

However, there is also an unexpected surprise on this experiment too, albeit a very 

pleasant one. Based on the partial derivative stability plot we would expect the error for 

the first localization experiment to be in excess of 30 cm instead of the smaller 3.53 cm 

we obtained in the real life experiment. We expected this because of the difference in an-

gles between the simulated experiment calculated at (-20.29, -26.57) and the real life 

measurements taken as (-19.71, -25.70) is quite significant: (0.58, 0.87) degrees. This dis-

crepancy of an order of magnitude between the expected result and the almost perfect lo-

calization in real-life prompted a deeper investigation in the stability of the Running Fix 

equations. 

After countless tests in SciLab, the mystery has been solved once plotted the ab-

solute values of the error for the components Lu and Lv function of the error of measure-

ment for lambda0 (labeled x) and error in lambda1 (labeled y in plot). The explanation 
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consists on the nature of the measurement errors. A measurement error (Ε) can be de-

scribed as being composed by two components: Random (ρ) error Gaussian with zero 

mean and a Bias error (β).  

Ε = ρ + β 

The Bias error is a component of the error that is constant or correlated with the measured 

value, while the Random error has a normal distribution with a mean value of 0. In prac-

tice, is usually difficult to eliminate the Bias component unless you have some prior 

knowledge about it, however the formulae for Lv and especially Lu are special, in the 

sense that they self-correct most of the Bias error.  

 

Figure 69 Abs(Lu(l0+x,l1+y)-Lu(l0,l1)) 

 

Figure 70 Abs(Lv(l0+x,l1+y)-Lv(l0,l1)) 

 

In the 3D plots above is displayed the error generated by the noise (x,y) added to 

the values lambda0 and respective lambda1 for both Lu and Lv formulae which are the 

precursors of the Running Fix localization. As can be seen from the plot, the error almost 
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collapses to zero for values that are very close to the diagonal, i.e. if the error in measure-

ment for lambda0 and lambda1 are dominated by a constant Bias component (therefore 

for values of x ≈ y) the error in Lu and Lv is practically almost zero. 

In our case it is must likely that the Bias error in angle measurement has been in-

troduced by our less than perfect camera calibration, however the calibration error being 

a constant it has the same in readings of lambda0 and lambda1 therefore it was almost 

canceled by the stability of the equations. We expected the error to be over 30 cm by 

looking at the partial derivative plot, but in that plot the value of one angle error has been 

kept at 0 and plotted for the error in measurement of the other angle. Because of the na-

ture of it, the self-correcting error for the same values for both x and y is impossible to be 

seen in partial derivative plot. Only when looking at the 3D plot, the self-correcting na-

ture of these equations became obvious. 

As a direct result of self-correcting for Bias errors, with Running Fix method the 

most damaging errors are the Random errors, however the impact of those errors can be 

reduced by multiple sampling and averaging or even better with the use of a Kalman fil-

ter which is the optimal Gaussian estimator. 

The results of this experiment along with the stability plots validates the Running 

Fix equations as being an outstanding localization method with direct practical applica-

tions in robot (and not only robot) navigation.  
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11.9 Localization Experiment with Fixed Camera  

In this experiment participated by all the components already developed for the system.  

 

The embedded robot software Autonomous Robot Module (ARM) was discon-

nected from the fixed Robot Module (RM) and controlled by the ARM Console, practi-

cally transforming the robot into a remote controlled vehicle. The Robot Module has been 

used only as a print-out on the debug window the location of the robot. The Camera 

Module (CM) was acquiring images from one of the fixed IP camera using HTTP and run 

MP-Tracker algorithm on the sequence of the images.  The information about tracked tar-

gets were broadcasted over sDOMO protocol. 

Situation Awareness Module (SAM) received the Tracking Information from CM, 

loaded the Homography matrix for this particular CM and translated the tracking infor-

mation from image coordinates in Floor Coordinates. For display purposes, we selected 

the coordinate system for the floor to have the same structure as the one used by display 

and allocating each pixel to half an inch. This made it an easy task to display the results 

Figure 71 Experiment Design for Localization with External Camera 
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of the images transformed by homography, however we had to do an extra coordinate 

translation in the Robot Module to display the results in the same system as for previous 

experiments. For the purpose of this experiment the Robot Module (RM) has been used 

exclusively to print out the location as a debugging statement.  

