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Noisy intermediate-scale quantum devices suffer primarily from coherent sys-

tematic error and stand to benefit from robust quantum control. To this end,

methods of dynamical error suppression provide a means to achieve gate error rates

that may be sufficient for fault-tolerant quantum computing. We present in this

work a collection of theoretical studies that focuses on two methods in particular:

composite pulse sequences and filter function formalism. We first employ composite

pulses to reduce the effects of static systematic errors in coupled solid-state qubits.

We then use the filter function formalism to analyze geometric gates. In particular,

we disprove the geometric gate robustness conjecture which states that geometric

gates are intrinsically more robust against certain errors than dynamical gates since

their accumulated phase is related to some global geometric property of the system’s

evolution. Finally, we use dynamical invariant theory to develop a framework that

is ideal for filter function engineering. We also use this framework to further analyze

some properties of geometric gates.
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Chapter 1

Introduction

The commercial success of the semiconductor industry ushered in by the in-

vention of the first transistor-based digital computer led to the ubiquitous presence

of computers in our everyday lives. It has become an integral part of our society, so

much so that we use it for leisure, transportation, communication, security, educa-

tion, and many others. One particular application of interest is in research. Modern

computers can now perform laborious calculations in a matter of minutes that would

otherwise take hours, if not days, to do by hand. This proved a boon across all sci-

entific disciplines. Motivated by the prospect of even higher commercial, scientific,

and technological returns, chip fabrication techniques were further refined to a point

where, in just a few decades, one can purchase consumer-level processing chips with

tens of billion of transistors1.

Unsurprisingly, solving very complex problems also demanded more computa-

tional power. Even before digital computers existed, it was well known that certain

systems are impossible to simulate efficiently when enough particles are involved.

Indeed, fields of physics such as statistical mechanics and condensed matter physics

1Announced in late 2021, Apple’s M1 Max chip is equipped with 57 billion transistors!
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acknowledge the futility of keeping track of all particle interactions and one must

resort to using clever approximations to gain physical insight. This problem is even

more pronounced in quantum systems since correlations between quantum states

require exponentially more resources to track. In fact, the number of bits required

to simulate a system with several hundreds of quantum particles exceeds the es-

timated number of atoms in the observable universe [1]. It was clear that a new

computational paradigm was necessary to tackle such problems. To this end, the

idea of using a machine that operates under the rules of quantum mechanics was

proposed [2–4]. By taking advantage of quantum phenomena such as superposition

and entanglement, it was theorized that quantum computers can outperform tra-

ditional computers at certain tasks. This was later proven true in the 1990s after

some pioneering works by the likes of Deutsch [5], Simon [6], Shor [7], and Grover [8]

which consequently set about a race to develop the very first quantum computer.

While there are different models for doing quantum computation, we will focus

on gate-based quantum computing which is viewed as the natural quantum analog

of traditional computing. This type of quantum computer has since been proposed

in a plethora of physical platforms including photonic systems [9], trapped ions [10],

nuclear spin in nuclear magnetic resonance (NMR) [11, 12], electron charge [13] and

spin [14] in semiconducting devices, and Josephson junctions in superconducting

devices [15–17] among others. Although the underlying physics vary with the par-

ticular implementation, all of these platforms satisfy the Divincenzo criteria which

outlines the necessary conditions for quantum computation [18]. Put simply, any

candidate for a quantum computer must be able to encode its information in a
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group of well-isolated, interacting 2-state systems whilst having the ability to pre-

serve, measure, and arbitrarily manipulate its state with high accuracy.

Although decades of intense research has brought about the current era of

noisy intermediate-scale quantum (NISQ) devices [19], a fully functional quantum

computer remains elusive. One of the biggest challenges in making a quantum

computer is noise. Noise can manifest in different forms. For example, it can

be due to random driving forces from the environment (e.g. Brownian motion),

interactions that produce entanglement between the system and the environment,

or statistical imprecision in the experimental controls on the system (e.g., timing

errors, frequency fluctuations, etc.) [20]. Thus, noise suppression is paramount for

any reliable quantum information processor. To understand how this can be done,

it is instructive to examine how noise is handled in traditional computing. Suppose

we have three bits that are susceptible to bit-flip error where a 0 can randomly flip

to 1 and vice versa. Information stored in these bits will inevitably get corrupted if

any one of the bit flips its value. On the other hand, suppose that we encode our

logical bit states, 0L and 1L, using these three noisy bits [1]. In other words, suppose

0L −→ 000, 1L −→ 111.

Even if any one of the noisy bit flips its value, the encoded information can still be

recovered. For sufficiently low bit-flip probability, the information may be recovered

through a simple majority ruling. As an example, a 001 corresponds to a 0L that

encountered a bit-flip error on the third bit and can be corrected by simply flipping

the corresponding state back to the majority bit value which is 02.

2Measurement of classical bit states is trivial and does not compromise computation. This is no

3



We would like to employ a similar strategy to correct errors in quantum bits,

or qubits. Before we proceed, however, it is worth highlighting some key properties

of error correction in the previous example. First, it is necessary to have sufficiently

low bit-flip rate for each individual bit. The probability of two bit-flip errors occur-

ring simultaneously has to be much less than a certain error threshold. Otherwise,

the majority ruling will fail and the information will get corrupted. Second, error

correction requires the encoding of logical information onto multiple physical bits.

That is, we trade some computational power in favor of reliability. Fortunately, this

no longer a concern for modern processors with billions of transistors to leverage.

Quantum error correction inherits these properties as well. This is somewhat

problematic since current NISQ devices offer significantly less flexibility, having only

access to as much as hundreds of physical qubits even in state-of-the-art systems3.

Some argue that the benefits of quantum computing will not be seen until we have

quantum computers with at least 100 error-corrected logical qubits. This can trans-

late to over 1000 physical qubits depending on the encoding4. Such a feat would

require a significant investment in device engineering research and it may take many

years to reach a point where fabrication methods can reliably produce quantum

processors with thousands of qubits. In addition, just like its classical counterpart,

quantum error correction is contingent on the error rate of qubit operations be-

longer the case in qubits since measurements destroy the quantum state under observation, thus

making information recovery impossible. Luckily, there are other means to detect errors [1, 20].
3On November 2021, IBM Quantum unveiled Eagle, a 127-qubit quantum processor.
4For example, Shor’s code requires 9 physical qubits and some additional help from ancillary

qubits.
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ing less than a certain threshold [21]. The least stringent quantum error-correction

schemes require qubits to have no more than 1% error per gate [22, 23]. Lowering

the average gate error would reduce the overhead cost of implementing error correc-

tion in terms of the number of physical qubits required per logical qubit. This can

be achieved by adopting better and more robust quantum control protocols which

is the primary focus of this dissertation.

We present here a collection of theoretical studies on robust quantum control

that primarily involve the use of composite pulse sequences and filter function en-

gineering. In essence, composite pulse sequence [24–28] involves replacing a noisy

quantum gate with a sequence of noisy quantum gates such that i) the sequence

produces the same intended gate as the original, and ii) the sequence is more robust

against noise than the original. The second condition is usually satisfied by carefully

designing the sequence components so that the first-order cumulative effect of noise

averages to zero. This technique was first pioneered in NMR systems to prolong

spin coherence times and has since been routinely used to suppress certain types of

coherent systematic errors in many qubit implementations [29–38].

Composite pulses are designed to be robust against noise that fluctuate much

slower than the total duration of the sequence, i.e., quasistatic noise. However, noise

that fluctuate more rapidly plague many systems as well. Chief among them is 1/f

noise [39] which is prevalent in solid-state platforms [40–45]. To this end, techniques

for characterizing the effects of noise when given the noise power spectral density

(PSD) were developed. The filter function formalism [46–48] is one of such error

characterization scheme. The general idea is to quantify the net susceptibility of

5



a given control protocol to noise using the overlap in frequency between the noise

PSD and the spectral characteristics of the modulation imparted by the control.

Thus, one may develop a robust quantum control scheme based on the idea of filter

function engineering where the goal is to minimize the frequency overlap.

1.1 Organization of the dissertation

The dissertation is organized as follows. Chapter 2 reviews some of the basic

principles of quantum computing and other pertinent concepts. Chapter 3 exam-

ines how to dynamically correct a cross-resonance (CR) gate in a system of coupled

transmon qubits using composite pulses. Similarly, Chapter 4 focuses on producing

a robust entangling operation for a system of capacitively-coupled singlet-triplet

qubits with composite pulses in addition to control parameter optimization. Chap-

ter 5 examines a special class of quantum gates called geometric gates. The conjec-

tured intrinsic robustness of geometric gate is invalidated by showing the existence

of geometric and dynamical quantum gates with identical filter functions. Chap-

ter 6 develops a framework using filter functions and dynamical invariant theory to

efficiently engineer 1-qubit quantum gates that are robust against a specified noise

PSD. Finally, Chapter 7 provides the conclusions and summary of the dissertation.
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Chapter 2

Quantum Computing Basics

How does one build a quantum computer? This question was addressed by

David DiVincenzo in his seminal work where he outlined five requirements that are

necessary for the implementation of quantum computation [18]:

• A scalable physical system with well characterized qubits.

• The ability to initialize the state of the qubits to a simple fiducial state such

as |000 . . .⟩.

• Long relevant decoherence times, much longer than the gate operation time.

• A “universal” set of quantum gates.

• A qubit-specific measurement capability.

While many leading candidate platforms for a quantum computer have satisfied most

of these conditions, it remains very challenging to develop quantum gates with low

enough error rates to make quantum error correction feasible. Developing quantum

control protocols that are robust against noise can help solve this issue. In this
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chapter, we briefly review some basic concepts in quantum computing and quantum

control.

2.1 Qubits

In classical information theory, the basic unit of information is a bit which

can assume one of two distinct values: 0 or 1. The analogous quantity for quantum

information theory is a qubit. A qubit is nothing more than a two-level quantum

system. The two levels can be physically represented by spin orientation, location

of a charged particle in a double-well potential, photon polarization, or flow of

superconducting current, among other things. More abstractly, a qubit is an element

of the vector space C2 whose basis vectors are denoted by

|0⟩ =

(
1
0

)
|1⟩ =

(
0
1

)
. (2.1)

Taking spin orientation as an example, the basis states |0⟩ and |1⟩ can represent the

|↑⟩ and |↓⟩ spin states, respectively. One key feature of a qubit that is absent in a

classical bit is quantum superposition. An arbitrary qubit state can be expressed as

|ψ⟩ = a |0⟩ + b |1⟩ with a, b ∈ C, |a|2 + |b|2 = 1. (2.2)

Although a qubit may take infinitely many different states (unlike a bit which can

only take two), it contains as much information as a classical bit. Indeed, a measure-

ment to determine whether the qubit is in the state |0⟩ or |1⟩ will result in |0⟩ (|1⟩)

with probability |a|2(|b|2).

An alternative way of viewing the qubit state is through the Bloch sphere

8



picture. Ignoring the global phase factor, we parameterize |ψ⟩ as

|ψ(θ, ϕ)⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ (2.3)

Note that we must restrict the values to 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π to guarantee

a unique mapping. This particular form can be thought of as the +1 eigenstate of

n⃗(θ, ϕ) · σ⃗, where the unit vector n⃗ is

n⃗(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ), (2.4)

and σ⃗ = (σX , σY , σZ) is a vector comprising of the Pauli matrices

σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
. (2.5)

Thus, the collection of all pure states forms the surface of the Bloch sphere and all

the points inside correspond to mixed states. This picture provides a simple way

to visualize the action of a quantum gate since they can be interpreted as simple

rotations on the Bloch sphere. Unfortunately, this interpretation does not generalize

well beyond the 1-qubit example [49].

Let us now consider a group of n qubits. This is often referred to as a quantum

register in quantum computing. For a classical register, the state of the system is

completely determined by specifying the state of each individual bit. This is no

longer the case for a quantum register due to the quantum mechanical phenomenon

called quantum entanglement. To demonstrate this, suppose we consider an n-qubit

register. If we specify its state in a similar manner as in a classical register, each

qubit would be described by a C2 vector of the form ai |0⟩ + bi |1⟩ for a total of 2n

9



complex numbers. This yields

(a1 |0⟩ + b1 |1⟩) ⊗ (a2 |0⟩ + b2 |1⟩) ⊗ · · · ⊗ (an |0⟩ + bn |1⟩) , (2.6)

where ⊗ denotes the Kronecker product operator. More generally, quantum me-

chanics can allow an n-qubit register to be described by the superposition of such

tensor product states

|ψ⟩ =
∑

ci=0,1

ac1c2···cn |c1⟩ ⊗ |c2⟩ ⊗ · · · ⊗ |cn⟩ . (2.7)

It is important to note that there exists superpositions that cannot be decomposed

to a form like in Equation (2.6). These states are said to be entangled. Furthermore,

the states of an n-qubit register live in a 2n-dimensional vector space. Even with

just n = 500, 2n becomes astronomical and exceeds the estimated number of atoms

in the observable universe [1]. This means that it is impossible to store the informa-

tion of a highly entangled state with sufficiently large n in a traditional computer.

Therefore, quantum entanglement and superposition provide an extremely powerful

computational resource that is absent in traditional computing.

2.2 Quantum Gates, Gate Decomposition, and Universality

Quantum gates are responsible for manipulating the state of the quantum

register during computation. Physically, they correspond to the dynamical evolution

of the quantum system representing the qubit. In quantum mechanics, this evolution

is governed by the (nonrelativistic) Schrödinger equation1

iU̇(t) = H(t)U(t), U(0) = 1, (2.8)

1We shall adopt natural units for the entire dissertation unless stated otherwise.
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where H(t) is the Hamiltonian of the system and U(t) is the time-evolution operator.

A quantum gate is defined to be the action of the operator U(T ) on the logical

subspace of the Hilbert space, where T is the duration of the evolution2. The

Hamiltonian H(t) generally comprises the system’s control fields as well as other

elements that may be attributed to noise. It can be represented within the logical

Hilbert space as a linear combination of n-dimensional Hermitian matrices H(t) =

∑
i ci(t)Λi, where ci(t) are functions with units of frequency that are associated with

the control and noise parameters, and Λi are traceless Hermitian operators. It follow

from the Hermitian nature of H(t) that U(t) is a unitary operator. Since we have

a finite dimensional system, U(t) is an element of the Lie group of unitary matrices

U(n)3.

As an example, suppose we encode our qubit on a nuclear spin state which is

controlled using external magnetic fields. The Hamiltonian for this system is given

by

H(t) = γB⃗ · S⃗ = γ
∑

i

Bi(t)Si, (2.9)

where γ is the gyromagnetic ratio, Bi(t) are the magnetic field vector components

and Si = σi/2 are the spin angular momentum operators. Suppose that we let the

magnetic field be composed of a large bias field together with a small oscillating

transverse field component that can be turned on/off: B⃗(t) = B0ẑ + B1 cosωtx̂.

2We may refer to T as the gate time
3Since global phase factors are irrelevant in quantum computing, we can restrict our consider-

ations to the subgroup SU(n) instead
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Thus, we obtain the following Hamiltonian

H(t) =
γB0

2
σZ +

γB1

2
cosωtσX . (2.10)

Solving Equation (2.8) with this Hamiltonian would involve a set of coupled differen-

tial equations that is not analytically solvable. However, it is possible to gain more

insight by moving to a rotating frame. Consider transforming to rotating frame

defined by the transformation V (t) = exp
[
iωt
2
σZ
]
. In this frame, the Hamiltonian

is given by

HV (t) = V HV † − iV V̇ † (2.11)

=

(
ω0−ω

2
ω1

2
(1 + e2iωt)

ω1

2
(1 + e−2iωt) −ω0−ω

2
,

)
(2.12)

where we introduce new variables ω0 = γB0 and ω1 = γB1/2
4. If the transverse

field is at resonance with the qubit (ω = ω0), we are left only with the off-diagonal

elements. Moreover, since ω ≫ ω1
5, then Hamiltonian terms that are proportional

to eiωt oscillate rapidly and average to zero in a very short time. In other words,

if we take a coarse-grain time average over a time interval much greater than 1/ω,

the contribution of the rapidly oscillating terms are negligibly small compared with

the slowly varying terms. This is referred to as the rotating wave approximation

(RWA). Thus, the Hamiltonian after RWA is

HRWA =
ω1

2
σX . (2.13)

For such a simple Hamiltonian, the time evolution can be obtained simply by expo-

nentiating the integral of HRWA with respect to time. Hence, the total time evolution

4The factor of 1/2 is included for notational convenience.
5Since B0 ≫ B1, then ω = ω0 ≫ ω1.
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in the original frame is given by

U(t) = e−i
ωt
2
σZe−i

ω1t
2
σX . (2.14)

If we set the gate time so that T = 2nπ
ω

for some integer n, the first exponential yields

−1. In addition, if we define the variable θ = 2nπω1

ω
, the corresponding quantum

gate is

U(T ) = e−i
θ
2
σX ≡ Xθ (2.15)

which corresponds to a rotation by an angle θ about the X-axis of the Bloch sphere.

Other gates can also be produced in this system. The simplest one would be

to turn off the transverse field B1 = 0 which yields the following gate

U(T ) = e−i
ω0t
2
σZ ≡ Zθ′ , (2.16)

which is a Z-rotation of angle θ′ = ω0t. More broadly, rotation about any axis can

be achieved by appropriately choosing ω0, ω1, and T . Although such flexibility is

generally desirable, this level of control may not be possible in other qubit systems

nor is it necessary for quantum computing. Indeed, as indicated by the fourth

DiVincenzo criteria, it is only necessary to have a universal set of quantum gates. A

set of quantum gates is universal if any operation may be approximated to arbitrary

accuracy by a quantum circuit composed of its elements. It was shown by Barenco

et al. that the set of all 1-qubit gates, together with the controlled-NOT (CNOT)

gate, is universal [50]. It is possible to further reduce this set to a finite number of

elements using the Solovay-Kitaev theorem [51] which states that any 1-qubit can

be approximated to accuracy ε by the composition of O (logc1/ε) gates obtained
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from the set {H,S, T ,cnot}6.

In many implementations, qubit control is designed to produce gate operations

on at least two perpendicular axes of rotation. These are the X- and Z-axes in

the nuclear spin example. One may decompose the action of an arbitrary 1-qubit

operation in terms of these gates. This is called the Euler decomposition of a 1-qubit

gate. If we only have access to X- and Z-rotations, we may write the gate U as a

sequence of rotations given by

U = Zθ3Xθ2Zθ1 (2.17)

for some angles θi. This decomposition provides a method of producing rotations

that are not directly accessible to a particular Hamiltonian (e.g., Y -rotations). In

fact, the Euler decomposition is a special case of a broader class known as Cartan

decomposition [52, 53]. Let g be a semi-simple Lie algebra which may be decomposed

into two subspace g = k⊕m,m = k⊥ satisfying the commutation relations

[k, k] ⊆ k, [m, k] ⊆ k, [m,m] ⊆ k. (2.18)

Such a decomposition is called a Cartan decomposition of g. Note that m is not an

algebra since it is not closed under the Lie bracket. Therefore, any subalgebra a in

m is necessarily Abelian7. A maximal Abelian subalgebra a ⊆ m is called a Cartan

subalgebra. If G is any connected semisimple Lie group with Lie algebra g satisfying

6H =

(
1 1
1 −1

)
is the Hadamard gate, S = Zπ

2
, and T = Zπ

4
.

7Suppose that a subalgebra a of g is in a subspace of m. Since a is a subalgebra, then it is

closed under the Lie bracket [a, a]. However, if a ⊆ m, then [a, a] ⊆ [m,m] ⊆ k. Since m and k are

orthogonal complements of one another, then [a, a] = {0} which means the subalgebra is Abelian.

14



Equation (2.18), then each element U ∈ G = eg admits the following decomposition

U = K2AK1, (2.19)

where K1, K2 ∈ ek, and A ∈ ea.

To demonstrate how the Euler decomposition is just a special case of Cartan

decomposition, let us consider the Lie algebra su(2) = span{−iσX ,−iσY ,−iσZ}.

Note that the choice k = span{−iσZ} and m = span{−iσX ,−iσY } forms a Cartan

decomposition of su(2). The Cartan subalgebra of m is one-dimensional and can

be chosen to be a = span{−iσX}. According to Equation (2.19), the elements of

the group SU(2) can be expressed as U = Zθ3Xθ2Zθ1 which is exactly the Euler

decomposition given in Equation (2.17). Naturally, different choices of k,m, and

a would yield equally valid Euler decompositions (possibly with different rotation

angles).

