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Movement primitives or synergies have been extracted from human hand movements using several matrix factorization,
dimensionality reduction, and classification methods. Principal component analysis (PCA) is widely used to obtain the first few
significant eigenvectors of covariance that explain most of the variance of the data. Linear discriminant analysis (LDA) is also used
as a supervised learning method to classify the hand postures corresponding to the objects grasped. Synergies obtained using PCA
are principal component vectors aligned with dominant variances. On the other hand, synergies obtained using LDA are linear
discriminant vectors that separate the groups of variances. In this paper, time varying kinematic synergies in the human hand
grasping movements were extracted using these two diametrically opposite methods and were evaluated in reconstructing natural
and American sign language (ASL) postural movements. We used an unsupervised LDA (ULDA) to extract linear discriminants.
The results suggest that PCA outperformed LDA. The uniqueness, advantages, and disadvantages of each of these methods in
representing high-dimensional hand movements in reduced dimensions were discussed.

1. Introduction

The central nervous system (CNS) is responsible for gen-
erating a potentially infinite set of hand postures used in
everyday tasks such as grasping objects. It is hypothesized that
the CNS reduces this computational burden by combining a
discrete set of movement primitives or synergies [1, 2]. This
allows high degree-of-freedom (DoF) control using a lower
dimensional subspace [3]. Ninety percent of natural grasp
movements produced by the human hand, which has greater
than 25 DoF [4], have been reconstructed using five or six
synergies [5, 6]. For these reasons, synergies have potential
applications in dexterous control of prosthetic hands and
have been recently applied to brain machine interfaces used

in neural prosthesis [3, 7, 8]. However, deriving these syn-
ergies to effectively represent and reconstruct human hand
movements poses a challenge. To address this challenge, sev-
eral linear and nonlinear dimensionality reduction methods
have been explored.

Nonlinear dimensionality reduction methods aim to
reduce high-dimensional, nonlinear data to a lower dimen-
sional manifold. Gaussian process latent variable model
[9], geodesic trajectory generation models [10], Isomap [11],
gradient descent method [12], and radial basis function [8]
have been used to decompose upper limb movements either
in kinematic ormuscle space. Similarly, linear dimensionality
reduction methods aim to transform a high-dimensional
space to a linear low-dimensional subspace. Particularly
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successful in natural datasets, linear dimensionality reduc-
tion methods include nonnegative matrix factorization
(NMF), principal component analysis (PCA), and linear
discriminant analysis (LDA). Ajiboye and Weir [13] used
NMF on mimed American sign language (ASL) postures to
determine muscle synergies and found that subject-specific
synergies were characterized by coactivation of muscles
while population (similar across all subjects) synergies were
typically dominated by a single muscle. PCA has been widely
used to extract postural, kinematic, and muscle synergies
[6, 14–17]. Mason et al. [14] used PCA, implemented with
singular value decomposition, on a set of grasping tasks,
and found that the first eigenposture resembled a whole
hand grasp. This is similar to the results by [5, 14, 15].
Tresch et al. [18] compared multiple matrix factorization
algorithms, including PCA, independent component analysis
(ICA), NMF, factor analysis (FA), and combinations of the
above, to determine muscles synergies. He found that the
best performing methods (FA, ICA, NMF, ICAPCA, and
probabilistic ICA) identified similar synergies. Dimensional-
ity reduction methods not only yield significant eigenvectors
fromphysiological data, but also reflect patterns inmovement
generation. Hence, two contrasting dimensionality reduction
methods, such as PCA and LDA, may be partial towards dif-
ferent kinematic movement primitives. By comparing these
two methods, we can determine which kinematic properties
are most important in movement generation.

PCA attempts to accurately represent the data in low-
dimensional space by projecting the data in the directions of
maximum variance as shown in Figure 1(a). PCA performed
on a sample dataset is shown here.The first principal compo-
nent axis corresponds to the direction of maximum variance
of the data and similarly second and third in the decreasing
order. LDA was used to classify the same sample dataset
(Figure 1(b)). Directions of maximum variance as seen in
PCA are not useful for classification. Hence, LDA projects
the data in directions that preserve maximum separation
or discrimination in groups or classes of data. LDA seeks
dimensionality reduction while preserving as much class
discrimination as possible.