The Robot Control Console has been used exclusively to give to the robot a mi-

nuscule move, in order to get in the “attention” of the MP-Tracker algorithm that runs on 

CM. This small move kick-started the whole process of localization via MPTracker. 

Prior to the experiment we had to calculate the Homography matrix for this cam-

era. To achieve this we selected 4 points in the image: one being the foot of the shelf in 

the left, two corners of the middle carpet and the corner of the little table seen at the bot-

tom of the image.  

Table 9 Data Input for Calculation of  Homography Matrix 

Point Image Pixel Floor Coordinates Cartesian (cm) 

1 (262,208) (32, 151.0) (191.77, 40.64) 

2 (353, 237) (111.0, 180) (228.6, 140.97 

3 (439, 389) (206, 326.4) (414.528, 261.62) 

4 (99, 441) (146, 458) (581.66, 185.42) 

 

From the calibration quad above the homography matrix has been calculated as: 

𝛬 = (
−1.820696309215 −4.454758771421 1314.877616567
0.616170273279 −8.945472660604  1280.50511505

−0.0028807012106  −0.0145106433222 1
) 
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Having the robot take a small move, ending up at (534.5, 170) centimeters in Cartesian 

coordinates triggered a detection at (544,182) cm therefore an error of 15.30 cm in locali-

zation. 

An error in calibration was noticed in this experiment, we selected the corner of 

the table as a point corner which is not on the floor but at a height of 43 cm. Another 

point was selected on the floor at (520.7, 191.77) cm corresponding to pixel (206, 456) 

and after recalculating the new homography matrix the robot located at (533, 170.5) cm 

has been detected at (524.5, 177.5) cm, resulting a distance error of 11 cm. It is also no-

ticeable from the images after the projection that the result of second tests looks a little 

bit less distorted than the first projection with the incorrect matrix.  

The fact that we still have an error of 11 centimeters can be explained due to two 

factors. The first it is the fragmentation of motion blobs if the color of a certain part of 

the background is the same as the foreground image. If this situation happens, the SAM is 

sending to the RM all the fragmented targets detected and RM will eventually choose the 

center of the largest one as the robot position. In reality the center of the robot in the im-

age is a bit different, shifted toward the other blobs. 
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Figure 72 Test1 

 

Figure 73 Test 2 with corrected 

calibration 

 

Figure 74 Test 1 Homographic projection 

 

Figure 75 Test 2 Homographic projection 
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 The second has to do with the perspective projection error. The center of the ob-

ject (C) and the center of the observed image (O) does not coincide due to the perspective 

projection. There will always be an error between them.  

 

An idea to correct for this error, the solution is a full 3D modeling on the SAM. 

The RM then can inform SAM that he is at this target and upload in SAM a 3D model of 

itself. Having this information SAM can back-project the model to match the observed 

image, then find the exact localization of the object. However, this complex 3D modeling 

has not been implemented in the software written for this dissertation.  

11.10 Optical Flow Odometry Experiment  

In this test, we attempted to use the optical flow captured from the robot main 

camera to provide odometry calculations. As presented earlier in the paper in Chapter 9.3, 

Figure 76 Center of the robot versus center of the perceived image 



187 

 

to achieve odometry calculations we captured images with a camera looking at the floor, 

calculated Lucas-Kanade sparse optical flow and used the detected matches in our vector 

classifier algorithm which will eliminate outliers. The resulting filtered vectors will un-

dergo a homography transformation to translate the in floor coordinates then we average 

the transformed vectors. The estimated speed and direction is then calculated as the mag-

nitude and orientation of the average vector. 