Cartan decomposition is also found to be extremely invaluable in the study

of two-qubit operations. In general, the associated Lie algebra g = su(4) can be

Cartan decomposed using the choice8

k = span{iσXI , iσY I , iσZI , iσIX , iσIY , iσIZ},

m = span{iσXX , iσXY , iσXZ , iσY X , iσY Y , iσY Z , iσZX , iσZY , iσZZ}, (2.20)

a = span{iσXX , iσY Y , iσZZ},

where σij ≡ σi ⊗ σj is the Kronecker product of the Pauli matrices σX , σY , σZ ,

8The choice of a here is purely conventional. It is usually chosen to fit the interaction

Hamiltonian in consideration. For example, we see a case in Chapter 3 where the choice

a = span{iσZX , iσXY , iσY Z} is more appropriate.

15



and 12 (the 2 × 2 identity matrix). Note that k = su(2) ⊕ su(2) ⊂ su(4). This is

the associated Lie algebra of completely local two-qubit operations, i.e., the group

of two-qubit operations that can be decomposed as U1 ⊗ U2 ∈ SU(2) ⊗ SU(2),

where the subscript indicate which qubit the operator acts on. In other words,

local two-qubit gates are simply one-qubit gates acting on two qubits and do not

produce nonlocal effects such as entanglement9. Nonlocal effects are produced by

the generators in the Cartan subalgebra a which produce gates of the form A =

exp{i (γXσXX + γY σY Y + γZσZZ)}.

Recall that the cnot gate along with the appropriate one-qubit gate set are

universal. Strictly speaking, the cnot gate itself is not necessary. It is only note-

worthy because of its entangling property. Specifically, it belongs to a class of spe-

cial gates called maximally entangling gates which maximizes the entangling power

EP (U) given by [54]

EP (U) = − 1

18
cos(4γX) cos(4γY ) − 1

18
cos(4γZ) cos(4γY )

− 1

18
cos(4γX) cos(4γZ) +

1

6
. (2.21)

For reference, local two-qubit gates have no entangling power10 while maximally

entangling gates such as the cnot gate have EP = 2/9. Note that the entangling

power is strictly determined by the parameters {γX , γY , γZ} of the gate A. Moreover,

if U is maximally entangling then it is possible to produce a cnot from just two

9Nonlocality of a gate does not necessarily imply that it is entangling. The swap gate is an

example of a two-qubit gate that is highly nonlocal yet nonentangling.
10The swap gate also has no entangling power even though the A in its Cartan decomposition

is nontrivial.
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calls to U via the following decomposition [54]:

cnot = K3 U K2 U K1, (2.22)

where Ki are local two-qubit gates. In fact, any maximally entangling gates can

be decomposed in this manner. Thus, a gate set remains universal if we replace

cnot with any maximally entangling gate. This is of practical importance since

it is not always possible to achieve a cnot gate directly from whatever interaction

Hamiltonian is attainable in a qubit implementation.

2.3 Summary

In this chapter, we reviewed some important concepts in quantum computing

and quantum control. We looked at some basic properties of qubits and emphasized

its quantum properties which classical bits lack. We then examined how quantum

gates are produced. We considered the simple case of a qubit encoded onto a nuclear

spin which is controlled by an external magnetic field. Finally, we discussed the idea

of universal gate sets and how techniques such as Cartan decomposition can be used

to realize them.

We have ignored the effects of noise to the gates so far. In many instances,

coherent systematic noise are the leading cause of errors in one- and two-qubit gates.

In the next two chapters, we will discuss how composite pulse sequences can be used

to suppress their effects. We measure the quality of our corrected gates by computing

their fidelity. The gate fidelity is a measure of “closeness” between the ideal gate and
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the noisy gate11. A simple way of doing so is by taking the Hilbert-Schmidt inner

product, (U1, U2) ≡ tr
(
U †
2U1

)
/ tr

(
U †
1U1

)
, which is also referred to as the trace

fidelity. Notice that this requires the evolution operator to compute. Although this

is readily available in theoretical calculations, we generally do not have access to

this information in practice. To give an idea of how fidelity estimation is done in

practice, we use in Chapter 3 a technique called Clifford randomized benchmarking

(RB) [55]. The main idea behind Clifford RB is to apply an increasingly long series

of noisy Clifford gates onto a fiducial state such that the cumulative product of

the Clifford gates results in an identity. The fidelity is estimated by computing the

probability decay of measuring the same fiducial state. For the remainder of the

dissertation, it is sufficient for our purpose to simply use the trace fidelity12.

11There are many ways to define the fidelity F . However, all valid definitions share some

properties such as symmetry (F(U1, U2) = F(U2, U1)) and boundedness (0 ≤ F ≤ 1), to name a

few.
12We may also use the term “infidelity” which is simply 1−F .
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Chapter 3

Simulated Randomized Benchmarking of a

Dynamically Corrected Cross-Resonance Gate

We theoretically consider a cross-resonance (CR) gate implemented by pulse

sequences proposed by Calderon-Vargas & Kestner, Phys. Rev. Lett. 118, 150502

(2017). These sequences mitigate systematic error to first order, but their effective-

ness is limited by one-qubit gate imperfections. Using additional microwave control

pulses, it is possible to tune the effective CR Hamiltonian into a regime where these

sequences operate optimally. This improves the overall feasibility of these sequences

by reducing the one-qubit operations required for error correction. We illustrate this

by simulating randomized benchmarking for a system of weakly coupled transmons

and show that while this novel pulse sequence does not offer an advantage with

the current state of the art in transmons, it does improve the scaling of CR gate

infidelity with one-qubit gate infidelity. This chapter is based on the paper Phys.

Rev. A 102, 032626 [56].
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3.1 Introduction

The ability to implement high-fidelity gates is a necessary requirement for cre-

ating a fully functional quantum information processor. To this end, fixed-frequency

superconducting transmons [57] show great promise [58, 59], as they have been used

to theoretically and experimentally demonstrate one-qubit gates [60–64] with fideli-

ties as high as 99.97% [64]. However, generating two-qubit entangling operations

with similarly high fidelities remains a challenge. A standard approach to entangling

fixed-frequency transmons is through the cross-resonance (CR) effect [65–68]. The

CR effect can be observed in a system of two off-resonant fixed-frequency transmons

with a small static coupling (e.g., through a quantum bus [69]). By irradiating one

transmon at the transition frequency of the other, the coupling is modified by a

factor whose magnitude is roughly proportional to the ratio of the microwave drive

amplitude and the interqubit detuning.

Theoretical considerations have shown that the CR gate is significantly af-

fected by systematic errors attributed to high-energy excitations of the weakly an-

harmonic transmon and to crosstalk induced by the CR microwave drive [70, 71].

These processes give rise to unwanted terms in the CR effective Hamiltonian. This

necessitates the use of control techniques such as composite pulse sequences [72, 73]

in order to isolate the desired entangling dynamics. In the case of a CR gate, such

gate errors can be eliminated by a secondary control pulse on the target qubit which,

in conjunction with pulse sequences, can result in CR gate fidelities exceeding 99%

[74]. However, the pulse sequence used in Ref. [74] is not capable of addressing all
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coherent systematic errors to leading order.

In this chapter, we analyze how well a different, recently discovered generic

composite pulse sequence [75] would perform in the specific application of fixed-

frequency transmons coupled via the CR effect as opposed to the conventional ap-

proach. This new sequence inserts local π rotations between repeated application of

an entangling gate to dynamically correct all coherent systematic errors in that en-

tangling gate, but in practice there is a tradeoff between that reduction of error and

the introduction of errors coming from the insertion of imperfect local π pulses. The

purpose of this paper is to examine this tradeoff for the case of CR-gated transmons

and determine the conditions for which there is a net benefit.

We theoretically simulate standard Clifford randomized benchmarking (RB) to

assess the CR gate performance and show that, while there is no benefit to using the

sequence of Ref. [75] with current transmon noise levels and single-qubit fidelities, as

single-qubit fidelities improve the new pulse sequence could provide better two-qubit

RB fidelities than the currently used dynamical correction scheme.

3.2 Dynamical Error Correction via Pulse Sequences

We begin by summarizing the formalism developed in Ref. [75]. We are inter-

ested in developing a protocol that allows us to dynamically correct coherent sys-

tematic error affecting an arbitrary two-qubit entangling gate. To this end, Ref. [75]

presented a family of composite pulse sequences that are composed using repetitions

of the nonlocal gate (θ)ab = exp [−i (θ/2)σab], where a, b ∈ {X, Y, Z}, which can be
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generated from any arbitrary two-qubit coupling along with appropriate one-qubit

rotations [76, 77]. In practice, the building block (θ)ab may contain errors, which we

only consider up to the leading order. Thus, we have

(θ)ab = exp

[
−iθ

2
σab

]
I + i

∑

i,j∈{I,X,Y,Z}

ϵijσij


 , (3.1)

where ϵij is constant in time and is hereafter referred to as the error in the ij error

channel. The pulse sequences have the general form

σ
(n)
echo (θ)ab σ

(n)
echoσ

(n−1)
echo (θ)ab σ

(n−1)
echo . . . σ

(1)
echo (θ)ab σ

(1)
echo

= exp

[
−iθ

2

n∑

l=1

ξlσab

]

×
{
I + i

∑

i,j

ϵijσij

n∑

m=1

ζ ijm exp

[
i
θ

2
(χij − 1)

m−1∑

l=1

ξlσab

]}
,

(3.2)

where σ
(l)
echo denotes a local π rotation of the form σcd ≡ σc ⊗ σd with c, d ∈

{I,X, Y, Z} hereafter referred to as an echo pulse, and

ξl ≡





+ 1, if
[
σ
(l)
echo, σab

]
= 0,

− 1, if
{
σ
(l)
echo, σab

}
= 0,

(3.3)

ζ ijm ≡





+ 1, if
[
σ
(l)
echo, σij

]
= 0,

− 1, if
{
σ
(l)
echo, σij

}
= 0,

(3.4)

χij ≡





+ 1, if [σij, σab] = 0,

− 1, if {σij, σab} = 0.

(3.5)

We refer to a sequence containing n applications of the noisy entangling operation

as a “length-n” sequence. To eliminate the effects of the ij error channel to leading

order, we require
n∑

m=1

ζ ijm exp

[
i
θ

2
(χij − 1)

m−1∑

l=1

ξlσab

]
= 0. (3.6)
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To simplify this robustness condition, Ref. [75] considered two cases: one where only

commuting errors are present (χij = 1) and one where only anticommuting errors

are present (χij = −1).

Let us first consider the case where we only have errors that commute with

the entangling operation (θ)ab. In this case, Equation (3.6) reduces to

n∑

m=1

ζ ijm = 0. (3.7)

This immediately suggests that the robustness constraint is satisfied only for even

values of n. The robustness condition in Equation (3.7) for a length-2 sequence

requires ζ ij1 = −ζ ij2 . Setting ζ ij1 = 1 implies that the first echo pulse commutes with

all the errors. Without loss of generality, we can choose the first pulse to be the

identity operator for simplicity. Note that, in order to have a non-identity operation,

the second pulse must commute with σab, i.e., ξ2 = 1. The second pulse must also

anticommute with all the errors in order to satisfy the robustness condition. If

every potential commuting errors are present, this is not possible since there is no

choice of σ
(2)
echo that will simultaneously anticommute with all commuting errors,

[σ
(2)
echo, σij] = 0∀ ij ∋ [σij, σab] = 0. A length-2 sequence can cancel four of the seven

commuting error terms while producing an entangling operation, which may be all

that is necessary in certain situations, but no more. (This can be quickly verified

for any specific choice of σab by simply listing all possibilities, but see Appendix A

for the general proof.)

Nonetheless, with the exception of error in the ab channel itself, all errors that

commute with σab can be eliminated to first order by using two nested applications
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of a length-2 sequence, i.e., a length-4 sequence. For instance, the length-4 sequence

U (4) [(θ)ab] ≡ (θ)ab σaI (θ)ab σaIσcc (θ)ab σaI (θ)ab σaIσcc

= (θ)ab σaI (θ)ab σbc (θ)ab σaI (θ)ab σbc

= exp

[
−i4θ

2
σab

] (
I + O

(
ϵ2
))
, (3.8)

where {σcc, σab} = 0, eliminates all commuting error channels to first order except

for the ab channel itself.

We now consider the complementary case where all the errors instead anti-

commute with the entangling operation (θ)ab. The robustness constraint in Equa-

tion (3.6) becomes
n∑

m=1

ζ ijm exp

[
−iθ

m−1∑

l=1

ξlσab

]
= 0. (3.9)

Ref. [75] showed that a nontrivial solution can be found when n = 5, ξl = 1,

ζ(1,2,4,5) = ±1, ζ3 = ∓1, and θ = θ0 ≡ arccos
[
(
√

13 − 1)/4
]
≈ 0.27π. A set of echo

pulses that correspond to these values are σ
(1,2,4,5)
echo = I and σ

(3)
echo = σab. Thus, a

length-5 sequence that corrects all anticommuting errors to leading order is given

by

U (5) [(θ0)ab] ≡ (θ0)ab (θ0)ab σab (θ0)ab σab (θ0)ab (θ0)ab

= exp

[
−i5θ0

2
σab

] [
I + O

(
ϵ2anticomm

)]
. (3.10)

The resulting gate in Equation (3.10) is nearly maximally entangling, but it

is not locally equivalent to a cnot. We can, however, construct a gate locally

equivalent to a cnot that can serve as a two-qubit Clifford group generator by
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using two applications of the dynamically corrected gate:

UClif2 = exp

[
−iψ

2
σ

′
]
U (5) exp

[
−iϕ

2
σ

′
]
U (5) exp

[
−iψ

2
σ

′
]
, (3.11)

where ψ = 2 arctan[(
√
−57 + 16

√
13)/(4 −

√
13 + 2

√
−7 + 2

√
13)] ≈ 0.36π, ϕ =

−2 arccos[−1/(2
√

−14 + 4
√

13)] ≈ −1.56π, and σ
′ ∈ {σIX , σIY , σIZ , σXI , σY I , σZI}

such that {σ′
, σab} = 0.

It is possible to combine a length-2 (or length-4) sequence with a length-5

sequence in order to generate a length-10 (or length-20) sequence that can address

both commuting and anticommuting error channels simultaneously. Furthermore,

all of these pulses can also be combined with a BB1-like pulse sequence in order to

correct the ab channel errors. First-order error in this channel can manifest from

gate mistiming or fluctuations in the effective interqubit coupling, both of which

result in over/under-rotation of the entangling operation. We refer the reader to

Ref. [75] for a more detailed discussion.

Finally, we wish to emphasize that although the rest of this manuscript fo-

cuses on the application of the length-5 pulse sequence to fixed frequency transmon

qubits, similar considerations apply in any other scenario having the key feature that

the errors in the entangling gate anticommute with the entangling operator. For

example, in a silicon-based system of two double quantum dots (DQDs), each con-

taining a single spin, coupled through a resonator [78]. The resonator is coupled to

only one of the quantum dots, which makes the effective coupling dependent on the

magnetic gradient within the DQD. Imperfections on the magnetic field gradient,

which can be caused by either an anisotropy in the electron g-tensor or misalignment
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Figure 3.1: Circuit diagrams for the two-qubit Clifford generator implemented using

the ECR, the length-2 sequence, and the length-5 sequence (see Equation (3.11)).

The top (bottom) line corresponds to the control (target) qubit. The X and Z gates

are the usual Pauli gates and RZ(θ) is a rotation about the Z-axis by an angle θ.

The generated Clifford gate is locally equivalent to a CNOT gate in all cases.

of the local micromagnet, causes systematic commuting and anticommuting errors

to emerge. These can be addressed by a length-5 sequence or a combination of a

length-2 and a length-5 sequence depending on the severity of the error. However,

from this point on we use numbers appropriate for the CR gated transmon case.

3.3 Dynamically Corrected CR Gate

We now apply the formalism we summarized in Section 3.2 to a CR gate. We

consider a system of two fixed off-resonant transmons that are weakly coupled to

a bus resonator. We then apply a constant-amplitude microwave driving field on

one qubit, the control qubit, at the transition frequency of the other qubit, the

target qubit. In the weak driving limit, a block-diagonal effective Hamiltonian for
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a CR gate can be perturbatively constructed using the Schrieffer-Wolff transforma-

tion [70]:

HCR
eff =

1

2
hZIσZI +

∑

j∈{X,Y,Z}

(
1

2
hIjσIj +

1

2
hZjσZj

)
, (3.12)

where the expressions for hij in terms of the physical parameters are given in the

appendix of Ref. [70]. This approach differs from previous derivation of the CR

Hamiltonian [65] in that it yields coherent error terms pertaining to higher-energy

level leakage. We note that the Hamiltonian belongs in the embedding su(2) ⊕

su(2) ⊕ u(1) ⊂ su(4). In particular, u(1) is generated by σZI which yields a factor

in the time-evolution operator that can be removed by applying a local Z-rotation

on the first qubit. For this reason, we will ignore the effects of the σZI term. The

entangling term here is the σZX term which, if factored out, yields

U(t) = exp

[
− i

2
thZXσZX

]
I + i

∑

j∈{X,Y,Z}

(ϵIjσIj + ϵZjσZj)


 , (3.13)

where ϵij can be calculated analytically up to a desired order using the Baker-

Campbell-Hausdorff (BCH) formula. The pulse sequence building block, (θ)ZX, can

then be obtained by setting t = θ/hZX.

In experiments, the microwave drive acting on the control qubit often leaks

into the target qubit which results in on-resonant crosstalk. This introduces large

IX and IY terms in the effective Hamiltonian. Thus, in practice, the commuting

errors are in the ZX and IX channels, while the anticommuting ones are in the

IY , IZ, ZY , and ZZ channels [74]. Neglecting the ZX error channel for the

moment, which is reasonable provided that the errors are static and the evolution

time of the entangling gate is properly compensated through calibration, the result
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in Section 3.2 suggests that we apply a length-2 sequence with a σXZ echo pulse to

eliminate the IX channel. In addition, this choice of echo pulse can also eliminate

any higher-order ZI channel errors that may accumulate due to the presence of large

anticommuting error terms. Although alternatives such as σXY can serve the same

purpose, we choose σXZ in order to take advantage of novel control methods that

allow implementation of near-perfect virtual Z-gates via abrupt phase modulation

of the microwave control drive [64].

We note that Refs. [74] and [73] use an operationally distinct pulse sequence

called an echoed CR (ECR) gate which has the same effect as the above length-2

sequence with an XZ echo pulse. The key operational difference between the ECR

scheme and our length-2 sequence is the sign reversal in the entangling operation,

ECR ≡
(π

4

)
ZX

σXI

(
−π

4

)
ZX

σXI , (3.14)

which can be implemented experimentally by reversing the signal of the microwave

drive (Ω → −Ω). Unlike in our length-2 scheme, a σXI echo pulse, which anticom-

mutes with σZX , is applied to avoid implementing a purely local gate. We show

in Appendix B that this yields a mathematically equivalent pulse as the length-2

sequence in the case of a CR Hamiltonian. So in the remainder of our discussions,

the length-2 sequence and the ECR gate are equivalent.

Another approach involves applying a secondary microwave pulse onto the

target qubit so as to eliminate particular terms in the Hamiltonian [74]. This can-

cellation pulse is calibrated such that it eliminates the hIX , hIY , and hZY terms.

Using the experimental parameters provided in Ref. [74], it can be verified numeri-
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cally that the remaining terms have different scales, hIZ ≪ hZZ ≪ hZX . Thus, the

dominant source of remaining error comes from the hZZ term of the effective Hamil-

tonian, which translates to errors in the ZZ and IY channels. Although a length-2

sequence with an XZ echo pulse (i.e., ECR) can partially suppress these anticom-

muting errors, one can instead get complete first-order correction using the length-5

sequence of Equation (3.10), U (5)[U(θ0/hZX)], with ab = ZX. Then, to obtain a

two-qubit Clifford generator, we use Equation (3.11) with σ
′

= σIZ , where we again

make use of virtual Z gates. This yields an entangling Clifford gate compensated

for all relevant coherent systematic errors to leading order.

It is important to keep in mind that the theory we summarized in Section 3.2

assumes that the echo pulses can be implemented perfectly. This is not the case in

practice and echo pulse errors can be detrimental to the sequence’s efficacy. Even

though a longer and theoretically better sequence can be obtained by combining

the length-2 and length-5 sequences, the resulting length-10 sequence requires more

potentially noisy one-qubit gates to implement. So, depending on the level of one-

qubit error, a length-2 or length-5 sequence can be more effective than a length-10

sequence. The supplemental material of Ref. [75] indicates that one-qubit gate errors

on the order of, at most, 10−5 are required in order to build a cnot out of a length-

20 sequence with gate error below 10−3. This may be very difficult to realize in the

near future, which is why we focus our discussion to the length-2 and the length-5

sequence. In principle, a
(
π
2

)
ZX

gate generated using the length-2 sequence requires

4 one-qubit gates, while UCliff2 requires 14 one-qubit gates. However, by taking

advantage of virtual Z-gates, we can reduce this to 2 and 4 physical one-qubit gates,

29



respectively.