In this paper, we compared two contrasting methods,
PCA and LDA, in deriving synergies and evaluated them
on a set of natural grasping and ASL postural movements.
Both PCA and LDA are linear dimensionality reduction
methods that reduce high-dimensional movements of the
hand by looking for either most common patterns (PCA) or
distinct separable patterns (LDA). While previous research
has identified a limited number of discriminatingmuscles in a
single synergy, such patterns have not been seen in kinematic
space. As LDA aims to separate data, resulting synergies may
reflect distinct patterns. Although LDA is a type of clustering
method, it offers a direct contrast to PCA: separating variance
(LDA) ormaximizing variance (PCA).Thus, we can interpret
the strengths and weaknesses of both methods. In order
to maintain fairness in comparison with PCA, which is an
unsupervised method, LDA used in this paper was also
unsupervised (ULDA) first by labeling the data with k-means
clustering and then classifying it using classical LDA.

2. Methods

2.1. Materials and Experiment. In the experiment, we used a
CyberGlove (CyberGlove Systems LLC, San Jose, CA, USA)
equipped with 22 sensors that captured hand movements
at a sampling frequency of 86Hz. In this paper, we only
considered 10 of the sensors which measure the angles of the
carpometacarpal (CMC),metacarpophalangeal (MCP) joints
of the thumb and the MCP, and proximal interphalangeal
(PIP) joints of the other four fingers. These 10 joints can
capture most characteristics of the hand in grasping tasks.
We used several objects of different shapes (spheres, circular
discs, rectangles, pentagons, nuts, and bolts) and different
dimensions (spheres: 1–5 cm in radius; discs: 2–10 cm in
radius; rectangles and pentagons: 1–3 cm each side; nuts and
bolts: 2–5 cm in length) in the grasping tasks. 10 subjects
participated in this experiment after signing the consent
forms approved by the Institutional Review Board (IRB) of
the University of Pittsburgh.

A typical task consisted of grasping the above objects.
Start and stop times of each task were signaled by computer-
generated beeps. In each task, the subject was in a seated
position, resting his/her right hand at a corner of a table and
upon hearing the beep, and grasped the object placed on
the table. At the time of the start beep, the hand was in rest
posture, and then the subject grasped the object and held it
until the stop beep.

In the first phase, subjects were instructed to rapidly grasp
50 objects, one at a time. This was repeated for the same 50
objects, and thus the whole training phase obtained 100 rapid
grasps. Rapid grasping movements from the first phase were
used in deriving synergies. We assume that by minimizing
reaction time and minimizing continuous sensory feedback,
the resulting task space is driven by synchronous weighted
synergies resulting from impulses originating in a higher
level of neural system. The rapid movement is achieved as
a weighted sum of synchronous synergies. Only these 100
rapid grasps were used in extracting synergies using PCA and
ULDA.

In the second phase, subjects were instructed to grasp
the above 50 objects naturally (slower than the rapid grasps)
and then this was repeated. So far, the tasks involved only
grasping. In the third phase, to test the generalizability of
the synergies over a broad range of postures, subjects were
also asked to imitate 36 (10 numbers and 26 alphabet letters)
American sign language (ASL) postures. The ASL postures
were presented on sheets of paper. Here, subjects started from
an initial posture and stopped at one ASL posture.

2.2. Preprocessing. First, we calculated angular velocities
from the joint angle profiles collected in the experiment. We
preserved only the relevant projectile movement—about 0.45
second or 39 samples under a sampling rate of 86Hz.

Second, we constructed an angular velocity matrix 𝑉

for each subject. Angular velocity profiles of the 10 joints
corresponding to one object were cascaded, and each row
of the angular velocity matrix represented one movement in
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Figure 1: Comparison between PCA and ULDA on one sample data set. (a) Two-variable data was analyzed using PCA. The figure shows a
biplot of principal components.Themaximum variance is across the horizontal axis or PC1.The second highest variance is across the vertical
axis or PC2. (b) The figure shows the linear discriminant that separates the two groups of data. The axes represent the two variables, 𝑋

1
and

𝑋
2
.

time. The matrix had 100 rows (corresponding to 100 rapid
grasping tasks from first phase) and 39 × 10 = 390 columns:

𝑉

=

[
[
[
[
[
[
[

[

V1
1
(1) ⋅ ⋅ ⋅ V1

1
(39) ⋅ ⋅ ⋅ V1

10
(1) ⋅ ⋅ ⋅ V1

10
(39)

...
...

...
...

...
...