The first step in our experiment has been to calculate the homography matrix 

which describes the correspondence between the points on the floor in robot coordinates 

and the captured image. To aid the process, a dedicated dialog has been added to the 

ARM Console GUI program. The robot has been placed into a known position in respect 

to a certain pattern on the floor and four points of interest are identified in the image, 

their position as pixels in the image has been captured with a click and their position in 

centimeters in respect to the robot camera has been measured. The new dialog allowed to 

provide mappings between the pixels in the image and the measured coordinates. 

 Once all four points have been identified and mapped a special RobotCameraCal-

ibration message is send via sDOMO from the ARM Console to ARM. Using the corre-

spondence from this message ARM software running on the robot is calculating the ma-

trix and saves it into the homography database which is indexed based on the angles of 

the camera for each calibration. When needed for calculations, the camera is moved at 

one of the pre-determined positions and the corresponding homography matrix is loaded.  

For the purpose of this experiment the robot has been commanded to go straight 

for 21 seconds and it moved 163 inches i.e. 414 centimeters therefore resulting a speed of 
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19.71 cm/s. The odometry algorithm was added to ARM software and it was running in 

Real-Time on the embedded computer board. The full video processing on the ARM per-

formed calculation with an average of 513 ms/frame therefore just a little shy of 2 frames 

per second.  After eliminating the few records at the beginning and end of robot motion 

when the shocks applied to the camera make it move out of control, the data has been col-

lected and plotted in the graphs below. 

While the mean value for speed 28.69 cm/s as estimated by the camera is not very 

far away from the real 19.71 cm/s value, the dispersion of measurements from frame to 

frame is not very consistent as can be seen from the first plot. The situation is even worse 

for the calculated direction of movement where the variation are totally wild.  

The vector classifier algorithm has been unit tested and found to work correctly, 

the math for deriving the odometry from the vectors is straight forward and has been 

tested in simulation. 

 

 

Figure 77  Direction from Odometry 

 

Figure 78  Speed Odometry Calculations  
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This moved the focus to one of the pieces of equipment that already created a lot of head-

aches: The cheap Pan-Tilt bought for less than $15 on Amazon.com. As can be seen from 

the picture, the whole weight of the camera, mechanism hardware and the servo-motor 

for looking up-and-down is supported by the axis of the servo-motor for left-right move-

ment. When the robot starts or stops it motion the oscillation of the camera makes all the 

data capture unusable, this is the reason we eliminated from the beginning the records 

Figure 79 Pan-Tilt mechanism puts all the weight on one servo's axis. 



190 

 

when the robot started and stopped the movement. It turned out that even the data cap-

tured while the robot was in motion at a relative constant pace is not reliable enough. The 

camera still oscillates under the movement, even if not so obvious as when it starts and 

stop, and the magnitude of the noise is enough to affect the measurements.  

 

An interesting question however, is why the noise impacts the measurement of an-

gle so much more than that of the speed. The answer is again the stability of the func-

tions. In calculations of the direction we rely on the arctan(y/x) to determine the direction 

of the average vector. When the vector is (almost) vertical like in the case when the robot 

is moving straight ahead the values for x are measured to be very close around 0. And in 

this area the function will present discontinuity. By contrast the speed calculations just 

gets the length of the average vector which does not present any discontinuity. It has been 

suggested that using quaternion mathematics this kind of discontinuity can be alleviated, 

but this approach has not been attempted in the scope of this dissertation. 

Figure 80 Example of discontinuity for arctan(1/x) 
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 An aggravating factor for our measurements has been the low frame rate we were 

achieving in optical flow processing, a little less than 2Hz. We were achieving this low 

frame rate because all the visual processing in ARM is taking place in the context of a 

single thread. It is expected that by rewriting the software to use two or three cores of the 

RPI2 the frame rate can be doubled and this may have a positive impact in accuracy. 

The results above raises the question, as to what it takes to achieve quality visual 

odometry using optical flow processing. As everybody is accustomed the optical mouse 

is a widely used device performing visual odometry. I took a look at the specification for 

the integrated circuit ADNS-2051 which is common on many models of optical mice. 