Finally, we note that the two-qubit Clifford gate generated by the length-2 se-

quence,
(
π
2

)
ZX

, and by the length-5 sequence, UClif2 , are different up to local Clifford

rotations. In both cases, though, the local invariants of the resulting composite gate

are equal to that of a CNOT gate. We present in Fig. 3.1 a circuit diagram for each

of the cases we discussed.

3.4 Simulated Randomized Benchmarking

To assess the performance of our dynamically corrected gate, we simulate

standard Clifford randomized benchmarking (RB) [55] using

{
I,X±π

2
, X±π, Z±π

2
, Z±π,UClif2

}

as our generating set where, as an example, Xπ denotes a π rotation about the X-

axis. We include quasistatic error in all local X-rotations using the following noise

model:

Xθ → exp

[
−iε

2

rxσX + ryσY + rzσZ√
r2x + r2y + r2z

]
Xθ, (3.15)

where {rx, ry, rz} are sampled uniformly from [−1, 1], and ε is sampled from a normal

distribution centered at 0 with standard deviation δθ. We present in Appendix C

an analytical formula that relates the one-qubit RB infidelity to δθ. On the other

hand, Z-rotations are performed with no error, corresponding to the virtual gate

method described in Ref. [64]. We also calculate the trace infidelity, which is not

efficiently accessible in experiment, but is a less computationally demanding measure

for theory, especially in the limit of very weak noise.
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Figure 3.2: (TOP) Solid symbols show randomized benchmarking (RB) two-qubit

Clifford gate infidelity as a function of one-qubit RB infidelity for the length-2 and

length-5 sequences. A current experimentally attainable value of one-qubit infidelity

is 3 × 10−4 [64], corresponding to the RB points in the center of the plot. Open

symbols show the trace fidelity. (BOTTOM) A standard RB decay plot comparing

the length-2 and length-5 sequences for the case where one-qubit infidelity is set to

3 × 10−5.
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We use the experimental parameters reported in Ref. [74]: ω1/2π = 5.114

GHz, ω2/2π = 4.914 GHz, δ1/2π = δ2/2π = −0.330 GHz, Ω/2π = 60 MHz, and

J/2π = 3.8 MHz. The evolution time for the building block of the length-2 sequence,

(
π
4

)
ZX

, is t = π/(4hZX) = 49.2ns, while that of the length-5 sequence, (θ0)ZX, is

t = θ0/hZX = 54ns. In order to simulate the effect of the cancellation pulse, we

only include hIZ , hZX , and hZZ in our effective Hamiltonian. Furthermore, we

ignore relaxation errors in our simulations and focus solely on coherent systematic

error. Each point in the decay curve of our RB simulations are averaged over 1000

different sequences and noise realizations. The sequence length is set just enough

to find a good fit for the survival probability function apk + b, where a, b, and p are

fitting parameters and k is the sequence length. The results of our simulations are

presented in Fig. 3.2.

Note that we do not include the initial portion of the decay from 100% down

to around 90% (not plotted) in the fit, since there is non-exponential behavior there,

particularly in the case of the length-5 decay. Non-exponential decay is commonly

attributed to gate-dependent errors or low-frequency time-dependent noise [79], both

of which are present in our simulations. Gate-dependent errors are present because

we simulated RB with perfect Z-gates but noisy X-gates, as in experiments. Low-

frequency noise effects appear because we perform each individual RB run with a

fixed set of randomly generated noisy one-qubit Clifford group, again corresponding

to the likely experimental case. We keep generating new sets of noisy Clifford gates

until we exhaust all of our RB sequences. This builds statistics consistent with the

distribution from which the noisy one-qubit gates are generated. A non-exponential
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decay is obtained by averaging over this ensemble of RB data.

We find that the length-2 sequence performs similarly to the length-5 sequence

when the one-qubit RB error is set to 3 × 10−4 to match Ref. [64]. The length-2

sequence yields a fidelity of 99.7% and the length-5 sequence, which takes about five

times as long (540ns +4t1Q vs 98ns +2t1Q, where t1Q denotes the echo pulse gate

time), yields 99.8% 1. However, if the one-qubit errors were reduced, we see that

the length-5 sequence increasingly outperforms the length-2.

We can gain further insight by comparing the performance of the two pulse

sequences in the limit where there are no one-qubit errors. For this task we use

the trace fidelity since simulated randomized benchmarking requires simulating in-

creasingly long sequences to obtain enough fidelity decay to fit as the one-qubit gate

error is reduced. We rearrange Equation (3.1) and isolate the error terms:

δU = exp

[
i

2
thZXσZX

]
U(t) − I

= i
∑

j∈{I,X,Y,Z}

ϵIjσIj + ϵZjσZj.

We numerically calculate this for both schemes, assuming perfect one-qubit gates,

1The reason our simulated length-2 sequence fidelity is slightly higher than the experimental

one reported in Ref. [74] is simply because we used the more recent lower one-qubit noise value. If

we use the conditions of Ref. [74], our trace fidelity calculation yields an error of roughly 6× 10−4

which is consistent with the experimentally observed values.
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and get

δUL2 = −2.4 × 10−4I + .015i(σIY − σZZ)

+ 7.5i× 10−4(σIZ + σZY ) + 3.5i× 10−4σZX

δUL5 = −2i× 10−5σIX − 4.8i× 10−4σZX ,

where we have omitted any error terms with magnitudes below 10−5. Since the

gate infidelity is proportional to ϵ2ij, we see that the length-5 scheme can reach error

rates on the order of 10−7 at best, while the length-2 scheme can only reach 10−4.

The much lower ideal infidelity of the length-5 sequence is because it cancels all

the leading order errors in U(t), whereas the length-2 sequence is not capable of

eliminating the anticommuting error channels IY and ZZ. Of course, the actual

performance of both sequences is highly dependent on the severity of the one-qubit

gate imperfections, as is evident in Fig. 3.2, but one can see there that the trace

infidelity of the length-5 sequence keeps decreasing with decreasing single-qubit error

while the length-2 sequence plateaus in the 10−4 region. Moreover, the crossing point

where the length-5 is predicted to outperform the length-2 sequence occurs when the

one-qubit infidelity is roughly 1 × 10−4. This indicates that the length-5 sequence

may be experimentally viable in the near future if one-qubit gate fidelities can be

brought above 99.99%.

One caveat to this conclusion is that, as previously noted, the two-qubit Clif-

ford generated from length-5 sequences is about five times slower than its length-2

counterpart. Thus, the length-5 sequence will suffer more from T1 relaxation error,

and its contribution to gate infidelity goes roughly as Tgate/T1 [80]. One could con-
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Figure 3.3: A contour plot of two-qubit infidelity as a function of relaxation time, T1,

and echoed dephasing time, TCPMG
2 , for the length-2 sequence (TOP) and the length-

5 sequence (BOTTOM), assuming one-qubit gates with no coherent or leakage errors

and an average gate time of 30ns. Unphysical regions where TCPMG
2 > 2T1 are

excluded. The dashed cyan contour indicates the crossing point where the two

sequences have equal infidelities. The same colorscale is used for both panels.
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sider increasing the CR drive amplitude Ω to speed up the gate. Numerical analysis

of the CR gate in the strong driving regime indicates that the Hamiltonian terms

that we considered as systematic error cannot be treated perturbatively when using

a näıve cosine ramp model for the drive [71]. These terms can potentially be mini-

mized while reducing the CR gate time by using pulse shapes derived from optimal

control schemes which can result in CR gates under 100ns [81]. Alternatively, one

could also consider increasing the coupling between the qubits to speed up the gate,

since the corresponding increase in σZZ crosstalk due to unwanted excitations to

higher energy transmon states would anyways be canceled by the length-5 sequence,

but the issue is that the diminished qubit addressability would likely lower one-

qubit echo pulse fidelities. However, at least the task of engineering a high-fidelity

two-qubit gate is then effectively reduced to the problem of engineering high-fidelity

local gates.

Without those sort of changes to speed up transmon operations, one has to

consider in more detail the trade-off between reduction of coherent error by the

length-5 sequence and increased incoherent error due to the longer gate time of the

sequence. We aim to quantify this now by analyzing the effects of decoherence.

For simplicity, we only consider dephasing and relaxation from the first transmon

excited state to the ground state. Using the same parameters as above and setting

the ground state energy to zero, we simulate the evolution by a Lindblad master

equation

ρ̇ = −i
[
HCR

eff , ρ
]

+
1

T1

∑

j=1,2

D
[
σ−
j

]
ρ+

1

TCPMG
2

D
[
Π1
j

]
ρ, (3.16)
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where ρ is the density matrix, T1 is the relaxation time of the two qubits, TCPMG
2

is the dephasing time measured via Carr-Purcell-Meiboom-Gill (CPMG) pulse se-

quence (used here as a lower bound on T2), σ
−
j (Π1

j) is the jth qubit’s lowering

operator (projection operator to the |1⟩ state), and D is the damping superoperator

D [A] ρ = AρA† − 1

2
A†Aρ− 1

2
ρA†A. (3.17)

In order to focus on the role of decoherence, we assume that each one-qubit gate in

the sequence is implemented without coherent or leakage errors and with an average

gate time of 30 ns [74] during which the transmons can relax. The average two-qubit

infidelity can then be calculated [82]:

⟨F ⟩ =
1

16

[
4 +

1

5

∑

i,j=I,X,Y,Z

tr
[
UσijU

†M (σij)
]
]
, (3.18)

where U is the ideal unitary time-evolution operator, M is a trace-preserving linear

map, and σij = σi⊗σj are the 15 non-identity Kronecker products of Pauli matrices.

We plot the results in Fig. 3.3.

The current state-of-the-art transmons can achieve average coherence times

of T1 = 0.23ms and TCPMG
2 = 0.38ms [83]. For those values, as opposed to the

case of purely coherent error considered in Fig. 3.2, Fig. 3.3 indicates that even

in the absence of one-qubit coherent gate error, the length-5 sequence does not

outperform the length-2 sequence due to the effects of incoherent error over the

longer gate time. However, at increased coherence times of T1, T
CPMG
2 ≈ 1.6ms, the

fidelity of the length-5 sequence begins to surpass that of the length-2 sequence. For

T1, T
CPMG
2 ≫ 1ms the performance of the length-2 sequence plateaus at 3.8 × 10−4,
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while the length-5 sequence continues to show improvement until it also eventually

plateaus at roughly 3 × 10−7, consistent with what we observed in Fig. 3.2(a).

Thus, while the length-5 sequence is not currently practical, given the rate

of improvement in coherence times in recent years (roughly an order of magnitude

every three years) [84] and the amount of attention being devoted to this task [85],

it is reasonable to expect the length-5 sequence to become a viable option in the

near future.

3.5 Summary

We have shown how to dynamically correct a CR gate using a recently devel-

oped composite pulse sequence and we theoretically simulated a randomized bench-

marking protocol for an experimentally accessible comparison of its performance

with the standard ECR scheme, which is equivalent to a length-2 pulse sequence.

The application of a cancellation pulse onto the target qubit eliminates a signifi-

cant amount of coherent systematic error from the effective CR Hamiltonian. The

length-2 sequence cannot address all of the remaining dominant errors, all of which

anticommute with the entangling operation, but the newly developed length-5 se-

quence can, at the cost of additional local rotations and a slower entangling gate.

We find that both sequences perform similarly against coherent error when using

one-qubit gates with currently achievable fidelities. However, we also show that the

length-5 sequence performance could scale much better than the length-2 sequence

when one-qubit gates are improved.
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The pulse sequences we presented can be easily extended to systems with more

than two fixed transmon qubits. Ideally, any given pair of control and target qubit

must be decoupled from the remaining idle qubits when generating a two-qubit

operation. In cases where more than two qubits share the same bus, the static

always-on coupling can lead to spurious Z interactions with one or more of the idle

qubits. One work-around to this problem is by performing the CR operation on the

control and target qubit while decoupling the idle qubits through Hahn-echo-like

pulses [86, 87]. We can apply the same idea to the length-2 and length-5 sequence

in order to simultaneously address entangling gate errors within the control-target

subspace and spurious errors with the idle qubits. However, the additional echo

pulses required to implement this makes the sequence even longer than it already

is.

The long gate time of the length-5 sequence already makes it impractical for

current coherence times, as the improvement the sequence is designed to produce

against coherent errors is outweighed by the increased susceptibility to incoherent

errors. However, once coherence times are increased beyond 1ms, the sequence we

have presented in this paper will become useful for increasing overall two-qubit gate

fidelity.
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Chapter 4

Stroboscopically Robust Gates For Capacitively

Coupled Singlet-Triplet Qubits

Recent work on Ising-coupled double-quantum-dot spin qubits in GaAs with

voltage-controlled exchange interaction has shown improved two-qubit gate fideli-

ties from the application of oscillating exchange along with a strong magnetic field

gradient between adjacent dots [88]. By examining how noise propagates in the

time-evolution operator of the system, we find an optimal set of parameters that

provide passive stroboscopic circumvention of errors in two-qubit gates to first order.

We predict over 99% two-qubit gate fidelities in the presence of quasistatic and 1/f

noise, which is an order of magnitude improvement over the typical unoptimized

implementation. This work was based on the paper Phys. Rev. A 99, 012347 [89].

4.1 Introduction

Quantum dot spin qubits provide a promising platform for quantum computing

due to their potential scalability and relatively long coherence times. For single-spin

qubits [90], one-qubit operations with gate fidelities exceeding the fault-tolerant
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threshold have been realized in single-spin qubits [91], but two-qubit gates have

much lower fidelities [92, 93]. Likewise, for singlet-triplet spin qubits [94, 95], which

we focus on below, a recent two-qubit experiment reported only up to 90% entangling

gate fidelity [88]. This can be improved by circumventing the effects of the two main

noise sources, namely fluctuations in the electric confining potential and fluctuations

in the Zeeman energy difference between the quantum dots.

The fluctuation in the confining potential is often attributed to thermal fluc-

tuations in the occupation of nearby charge traps, i.e., charge noise, thus leading to

fluctuations in the local electric field [96]. Relative to the time-scale of spin qubit

rotation times, these fluctuations can be treated quasistatically as a first approxi-

mation, but the actual power spectral density of charge noise in these qubit systems

has been measured to behave like 1/f 0.7 in GaAs [40] and 1/f in Si [41, 97] out to

tens or even hundreds of kHz. The quasistatic part of the noise can be addressed

by applying composite pulse sequences, where noisy gate operations are applied se-

quentially such that the gate errors conspire to cancel one another. These sequences,

however, typically only suppress noise that is slow on the timescale of the sequence,

and amplify noise that is faster [47].

The Zeeman fluctuations manifest in two ways depending on how the gradi-

ent is generated. When the gradient comes from the Overhauser effect due to the

hyperfine coupling of the dot electron with the nuclear spin of the host semiconduc-

tor, such as in GaAs-based architectures using dynamical nuclear spin polarization

[98–100], electron-mediated nuclear spin flip-flops produce 1/f 2 noise [101, 102] that

is essentially quasistatic. When the gradient comes from a micromagnet structure

41



[103], as used in some GaAs devices [104, 105] and which is necessary for silicon-

based architectures with far fewer spinful nuclei [106], it is possible for charge noise

to also couple in via small shifts in the dot position, again resulting in higher fre-

quency noise [107].

Two-qubit gate fidelity in singlet-triplet systems is mostly limited by charge

noise when the qubit dynamics is dominated by the exchange interaction [94, 108].

Recent work on capacitively-coupled, double-quantum dot spin qubits with gate-

controlled exchange coupling between the spins has demonstrated suppression of

charge noise by applying a strong magnetic gradient between the two dots in each

qubit that is much stronger than the exchange interaction [88]. An analytical expres-

sion for the full time-evolution operator of this particular system can be obtained

by using the rotating-wave approximation (RWA) [109].

In this chapter, we analyze how perturbations in the control parameters of a

capacitively-coupled singlet-triplet system affect the time-evolution and present a

strategy to minimize those effects. In Section 4.2, we derive the time-evolution oper-

ator using the RWA. We consider in Section 4.3 two different parameter regimes for

two qubits with similar energy splitting: when the magnetic field gradient dominates

the splitting, and when the exchange interaction dominates instead. We calculate

the leading order errors and show that certain parameter choices result in a syn-

chronization of oscillating error terms such that a passive reduction of gate errors

occurs at specific times. In Section 4.4 we examine the effects of the optimization

in the presence of both quasistatic noise and 1/f noise. We find that our optimiza-

tion isolates the effects of noise into particular su(4) basis elements, allowing us to
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prescribe composite pulse sequences to mitigate the remaining errors. In principle,

this work allows the improvement of experimental two-qubit gate fidelities to above

99%. While most of our work is presented in the limit of zero pulse rise time, we

show in Appendix D that typical finite rise times do not pose a challenge to the

stroboscopic error suppression.

4.2 The Time-Evolution Operator

We consider a system of capacitively-coupled singlet-triplet qubits, which cor-

responds directly to the experimental setup in Ref. [88], but our results are also

applicable to any system similarly described by a static Ising coupling and local

driving fields. The effective two-qubit Hamiltonian is given by

H =
2∑

i=1

(
Ji + ji cos[ωit]

2
σ
(i)
Z +

hi
2
σ
(i)
X

)
+ ασZZ , (4.1)

where σij ≡ σ
(1)
i ⊗ σ

(2)
j with {i, j} ∈ {I,X, Y, Z} collectively form a 15-dimensional

su(4) basis. The exchange interaction between two spins in the ith qubit is a function

of the difference in electrochemical potential between the dots, εi, which can vary in

time. By oscillating εi, the exchange is caused to oscillate at a driving frequency ωi,

which makes the effective exchange interaction oscillate about an average value Ji

with an amplitude ji. The static, longitudinal magnetic field gradient is denoted by

hi; this can be generated by using either a micromagnet or, in GaAs, through the

hyperfine interaction between the dot electrons and the nuclear spins in the semicon-

ductor. Thus, the static part of a qubit’s total energy splitting is Ωi ≡
√
h2i + J2

i .

Finally, α is the electrostatic coupling strength between the adjacent qubits, which
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is proportional to the product of the two qubits’ electric dipole moments.

Ref. [109] reported an approximate time-evolution operator for the aforemen-

tioned Hamiltonian using the RWA. There it was implicitly assumed that jiJi
2Ωi

≪ Ωi.

We lift this assumption and apply the same formalism to find a more general de-

scription of the time evolution. We begin by first performing a local rotation to

align the x-axis along the vector sum of the combined local static fields

U = exp

[
ı

2

2∑

i=1

ϕiσ
(i)
Y

]
U1 exp

[
− ı

2

2∑

i=1

ϕiσ
(i)
Y

]
, (4.2)

where ϕi ≡ tan−1(Ji/hi) and U is the lab-frame evolution operator. We then trans-

form to the rotating frame

U1 = exp

[
−ı

2∑

i=1

(
ωit+ ξi(t)

2

)
σ
(i)
X

]
U2, (4.3)

where the inclusion of ξi(t) = jiJi sin(ωit)
ωiΩi

generalizes Ref. [109]. We perform the RWA

by doing a coarse-grain time-average over a time scale 1/α ≫ τ ≫ max{1/ωi}. The

addition of ξi(t)
2

in the local rotation causes some of the terms in the rotating-frame

Hamiltonian to have nontrivial averages. The time-averaged evolution operator is

given by

U2 = exp

[
− ıt

(
2∑

i=1

(
χiσ

(i)
Z +

Ωi − ωi
2

σ
(i)
X

)

− h1J2α

Ω1Ω2

J1

[
j1J1
ω1Ω1

]
σZX − h2J1α

Ω1Ω2

J1

[
j2J2
ω2Ω2

]
σXZ

+
J1J2α

Ω1Ω2

σXX +
h1h2α

2Ω1Ω2

(IY Y σY Y + IZZσZZ)

)]
, (4.4)

where Ji[z] is the i th order Bessel function of the first kind, χi ≡
hiωiJ1

[
jiJi
ωiΩi

]
2Ji

is the
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Rabi frequency, and

IY Y =
1

τ

∫ τ

0

2 sin (ω1t+ ξ1) sin (ω2t+ ξ2) dt (4.5)

IZZ =
1

τ

∫ τ

0

2 cos (ω1t+ ξ1) cos (ω2t+ ξ2) dt. (4.6)

We require ωi ≫
{∣∣∣hiji2Ωi

∣∣∣ , α
}

to ensure the validity of the RWA.

To gain a better understanding of the entangling dynamics, we take another

transformation to eliminate the remaining local operators in the Hamiltonian:

U2 = exp

[
−ıt

2∑

i=1

(
Ωi − ωi

2
σ
(i)
X + χiσ

(i)
Z

)]
U3. (4.7)

We set the control field at resonance with the energy splitting, ωi = Ωi, thus elim-

inating the σ
(i)
X terms. Note that by completely dropping this off-resonant term

below, we have limited the validity of our analysis to cases where perturbations in

Ωi are much less than χi. Lifting this assumption would not permit us to obtain a

time-independent Hamiltonian. Nonetheless, this is not an unrealistic assumption.