...
V𝑔
1
(1) ⋅ ⋅ ⋅ V𝑔

1
(39) ⋅ ⋅ ⋅ V𝑔

10
(1) ⋅ ⋅ ⋅ V𝑔

10
(39)

...
...

...
...

...
...

...
V100
1

(1) ⋅ ⋅ ⋅ V100
1

(39) ⋅ ⋅ ⋅ V100
10

(1) ⋅ ⋅ ⋅ V100
10

(39)

]
]
]
]
]
]
]

]

,

(1)

where V𝑔
𝑖
(𝑡) represents the angular velocity of joint 𝑖 (𝑖 =

1, . . . , 10) at time 𝑡 (𝑡 = 1, . . . , 39) in the 𝑔th grasping task
(𝑔 = 1, . . . , 100).

2.3. Dimensionality Reduction. We then performed PCA and
ULDA on the angular velocity matrix 𝑉 composed of rapid
grasping tasks to derive kinematic synergies.

(1) Principal Component Analysis. We implemented PCA
using singular value decomposition (SVD). The angular
velocity matrix 𝑉 was factorized to three matrices 𝑈, Σ, and
𝑆 as shown

𝑉 = 𝑈Σ𝑆, (2)

where 𝑈 is a 100-by-100 matrix, which has orthonormal
columns so that 𝑈𝑈 = 𝐼

100×100
(100-by-100 identity matrix);

𝑆 is a 100-by-390 matrix, which has orthonormal rows so
that 𝑆𝑆


= 𝐼
100×100

; and Σ is a 100-by-100 diagonal matrix:
diag{𝜆

1
, 𝜆
2
, . . . , 𝜆

100
} with 𝜆

1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

100
≥ 0. Matrix

𝑉 can be approximated by another matrix �̃� with reduced
rank 𝑚 by replacing Σ with Σ

𝑚
, which contains only the 𝑚

largest singular values, that is, 𝜆
1
, . . . , 𝜆

𝑚
(the other singular

values are replaced by zeros). The approximation matrix �̃�

can be written in a more compact form:

�̃� = 𝑈
𝑚
diag {𝜆

1
, . . . , 𝜆

𝑚
} 𝑆
𝑚
, (3)

where 𝑈
𝑚

is a 100-by-𝑚 matrix containing the first 𝑚

columns of 𝑈 and 𝑆
𝑚
is a 𝑚-by-390 matrix containing the

first 𝑚 rows of 𝑆. Then, each row of 𝑆
𝑚
is called a principal

component (PC), and the product 𝑈
𝑚
diag{𝜆

1
, . . . , 𝜆

𝑚
} is

called the weight matrix.
For easy comparison, the elements of 𝑆

𝑚
in a way similar

to (1) was written as

𝑆
𝑚

≡
[
[

[

𝑠
1

1
(1) ⋅ ⋅ ⋅ 𝑠

1

1
(39) ⋅ ⋅ ⋅ 𝑠

1

10
(1) ⋅ ⋅ ⋅ 𝑠

1

10
(39)

...
...

...
...

...
...

...
𝑠
𝑚

1
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

1
(39) ⋅ ⋅ ⋅ 𝑠

𝑚

10
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

10
(39)

]
]

]

. (4)

The angular velocity profiles (obtained by rearranging all
joints row-wise for the PCs)

[
[
[
[
[
[
[

[

𝑠
𝑗

1
(1) ⋅ ⋅ ⋅ 𝑠

𝑗

1
(39)

𝑠
𝑗

2
(1) ⋅ ⋅ ⋅ 𝑠

𝑗

2
(39)

...
...

...
𝑠
𝑗

10
(1) ⋅ ⋅ ⋅ 𝑠

𝑗

10
(39)

]
]
]
]
]
]
]

]

, 𝑗 = 1, . . . , 𝑚 (5)

can be viewed as synergies. Six synergies accounted for 95%
of variance in the postures.

(2) Unsupervised Linear Discriminant Analysis.Unsupervised
linear discriminant analysis (ULDA) was implemented using
a two-stage process. First, k-means clusteringmethod created
labels for the data. k-means clustering groups the data by
calculating squared Euclidian distance between the data
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points. Each centroid is the mean of the points in that group
or cluster. Classical LDAwas then used based on these labels.
ULDA was performed on the angular velocity matrix 𝑉. For
𝑌 = 𝑊

𝑇
𝑉, where 𝑌 is the transformed matrix and 𝑊 is

the transformation matrix, the optimal transformation using
LDA is obtained by maximizing 𝑊

∗ as follows:

𝑊
∗

=
𝑊
𝑇
𝑆
𝐵
𝑊

𝑊𝑇𝑆
𝑊
𝑊

, (6)

where 𝑆
𝐵
denotes between class covariance and 𝑆

𝑊
denotes

within class covariance. The linear discriminants derived
from ULDA were used as new axes. The number of linear
discriminants used was same as the number of principal
components being used in comparison.