The circuit has a very low resolution; only 16x16 pixels however, it is sampling the mo-

tion at a frequency of 1500 to 2300 frames per second and on top of that it is also control-

ling its own lightning.  Even at its slowest rate, the ADSN is processing over 750 times 

more frames per second that our robot. Of course, an optical mouse is not doing any 

homography transforms nor any other advanced video processing since the sensor is ex-

pected to be always parallel and at a relatively known distance from the table. This allows 

the calculations to be very simple and performed at high speed by dedicated hardware 

DSP (digital signal processor) embedded inside the sensor. 

While our data-capture at 640x480 pixels is way more accurate than to 16x16 on 

the mouse sensor, for the stability to noise it is the raw sampling frequency that matters. 

Sampling and averaging data at a frequency of 1500 Hz can eliminate a lot of the Gauss-

ian errors due to vibrations which are impossible to eliminate at barely 2Hz sampling rate 

as performed by our software.  
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Therefore, as practical recommendation for follow-up projects it is definitely 

cheaper and better to add to the robot specialized odometry units like ADNS-2051, 

mounted under the belly of the robot and retrieve the odometry information that way. The 

alternatives will be to either have a gyroscopic stabilized gimbal for the camera mount or 

to have on the camera an Inertial Measurement Unit (IMU) consisting on an MEMS ac-

celerometer and gyroscope and have a high speed DSP to correct the image due to de-

tected vibrations. Both of the options will be more expensive than and probably not as ac-

curate as just sticking a pair of mice sensors under the belly of the robot and reading them 

via USB.  

11.11 Navigation Experiment with Fixed Camera Alone 

The overall functionality of the system was subject to a series of tests in which the robot 

was attempted to be driven on a pre-determined trajectory with correction from the MP-

Tracker algorithm. The prescribed trajectory had 6 Way-Points the last one being the 

target. The shape of a trajectory was roughly an ellipsis arch with about 40 degrees’ 

difference from the starting point till the goal point. The length of the trajectory was 

spanning the field of view of a single camera. 
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Figure 81 Experiment Design for Navigation with External Tracking 

 

The motion of the robot triggered the CM to start sending tracking information at 

about 2 Hz (2 tracking packets per second). The Tracking info were translated by SAM in 

absolute floor coordinates and passed to RM which attempted to minimize the error 

between tracked position and the next Way-Point. 

From 20 experiments in one of them the robot was able to complete successfully 

the full trajectory and it failed in the remaining 19 most of the time at the sharpest turn 

where the inaccuracy in localization proved too big and the robot entered in oscillation by 

constantly overshooting it target point.  

The analysis of the failures highlighted the inaccuracy of the tracker ability to 

properly assess the center of the robot. Small changes in the direction of the robot 

appeared to the tracker as movements into a random direction and the RM was therefore 

attempting to compensate for the falsely perceived movement. The result was that the 

movement of the robot became chaotic and once it entered into such a loop, it was unable 
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to break free, overshooting the way-point and eventually ending up bumping into the 

furniture. 

11.12  Conclusion and Future Work 

The amount of work to fully implement the envisioned system is way over the scope of a 

single dissertation and follow up work is needed to fully develop the capability of the 

system. However, from the preliminary results we have demonstrated that in principle the 

architecture of an intelligent house where the robot it is just a mobile component of the 

smart environment is a potentially viable solution. The experiment with active artificial 

landmarks, for example, showed the power of an integrated domotic system, and the 

multiplicative capability that can be obtained from the ability of the robot to interact 

directly with remote intelligent objects in the domestic environment. 

This project spawned a multitude of fields, taking us from deriving geometric 

locus equations to soldering electronic circuits, drilling holes and everything in between. 

The literature reviews about the aging populations and the privacy implications of the 

Internet of Things were true eyes openers and will provide good material for rumination 

for quite a while. 

So far, for the purpose of this work we have written from scratch in excess of 

32’000 lines of code in over 300 source code files. The large majority of the code was 

written in C++, yet with all this amount of work we barely scratched the surface of the 

field of distributed processing for vision based domestic robotics. The sDOMO backbone 

was proven rock-solid with the Hub running for months without restarting and allowing 5 

computing systems implementing various components of the system to interoperate in 
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real-time by exchanging messages reliably.  The effort resulted in four published papers 

and a fifth one already accepted to a conference. 