At this point, we can proceed the same way as in Ref. [109]. We apply another round

of the RWA which requires |χi| ≫ α. If ||χ1|−|χ2|| ≪ α, the average time-evolution

operator is given by

U3 = exp

[−ıαt
2

(
h1h2IY Y + 2J1J2

2Ω1Ω2

(σXX + σY Y ) +
h1h2
Ω1Ω2

IZZσZZ
)]
, (4.8)

but if ||χ1| − |χ2|| ≫ α, we instead have

U3 = exp

[
− ıt

αh1h2
2Ω1Ω2

IZZσZZ
]
, (4.9)

This reduces to the result of Ref. [109] in the regime hi ≫ Ji, which is experimentally

relevant [88], but it becomes quite different when the exchange is dominant, as in

earlier experiments [94, 108].
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The entangling dynamics depend on whether the qubit energy splittings, Ωi,

are nearly equal or not. If the difference between the two energy splittings is much

larger than α, |Ω1−Ω2| ≫ α, IZZ and IY Y become small. Looking at Equation (4.8)

and (4.9), one can avoid a suppressed coupling rate by setting the Rabi frequencies

equal to one another, χ1 = χ2, and operating in the large exchange regime, Ji ≫ hi.

On the other hand, if the two qubits have similar energy splittings, the effective

coupling rate is ∼ α regardless of which parameter dominates.

4.3 First-Order Error Channels

As previously mentioned, the magnetic field gradient, hi, in singlet-triplet

systems is produced by either micromagnets, as demonstrated in a silicon-based

experiment [106], or the hyperfine interaction between the quantum dot electron and

the nuclear spins, as has often been used in the case of GaAs [98–100]. Whereas the

latter case allows some fine-tuning of hi through dynamic nuclear polarization, the

same is not true for micromagnets. Thus, we consider two main cases of experimental

relevance – when hi is tunable and when it is not. Furthermore, the sensitivity of

the qubits to fluctuations depends on the parameter regime at work. If Ji and hi

are completely uncorrelated, the fluctuation on the qubit energy splitting is given

by

δΩ2
i =

J2
i δJ

2
i + h2i δh

2
i

Ω2
i

. (4.10)

Note that when either Ji or hi completely dominates the energy splitting, the noise

due to the weaker one is suppressed by a factor of their ratio. We know from
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experiments that δhi is mostly quasistatic on the timescale of the gates [101, 102]

and δJi contains both a quasistatic and a 1/f component [40]. Thus, it is best

to suppress the 1/f δJi errors by choosing hi ≫ Ji and then correct the residual

quasistatic errors with spin echo protocols. This is consistent with the improvement

reported in Ref. [88] when the magnetic field gradient was increased.

As discussed in the previous section, rapid entanglement in the hi ≫ Ji regime

only occurs when the two qubit energy splittings are tuned close to one another

(h1 ≈ h2). If one is forced to work with fixed but very different gradients (|h1 −

h2| ≳ min{hi}), which is a possible scenario when micromagnets are used, then

one must work in the Ji ≫ hi regime. Therefore, we will limit our discussion to

these two cases: when hi is dominant and when Ji is dominant. We assume similar

qubit energy splittings in both cases for convenience, particularly when simplifying

Equations (4.5) and (4.6).

4.3.1 Similar qubits with hi ≫ Ji

We consider a system of similar qubits (Ω1 = Ω2) where the magnetic field

gradient dominates the energy splitting (hi ≫ Ji,Ωi ≃ hi) and the driving frequen-

cies are equal and at resonance with the energy splitting (ω1 = ω2 ≡ ω = Ωi) in

the absence of noise. For simplicity, we take the case where the Rabi frequencies

of the two qubits are dissimilar (Equation (4.9)), although our analysis can be ex-

tended to the similar Rabi case easily. In this parameter regime, we can expand

J1 [z] to first-order and obtain χi ≈ hiji
4Ωi

, and ξi(t) ≈ 0 which allows us to evaluate
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Table 4.1: First-order errors obtained by projecting ∆ onto an su(4) basis formed

by Kronecker products of Pauli operators.

σIX

(
ı(h2δJ2−J2δh2) cos(ωt)

2Ω2
2

− ı(h2δh2+J2δJ2)
h2j2

)
cos
(
h1h2αt
Ω1Ω2

)
sin(2χ2t)

σIY
ı(h2δJ2−J2δh2)

(
cos
(

h1h2αt
Ω1Ω2

)
cos(ωt) cos(2χ2t)−1

)

2Ω2
2

+
2ı(h2δh2+J2δJ2) cos

(
h1h2αt
Ω1Ω2

)
sin2(χ2t)

h2j2

σIZ
ı(h2δJ2−J2δh2)

(
j2J2t−2Ω2 sin(ωt)

)
4Ω3

2
− ıh2tδj2

4Ω2

σXI

(
ı(h1δJ1−J1δh1) cos(ωt)

2Ω2
1

− ı(h1δh1+J1δJ1)
h1j1

)
cos
(
h1h2αt
Ω1Ω2

)
sin(2χ1t)

σXX 0
σXY 0

σXZ

(
ı(h1δJ1−J1δh1) cos(ωt) cos(2χ1t)

2Ω2
1

+ 2ı(h1δh1+J1δJ1) sin
2(χ1t)

h1j1

)
sin
(
h1h2αt
Ω1Ω2

)

σY I
ı(h1δJ1−J1δh1)

(
cos
(

h1h2αt
Ω1Ω2

)
cos(ωt) cos(2χ1t)−1

)

2Ω2
1

+
2ı(h1δh1+J1δJ1) cos

(
h1h2αt
Ω1Ω2

)
sin2(χ1t)

h1j1

σY X 0
σY Y 0

σY Z

(
ı(J1δh1−h1δJ1) cos(ωt)

2Ω2
1

+ ı(h1δh1+J1δJ1)
h1j1

)
sin
(
h1h2αt
Ω1Ω2

)
sin(2χ1t)

σZI
ı(h1δJ1−J1δh1)

(
j1J1t−2Ω1 sin(ωt)

)
4Ω3

1
− ıh1tδj1

4Ω1

σZX

(
ı(h2δJ2−J2δh2) cos(ωt) cos(2χ2t)

2Ω2
2

+ 2ı(h2δh2+J2δJ2) sin
2(χ2t)

h2j2

)
sin
(
h1h2αt
Ω1Ω2

)

σZY

(
ı(J2δh2−h2δJ2) cos(ωt) sin(2χ2t)

2Ω2
2

+ ı(h2δh2+J2δJ2) sin(2χ2t)
h2j2

)
sin
(
h1h2αt
Ω1Ω2

)
sin(2χ2t)

σZZ
ıh2J1αt(h1δJ1−J1δh1)

2Ω3
1Ω2

+ ıh1J2αt(h2δJ2−J2δh2)
2Ω1Ω3

2
− ıh1h2tδα

2Ω1Ω2
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IY Y = IZZ ≈ 1. Thus, combining Equations (4.2), (4.3), (4.7), and (4.9), the total

time-evolution can be written as

U(t) = R1(t) exp

[
− ıt

αh1h2
2Ω1Ω2

σZZ

]
R2(t), (4.11)

where the purely local operators R1(t) and R2(t) are given by

R1(t) = exp

[
ı

2

2∑

i=1

ϕiσ
(i)
Y

]
exp

[
−ı

2∑

i=1

ωit

2
σ
(i)
X

]
exp

[
−ıt

2∑

i=1

χiσ
(i)
Z

]
,

R2(t) = exp

[
−ı
2

2∑

i=1

ϕiσ
(i)
Y

]
.

(4.12)

Since Equation (4.11) is already canonically decomposed into local and nonlocal

components [110], it is clear to see how to “undo” the local part of the evolution

that accompanies the entangling gate. By applying additional local operations, R†
1

and R†
2, in the absence of coupling, we obtain a purely nonlocal σZZ gate,

R†
1(t)U(t)R†

2(t) = exp

[
− ıt

αh1h2
2Ω1Ω2

σZZ

]
. (4.13)

So far we have been careful to distinguish between Ω1 and Ω2 so as to allow for the

perturbative effect of noise, but other than that we have not discussed the effect

of such a perturbation. Noise during the original entangling operation produces

errors in both the nonlocal phase of Equation (4.11) and in its accompanying local

operations given in Equation (4.12). The pre- and post-applied locals, R†
i , only

undo the ideal local rotations accompanying the entangling gate, but any random

perturbations are left uncanceled. By expanding each term in Equations (4.11) and

(4.12) to first order in perturbations δJi, δji, δhi, and δα, and commuting all of the
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perturbations to the right, we may write the effect of the noise in the form

Unl(t) = R†
1(t)U(t) (1+ ∆0 (t))R†

2(t)

= exp

[
− ıt

αh1h2
2Ω1Ω2

σZZ

]
(1+ ∆ (t))

≃ exp

[
− ıt

α

2
σZZ

]
(1+ ∆ (t)) .

(4.14)

where 1 is the identity operator, ∆0 contains the first-order perturbation of the

physical entangling operation U , and ∆ ≡ R2∆0R
†
2 is the resulting perturbation

in the purely nonlocal operation. The approximate equality makes use of the fact

that powers of Ji/hi are negligibly small compared to the dominant errors we wish

to correct. The error ∆ due to the perturbations is reported in Table 4.1 in terms

of its projections onto the 15 su(4) basis elements, henceforth referred to as error

channels,

∆ =
1

4

∑

ij

tr(σij∆)σij. (4.15)

One prominent feature of these error channels is their oscillatory behavior.

Notice that one can, for example, choose parameters such that sin(χit) = 0 at the

end of the entangling gate. By doing so, one effectively eliminates several error

terms in Table 4.1. If we also choose parameters such that cos(ωt) = 0 at the time

that the gate is complete, all but five of the error channels in Table 4.1 (σZI , σIZ ,

σY I ,σIY , and σZZ) will be synchronized to vanish at the gate time. We are thus

left with a gate that is partially corrected, for both quasistatic and 1/f noise. This

stroboscopic circumvention of error requires no knowledge of the errors involved,

only that they are small enough for the higher-order terms in the error expansion

to remain insignificant.
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Table 4.2: The same errors reported in Table 4.1 after substituting the optimized

parameters.

σIY ıJ2δh2−h2δJ2
2Ω2

2

σIZ ı

(
(−1)mh2−2n2J2π

)
(J2δh2−h2δJ2)

2h2Ω2
2

− ıh2tδj2
4Ω2

σY I ıJ1δh1−h1δJ1
2Ω2

1

σZI ı

(
(−1)mh1−2n1J1π

)
(J1δh1−h1δJ1)

2h1Ω2
1

− ıh1tδj1
4Ω1

σZZ
ıh2J1αt(h1δJ1−J1δh1)

2Ω3
1Ω2

+ ıh1J2αt(h2δJ2−J2δh2)
2Ω1Ω3

2
− ıh1h2tδα

2Ω1Ω2

Specifically, stroboscopic error elimination can be achieved by choosing

t = (m+ 1/2)π/ω, (4.16)

ji =
4niΩiω

hi(m+ 1/2)
≃ 4niω

(m+ 1/2)
, (4.17)

where m and ni are integers. We also want to produce a given nonlocal phase,

exp
[
ı θ
2
σZZ

]
, at the end of the operation. So, we have another constraint from

Equation (4.13), which we can satisfy to good approximation by choosing m such

that
∣∣∣∣
(m+ 1/2)π

ω
α− θ

∣∣∣∣ . (4.18)

is minimized. Due to the typically weak coupling, α/ω ≪ 1, the minimum value

is likewise small and occurs at a large value of integer m (corresponding to a gate

time containing many cycles of the driving field).

As mentioned earlier, we must take care to stay within a parameter regime

where the RWA is valid. We use some of the remaining free parameters to ensure

that the RWA remains valid for the choices above that lead to error cancellation.
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We enforce the RWA condition of resonant driving (ω = Ω1 = Ω2) by setting

h2 =
√
h21 + J2

1 − J2
2 ≃ h1 (4.19)

with the values of Ji still free as of yet other than being small compared to hi.

We enforce the RWA conditions on the driving amplitude of |χi| ≫ α and ||χ1| −

|χ2|| ≫ α by taking the integers of Equation (4.17) such that n2 = 2n1 in order

to maximize the difference in Rabi frequencies while keeping both large (which can

be ensured via the choice of n1). In the case of detuning-controlled singlet-triplet

qubits, due to the empirically exponential dependence of the exchange interaction

on the detuning [40, 108], δJi ∝ Ji and it is advantageous to choose small values of

Ji, but while still maintaining Ji > ji in order to avoid calling for negative exchange.

So, we will choose values of Ji slightly larger than ji. Without loss of generality,

and for the sake of concreteness, we take j1 = 2j2, J1 = 2J2. Finally, another

physical consideration specific to the capacitively-coupled singlet-triplet system is

the treatment of perturbations in the coupling, δα. Since α is proportional to

the product of the derivatives of the exchange interactions in each qubit and the

proportionality constant is such that δα is about two order of magnitude smaller

than δJi [108], its effects are negligible and can safely be ignored.

We summarize and combine all of the constraints above in the following set of
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robustness conditions:

h1, J1, n1, α, θ are free and subject to

α ≪ ji < Ji ≪ hi with n1 ∈ Z,

ω =
√
h21 + J2

1 ≃ h1,

J1 = 2J2, j1 = 2j2,

h2 =
√
h21 − 3J2

1 ≃ h1

m = nint

(
θ

π

ω

α
− 1

2

)
,

t = (m+ 1/2)π/ω,

j1 =
4n1Ω1ω

h1(m+ 1/2)
≃ 4n1ω

(m+ 1/2)
,

(4.20)

where it suffices to meet the approximate equalities due to the condition Ji ≪

hi, and nint(x) is the nearest integer function. The effect of these constraints on

the first-order error channels is shown in Table 4.2. With the parameter choices

of Equation (4.20), the surviving five error channels are left with terms that are

approximately proportional to δji
α

, δJi
hi

, Ji
hi

δhi
hi

, Ji
hi

δJi
hi

,
(
Ji
hi

)2
δJi
hi

, and
(
Ji
hi

)2
δhi
hi

. The

last four terms in the list are clearly negligible. By invoking the exponential behavior

of the exchange interaction, we have δJi = dJi
dεi
δεi ∝ Jiδεi, which indicates that the

second term in the list is also suppressed for Ji ≪ hi. However, the first term

in the list is not necessarily small. Errors from δji accumulate linearly with the

gate time and are, consequently, effectively proportional to 1/α. Again noting that

the empirically exponential nature of the exchange implies δji ∝ ji, it is possible

to avoid unnecessarily large δji by choosing the free integer n1 that appears in ji

to be as small as possible while still maintaining the RWA condition of |χi| ≫ α.
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The low-frequency content of the remaining δji error can be removed by inserting a

refocusing π-pulse about the x-axis of each qubit in between two entangling gates.

This is a well-known strategy [31, 75, 111], making use of the fact that the local

σXX insertion commutes with the nonlocal σZZ phase but anticommutes with the

σIZ and σZI error terms.

Since we are left with only five error channels, extracting the first-order error of

the refocused entangling gate like in Equation (4.14) is analytically straightforward.

The refocusing process shuffles these errors among the su(4) basis elements, some

of which appear in the σXX , σY Y , σXY , and σY X channels. These errors commute

with the nonlocal σZZ phase, which suggests that concatenating with a local π-pulse

about the z-axis of either qubit, e.g. σZI , can be used to further correct the residual

errors in the refocused gate.

4.3.2 Similar Qubits with Ji ≫ hi

We follow the same process as before but now we assume that the magnetic

field gradients are fixed. Since we are taking Ji ≫ hi, the terms in the evolution

operator that are proportional to h1h2
Ω1Ω2

are negligibly small. Thus, to generate an

entangling gate, it is preferable for us to take the case where ||χ1| − |χ2|| ≪ α

(Equation (4.8)). Ignoring the negligible terms, the time-evolution is

U(t) = R1(t) exp

[
− ıt

αJ1J2
2Ω1Ω2

(σXX + σY Y )

]
R2(t) (4.21)

≃ R1(t) exp

[
− ıt

α

2
(σXX + σY Y )

]
R2(t), (4.22)
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where the purely local operators R1(t) and R2(t) are given by

R1(t) = exp

[
−ı
2

2∑

i=1

ϕiσ
(i)
Y

]
exp

[
−ı

2∑

i=1

ωit+ ξi(t)

2
σ
(i)
X

]
exp

[
−ıt

2∑

i=1

χiσ
(i)
Z

]
,

R2(t) = exp

[
ı

2

2∑

i=1

ϕiσ
(i)
Y

]
. (4.23)

The error channels for this evolution can be calculated in a similar fashion as in the

previous case; the results are reported in Appendix E.

We proceed to our goal of synchronizing the error terms so that they van-

ish at the gate time. We can eliminate a number of error terms by choosing our

parameters so that sin(χit) and cos(ωit+ ξi(t)) simultaneously vanish at the gate

time. However, as before, a significant amount of error remains in the σIZ and σZI

channels. In this case, though, we cannot simply apply a refocusing π-pulse since

these error channels do not commute with the entanglement generator σXX + σY Y .

Fortunately, Ref. [75] offers a sequence of 10 local π-pulses interspersed between

short entangling operations that can deal with these anticommuting errors to first-

order while reducing the entanglement generator to σXX . Therefore, it is again

possible in principle to generate high-fidelity entangling gates from a combination

of stroboscopic decoupling and composite pulses in this parameter regime.

However, we must note that the assumption following Equation (4.7) of δΩi ≪

χi is likely unrealistic in this Ji ≫ hi case for the charge noise levels currently re-

ported in singlet-triplet qubits. Quasistatic fluctuations in the detuning, δε, typi-

cally have a standard deviation of several µV [40] and around J ∼GHz this can cause

δΩi ∼ 10MHz, whereas in this regime χi ≃ hi/4 ∼ 10MHz as well. We estimate

that roughly an order of magnitude decrease in the charge noise strength, down to
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Table 4.3: Average cphase fidelity in the presence of 20neV magnetic noise and

8µV quasistatic charge noise with a 1/f 0.7 component of 0.9nV/
√

Hz at 1MHz.

Sequence ⟨F ⟩unoptimized ⟨F ⟩optimized
No refocusing .768 .811

Singly refocused .950 .974
Doubly refocused .944 .996

under a microvolt, would be required in order to safely neglect off-resonance errors.

Note that the previous case of hi ≫ Ji did not have this problem because there δΩi

is dominated by magnetic noise, which is typically ∼ 10neV, whereas in that regime

χi ≲ ji/4 ∼ 100neV. Therefore, the case of similar qubits with hi ≫ Ji is a more

feasible operating regime for our proposed high-fidelity two-qubit gates in a double

quantum dot singlet-triplet system. In the context of silicon singlet-triplet qubits

with micromagnet gradients, this along with our discussion at the beginning of Sec-

tion 4.3 means that the silicon devices must be engineered to either allow enough

tunability of the magnetic differences across each qubit (via dot positioning, etc.)

for them to be equalized in situ, or to physically reduce charge noise in the device.

The former seems an easier target.

4.4 Simulations

We now examine the effects of our optimization in the presence of quasistatic

magnetic noise and 1/f 0.7 charge noise [40]. We will simulate the fidelity of cphase

gates generated by a single-shot pulse, a single spin echo composite pulse, and a dou-

ble spin echo composite pulse for both unoptimized and stroboscopically optimized
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parameters.

We report in Table 4.3 a summary of the calculated fidelities. The magnetic

noise was generated from a normal distribution with a standard deviation of 20neV

[112, 113]. To generate the charge noise, we superimposed 20 random telegraph

noises with the appropriate weighting [114] and relaxation times ranging from 1MHz

to 1GHz [88] evenly spaced on a logarithmic scale with an amplitude of 0.9nV/
√

Hz

at 1MHz. An additional quasistatic noise component is added to ensure that the

integrated power spectral density from 0 to 1MHz is consistent with the experi-

mentally reported noise amplitude of 8µV [40]. Finally, we translated the noise in

detuning ϵ into noise in exchange J by using an exponential fit on the data reported

in Ref. [40].

We numerically solve for the time-evolution operator using the unapproxi-

mated, time-dependent Hamiltonian in Equation (4.1) with the optimal parameters

predicted by the RWA analysis above, and then convert it to a cphase gate by

using the perfect local operations prescribed by the RWA, as in the left-hand side

of Equation (4.13). Note that for these numerical calculations we do not assume

that the RWA is accurate; e.g, we do not assume now that the right-hand side of

Equation (4.13) holds. We calculate the average two-qubit gate fidelity [82]

⟨F ⟩ =
1

16

[
4 +

1

5

∑

σij

Tr
[
U1σijU

†
1U2σijU

†
2

]]
, (4.24)

where U1 is the ideal cphase and U2 is the actual noisy evolution, which we obtain

purely numerically for a given set of parameter values and averaging over 1000

different noise realizations. Any error due to the RWA is also included in that
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Table 4.4: Local parameters used in the simulations.