2.4. Reconstruction of Natural Grasping and ASL Postural
Movements. The synergies extracted from PCA and ULDA
were used in reconstruction of natural and ASL movements.
𝑙
1
-norm minimization was used to optimally and sparsely

select the synergies. This was similar to the methods in
[6]. Briefly, these were the steps involved in the 𝑙

1
-norm

minimization algorithm. Let us assume that, for a subject, 𝑚
synergies were obtained. The duration of the synergies is 𝑡

𝑠

samples (𝑡
𝑠
= 39 in this study). Consider an angular velocity

profile of the subject, {k(𝑡), 𝑡 = 1, . . . , 𝑇}, where 𝑇 (𝑇 = 82 in
this study) represents the movement duration (in samples).

This profile can be rewritten as a row vector, denoted by krow
as follows:

krow = [V
1
(1) , . . . , V

1
(𝑇) , . . . , V

10
(1) , . . . , V

10
(𝑇)] . (7)

Similarly, a synergy s𝑗(⋅) can be rewritten as the following row
vector:

[𝑠
𝑗

1
(1) , . . . , 𝑠

𝑗

1
(𝑡
𝑠
) , 0, . . . , 0, . . . , 𝑠

𝑗

10
(1) , . . . , 𝑠

𝑗

10
(𝑡
𝑠
) , 0, . . . , 0] .

(8)

We add 𝑇 − 𝑡
𝑠
zeros after each 𝑠

𝑗

𝑖
(𝑡
𝑠
) (𝑖 = 1, . . . , 10) in the

above vector in order to make the length of the vector the
same as that of krow. If the synergy is shifted in time by 𝑡

𝑗𝑘

(0 ≤ 𝑡
𝑗𝑘

≤ 𝑇 − 𝑡
𝑠
) samples, and then we obtain the following

row vector:

[0, . . . , 0, 𝑠
𝑗

1
(1) , . . . , 𝑠

𝑗

1
(𝑡
𝑠
) , 0, . . . , 0, . . . ,

0, . . . , 0, 𝑠
𝑗

10
(1) , . . . , 𝑠

𝑗

10
(𝑡
𝑠
) , 0, . . . , 0]

(9)

with 𝑡
𝑗𝑘
zeros added before each 𝑠

𝑗

𝑖
(1) and 𝑇 − 𝑡

𝑠
− 𝑡
𝑗𝑘
zeros

added after each 𝑠
𝑗

𝑖
(𝑡
𝑠
).

Then, we construct a matrix, 𝐵, consisting of the row
vectors of the synergies and all their possible shifts. The
matrix 𝐵 can be viewed as a bank or library of templates with
each row corresponding to shifted version of synergy.Thefirst
row contains joint angular velocity profiles of each joint of
the first synergy. Each subsequent row contains time-shifted
versions. Consider

𝐵 ≡

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑠
1

1
(1) ⋅ ⋅ ⋅ 𝑠

1

1
(𝑡
𝑠
) 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑠

1

10
(1) ⋅ ⋅ ⋅ 𝑠

1

10
(𝑡
𝑠
) 0 ⋅ ⋅ ⋅ 0

0 𝑠
1

1
(1) ⋅ ⋅ ⋅ 𝑠

1

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑠

1

10
(1) ⋅ ⋅ ⋅ 𝑠

1

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0

... d d d d
... ⋅ ⋅ ⋅

... d d d d
...

0 ⋅ ⋅ ⋅ 0 𝑠
1

1
(1) ⋅ ⋅ ⋅ 𝑠

1

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑠

1

10
(1) ⋅ ⋅ ⋅ 𝑠

1

10
(𝑡
𝑠
)

...
...

...
...

...
...

...
...

...
...

...
...

...
𝑠
𝑚

1
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

1
(𝑡
𝑠
) 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑠

𝑚

10
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

10
(𝑡
𝑠
) 0 ⋅ ⋅ ⋅ 0

0 𝑠
𝑚

1
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑠

𝑚

10
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0

... d d d d
... ⋅ ⋅ ⋅

... d d d d
...