We demonstrated that it is possible to utilize cheap network and camera 

infrastructure that already exists in most of the houses in order to create an intelligent 

environment where a robot can operate. And we have shown that a distributed system for 

processing of the computer vision for domestic robots it is feasible. 

In the process we developed a new communication protocol for Home 

Automation and Robotic Systems that addresses the major concerns about privacy and 

security of the residents and which we hope to be able to promote it to eventually became 

used by the industry and community. The work with sDOMO is taking a life on its own 

and beside two published papers it resulted on a companion website where this protocol 

is being actively developed and offered to the community as open source. Since so far no 

other existing communication protocol for Home Automation have anywhere the 

assortment of capabilities of sDOMO we have high expectations for this line of work.  

Another important contribution is the Multi-Threaded Message Dispatcher design 

which is being presented as a separate research paper (already accepted at IEEE SERA 

2016) and has good potential to help the community of Mission and Safety Critical 

software developers. The new design pattern takes away from the implementer most of 

the effort required to insure the correctness of critical sections allowing them to focus on 

the task at hand. Beside the usage of this pattern in sDOMO protocol, direct applications 

in industry are underway to use the MTM-Dispatcher as the core design pattern for the 

next generation of the Vehicle Specific Module for the Shadow 200 Unmanned Aircraft 

Systems developed by Textron Systems.  
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We designed, successfully implemented and tested an affordable platform for 

robotic experiments for way under $500 which can be very easily replicated by future 

researchers and hobbyists. The robot architecture proved that the decision to distribute the 

“hard real-time” motor and servo control functions to a microcontroller while keeping in 

the main computer only “soft real-time” functionality is winning design decision. The 

experiments with the platform also highlighted the need to include supplementary 

hardware like specialized odometry units or inertial units and higher computing power 

potentially in the form of hardware accelerated DSP. 

Despite the large amount of effort invested in MP-Tracker algorithm we were not 

able to achieve a flawless localization of the moving objects and this imprecision had 

significant setbacks in the navigation experiments conducted with the tracking from the 

external camera. While the original experiments done with MP-Tracker showed a lot of 

promise, despite the CPU spike on the motion of large objects, when the accuracy of the 

blob center detection was essential for precision navigation the hidden flaw became a 

problem. There is room for improvement on MP-Tracker algorithm and this is one of the 

follow-up works required. The follow-up work has to either improve the precision of 

localization or to prove that the required precision for navigation is unachievable by 

motion-blob tracking alone and therefore it cannot be relied upon by itself, therefore 

making full 3D modelling of the environment a hard requirement for precision 

navigation. 

On the Situation Awareness Module, the bulk of the remaining work consists in 

implementation of 3D model and the algorithms to detect the obstacles from multiple 

views of the same place and update the model accordingly. Due to the huge scope of this 
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work it was not pursued on this dissertation. Once a full 3D model is in place, SAM can 

be used to improve the tracking accuracy by eliminating the perspective errors.  

The Robot Module needs to be updated with more intelligence to be able to get 

access to the 3D model from SAM and calculate trajectories that avoid the obstacles. It 

also needs to implement the landmark based localization algorithms which however 

require full ability to recognize the landmarks. Since object recognition is a huge task in 

Computer Vision this work has not been pursued further. Due to high complexity that the 

RM is going to have to implement all these requirements, the existing experimental code 

base needs to be rewritten most likely using the MTM-Dispatcher in order to be flexible 

and easily extensible. 

On the robot itself, Autonomous Robot Module needs to be updated with the 

ability to detect obstacles by variation in Optical Flow and inform SAM about unknown 

obstacles detected along the way. The existing algorithms for navigations needs also quite 

some rework. The video processing software needs to be rewritten to take advantage of 

multiple cores of the CPU to improve the frame rate and new sensors for odometry need 

to be incorporated in the robot to allow accurate motion estimation. 
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