Parameters Unoptimized, Optimized, Optimized,
( 1
2π

MHz) all cases no refocusing / singly refocused doubly refocused

J1 266 80 150
J2 320 40 75
j1 69 74 147
j2 36 37 73
h1 922 1000 1500
h2 905 1002 1506

fidelity.

A summary of all the parameter values used in the simulations are provided

in Table 4.4. We have taken α = 2π × 2.3MHz in all cases for consistency. For all

pulse sequences the same unoptimized parameters are used, obtained from Ref. [109]

consistent with the range reported in experiment [88]. On the other hand, the

optimized parameters are chosen following the rules in Equation (4.20). We choose

the free parameters h1 = 1GHz, J1 = 80MHz, and n1 = 4 for the no refocusing

and singly refocused case, ensuring that h1 ≫ J1 > j1. On the other hand, we take

h1 = 1.5GHz, J1 = 150MHz, and n1 = 2 for the doubly refocused case in order

to compensate for the shorter gate time needed. These immediately determine the

values of ω, J2, and h2 shown in Table 4.4. The value of θ can either be π/2, π/4,

or π/8, depending on which composite pulse sequence is being performed, as we

discuss below.

As previously mentioned, all the simulations target a cphase gate. When

applying the singly refocusing pulse, we replace the simple cphase gate Unl
(
tπ/2
)
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Figure 4.1: Average infidelity as a function of noise strength for the unoptimized

(TOP) and optimized (BOTTOM) case after applying a doubly refocusing π-pulse.

The values in the axes indicate the strength of quasistatic noise. 1/f noise is added

to the exchange with an amplitude 0.9nV/
√

Hz at 1MHz.
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with the composite cphase gate

Unl(tπ/4)σXXUnl(tπ/4)σXX , (4.25)

where Unl(tθ) is the noisy entangling gate targeting a nonlocal phase θ and σab is a

local π rotation about the a-axis of the first qubit and the b-axis of the second qubit.

The doubly refocused composite pulse requires twice as many component gates, but

note that the entangling time is not any longer since each entangling component is

shorter,

[
Unl(tπ/8)σXXUnl(tπ/8)σXX

]
σZI

[
Unl(tπ/8)σXXUnl(tπ/8)σXX

]
σZI

= Unl(tπ/8)σXXUnl(tπ/8)σY XUnl(tπ/8)σXXUnl(tπ/8)σY X .

(4.26)

We further examine how our optimization behaves under a range of noise

amplitudes. We keep the amplitude of the 1/f 0.7 charge noise component the same

as before for consistency, but we generate quasistatic noise with amplitudes ranging

from 0 to 24 neV (µV) for magnetic (charge) noise. A contour plot of the average

infidelity as a function of quasistatic noise strength for the case of doubly refocused

gates is provided in Fig. 4.1. We find that combining our optimization scheme with

the doubly refocusing pulse yields an order of magnitude improvement in fidelity

compared to the unoptimized case. We emphasize that this improvement can be

attributed to the isolation of error onto specific channels presented in Table 4.2. In

fact, if one can further reduce the average fluctuations in the magnetic field gradient

(e.g. down to 8neV [112]), it is possible to generate a cphase gate with average

fidelities over 99% using only the singly refocusing pulse.
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4.5 Conclusion

We theoretically analyze the first-order effects of errors in two capacitively-

coupled singlet-triplet qubits by perturbing parameters in the time-evolution oper-

ator derived using the RWA. We examined two extreme regions of the parameter

space and showed that it is better to operate in the parameter regime where the

magnetic field gradient dominates the exchange than the opposite case.

We find that certain choices of parameter lead to passive, stroboscopic cir-

cumvention of errors. This enables the isolation of the errors onto specific basis el-

ements of su(4), consequently allowing the application of composite pulse sequence

to mitigate the residual errors. Our numerical simulations show that our analytic

prescription produces cphase gates with fidelities above 99% using only 4 applica-

tions of local π pulses on each qubit, which is an order of magnitude improvement

over an unoptimized implementation.

Finally, we comment on our strategy of using composite pulse sequences to

produce robust entangling operations. First, this method is greatly dependent on

the availability of nearly perfect one-qubit operations. We saw in Chapter 3 that

the efficacy of our proposed pulse sequences greatly diminishes as the one-qubit gate

fidelity worsens. This is especially problematic in cases where the total composite

gate time is comparable to the qubit’s decoherence time. In this chapter, we were

able to circumvent some of these issues by optimizing the control parameters. This

eliminated many error channels that anticommute with the entangling operation

which consequently made simple echo pulses sufficient to address the remaining
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error channels. We emphasize that this was only possible because of our analytical

insight on the evolution operator. Therefore, it is important that we investigate

alternative methods for suppressing systematic noise. This will be the subject of

the next two chapters.
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Chapter 5

Investigating the Robustness Conjecture for

Geometric Quantum Gates

Geometric quantum gates are conjectured to be more resilient than dynamical

gates against certain types of error, which makes them ideal for robust quantum com-

puting. However, there are conflicting claims within the literature about the validity

of that robustness conjecture. Here we use dynamical invariant theory in conjunc-

tion with filter functions in order to analytically characterize the noise sensitivity of

an arbitrary quantum gate. For any control Hamiltonian that produces a geometric

gate, we find that under certain conditions one can construct another control Hamil-

tonian that produces an equivalent dynamical gate with identical noise sensitivity

(as characterized by the filter function). Our result holds for a Hilbert space of arbi-

trary dimensions, but we illustrate our result by examining experimentally relevant

single-qubit scenarios and providing explicit examples of equivalent geometric and

dynamical gates. This work was based on the paper arXiv:2105.02882 [115].
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5.1 Introduction

One of the biggest roadblocks in quantum computing is developing techniques

that enable control of quantum information under a certain error threshold [116].

Among the plethora of potential candidates for robust quantum control, geometric

quantum computation (GQC) [117] stands out owing to its elegant formulation in

terms of concepts from differential geometry and topology. Put simply, a geomet-

ric quantum gate is a type of quantum gate for which it is possible to attribute a

geometric interpretation to the accumulated phase. The usual paradigm is to gen-

erate a desired quantum gate in a basis of cyclic states. After an adiabatic [118] or

non-adiabatic [119] cyclic evolution, these states accumulate a phase that depends

on the qubit’s spectrum. If the computational basis is encoded in an energetically

non-degenerate (degenerate) subspace of the total Hilbert space, the computational

basis accumulates an Abelian (non-Abelian) phase [120, 121]. This phase can be

decomposed into a dynamical and a geometric component. A geometric gate is nat-

urally produced when the dynamical component of the total phase is trivial, though

that condition is not necessary [122]. Further extension to noncyclic evolution has

also been made [123]. Experimentally, geometric gates have been realized in nu-

clear magnetic resonance [124–126], trapped-ion [127, 128], solid-state [129–134],

and superconducting qubits [135–139].

The primary motivation for using GQC is the robustness conjecture which

claims that geometric gates are intrinsically more robust than dynamical gates [140].

This is typically supported by the reasoning that since geometric phase is a global
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feature of quantum evolution, then it must be intrinsically resilient to noise that

only generates local perturbations in the system’s evolution path [141]. Thus, a

majority of the effort on GQC focuses on finding experimentally feasible ways of

eliminating dynamical phase contributions in a gate. Numerous studies on geometric

gates, both theoretical [117, 141–150] and experimental [138, 151, 152], have shown

evidence to support the robustness conjecture. However, there are also studies that

report control situations in which geometric gates are not intrinsically more robust

than dynamical gates [153–157] and, in certain scenarios, their sensitivity to noise

deteriorates [140, 158–161].

Here we analyze the robustness of geometric and dynamical quantum gates to

coherent noise. We use dynamical invariant theory [162] in conjunction with filter

functions [47, 163] in order to analytically characterize how noise sensitivity changes

with the type of accumulated phase. We show that for any geometric gate it is possi-

ble to find, under certain conditions, an equivalent gate with the same filter function

but with a phase whose nature can be continuously varied from purely geometric

to purely dynamical. In other words, we show within our framework that noise ro-

bustness and phase type are unrelated concepts. This consequently invalidates the

most general form of the robustness conjecture for geometric gates, and our analysis

applies equally to adiabatic and non-adiabatic geometric gates. We explicitly illus-

trate our result in experimentally relevant single-qubit cases, including both Abelian

and non-Abelian geometric gates. We also discuss how the presence of control con-

straints can give rise to preferential phase robustness. Our result may reconcile

decades of seemingly contradictory claims on geometric gate robustness within the
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literature. Furthermore, our result calls into question the primary motivation for

using GQC.

5.2 Theory

5.2.1 Dynamical Invariants

We begin by briefly describing how a geometric gate is generated. We tem-

porarily restrict our attention to the Abelian case. A natural framework for con-

sidering geometric phase is through the theory of dynamical invariants [162, 164].

Although dynamical invariants have previously been used in the context of quantum

control [165–171], we only use it here as a convenient way to describe the dynami-

cal and geometric phases1. Consider a qubit system whose evolution is governed by

some Hamiltonian H(t). A dynamical invariant I(t) is a solution to the Liouville-von

Neumann equation

i
∂I(t)

∂t
− [H(t), I(t)] = 0, (5.1)

where we use units such that ℏ = 1. The eigenvectors |ϕn(t)⟩ of I(t) are related

to the solutions of the Schrödinger equation by a global phase factor: |ψn(t)⟩ =

eiαn(t) |ϕn(t)⟩, where αn(t) are the Lewis-Riesenfeld phases given by [172]

αn(t) = αn,g(t) + αn,d(t), (5.2)

αn,g(t) =

∫ t

0

⟨ϕn(t′)|i∂t′ |ϕn(t′)⟩ dt′, (5.3)

αn,d(t) = −
∫ t

0

⟨ϕn(t′)|H(t′)|ϕn(t′)⟩ dt′, (5.4)

1We provide a more detailed discussion of dynamical invariants in Chapter 6.
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Control

AWG

Filter

Function

Noise

Geometric

Dynamical

Figure 5.1: A schematic diagram summarizing our main result. The qubit’s state is

manipulated by applying control fields, e.g. using an arbitrary waveform generator

(AWG), that are subject to some noise process (schematically represented here by

a demon). The control fields determine an object called a filter function which

characterizes the control’s sensitivity to noise. In this diagram, the control is robust

since it suppresses the effects of noise. In its most general form, the geometric

gate robustness conjecture is that gates based on a geometric phase are naturally

more robust than gates based on a dynamical phase. Our main result rejects this

by showing how to construct different control fields, producing different evolution

paths with accrued phases ranging from purely geometric to purely dynamical, that

all result in the same gate and noise sensitivity.
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and the subscripts g and d denote the geometric and dynamical phase, respectively.

We fix the U(1) gauge freedom on our choice of |ϕn(t)⟩ by setting |ϕn(0)⟩ = |ϕn(T )⟩,

where T is the gate time. This particular choice is consistent with Berry’s adia-

batic geometric phase [118] and generalizations thereof [119, 120, 173]. One can

show that, unlike the dynamical phase which generally depends on T , the geometric

phase is independent of T and is completely determined by the underlying geo-

metric/topological property of the evolution path in Hilbert space. Within this

framework, the evolution operator U(t) can be expressed as

U(t) =
∑

n

eiαn(t) |ϕn(t)⟩ ⟨ϕn(0)| . (5.5)

A geometric gate is produced if the final accumulated dynamical phase is trivial,

which can be ensured by, for example, carefully choosing the Hamiltonian so that

the integral in Equation (5.4) vanishes or by using composite pulses [174].

5.2.2 Filter Functions

The validity of the robustness conjecture can be tested using filter functions

[47, 163], which provide a convenient method of quantifying the gate fidelity’s sus-

ceptibility to noise of a given spectral composition. A noisy su(N) Hamiltonian can

be decomposed as

H(t) = Hc(t) +He(t), (5.6)
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where Hc(t) is the ideal deterministic control Hamiltonian and He(t) is the stochastic

error Hamiltonian,

Hc(t) = hc(t) · σ, He(t) =
∑

q

δq(t)χq [hc(t)] · σ, (5.7)

where q indexes a set of uncorrelated stochastic variables δq(t), χq is the vector

describing the first-order sensitivity of the control Hamiltonian to δq(t), and σ is

a vector comprising the N2 − 1 traceless Hermitian generators of su(N). Most

commonly the sensitivity vector χq is of the general linear form

χq [hc(t)] = aq +Mq(t)hc(t), (5.8)

where aq is independent of the control (i.e., additive noise) and Mq is likewise a real

matrix accounting for sensitivity linearly proportional to some subset of the control

(e.g., multiplicative noise).

For sufficiently weak noise, we can compactly express the ensemble averaged

gate infidelity as

⟨I⟩ ≈ 1

2π

∑

q

∫ ∞

−∞
dω Sq(ω)Fq(ω), (5.9)

where Sq(ω) denotes the power spectral density for the stochastic variable δq(t)

and Fq(ω) is the corresponding filter function. This is true only when the Magnus

expansion of the evolution operator converges and higher-order noise contributions

to the average gate infidelity are negligible [47]. Fortunately, these conditions can be

easily satisfied in a well-prepared system such as in many state-of-the-art quantum

devices which routinely achieve gate fidelities above 99%. Thus, it is safe to focus

only on the first order term.
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Denote the N ×N unitary evolution operator generated by the control Hamil-

tonian, Hc, in the absence of noise as the time-ordered exponential

Uc(t) = T e−i
∫ t
0 dt′Hc(t′) ≡ e−iθ(t)·σ/2. (5.10)

Uc can also be represented via its adjoint representation, R, defined through

Uc (x · σ)U †
c ≡ (Rx) · σ =⇒ Rij = tr

(
σiUcσjU

†
c

)
/N. (5.11)

For example, in the case of N = 2, R(t) = exp (θ(t) ·L), where L is the vector of

generators of so(3) isomorphic to σ. In general, the filter function can be interpreted

geometrically as the magnitude of a complex vector

Fq(ω) = R(ω) ·R(ω)∗, (5.12)

R(ω) =

∫ T

0

R⊺(t)χq [hc(t)] e−iωtdt. (5.13)

5.2.3 Invalidating the Robustness Conjecture

We can invalidate the robustness conjecture if we show that for any control

scheme hc(t) that generates a gate geometrically there exists a different control

h̃c(t) that generates the same gate dynamically with an identical filter function.

The existence of such a control consequently proves that a gate’s phase type and

noise robustness are unrelated. To this end, we calculate the filter function of two

different control Hamiltonians, Hc(t) and H̃c(t). Since for any arbitrary pair of time-

dependent hermitian operators Hc and H̃c one can define a unitary V = V1V2 where

V̇1 = −iH̃cV1 and V̇2 = +iHcV2, the two can be related without loss of generality
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Figure 5.2: An illustration of a dynamical invariant eigenvector’s evolution along

the Bloch sphere for the geometric Xπ
2

gate (LEFT) and the dynamical Xπ
2

gate

(RIGHT). The path is traversed twice and its orientation is determined by the color

gradient which begins with red and ends with blue. We see that |ϕ+(t)⟩ traces out a

loop with nonzero area in the geometric case. In contrast, the loop in the dynamical

case encloses zero area.
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via a quantum canonical transformation

H̃c = V HcV
† − iV V̇ †. (5.14)

Note that we are not invoking a frame transformation here – indeed, the whole

Hamiltonian is not subject to this transformation, only the control part – we are

only using a convenient mathematical way to encapsulate in V the difference between

any two control Hamiltonians within the same frame. The geometric and dynamical

phases produced by the two different control fields differ by a shift that is easily

expressed in terms of V [164, 175]:

α̃n,g(t) = αn,g(t) +

∫ t

0

〈
ϕn(t′)

∣∣∣iV †V̇
∣∣∣ϕn(t′)

〉
dt′, (5.15)

α̃n,d(t) = αn,d(t) −
∫ t

0

〈
ϕn(t′)

∣∣∣iV †V̇
∣∣∣ϕn(t′)

〉
dt′. (5.16)

We emphasize again that, although it is well-known [175–177] that a frame transfor-

mation leaves the total Lewis-Riesenfeld phase invariant while shifting the dynami-

cal and geometric phases, we are merely noting that different control Hamiltonians

within a fixed frame generally have different dynamical and geometric phases and the

difference is elegantly quantified in terms of the relationship V between the Hamil-

tonians. As we will return to below, the noise model of Equation (5.8) remains fixed,

as it must in a fixed frame.

The control evolution operator induced by H̃c can be written in terms of that

induced by Hc as Ũc(t) = V (t)Uc(t)V
†(0). Likewise, the adjoint representations of

the evolutions can be related, denoting the adjoint representation of V as Q, as

R̃(t) = Q(t)R(t)Q⊺(0). (5.17)
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Our goal now can be stated as finding two different control Hamiltonians in the

same frame that satisfy three conditions:

1. The same final gate is produced for both control Hamiltonians, Ũc(T ) = Uc(T ).

2. A geometric phase is traded for a dynamical one via Equations (5.15)-(5.16).

3. The relevant filter function(s) produced are the same for both control Hamil-

tonians.

We can satisfy the first condition by requiring V (0) = V (T ) = 1 and likewise for

Q. The second condition can be satisfied by finding a Q such that a geometric

evolution R(t) is related to a dynamical evolution R̃(t) by Equation (5.17). The

third condition can be satisfied if, for a given noise source δq, the integrands in

Equation (5.13) are equal; i.e., combining with Equation (5.17), it suffices that

Q⊺(t)χq

[
h̃c(t)

]
= χq [hc(t)] . (5.18)

Note that the sensitivity vector χq has a fixed functional dependence on its control

input. (If we were making a frame transformation, this term would be transformed in

the same way as the control Hamiltonian.) This reflects the fact that the underlying

noise mechanism is fixed by the physics of the device, and is not under the control

of the user. As an example, if we have some control field h1(t) with an error model

h1(t) → h1(t)(1 + δ1(t)), then any other choice of that control field must have the

same noise dependence: h̃1(t) → h̃1(t)(1 + δ1(t)). More generally, the sensitivity

vector is simply evaluated as a function of the new control input

h̃c(t) = Q(t)hc(t) + hQ(t), hQ,i(t) ≡ tr
(
−iQQ̇TΛi

)
/N, (5.19)
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with Λ as the (N2 − 1)-dimensional vector of generators of su(N) isomorphic to σ.

In conjunction with Equation (5.18), this yields the condition

Q⊺(t)aq +Q⊺(t)Mq(t)(Q(t)hc(t) + hQ(t))

= aq +Mq(t)hc(t). (5.20)

If we can find a Q(t) that satisfies Equation (5.20), we will have two Hamiltonians

that result in identical gates and filter functions but with different phase types. This

simple fact is the crux of this paper.

While the existence of a solution to the nonlinear Equation (5.20) is not obvi-

ous, we simplify by taking the more restrictive condition that the first (second) term

on the lhs must separately equal the first (second) term on the rhs. Thus, one should

choose Q(t) such that i) aq is an eigenvector of Q(t), ii) [Q(t),Mq(t)] = 0, and iii)

hQ(t) is in the null space of Mq(t). Parameterizing as Q(t) = T exp
{∫

ω(t) ·Λdt
}

,

these conditions become i) ωi(t) = 0 if aq ∈ Col Λi, ii) [ω(t) ·Λ,Mq(t)] = 0, and iii)

ω(t) ∈ nullMq(t). In practice it is typically easy to satisfy these conditions.

5.3 Examples

5.3.1 Abelian Case

To illustrate, consider a single qubit under a generic su(2) control Hamiltonian

hc(t) =
1

2




Ω(t) cos(φ(t))
Ω(t) sin(φ(t))

∆(t)


 . (5.21)

This form is pertinent to a variety of qubit implementations such as superconducting

qubits [57], quantum dot spin qubits [178], and NMR qubits [179] to name a few,
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corresponding to the rotating wave approximation for a two-level system driven by

an oscillating field with amplitude Ω at a carrier frequency detuned from resonance

by ∆, and with phase φ. Suppose that this qubit is subject to independent additive

fluctuations in the resonance frequency, ∆ → ∆+δ∆, and in the phase, φ→ φ+δφ, as

well as multiplicative amplitude noise, Ω → Ω(1+δΩ), i.e., in terms of Equation (5.8),

a∆ =
1

2
ẑ, M∆ = 0, (5.22)

aφ = 0, Mφ =
1

2

(
ŷx̂T − x̂ŷT

)
, (5.23)

aΩ = 0, MΩ =
1

2

(
x̂x̂T + ŷŷT

)
. (5.24)

Note that this noise model encompasses most, if not all, scenarios treated in the

literature of non-adiabatic geometric gates.