0 ⋅ ⋅ ⋅ 0 𝑠
𝑚

1
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

1
(𝑡
𝑠
) ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑠

𝑚

10
(1) ⋅ ⋅ ⋅ 𝑠

𝑚

10
(𝑡
𝑠
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (10)

With the above notation, we are trying to achieve a linear
combination of synergies that can reconstruct the velocity
profiles as in the following equation:

krow = c𝐵, (11)

where c denotes

[𝑐
10
, 𝑐
11
, . . . , 𝑐

1𝐾
, 𝑐
20
, . . . , 𝑐

2𝐾
, . . . , 𝑐

𝑚𝐾
] , (12)

where 𝑐
𝑗𝑘

represents the weight for 𝑗th synergy, with a shift
of 𝑡
𝑗𝑘
. The matrix 𝐵 can be viewed as a bank or library

of template functions with each row of 𝐵 as a template.

krow represents a natural grasp or an ASL postural movement
that is being reconstructed. Thus, each time-shifted synergy,
represented in 𝐵, can be used to reconstruct the entire
movement.

The following was the optimization problem that was
used in selection of synergies in reconstruction of a particular
movement:

Minimize ‖c‖1 +
1

𝜆

c𝐵 − krow


2

2
, (13)

where ‖ ⋅ ‖
1
represents the 𝑙

1
norm, ‖ ⋅ ‖

2
represents the 𝑙

2

norm or Euclidean norm of a vector, and 𝜆 is a regulation
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parameter. Thus, the optimization problem solves for c,
yielding a sparse selection of synergies that minimizes the
difference between the recorded joint angular velocities of a
natural grasping movement or ASL postural movement and
joint angular velocities of the reconstructed movement.

To evaluate the reconstruction of natural and ASL postu-
ral movements, the reconstruction error was determined for
each task by

∑
𝑛

𝑖=1
∑
𝑇

𝑡=1
[V𝑔
𝑖
(𝑡) − V̂𝑔

𝑖
(𝑡)]
2

∑
𝑛

𝑖=1
∑
𝑇

𝑡=1
V𝑔
𝑖
(𝑡)
2

, (14)

where V̂𝑔
𝑖
(𝑡) (𝑡 = 1, . . . , 𝑇) is the angular velocity profile of

task 𝑔 and finger joint 𝑖 (𝑖 = 1, . . . , 𝑛) reconstructed using
a given number of synergies. This yields a ratio between the
approximate error and the original angular velocity profile.
Thus, an error of 1 represents a squared error of 1 at every time
point and every task for each joint. Presented results show
normalized error, where an error of zero is minimum error,
corresponding to best reconstruction, and an error of 1 is the
maximum error corresponding to worst reconstruction.

3. Results

PCA and ULDA described in Section 2.3 were used to derive
kinematic synergies from preprocessed hand joint angular
velocities during rapid grasps. The top six significant syner-
gies derived from PCA and ULDA were used in reconstruc-
tion of natural movements and ASL postural movements.
Figure 2 shows a representative example of six synergies
derived from PCA and ULDA for one subject. Synergies 1

and 2 derived from PCA show broad, bell-shaped velocity
patterns while synergies 1–5, derived from ULDA, especially
in PIP joints, show distinctly different patterns. Interestingly,
synergies derived from ULDA show an initial movement
delay which is consistent in PIP joints for synergies 1–5. In
both methods, velocity patterns for higher-order synergies
are characterized by multiple submovements. Extension is
first seen in synergy 2 derived from PCA and synergy 6
derived from ULDA. In terms of joint angular velocity
patterns, kinematic synergies further reveal relationships
found between joints. PIP joints reach a greater velocity than
MCP joints in synergies 1 and 3. Conversely, MCP joints
reach a greater velocity than PIP joints in synergies 2 and
4. The same inverse relationship, where PIP joint reach a
greater velocity thanMCP joints, is found in synergy 1 derived
from ULDA. However, only synergy 5 shows a movement
where MCP joints have greater velocities than PIP joints.
These results encourage further analysis on the importance
of each synergy. In order to determine how the number
of synergies used in reconstruction affects performance of
each method, we calculated reconstruction errors for up to
10 synergies (Figures 3 and 4). In both of these figures, we
can see the performance of ULDA plateaus after 4 synergies.
Reconstruction error continues to decrease for PCA as
more synergies are used. It is evident that PCA performs
better than ULDA in natural grasp reconstruction. However,
reconstruction errors of ASL postural movements are similar
for both methods until 5 synergies are used, after which

the performance of ULDA plateaus and PCA error decreases
(Figure 4).