The three flavors of Equation (5.20) corresponding to q = ∆, φ,Ω are all

satisfied by choosing Q(t) = eν(t)Λz (and hence hQ = ν̇(t)ẑ/2) where Λz is the

z-rotation generator in so(3) and ν(t) is any function satisfying ν(0) = ν(T ) = 0.

Thus, for any geometric gate produced by a particular choice of Ω(t), φ(t), and ∆(t)

in Equation (5.21), one can implement the same gate with identical robustness by

using the modified control

h̃c(t) =
1

2




Ω(t) cos(φ(t) + ν(t))
Ω(t) sin(φ(t) + ν(t))

∆(t) + ν̇(t)


 (5.25)

and the free parameter ν(t) allows a way to tune the nature of the Lewis-Riesenfeld

phase as indicated in Equations (5.15) and (5.16).
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Figure 5.3: A plot of the control parameters that generate anXπ
2

gate. The subscript

“g” (“d”) denote the control parameters that generate a geometric (dynamical) gate.

The values are normalized by Ωmax which denote the maximum value of Ωg(t). Note

that Ωg(t) = Ωd(t) and that ∆d(t) is non-trivial.
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Figure 5.4: A comparison of the geometric and dynamical phases generated by

the state |ϕ+(t)⟩. The variables with (without) tilde correspond to the dynamical

(geometric) Xπ
2

gate.
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Figure 5.5: A comparison of the geometric and dynamical Xπ
2

gate filter functions

for additive dephasing and multiplicative amplitude noise when Ωmax = 1. We verify

that the two control Hamiltonians produce the same filter functions.

5.3.1.1 Orange-slice scheme

We further reinforce our claim by providing explicit examples of matching the

noise sensitivity of a geometric gate with an equivalent dynamical gate. We begin

by considering the Abelian geometric gate proposed in Ref. [180]. The dynamical

invariant eigenstate traces out an orange-slice path along the Bloch sphere (see

Fig. 5.2), and the geometric phase is equivalent to half the enclosed area [181]. We

present in Equations (5.26)-(5.28) the corresponding control constraints in terms of
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the Hamiltonian of Equation (5.21) with ∆(t) = 0:

t ∈ [0, T1]

∫ T1

0

Ωdt = θ φ = η − π

2
, (5.26)

t ∈ [T1, T2]

∫ T2

T1

Ωdt = π φ = η + γ +
π

2
, (5.27)

t ∈ [T2, T ]

∫ T

T2

Ωdt = π − θ φ = η − π

2
. (5.28)

We denote the generated evolution operator by U0(t) = eiγn·σ, where

n = (sin θ cosφ, sin θ sinφ, cos θ) .

We can produce a two-part composite gate that suppresses additive dephasing (∆ →

∆ + δ∆) and multiplicative amplitude noise (Ω → Ω + δΩΩ) by applying the same

evolution twice [148]: U(2T ) = U2
0 (T ). We target a geometric Xπ

2
gate which

can be achieved by setting γ = −π
8
, θ = π

2
, and η = 0. We assume the pulse shape

Ω(t) = sin2 (πt/τ) where τ is the length of the relevant time interval. To generate its

purely dynamical equivalent, we use the modified Hamiltonian of Equation (5.25)

with an arbitrary choice of ν(t) = c sin2 (πt/T ), numerically tuning c until the

geometric phase is zero, which occurs at c ≈ 0.461875. We present in Fig. 5.3 a

plot of the control parameters for both geometric and dynamical Xπ
2

gate. We use

Equations (5.3) and (5.4) to verify that the modified Hamiltonian produces a purely

dynamical gate. The dynamical invariant eigenvectors |ϕ±(t)⟩ are determined using

the inverse engineering scheme in Ref. [165]:

|ϕ+(t)⟩ =


cos

(
γ(t)
2

)
exp (−iβ(t))

sin
(
γ(t)
2

)

 , (5.29)

|ϕ−(t)⟩ =


 sin

(
γ(t)
2

)

− cos
(
γ(t)
2

)
exp (iβ(t))


 , (5.30)
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Figure 5.6: An illustration of a dynamical invariant eigenvector’s evolution along the

Bloch sphere for the geometric T-gate (LEFT) and the dynamical T-gate (RIGHT).

The path orientation is determined by the color gradient which begins with red and

ends with blue. Just like in the previous example, we find that |ϕ+(t)⟩ traces out a

loop with nonzero area in the geometric case and zero area in the dynamical case.

where the parameters γ and β obey the following coupled differential equations:

γ̇ = −Ω sin (β − φ) , (5.31)

β̇ = ∆ − Ω cot γ cos (β − φ) . (5.32)

We set the boundary conditions so that γ(0) = π
2

and β(0) = 0 which corresponds

to an eigenvector of Xπ
2
. The effect of this evolution on |ϕ+(t)⟩ is shown in Fig. 5.2.

Finally, a comparison of the geometric and dynamical phases for both gates is shown

in Fig. 5.4 and their corresponding filter functions for dephasing and amplitude noise

in Fig. 5.5.
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5.3.1.2 Inverse engineering with optimal control

Next, we consider the case of a non-adiabatic Abelian geometric gate that is

produced using Hamiltonian inverse engineering and optimal control theory [182].

Suppose that we target a T-gate (Zπ
4
) as in Ref. [182]. The optimized inverse-

engineered control parameters are given by

Ω = − γ̇

sin (β − φ)
, (5.33)

φ = β − arctan

(
γ̇

β̇
cot γ

)
, (5.34)

∆ = 0, (5.35)

which depend on the piecewise-defined functions γ(t) and β(t) that satisfy

t ∈ [0, T/2] : γ(t) = π sin2(πt/T ), (5.36)

β(t) = −4

3
cos

(
π

2
cos

(
2πt

T

))
, (5.37)

t ∈ [T/2, T ] : γ(t) = π sin2(πt/T ), (5.38)

β(t) = −4

3
cos

(
π

2
cos

(
2πt

T

))
+
π

8
. (5.39)

The gate time is T =
√
17π2

Ωmax
, where Ωmax is the maximum value of Ω(t). To generate

its purely dynamical equivalent, we again use the modified Hamiltonian of Equa-

tion (5.25) with an arbitrary choice of ν(t) = c sin
(
2πt
T

)
, numerically tuning c until

the geometric phase is zero, which occurs at c ≈ 0.220530. We set the boundary

conditions so that γ(0) = β(0) = π which corresponds to an eigenvector of Zπ
4
. The

effect of this evolution on |ϕ+(t)⟩ is shown in Fig. 5.6. We present in Fig. 5.7 a plot

of the geometric and the dynamical T-gate’s control parameters. Finally, a compar-
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Figure 5.7: A plot of the control parameters that generate a Zπ
4

or T-gate. The

subscript “g” (“d”) denote the control parameters that generate a geometric (dy-

namical) gate. The values are normalized by Ωmax which denote the maximum value

of Ω(t). We note again that Ωg(t) = Ωd(t) and that ∆d(t) is non-trivial.

ison of the geometric and dynamical phases for both gates is shown in Fig. 5.8 and

their corresponding filter functions for dephasing and amplitude noise in Fig. 5.9.

5.3.2 Non-Abelian case

We now extend this treatment to the non-Abelian case. Unlike the Abelian

case, where ensuring the dynamical phase is zero at the final time is a constraint

on the geometric pulse design, non-Abelian geometric quantum computing typically

encodes the computational basis in an energetically degenerate subspace of the full

Hilbert space such that any dynamical phase is either automatically zero at all times

or can be treated as a global phase factor. We generalize our previous framework
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Figure 5.8: A comparison of the geometric and dynamical phases generated by

the state |ϕ+(t)⟩. The variables with (without) tilde correspond to the dynamical

(geometric) T-gate.
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Figure 5.9: A comparison of the geometric and dynamical T-gate filter functions for

additive dephasing and multiplicative amplitude noise when Ωmax = 1. We verify

that the two control Hamiltonians produce the same filter functions.
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and denote the eigenvectors of I(t) by |ϕn;a(t)⟩ where a ∈ {1, 2, . . . dn} labels the

orthonormal basis vectors of a dn-fold degenerate subspace corresponding to the nth

eigenvalue. The propagator of Equation (5.5) generalizes to [164]

U(t) =
∑

n

dn∑

a,b=1

un;ab(t) |ϕn;a(t)⟩ ⟨ϕn;b(0)| , (5.40)

where the eigenstates accumulate a non-Abelian phase un(t) given by

un(t) = T ei
∫ t
0 An(t′)+En(t′)dt′ , (5.41)

An;ab(t) = ⟨ϕn;a(t)|i∂t|ϕn;b(t)⟩ , (5.42)

En;ab(t) = −⟨ϕn;a(t)|H(t)|ϕn;b(t)⟩ . (5.43)

Thus, if we again consider the effect of changing the Hamiltonian as expressed by

a quantum canonical transformation (again, without loss of generality) via time-

dependent unitary V , we get an expression for the change in the geometric and

dynamical components of the Lewis-Riesenfeld phase similar to Equations (5.15)

and (5.16):

Ãn;ab(t) = An;ab(t) +
〈
ϕn;a(t)

∣∣∣iV †V̇
∣∣∣ϕn;b(t)

〉
, (5.44)

Ẽn;ab(t) = En;ab(t) −
〈
ϕn;a(t)

∣∣∣iV †V̇
∣∣∣ϕn;b(t)

〉
. (5.45)

We note that the dynamical and geometric contributions to the phase are

easily separable in the Abelian case, as in Equations (5.15) and (5.16). In the non-

Abelian case, the gate accumulates matrix-valued dynamical and geometric phase

components at each time step, as seen in Equation (5.41), which generally do not

commute. Thus, the inseparability of the phase’s time-ordered integral can lead to
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nontrivial dynamical contributions even if the integral of E(t) in Equation (5.43)

is zero. This is why purely geometric non-Abelian gates are typically defined to

have E(t) = 0 within the computational basis [181, 183]. Therefore, to illustrate

that a non-Abelian gate is no longer purely geometric, it is sufficient to show that

the transformation V produces a nontrivial Ẽ in Equation (5.45). Specifically, it is

sufficient to show that Ẽn;ab(t) ̸= 0 where a and b indexes the computational basis

states.

On the other hand, it is possible to simultaneously diagonalize both matrices

in special cases where [A(t), E(t)] = 0 which allows the decoupling of the geometric

and dynamical phase contribution (for example, in adiabatic non-Abelian geometric

gates [121]). In such cases, it is again straightforward to separate and tune the two

types of phase.

5.3.2.1 Non-adiabatic case

As an example, consider a three-level system in a Λ configuration where the

states |0⟩ and |1⟩ are coupled to an excited state |e⟩ [183]. The k ↔ e transition

(k = 0, 1) is separately driven by a laser pulse with fixed polarization and frequency.

Following our notation in Equation (5.7), the system-laser interaction is described
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by the following rotating-frame Hamiltonian belonging to an su(3) algebra:

hc(t) =




0
0

∆0−∆1

2

Ω (t) cos
(
φ
2

)
sin
(
θ
2

)

Ω (t) sin
(
φ
2

)
sin
(
θ
2

)

−Ω (t) cos
(
φ
2

)
cos
(
θ
2

)

Ω (t) sin
(
φ
2

)
cos
(
θ
2

)
∆0+∆1

2
√
3




, (5.46)

where θ and φ are fixed angles that describe the relative strength and relative phase

of the k ↔ e transitions, ∆k are detunings which can be independently varied, Ω(t)

describes the pulse amplitude envelope, and σ is chosen to comprise the Gell-Mann

matrices. If we impose the constraint that
∫ T
0

Ω(t)dt = π and drive the qubit at

resonance (∆k = 0), the evolution produces a purely geometric gate which, when

projected in the computational space spanned by {|0⟩ , |1⟩}, yields [183]

proj{|0⟩,|1⟩} [U(T )] =

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
. (5.47)

It is possible to generate any single-qubit operation by applying Equation (5.47)

with different values of θ and φ.

Suppose that this qubit is subject to independent additive fluctuations in the

laser detunings, ∆k → ∆k + δ∆k
, in their relative strength, θ → θ + δθ, and in their

relative phase, φ→ φ+δφ, as well as multiplicative amplitude noise, Ω → Ω(1+δΩ).
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Then, in terms of Equation (5.8), we have

(a∆k
)i = (−1)kπδi,3 +

π√
3
δi,8 , M∆k

= 0, (5.48)

aΩ = 0, MΩ = E4,4 + E5,5 + E6,6 + E7,7, (5.49)

aθ = 0, Mθ =
1

2
(E5,7 − E7,5 + E6,4 − E4,6) , (5.50)

aφ = 0, Mφ =
1

2
(E5,4 − E4,5 + E6,7 − E7,6) , (5.51)

where Ei,j is a square matrix which show the value 1 at the position (i, j) and zeros

elsewhere [184]. It is straightforward to verify that the transformation Q(t) = eν(t)Λ3 ,

where Λi are the adjoint representations of the Gell-Mann matrices 2, uniquely

satisfies all the previously specified criteria. (If any one of these noise sources is

irrelevant, there is more freedom in the transformation.) Thus, for any non-Abelian

gate produced by a particular choice of θ, φ, and Ω(t) in Equation (5.47), one can

implement the same gate with identical robustness using the modified control

h̃c(t) =




0
0

∆0−∆1+ν′(t)
2

Ω (t) cos
(
φ+ν(t)

2

)
sin
(
θ
2

)

Ω (t) sin
(
φ+ν(t)

2

)
sin
(
θ
2

)

−Ω (t) cos
(
φ+ν(t)

2

)
cos
(
θ
2

)

Ω (t) sin
(
φ+ν(t)

2

)
cos
(
θ
2

)

∆0+∆1

2
√
3




(5.52)

where the free parameter ν(t) breaks the degeneracy of an equal-detuning setting,

and similar to the Abelian case, provides a way to tune the nature of the Lewis-

2We distinguish the adjoint representation of a group which is defined in Equation (5.11) from

the adjoint representation of a Lie algebra which can be calculated using the structure constants

of the algebra fijk obeying [σi, σj ] =
∑

k ifijkσk as [ad(σi)]jk = −ifijk.
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Riesenfeld phase as indicated in Equations (5.44) and (5.45).

As previously mentioned, we need only show that our transformation yields

Ẽn;ab(t) ̸= 0 within the computational subspace to guarantee that the gate is no

longer purely geometric. Since H(t) commutes with itself at all times, we can

calculate the resulting evolution operator U(t) analytically

U(t) = exp




−iΩ(t)




0
0
0

cos
(
φ
2

)
sin
(
θ
2

)

sin
(
φ
2

)
sin
(
θ
2

)

− cos
(
φ
2

)
cos
(
θ
2

)

sin
(
φ
2

)
cos
(
θ
2

)

0




· σ




, (5.53)

where we denote Ω(t) ≡
∫ t
0

Ω(s)ds. We note that a dynamical invariant can be

constructed by using the cyclic states of U(T ) as its eigenbasis [164]. To proceed,

we first compute the eigenvectors and eigenvalues of U(t):

λ1(t) =1 |λ1(t)⟩ =



e−i

φ
2 cos

(
θ
2

)

ei
φ
2 sin

(
θ
2

)

0


 , (5.54)

λ2(t) =e−iΩ(t) |λ2(t)⟩ =
1√
2



e−i

φ
2 sin

(
θ
2

)

−eiφ2 cos
(
θ
2

)

1


 , (5.55)

λ3(t) =eiΩ(t) |λ3(t)⟩ =
1√
2



−e−iφ2 sin

(
θ
2

)

ei
φ
2 cos

(
θ
2

)

1


 . (5.56)

The cyclic states |ϕi(t)⟩ of U(T ) are linear combinations of |λi⟩ up to global time-

dependent phase which we choose so that |ϕi(0)⟩ = |ϕi(T )⟩:

|ϕ1(t)⟩ = |λ1(t)⟩ , (5.57)

|ϕ2(t)⟩ = eiΩ(t)λ2(t) |λ2(t)⟩ − λ3(t) |λ3(t)⟩√
2

, (5.58)

|ϕ3(t)⟩ = eiΩ(t)λ2(t) |λ2(t)⟩ + λ3(t) |λ3(t)⟩√
2

. (5.59)
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Consequently, we can define a dynamical invariant as I(t) =
∑

i ci |ϕi(t)⟩ ⟨ϕi(t)|

where ci are arbitrary constants. Using the eigenvectors of I(t), we can calculate the

change in the dynamical phase contribution under the transformation V = e−i
ν(t)
2
λ3

(or, equivalently, by Q = eν(t)Λ3 in the adjoint representation) using Equation (5.45):

Ẽ(t) =

1

4




−2 cos(θ)ν′(t) − sin (θ) ν′(t)
(
1 + ei2Ω(t)

)
− sin (θ) ν′(t)

(
1− ei2Ω(t)

)
− sin (θ) ν′(t)

(
1 + e−i2Ω(t)

)
2 cos(θ) cos2(Ω(t))ν′(t) −4Ω(t)− i cos (θ) sin

(
2Ω(t)

)
ν′(t)

− sin (θ) ν′(t)
(
1− e−i2Ω(t)

)
−4Ω(t) + i cos (θ) sin

(
2Ω(t)

)
ν′(t) 2 cos(θ) sin2

(
Ω(t)

)
ν′(t)




(5.60)

Since Ẽ(t) is nontrivial in the computational subspace, then the gate Ũ(T ) must not

be purely geometric by definition, though its filter function is the same as U(T ).

5.3.2.2 Adiabatic case

We next consider the case of an adiabatic non-Abelian geometric gate. Specifi-

cally, we consider a four-level system with three ground or metastable states coupled

to a single excited state as in Ref. [185, 186]. The system is controlled using three

distinctly polarized and resonantly driven lasers which, in the rotating frame, yields

the following control Hamiltonian:

h̃c(t) =




0
0
0

Ω(t) cosφ(t) sin θ(t)
Ω(t) sinφ(t) sin θ(t)

Ω(t) cos θ(t)



, (5.61)
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where θ controls the relative strength between the lasers, φ controls their relative

phases, and σ is chosen to comprise of the so(4) generators:

e1 = i(E2,1 − E1,2), e2 = i(E3,1 − E1,3),

e3 = i(E3,2 − E2,3), e4 = E4,1 + E1,4, (5.62)

e5 = E4,2 + E2,4, e6 = E4,3 + E3,4.

We assumed for simplicity that all laser magnitudes are constant through the evolu-

tion and are sufficiently large to ensure adiabaticity. The control parameters θ and

φ are then tuned cyclically so that at the gate time t = T we have H(0) = H(T ).

The dynamics of the system can be described using the eigenvectors of H(t):

λ =0 |λ1,0⟩ =




cos θ(t) cosφ(t)
cos θ(t) sinφ(t)

− sin θ(t)
0


 , (5.63)

λ =0 |λ1,1⟩ =




− sinφ(t)
cosφ(t)

0
0


 , (5.64)

λ = − Ω(t) |λ2⟩ =
1√
2




cosφ(t) sin θ(t)
sinφ(t) sin θ(t)

cos θ(t)
−1


 , (5.65)

λ =Ω(t) |λ3⟩ =
1√
2




cosφ(t) sin θ(t)
sinφ(t) sin θ(t)

cos θ(t)
1


 , (5.66)

with |λ1,0⟩ and |λ1,1⟩ spanning the energetically degenerate computational basis.

In this basis, En;ab(t) = εn(t)δab which consequently decouples E and A in Equa-

tion (5.41). Thus, the adiabatic evolution operator is given by

U(t) =
3∑

n=1

1∑

a,b=0

un;ab |λn;a(t)⟩ ⟨λn;b(t)| , (5.67)
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where

un(t) = e−i
∫ t
0 εn(t)T e

∫ t
0 An(t′)dt′ , (5.68)

An;ab(t) = ⟨λn;a(t)|i∂t|λn;b(t)⟩ . (5.69)

As a result, any accumulated dynamical phase in the computational basis can be

treated as a global phase factor. Therefore, the nontrivial effects of the evolution is

completely due to the non-Abelian geometric phase.

Suppose that this system is subject to independent additive fluctuations in the

lasers’ relative strength, θ → θ + δθ, in their relative phase, φ → φ + δφ, as well as

multiplicative amplitude noise, Ω → Ω(1 + δΩ). Then, in terms of Equation (5.8),

we have

aΩ = 0, MΩ =E4,4 + E5,5 + E6,6, (5.70)

aθ = 0, Mθ = − tan θ(t)E6,6, (5.71)

aφ = 0, Mφ =
1

2
(E5,4 − E4,5) . (5.72)

It can be easily verified that the transformation V = e−iν(t)e1 (or, equivalently, by

Q = e2ν(t)ad(e1)) satisfies the conditions we outlined in the main text, where ad(e1)

denotes the adjoint representation of e1. We can calculate the corresponding change

in the dynamical phase contribution using Equation (5.45):

Ẽ(t) =




0 i cos (θ(t)) ν ′(t) 0 0

−i cos (θ(t)) ν ′(t) 0 − i sin(θ(t))ν′(t)√
2

− i sin(θ(t))ν′(t)√
2

0 i sin(θ(t))ν′(t)√
2

−Ω(t) 0

0 i sin(θ(t))ν′(t)√
2

0 Ω(t)



, (5.73)

where the computational subspace is located in the upper 2 × 2 block. We again

see that Ẽ(t) is nontrivial in the computational subspace which indicates that the
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gate Ũ(T ) is not purely geometric even though its filter function is the same as

U(T ). We further note that this transformation yields a control Hamiltonian with

non-degenerate energy levels. Thus, the geometric and dynamical components of

the phase integral in Equation (5.41) are no longer decoupled which is in contrast

with the non-Abelian version of the gate.

5.4 Discussion

We have demonstrated in Section 5.3 that in many experimentally relevant

scenarios there exist families of solutions to Equation (5.20) which implies that the

notion of noise robustness is independent of phase type. This invalidates the most

general form of the robustness conjecture since it is always possible in principle to

find two Hamiltonians that produce the same gate and noise sensitivity but with

polar opposite phase types. In other words, there is nothing particularly special

about geometric gates when it comes to robustness. At first glance, this may seem

to contradict the significant evidence in the literature that supports the robustness

conjecture for geometric gates. It is crucial to note, however, that the solution set

of Equation (5.20) is only non-trivial when the control Hamiltonian is not severely

constrained. Here constraints refer to the physical limitations of a specific qubit

implementation such as control parameter bounds, only two-axis control, or band-

width limitations. Depending on the error model in consideration and the severity

of the constraints, there can be scenarios where the only solution to Equation (5.20)

is a trivial one (Q(t) = 1). This clearly happens, for example, with an unusual error

91



Figure 5.10: A schematic illustration demonstrating how control constraints can give

rise to preferential phase robustness. Here we consider the set of control Hamiltoni-

ans described by Equation (5.75). The colored horizontal lines represent families of

control Hamiltonians that preserve the filter function, F1 and F2 respectively. The

color gradient indicates the gate’s phase type, which can range from purely dynam-

ical to purely geometric. The dotted line represents a subset of the control space

that is physically accessible in a given experiment as a result of strict constraints

(generally this dotted line will broaden into an extended region of the plane). In

this case, the constraint prohibits one from traversing the horizontal lines, so one

would obtain a different noise sensitivity (i.e., filter function) for a geometric gate

versus a dynamical gate.
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model of aq = 0 and Mq = 1 in Equation (5.8). Likewise, geometric gates naturally

emerge as superior in the particular case of a strictly two-axis control Hamiltonian

with static multiplicative amplitude error [174]. In such special cases, the corre-

spondence between filter function and phase type is unique, i.e., phase preference

emerges.

We can illustrate how phase preference emerges using Fig. 5.10. Generally one

has many tunable parameters in the control Hamiltonian (e.g., even for only a single

time-dependent control field, one has the value of the field over each infinitesimal

time step). However, for the sake of being able to sketch an illustration, consider a

control Hamiltonian with only two free parameters,

hc(t; a, b) = Q(t) [bhg(t) + (1 − b)hd(t)] + hQ(t), (5.74)

Q(t) = T exp

{
a

∫
[bωg(t) + (1 − b)ωd(t)] ·Λdt

}
, (5.75)

where hc (hd) denotes a specific physically accessible control Hamiltonian that

produces a particular target gate geometrically (dynamically), ωg (ωd) denotes a

rotation axis vector that determines an operator Q which solves Equation (5.20)

such that it produces the same target gate with an identical filter function but a

different phase type (assuming such a solution exists for the relevant error model,

as in the examples of Section 5.3), and a, b parameterize a continuous deformation

between these four specific points in the control space.

The horizontal lines of Fig. 5.10 are sets of control fields that all yield the

same filter function (labeled F1 and F2 in the figure). The color gradient indicates

the phase type across these lines which can range from purely dynamical to purely
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geometric. However, physical constraints may only allow access to some subarea of

the a − b plane. For example, in a severely constrained case, one may only have

access to Hamiltonians with a = 0 in Equation (5.75), indicated by the dotted line in

Fig. 5.10. So, although in this paper we have shown that a geometric gate generally

has a dynamical equivalent with equal noise sensitivity (and vice versa), a strict

control constraint could prohibit one from accessing these equivalent controls in

practice. As depicted in Fig. 5.10, one would then observe different noise sensitivities

for different phase types.

A notable example where this behavior is observed is in Ref. [140]. Here the

authors considered the control Hamiltonian in Equation (5.21) with the constraint

that φ = φ0t and Ω,∆, and φ0 are constants. In addition, they assumed that Ω

and ∆ are subject to multiplicative noise. By further imposing the restriction that

φ =
[
∆ ±

√
∆2 − η(Ω2 + ∆2)

]
/η and ∆ = Ω

√
η/(1 − η) + ∆0 where η and ∆0 are

constants, it is possible for them to switch between a geometric and a dynamical

gate. However, it can be easily verified that the constraints they take do not permit

the control to be changed as prescribed in Equation (5.25). Thus, when they change

the gate’s phase type (move up/down the dotted line), they also changed the gate’s

filter function. In their case, they found that geometric gates performed better than

dynamical gates. In the situation of Ref. [154], where a strictly two-axis control

scheme with additive noise on both axes was considered, the constraints again pre-

clude moving along the horizontal lines of Fig. 5.10 but in this case it is dynamical

gates that were found to perform better than geometric gates.

Thus, our result can be used to reconcile seemingly contradictory claims in
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the literature regarding the robustness conjecture of geometric gates, in that studies

that support the conjecture considered a constrained model in which the solution

set of Equation (5.20) favor geometric gates, whereas studies that do not support

the conjecture considered a constrained model that favor dynamical gates instead.

We emphasize, however, that the apparent superiority of either phase type is merely

a consequence of restricting the solution set of Equation (5.20) since we have shown

in Section 5.3 that they are generically equivalent in the absence of constraints.

Determining in which scenario dynamical gates or geometric gates are superior can

only be done on a case-by-case basis as it is determined by the noise model as well

as the particular constraints.

Realizing equivalent Hamiltonians may require degrees of freedom in the con-

trol to be present in one that are not present in the other. For example, a tunable

detuning, ∆(t), is necessary to produce the dynamical gates seen in Fig. 5.3 and

5.7. While controlling the detuning is not entirely common, this level of control has

already been achieved in superconducting qubits [187] and in quantum dot charge

qubits [188].

In addition, although our analysis is only strictly valid for coherent noise mod-

els, it can also be applied to dissipative processes. We have verified through Lindblad

master equation simulations that the equivalent geometric and dynamical gates are

identically affected by dephasing and relaxation. This behavior is expected since,

by construction, the two Hamiltonians produce gates with the same duration and

filter function.
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5.5 Conclusion

In summary, we examine the broadband noise-resilience of geometric and dy-

namical gates using filter functions and show that there exists no intrinsic advantage

for one or the other – for any control Hamiltonian producing a geometric gate one

can find a different control Hamiltonian that produces a completely equivalent dy-

namical gate in the same frame. We illustrate this explicitly in a one-qubit scenario

for both the Abelian and non-Abelian case. Our argument applies to both adiabatic

and non-adiabatic gates and does not impose any speed restriction on the control.

We argue how the presence of control constraints can give rise to preferential phase

robustness. Our result reconciles the apparent contradictory claims in the current

literature regarding the robustness of geometric gates. Since geometric gates are not

inherently more robust than dynamical gates, then the use of geometric quantum

computing becomes a question of experimental convenience.
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Chapter 6

Efficient reverse engineering of one-qubit filter

functions with dynamical invariants

We derive an integral expression for the filter-transfer function of an arbi-

trary one-qubit gate through the use of dynamical invariant theory and Hamilto-

nian reverse engineering. We use this result to define a cost functional which can

be efficiently optimized to produce one-qubit control pulses that are robust against

specified frequency bands of the noise power spectral density. We demonstrate

the utility of our result by generating optimal control pulses that are designed to

suppress broadband detuning and pulse amplitude noise. We report an order of

magnitude improvement in gate fidelity in comparison with known composite pulse

sequences. More broadly, we also use the same theoretical framework to prove the

robustness of nonadiabatic geometric quantum gates under specific error models and

control constraints. This work was based on the paper arXiv:2204.08457 [189].
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6.1 Introduction

Accurate manipulation of noisy quantum systems is an important problem in

optimal control theory with potential applications in the field of chemical reaction

control [190–192], quantum sensing [193, 194], and quantum information processing

(QIP) [1] to name a few. In QIP, a typical strategy for suppressing errors due to

noise is to use dynamical decoupling [195–200] and composite pulse sequences [28,

36, 37, 72, 75, 201]. These techniques are designed to perturbatively suppress noise

with correlation time scales that are much longer than the target evolution time

(quasistatic noise). In many instances, however, quantum devices also suffer from

non-static noise that fluctuates on the order of the evolution time or faster [40, 41,

200, 202]. Composite pulses have limited efficacy in such cases [203] and can even

be detrimental to the quality of the generated quantum gate [204].

An alternative solution to these control problems is to use pulse shaping tech-

niques [62, 165, 205–210]. The main idea of this approach is to find, either ana-

lytically or numerically, an appropriate set of time-dependent control Hamiltonian

parameters that produces a desired evolution. Since the time-dependent Schrödinger

equation (TDSE) is generally not analytically tractable, analytical solutions are typ-

ically limited to simple pulse shapes [211] or in restricted settings (e.g., for static

error [208, 210] or state transfer protocols [206]). Numerical solutions offer much

more flexibility in the control landscape. When combined with the formalism of

filter functions [47], which characterizes the sensitivity of a control protocol to the

power spectral density of the noise, it is possible to generate quantum gates that
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are robust against a specified spectral region of noise. Specifically, robust quantum

gates are obtained by minimizing the overlap between the control’s filter function

and the noise power spectral density (PSD) in frequency space. This may be used,

along with any control field constraints, to define a cost functional to be minimized

using, for example, gradient-based methods. Optimization algorithms that are de-

signed for deep learning and are implemented in platforms such as TensorFlow [212]

or Julia’s Flux package [213] are especially well-suited for these tasks owing to their

built-in automatic differentiation capability. The power and flexibility offered by

deep neural networks for solving quantum control problems has been demonstrated

in a variety of recent works [214–219]. However, filter function engineering typically

involves solving the TDSE for the time evolution operator. It is possible to circum-

vent this, for example, using Hamiltonian reverse engineering based on the theory of

dynamical invariants [165]. Thus, it is possible to further reduce the computational

workload of the optimization framework by reparameterizing the cost functional in

terms of dynamical invariant parameters.

In this work, we use dynamical invariant theory and Hamiltonian reverse en-

gineering to derive an integral expression for the filter function of an arbitrary

one-qubit gate and explore its theoretical and practical applications. Our work

is structured as follows. We begin Section 6.2 by reviewing the theory of dynamical

invariants. We follow this up with a derivation of the one-qubit filter function for an

arbitrary noise model in terms of the dynamical invariant parameters. We explore

the practical applications of our results in Section 6.3 by numerically searching for

optimal control solutions using deep neural networks. Specifically, we consider noise
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models with a 1/f noise spectrum [39] which is prevalent in solid-state qubits [40–

45]. In addition, we discuss in Section 6.4 some theoretical implications of our result

by proving the robustness of geometric quantum gates against certain noise models

under a strict only two-axis driving constraint. We then conclude and summarize

our findings in Section 6.5.

6.2 Dynamical invariants

We consider as our starting point a general one-qubit control Hamiltonian with

three-axis driving,

Hc(t) =
1

2

[
∆(t) Ω(t)e−iφ(t)

Ω(t)eiφ(t) −∆(t)

]
. (6.1)

This particular form is relevant in systems such as superconducting qubits [57],

quantum dot spin qubits [178], and NMR qubits [179] to name a few, corresponding

to the rotating wave approximation for a two-level systm that is driven by an oscil-

lating field with amplitude Ω at a carrier frequency detuned from resonance by ∆,

and with phase φ. The solution to the time-dependent Schrödinger equation with

this Hamiltonian is not analytically tractable in general. It is possible, however, to

use the theory of dynamical invariants to reformulate this problem so as to spec-

ify a resulting unitary evolution and then analytically calculate a time-dependent

Hamiltonian that would produce it [165]. A dynamical invariant I(t) is a solution

to the Liouville-von Neumann equation [162]

i
∂I(t)

∂t
− [Hc(t), I(t)] = 0. (6.2)
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The eigenvectors |ϕn(t)⟩ of I(t) are related to the solutions of the Schrödinger equa-

tion by a global phase factor: |ψn(t)⟩ = eiαn(t) |ϕn(t)⟩, where αn(t) are the Lewis-

Riesenfeld phases given by [172]

αn(t) =

∫ t

0

〈
ϕn(s)

∣∣∣∣i
∂

∂s
−Hc(s)

∣∣∣∣ϕn(s)

〉
ds. (6.3)

Within this framework, the time evolution operator Uc(t) can be expressed as

Uc(t) =
∑

n=±

eiαn(t) |ϕn(t)⟩ ⟨ϕn(0)| . (6.4)

Thus, the theory of dynamical invariants effectively transforms the problem of solv-

ing the time-dependent Schrödinger equation to finding an appropriate I(t) that

satisfies Equation (6.2). As a consequence, we are free to choose a parameterization

for Uc(t) by choosing the |ϕn(t)⟩ appropriately. Suppose that we choose

|ϕ+(t)⟩ = cos

(
γ(t)

2

)
e−iβ(t) |0⟩ + sin

(
γ(t)

2

)
|1⟩ , (6.5)

|ϕ−(t)⟩ = sin

(
γ(t)

2

)
|0⟩ − cos

(
γ(t)

2

)
eiβ(t) |1⟩ , (6.6)

where I(t) |ϕn(t)⟩ = ±Ω0/2 |ϕn(t)⟩ and Ω0 is an arbitrary constant with units of

frequency. This allows us to express I(t) in a form similar to Equation (6.1)

I(t) =
Ω0

2

(
cos(γ) sin(γ)e−iβ

sin(γ)eiβ − cos(γ)

)
. (6.7)

If we require Equations (6.1) and (6.7) to satisfy Equation (6.2), we are left with

two coupled auxiliary equations [165]

γ̇ = −Ω sin(β − φ) (6.8)

∆ − β̇ = Ω cot(γ) cos(β − φ), (6.9)
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which, along with the appropriate boundary conditions, can be used to determine the

control parameters Ω(t), ∆(t), and φ(t) that targets a desired Uc(t). This choice of

parametrization allows us to write Uc(t) strictly in terms of the dynamical invariant

parameters and the Lewis-Riesenfeld phase:

Uc(t) = e−i
β(t)
2
σZe−i

γ(t)
2
σY ei

ζ(t)−ζ(0)
2

σZei
γ(0)
2
σY ei

β(0)
2
σZ , (6.10)

where α = α+ = −α− and we introduce a new parameter

ζ(t) = 2α(t) − β(t)

= −β(0) +

∫ t

0

γ̇ cot(β − φ)

sin γ
dt′ (6.11)

The auxiliary equations provide a family of control solutions that allow us to

reverse engineer a desired quantum gate. Since the gate only depends on the bound-

ary values of the dynamical invariant parameters, there are infinitely many ways to

generate the gate. It is desirable to use this freedom in the control Hamiltonian such

that the resulting evolution is also robust against noise. To this end, filter functions

provide a convenient method of quantifying the gate fidelity’s susceptibility to noise

with respect to its spectral properties [47]. The total one-qubit Hamiltonian in the

presence of noise can be written as

H(t) = Hc(t) +He(t), (6.12)

where Hc(t) is the ideal deterministic control Hamiltonian and He(t) is the stochastic

error Hamiltonian. More explicitly, He(t) can generally be expressed as

He(t) =
∑

q

3∑

i=1

δq(t)χq,i(t)σi, (6.13)
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where q indexes a set of uncorrelated stochastic variables δq(t), χq,i(t) contains

the sensitivity of the control parameters (which generally can be a function of the

parameters themselves) to δq(t), and σi are Pauli operators. For sufficiently weak

noise, the average gate infidelity ⟨I⟩ of the noisy evolution U(t), which satisfies

iU̇(t) = H(t)U(t) where U(0) = 1, can be compactly expressed as (see Appendix F)

⟨I⟩ ≈ 1

2π

∑

q

∫ ∞

−∞
Sq(ω)Fq(ω) dω, (6.14)

where Sq(ω) denotes the noise PSD for the stochastic variable δq(t) and Fq(ω) is the

corresponding filter function which can be calculated using the following equations:

Fq(ω) =
∑

k

|Rq,k(ω)|2 , (6.15)

Rq,k(ω) =
∑

i

∫ T

0

χq,i(t)Rik(t)e
iωt dt, (6.16)

Rik(t) =
1

2
tr
(
U †
c (t)σiUc(t)σk

)
, (6.17)

where T is the gate time.

Combining Equations (6.4) and (6.17) allows us to express Equation (6.16) as

Rq,k(ω) =
1

2

∑

i,n,n′

⟨ϕn(0)|σk|ϕn′(0)⟩
∫ T

0

ei(αn(t)−αn′ (t)+ωt)χq,i(t) ⟨ϕn′(t)|σi|ϕn(t)⟩ dt.

(6.18)

Thus, the filter function corresponding to δq(t) is given by

Fq(ω) =
∑

k

Rq,k(ω)R∗
q,k(ω)

=
1

4

∫ T

0

∫ T

0

∑

i,j,k,
n,m,n′,m′

⟨ϕn(0)|σk|ϕn′ (0)⟩ ⟨ϕm(0)|σk|ϕm′ (0)⟩

× ei(αn(t1)−αn′ (t1)+ωt1)χq,i(t1) ⟨ϕn′(t1)|σi|ϕn(t1)⟩ dt1

× ei(αm(t2)−αm′ (t2)−ωt2)χq,j(t2) ⟨ϕm′(t2)|σj|ϕm(t2)⟩ dt2.

(6.19)
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For a given n, n′, m, and m′, the k-dependent factors of this sum yields

∑

k

⟨ϕn(0)|σk|ϕn′(0)⟩ ⟨ϕm(0)|σk|ϕm′(0)⟩

=





1 if {n, n′,m,m′} = {±,±,±,±}

−1 if {n, n′,m,m′} = {±,±,∓,∓}

2 if {n, n′,m,m′} = {±,∓,∓,±}

0 otherwise

. (6.20)

We can use Equations (6.5), (6.6), (6.20) as well as the fact that ⟨ϕ±(t)|σk|ϕ±(t)⟩ =

−⟨ϕ∓(t)|σk|ϕ∓(t)⟩ to simplify Equation (6.19) into

Fq(ω) =
∑

i,j

(∫ T

0

⟨ϕ+(t)|σi|ϕ+(t)⟩χq,i(t)e
ıωt dt

)(∫ T

0

⟨ϕ+(t)|σj |ϕ+(t)⟩χq,j(t)e
−ıωt dt

)

+
1

2

(∫ T

0

⟨ϕ−(t)|σi|ϕ+(t)⟩χq,i(t)e
ı2α(t)+ıωt dt

)(∫ T

0

⟨ϕ+(t)|σj |ϕ−(t)⟩χq,j(t)e
−ı2α(t)−ıωtdt

)

+
1

2

(∫ T

0

⟨ϕ+(t)|σi|ϕ−(t)⟩χq,i(t)e
−ı2α(t)+ıωt dt

)(∫ T

0

⟨ϕ−(t)|σj |ϕ+(t)⟩χq,j(t)e
ı2α(t)−ıωt dt

)
.

(6.21)

Finally, substituting in Equations (6.5) and (6.6) allows us to compactly write Equa-

tion (6.2) in the following vectorized expression:

Fq(ω) =

∥∥∥∥∥∥

∫ T

0

Λ(t)



χq,X(t)
χq,Y (t)
χq,Z(t)


 eiωt dt

∥∥∥∥∥∥

2

, (6.22)

where the entries of the matrix Λ are given by

Λ =




cos β sin γ sin β sin γ cos γ
− cos β cos γ cos ζ − sin β sin ζ − sin β cos γ cos ζ + cos β sin ζ sin γ cos ζ
− cos β cos γ sin ζ + sin β cos ζ − sin β cos γ sin ζ − cos β cos ζ sin γ sin ζ


 .