Using the optimization algorithm, all natural grasps and
ASL postural movements were reconstructed. Figure 5 shows
the mean reconstruction errors for 100 natural movements
across 10 subjects. Error bars indicate the standard deviation
across 10 subjects. Similarly, Figure 6 shows the mean recon-
struction errors for 36 ASL postural movements. Error bars
indicate the standard deviations across 10 subjects. PCA had
the best overall performancewithmean reconstruction errors
of 0.08 and 0.2002, for natural grasping and ASL postural
movements, respectively. ULDA has reconstruction error of
0.1867 and 0.3147 for natural grasping and ASL postural
movements, respectively. Green and red arrows indicate
movements that had the best and worst reconstructions for
both methods, respectively. These reconstructions are shown
in Figures 7 and 8. Figure 7 (top) shows a reconstruction of
grasping task number 47, which had the lowest reconstruc-
tion errors for both methods; we observe that both methods
were able to reconstruct a natural grasp with minimal error;
however, ULDA was unable to replicate joint extension in
the thumb and pinky PIP joints. Figure 7 (bottom) shows a
reconstruction of a natural grasping task number 75, which
had the highest reconstruction error for both methods. In
this task, the recorded movement (red) lacks smooth velocity
patterns and is also characterized by lower velocities. This
type of movement was also seen in natural grasping tasks
numbered 1, 12, 17, 18, 38, 49, and 80. Both methods were
unable to replicate this type of movement, although PCA
had lower errors. Reconstruction errors of ASL postural
movements were greater than those of natural grasps for
both methods. Figure 7 (top) shows the best reconstruction
of an ASL postural movement (task number 29). PCA was
unable to replicate themagnitude of velocitywhileULDAwas
unable replicate the temporal structure of each joint angular
velocity profile. ASL postural movement task number 9 had
the highest reconstruction error and is shown in Figure 8
(bottom). Both methods were unable to replicate extension
that was not consistent across joint types.

4. Discussion

Anatomical, neural, and functional coupling in the human
hand suggests that all possible hand postures from everyday
activities lie in a lower-dimensional subspace that can be
characterized by kinematic synergies [5]. The synergies in
this paper were derived from grasping kinematic data and
were tested for generalizability on ASL postures. Principal
component analysis was performed on the posture matrix or
in otherwords on the high-dimensional space of 100 postures,
meaning the variables here are postures and the observations
are joint angular velocities for these postures. The synergies
are principal components that are expressed as weighted
linear combinations of these 100 postures. The weights
are derived from eigen vectors. As principal components
represent the axes aligned with the directions of maximum
variance, the synergies are the most commonly found joint
angular velocity patterns used during the 100 postural tasks.
Six synergies were found to account for 95% of the variance.
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Figure 2: Six kinematic synergies obtained for subject 2 using PCA (red) and ULDA (green). Each synergy is about 0.45 s (39 samples) in
duration (data acquired at 86Hz). T: thumb; I: index finger; M: middle finger; R: ring finger; P: pinky finger; MCP: metacarpophalangeal
joint; IP: interphalangeal joint; PIP: proximal IP joint.

Linear discriminants on the other hand, as candidates for syn-
ergies, represent postures that stand distinct among groups in
100 postures. The groups were formed based on the nearest
neighbors computed by measuring the Euclidian distances
between postures.

Results show that PCA outperforms ULDA in recon-
struction of natural grasping movements and ASL postural
movements. Does that mean that PCs are optimal low-
dimensional representations of hand movements and
hence ideal candidates for synergies? Linear discriminants,
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(red) using up to 10 synergies are shown. Reconstruction errors for
natural grasping movements were less for PCA derived synergies
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Figure 4: Reconstruction errors for ASL postural movements were
similar for both PCA and ULDA up to 5 synergies, after which
ULDA errors plateaued and PCA errors decreased.

although representing the six most distinct joint angular
movement velocity patterns, may not be ideal candidates
for synergies as they are not capturing the commonly
found joint angular velocity patterns. Interestingly, previous
studies exploring muscle synergies have found distinct
patterns through clustering to be more effective than
PCA in synergy extraction. Krouchev et al. [19] found
that distinct muscle groups characterize each synergy
extracted from cat locomotion movements via associative
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Figure 5: The mean reconstruction errors for 100 natural grasp-
ing movements using PCA and ULDA across all subjects. PCA
performed better than ULDA. Reconstruction error is computed
by (14). Two tasks corresponding to best and worst reconstruction
errors were indicated by green and red arrows, respectively. These
were further illustrated in Figure 7.
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Figure 6: The mean reconstruction errors for 36 ASL postural
movements using PCA and ULDA across all subjects. PCA per-
formed better than ULDA. Reconstruction error is computed by
(14). Two tasks corresponding to best and worst reconstruction
errors were indicated by green and red arrows, respectively. These
were further illustrated in Figure 8.

clustering. Ajiboye andWeir [13], using NMF, also found that
population synergies extracted from hand movements (ASL
postures) were dominated by a single muscle while subject-
specific synergies involved coactivation of multiple muscles.
Although, in muscle space, distinct groups of muscles may
better characterize movement, this phenomenon does not
carry to kinematic space. PIP joint angular velocities showed
a distinct waveform that could be seen in synergies 1–5
extracted from ULDA, while the 6th synergy shows a similar
joint angular velocity profile across all PIP and MCP joints.
ULDA failed to capture the relationship between allMCP and
PIP joints in multiple synergies, as indicated in the synergy
patterns (Figure 2). Natural coupling between fingers, as a
result of single or multiple muscle activations, is captured
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Figure 7: Top: the lowest reconstruction error for both methods in natural grasping movement reconstruction was found in grasping task
number 47. Its reconstruction is shown using PCA and ULDA. Bottom: the highest reconstruction error for both methods was found in
grasping task number 75. Its reconstruction is shown using PCA and ULDA. T: thumb; I: index finger; M: middle finger; R: ring finger; P:
pinky finger; MCP: metacarpophalangeal joint; IP: interphalangeal joint; PIP: proximal IP joint.

by both PCA in synergies 1–4 and ULDA in synergies 1–6
because all 4 fingers MCP show similar velocity patterns.
Synergies 5 and 6, derived from PCA, however, do not
represent physiological couplings but may characterize less
commonly used and more independent movements during

grasping. For example, synergy 5 derived from PCA shows
R-PIP extension during M-PIP flexion, which does not seem
intuitive but may be a result of more complex grasps.

Although PCA derived synergies outperform ULDA
derived synergies in ASL postural movement reconstruction,
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Figure 8: Top: the lowest reconstruction error for both methods in ASL postural movement reconstruction was found in ASL postural task
number 29. Its reconstruction is shown using PCA and ULDA. Bottom: the highest reconstruction error for both methods was found in ASL
task number 9. Its reconstruction is shown using PCA and ULDA. T:thumb; I: index finger; M: middle finger; R: ring finger; P; pinky finger;
MCP: metacarpophalangeal joint; IP; interphalangeal joint; PIP: proximal IP joint.

there is still an increase in error for both during reconstruc-
tion of ASL postural movements. One possible source for
increased error in ASL reconstruction is that ASL postures
require extreme decoupling of fingers. For example, the
three distal fingers are anatomically coupled and grasping

movements do not usually force them apart. However, in
ASL, number 8 (task number 9) requires the subject to
flex the middle finger with the assist of the thumb, while
consciously trying to extend the ring finger. Since the middle
and ring fingers are naturally coupled, synergies are unable
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to capture such an extreme movement, resulting in highest
reconstruction error (Figure 6).

In summary, two contrasting dimensionality reduction
methods PCA, that maximizes variance and LDA, that
discriminates variance, have been used to extract synergies.
The contribution of linear discriminants plateaued beyond
5 synergies, but the contribution of principal components
continued beyond six synergies. PCA outperformed LDA
in reconstruction of natural grasping and ASL postural
movements. The shape, smoothness, and representations of
natural joint couplings found in joint angular velocity profiles
may have contributed to differences in reconstruction errors.
Certain types of natural grasps, namely, those characterized
by irregular and noisy velocity profiles, yielded higher recon-
struction errors for both methods. ASL postural movements
included unnatural flexion and extension of fingers that are
not involved in the activities of daily living. For this reason,
both PCA and LDA had greater errors in reconstruction of
ASL movements. In the future, combinations of linear and
nonlinear dimensionality reduction methods will be used in
reducing the dimensionality of hand movement kinematics.
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