(6.23)

This is our main result and we show in the following sections some examples of

its utility. Before we proceed, we comment on the form of Equation (6.22). First,
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although the similarity between Equations (6.15)-(6.16) and (6.22) might seem to

suggest that R(t) and Λ(t) are identical and we have not really simplified anything,

in fact what we have done is to note that the dependence of R(t) on the value

of the dynamical invariant parameters evaluated at t = 0 does not affect the filter

function value, and Λ(t) does not carry that extraneous dependence. Second, certain

error models admit an alternative interpretation for Equation (6.22). For example,

suppose we consider the dephasing and over-rotation noise models. The former can

be induced by an additive shift to the qubit detuning, ∆(t) → ∆(t) + δ∆(t), and

the latter can be induced by a multiplicative shift in the pulse amplitude, Ω(t) →

Ω(t) (1 + δΩ(t)). The corresponding error sensitivities are χ∆(t) = 1
2

[0, 0, 1]⊺ and

χΩ(t) = 1
2

[Ω cosφ,Ω sinφ, 0]⊺. Substituting these expressions onto Equation (6.22)

yields the following filter functions

F∆(ω) =

∥∥∥∥∥∥

∫
T

0

1

2




cos γ
sin γ cos ζ
sin γ sin ζ


 eiωt dt

∥∥∥∥∥∥

2

, (6.24)

FΩ(ω) =

∥∥∥∥∥∥

∫
T

0

1

2




ζ̇ sin2 γ

ζ̇ sin γ cos γ cos ζ + γ̇ sin ζ

ζ̇ sin γ cos γ sin ζ − γ̇ cos ζ


 eiωt dt

∥∥∥∥∥∥

2

. (6.25)

Up to a scalar factor, the detuning filter function in Equation (6.24) can be

reinterpreted as a position vector with constant speed1

˙⃗r = [cos γ,− sin γ cos ζ,− sin γ sin ζ] . (6.26)

If robustness at a certain noise frequency is defined by a vanishing filter function

1The sign difference in comparison with Equation (6.24) is a consequence of our choice of

parameterization for the dynamical invariant eigenvectors and is irrelevant since only the magnitude

of ˙⃗r matters.
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value, robustness against static detuning noise (i.e., at ω = 0) is equivalent to

having the position vector trace a closed three-dimensional curve whose curvature

is given by Ω(t). Such a geometric interpretation has been noted previously in the

literature [157, 220–225].

A similar observation can be made for the pulse amplitude filter function. Note

that the vector in the integrand of Equation (6.25) is equivalent to ˙⃗r× ¨⃗r. This can

be rewritten as Ω b⃗ [226], where b⃗ is the binormal vector corresponding to r⃗ and we

have used the fact that the curvature κ = Ω. Therefore, constructing a quantum

gate that is simultaneously robust against static detuning and pulse amplitude noise

is mathematically equivalent to finding a closed three-dimensional curve such that

∫ T
0

Ω(t)⃗b(t) dt = 0⃗. As far as we know, this has not been noted before.

6.3 Broadband Noise Optimization

We demonstrated in Section 6.2 that it is possible through Hamiltonian reverse

engineering to analytically calculate the filter function of an arbitrary one-qubit gate

in terms of the dynamical invariant parameters β(t), γ(t), and ζ(t) as well as the

sensitivity χq,i(t). One immediate implication of this result is the possibility of filter

function engineering which can be used for error suppression [214–217] or quantum

sensing [227]. In the context of error suppression, we can use Equation (6.22) to

define a cost functional which can be minimized in spectral regions where the noise

PSD is dominant. This approach allows us to target any robust one-qubit gate pro-

vided that we can find an appropriate γ(t) and β(t). Furthermore, this is different
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from previous filter function engineering results since calculating the evolution op-

erator is no longer necessary, which helps to reduce the computational workload of

the optimization framework.

We consider again as an example the case where our system is subject to

detuning and pulse amplitude noise. Note that both Equations (6.24) and (6.25)

depend only on γ and ζ. This means that β is a free parameter up to the bound-

ary conditions imposed by the reverse engineering process. This extra degree of

freedom can be used to impose control restrictions such as strict two-axis control.

Combining Equations (6.8), (6.9), and (6.11) provides us with the reverse engineered

Hamiltonian parameters in terms of the dynamical invariant parameters:

Ω =

√
γ̇2 + ζ̇2 sin2 γ (6.27)

φ = β − arctan
γ̇

ζ̇ sin γ
(6.28)

∆ = β̇ − ζ̇ cos γ. (6.29)

We can set ∆ = 0 by solving the differential equation β̇ = ζ̇ cos γ for β with

the boundary condition β(0) = −ζ(0). Thus, all properties of the output gate is

determined by γ and ζ.

Restricting β in this manner does not necessarily diminish our ability to target

arbitrary one-qubit gates. In practice, a finite set of quantum gates are used to target

arbitrary operations. Although we can engineer γ and ζ to target gates directly,

it is worth pointing out that many qubit qubit implementations have access to

virtual Z (vz) gates [64, 228–230]. These zero-duration gates are essentially perfect

and implemented through abrupt changes to the reference phase. It can be shown
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that any one-qubit gate can be decomposed into the product of Z gates and two

Xπ
2

[64]: Zθ1Xπ
2
Zθ2Xπ

2
Zθ3 . We can rewrite the engineered evolution operator in

Equation (6.10) as

Uc(t) = Zβ(t)Yγ(t)Zζ(0)−ζ(t)Y−γ(0)Z−β(0)

= Zψ1XθZψ2 , (6.30)

where

cos (θ) = cos(ζ(0) − ζ(t)) sin(γ(t)) sin(γ(0)) + cos(γ(t)) cos(γ(0)), (6.31)

and ψ1 and ψ2 are angles that depend on the target gate. By setting θ = π
2
, we can

replace all Xπ
2

in the gate decomposition with Uc(T ) and combining all neighboring

Z gates. Since Z gates may be executed virtually, we only need one physical gate,

Uc(T ) with θ = π
2
, to produce any one-qubit operation.

Our goal is to minimize the following cost functional:

cost =

∫ ∞

−∞
F∆(ω)S∆(ω) dω +

∫ ∞

−∞
FΩ(ω)SΩ(ω) dω

+|cos (ζ(0) − ζ(T )) sin γ(T ) sin γ(0) + cos γ(T ) cos γ(0)|
∣∣∣∣
Ω(0)

Ωmax

∣∣∣∣+

∣∣∣∣
Ω(T )

Ωmax

∣∣∣∣+
∑

i

max

(
0,

Ω(ti)

Ωmax

− 1

)
. (6.32)

The first two terms correspond to the infidelity integrals for detuning and amplitude

noise with noise PSD S∆ and SΩ, respectively. The third term is the constraint that

targets θ = π
2
. The fourth and fifth term sets the boundary value of the pulse

amplitude to zero2. Finally, the sixth term imposes a maximum value Ωmax on Ω

2These constraints are not necessary but they help with the overall experimental feasibility of

the pulses we produce.
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by discretizing the interval [0, T ] and evaluating Ω at each time value. The cost

penalizes any point where Ω(ti) > Ωmax through the function

max(0, x) =





0 x ≤ 0

x x > 0

. (6.33)

We demonstrate the flexibility of our approach by considering two examples. We

first consider a case where the goal is to produce a gate that acts as a stopband

filter against 1/f detuning and pulse amplitude noise. We then consider a case

where the goal is to produce a gate that is optimal in the presence of 1/f pulse

amplitude noise and a static detuning noise. To this end, we employ deep neural

networks [231, 232] as our optimization framework. The power of neural networks

originate from their ability to represent complex ideas as a hierarchy of simpler con-

cepts. This allows them to efficiently identify key abstract properties of a problem,

which is highly coveted in tasks such as pattern recognition [233]. It has also been

proven that neural networks with sufficient neurons and layers can act as a universal

function approximator [234, 235]. This is ideal for our purpose since it eliminates

the nontrivial task of finding suitably paramemeterized ansatz function to optimize

over that will yield convergent solutions. Furthermore, machine learning frameworks

tend to have built-in automatic differentiation capabilities which can be utilized for

gradient-based optimization.

In particular, we use a feedforward neural network (sometimes referred to as

multilayer perceptron) which is constructed using layers of interconnected compu-

tational units called neurons such that information travels only in one direction;
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Figure 6.1: A schematic diagram of a feedforward deep neural network with one

input neuron, two output neurons, and two hidden layers with four neurons each.

A network is deep if it has at least two hidden layers. As information flows from

the input layer, each subsequent layer nonlinearly transforms incoming information

and returns a value. The goal is to train the neural network so that the final output

optimizes the cost. In our case, we would like to train a neural network to take time

as input and return the optimized dynamical invariant parameters γ and ζ.
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starting with an input layer, then a series of hidden layers, and finally onto an out-

put layer. A schematic diagram of a feedforward neural network is shown in Fig. 6.1.

A neural network is deep if it has at least two hidden layers. Each adjacent layers

act as a function that takes a vector input and produces a vector output using the

following model

xi+1 = σ (Wixi + bi) , (6.34)

where xi is the input in the ith layer, Wi is a matrix that describes the neural

connections between the ith and (i + 1)th layer, bi is a bias vector, and σ(·) is a

nonlinear activation function such as max(0, ·) or tanh(·). Our goal is to train the

neural network using machine learning algorithms to return the optimized dynamical

invariant parameters γ and ζ on the output layer by feeding in time on the input

layer. For our optimization we use a feedforward deep neural network with one input

neuron, two hidden layers with 16 neurons each and a tanh activation function, and

two output neurons for a total of 338 parameters3.
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Figure 6.2: A plot of the optimized Hamiltonian (TOP) and filter function (BOT-

TOM) for the case of simultaneous 1/f detuning and pulse amplitude noise over a

finite frequency range.
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6.3.1 1/f stopband filter for both detuning and pulse amplitude noise

For our first example, we consider identical noise PSD for detuning and am-

plitude noise:

S∆(ω) = SΩ(ω) =





A
ω

ω0 ≤ |ω| ≤ ωc

0 otherwise

, (6.35)

where [ω0, ωc] defines the frequency stopband in which we wish to suppress noise.

We set ω0 = 10−9Ωmax, ωc = 10−1Ωmax, and T = 16π/Ωmax. We present in Fig. 6.2 a

plot of the optimized control fields and filter functions. The details of our numerical

optimization scheme is provided in Appendix G.

We see from Fig. 6.2 that the control pulse we produced satisfies the imposed

constraints. We compare the total infidelity of our optimized pulse with that of

known pulse sequences in the literature that address either detuning noise, pulse

amplitude noise, or both. We present in Table 6.1 a summary of these comparisons.

We find that our broadband optimized pulse yields an infidelity that is at least an

order of magnitude lower than than any other pulse sequences. Specifically, the

minimum improvement is roughly a factor of 14 which is a comparison with the

concatenated CORPSE [29, 236, 237] and BB1 [238] pulse sequence (CinBB) [239].

CinBB is able to address static detuning and pulse amplitude noise simultaneously.

3In feedforward neural networks, each neural connection adds one parameter. Furthermore,

with the exception of the input neurons, each neuron contains an additional bias parameter. Thus,

if we have a 1-3-2 network (one input neuron, one hidden layer with three neurons, and two output

neurons), we have (1 ∗ 3 + 3) + (3 ∗ 2 + 2) = 14 free parameters to optimize. In our work, we used

a 1-16-16-2 network which has (1 ∗ 16 + 16) + (16 ∗ 16 + 16) + (16 ∗ 2 + 2) = 338 free parameters.
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We attribute the improvement in our result to the fact that pulse sequences are

generally designed to suppress static noise. Although they can be used to address

noise in the quasitatic regime, their ability to suppress noise that fluctuate on the

order of Ωmax severely limited. However, it is worth noting that our pulse’s perfor-

mance comes at the cost of increased noise sensitivity in frequency regions beyond

the indicated stopband.

6.3.2 Static detuning and 1/f pulse amplitude noise

For our second example, we consider the case where we have a static detuning

noise as well as a 1/f pulse amplitude noise:

S∆(ω) = 10Aδ(ω), (6.36)

SΩ(ω) =





0 0 ≤ |ω| ≤ ω0

A
ω

ω0 ≤ |ω| ≤ ωc

Aωc

ω2 ωc ≤ |ω|

, (6.37)

where we have assumed an order of magnitude difference in the detuning and pulse

amplitude noise strength. Here we set ω0 = 10−9Ωmax, ωc = 10−1Ωmax, and T =

5π/Ωmax. We present in Fig. 6.3 a plot of the optimized control fields and filter

functions. We again compare our optimized pulse with known pulse sequences and

the results are summarized in Table 6.1.

Unlike the previous case, we only see a minimum improvement in infidelity

by a factor of 7. This is primarily attributed to penalizing the value of the filter

function in regions where ωc ≤ |ω|. In the previous case, the improvement is due
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Figure 6.3: A plot of the optimized Hamiltonian (TOP) and filter function (BOT-

TOM) for the case of static detuning noise and 1/f pulse amplitude noise. Unlike

the previous example, the 1/f spectrum here has a 1/f 2 tail which penalizes large

filter function values in the ωc ≤ |ω| region.
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Table 6.1: A comparison of infidelities between our deep neural network output

and known composite pulse sequences. The ratio Ii/IDNN compares the infidelity

of naive and composite pulses targeting a Xπ
2

gate against our optimized gate. The

subscript A/B indicates whether the case of Section 6.3.1 or that of Section 6.3.2 is

in consideration. We also indicate which pulses are robust against static detuning

and/or pulse amplitude noise. We report a substantial decrease in infidelity in all

cases we considered.

Pulse IA/IDNN IB/IDNN Robust to δ∆? Robust to δΩ?

Naive (Square) 223 14 No No
Short CORPSE 1110 68 Yes No

BB1 110 9 No Yes
CinBB 14 7 Yes Yes
CinSK 57 15 Yes Yes

to the fact that filter function values outside the stopgap do not contribute to the

infidelity. This is no longer true in this case due to the presence of a 1/f 2 tail which

penalizes large filter function values for frequency values greater than ωc.

6.4 Robustness of geometric phases

We can also apply our result in Section 6.2 to explore the robustness properties

of geometric quantum gates. Geometric gates are quantum gates with a trivial

dynamical phase which means they rely on the geometric phase to produce unitary

dynamics. Geometric gates are of practical interest since they are conjectured to be

ideal for robust quantum computation owing to the global nature of the accumulated

phase. The validity of this conjecture is the subject of many studies with many
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showing support for the conjecture. However, there are also studies that report

situations in which geometric gate are not intrinsically more robust than dynamical

gates [153–157] and, in certain scenarios, their sensitivity to noise deteriorates [140,

158–161]. We showed in Chapter 5 that the noise sensitivity of geometric and

dynamical gates are generically equal. However, when control constraints are present

(e.g. strict 2-axis or piecewise constant control), it is possible for a particular phase

type to become preferable and naturally robust to some noise.

Here we demonstrate preferential phase robustness in nonadiabatic Abelian

geometric gates as a consequence of control constraints. To clarify, we say that a

quantum gate is robust against the noise process q at a particular frequency ω if

Fq(ω) = 0. Our theoretical framework is ideal for this type of analysis because

the notion of geometric and dynamical phases are naturally developed in the the-

ory of dynamical invariants. Using the Lewis-Riesenfeld phase in Equation (5.2),

the eigenvectors in Equations (6.5) and (6.6), as well as the auxiliary equations in

Equations (6.8) and (6.9), we can define the geometric phase, αn,g, and dynamical

phase, αn,d, accumulated by the eigenvector |ϕn⟩ during the evolution as

αn,g(T ) =

∫ T

0

〈
ϕ±(t)

∣∣∣∣i
∂

∂t

∣∣∣∣ϕ±(t)

〉
dt

= ±α(T ) ∓
∫ T

0

ζ̇ − β̇ cos γ

2
dt, (6.38)

αn,d(T ) = −
∫ T

0

⟨ϕ±(t)|H(t)|ϕ±(t)⟩ dt

= ±
∫ T

0

ζ̇ − β̇ cos γ

2
dt. (6.39)

Suppose we consider the special case of a constant detuning ∆, which is a

fairly common constraint in works considering geometric gates [140, 180, 182, 240].

117



We prove the following theorem for that special case by analyzing the filter function

expressions that we derived:

Theorem. Consider the control Hamiltonian in Equation (6.1) under the constraint

that ∆ is constant. Any gate that is robust to static multiplicative amplitude noise

(δΩ) as well as static additive or multiplicative detuning noise (δ∆) is necessarily

geometric.

Proof. Using Equation (6.29), we can rewrite the dynamical phase integral in Equa-

tion (6.39) as

αn,d(T ) = ±
∫ T

0

ζ̇ − β̇ cos γ

2
dt (6.40)

= ±
∫ T

0

−∆ cos γ + ζ̇ sin2 γ

2
dt

= ∓∆

2

∫ T

0

cos γ dt± 1

2

∫ T

0

ζ̇ sin2 γ dt. (6.41)

We begin by considering the case where there is additive detuning and multiplicative

pulse amplitude noise. Imposing simultaneous robustness against these noise sources

would require F∆(0) = FΩ(0) = 0. However, we see in Equations (6.24) and (6.25)

that the filter function is strictly nonnegative and the only way to achieve robustness

against static noise is if every integral vanishes. Specifically, robustness against

static additive detuning noise requires
∫ T
0

cos γ dt = 0, while robustness against

static amplitude noise requires
∫ T
0
ζ̇ sin2 γ dt = 0. Notice, however, that these are

precisely the integral expressions in Equation (6.41). Thus, simultaneous robustness

against static detuning and pulse amplitude error necessarily requires the dynamical

phase to vanish, i.e., the gate must be geometric.
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Next, we consider the case where there is multiplicative detuning and pulse

amplitude noise. The multiplicative detuning filter function can be found using

Equation (6.29) and is given by

F∆,×(ω) =

∥∥∥∥∥∥

∫
T

0

∆

2




cos γ
sin γ cos ζ
sin γ sin ζ


 eiωt dt

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥

∫
T

0

β̇ − ζ̇ cos γ

2




cos γ
sin γ cos ζ
sin γ sin ζ


 eiωt dt

∥∥∥∥∥∥

2

. (6.42)

Robustness to static noise would require F∆,×(0) = 0. We focus in particular on the

first integral which can be rewritten as

1

2

∫ T

0

β̇ cos γ − ζ̇ + ζ̇ sin2 γ dt. (6.43)

Just like before, we note that imposing robustness against static pulse amplitude

noise requires
∫ T
0
ζ̇ sin2 γ dt = 0 which eliminates the last term in expression above.

Setting the remaining terms to zero is equivalent to setting Equation (6.40) to zero.

Therefore, imposing simultaneous robustness against static multiplicative detuning

and pulse amplitude noise necessitates a geometric gate.

We make the following observations. First, this theorem is consistent with

other results in the literature. It was previously noted in Refs. [174, 239] that com-

posite pulse sequences with detuning fixed to zero that are designed to be robust

against multiplicative pulse amplitude noise (and are trivially robust against multi-

plicative detuning noise since ∆ = 0) are indeed geometric quantum gates. Second,

we note that in that special case of ∆ = 0, the first term in Equation (6.41) vanishes

regardless of the value of the integral. In other words, if we don’t require robustness
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to pulse amplitude noise, it is possible to obtain dynamical gates that are robust to

static detuning noise. A well-known example is the CORPSE family of composite

pulses which are designed to be robust against additive detuning noise [29, 236, 237].

Third, gates that are robust against static multiplicative pulse amplitude noise are

necessarily geometric but the converse isn’t true. One specific example of this is

the orange-slice geometric gate presented in Ref. [180]. It was shown in Section 5.3

that the pulse amplitude filter function in this particular case does not vanish at

ω = 0 despite being a geometric gate. Fourth, we note that the parallel transport

condition (⟨ϕ±(t)|H(t)|ϕ±(t)⟩ = 0) is not necessary to achieve a robust geometric

gate; the dynamical phase integral simply has to vanish at the gate time. Finally,

this theorem is consistent with the results of Chapter 5. It is argued there that in

the absence of control constraints, geometric and dynamical gates are generically

equivalent when it comes to noise sensitivity, and preferential phase robustness can

only emerge in the presence of control constraints. In this case, the constraint is

considering a strictly constant ∆. Removing the constraint on ∆ turns β into a free

parameter. According to Equations (6.38) and (6.39), the geometric and dynamical

component of the total phase is directly dependent on our choice of β. Thus, in the

absence of constraints, we can freely tune the phase type from dynamical to geomet-

ric. Moreover, the filter functions in Equations (6.24) and (6.25) are independent of

β. This indicates that noise sensitivity, as quantified by the filter function, is inde-

pendent of the phase type in the absence of control constraints as was also shown

more generally in Chapter 5.
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6.5 Conclusions

We make use of dynamical invariant theory in order to analytically reverse en-

gineer a qubit’s control Hamiltonian and calculate its corresponding filter function.

This allows us to define a cost function strictly in terms of the dynamical invariant

parameters which can be optimized to create filter functions with desirable prop-

erties. The primary limitation of our theory is its currently limited applicability

to two-level systems, with no provision for operations on more than one qubit or

correction of population leakage to higher energy levels. (The effects of virtual tran-

sitions to higher energy levels do not pose a problem, since they can be incorporated

in an effective one-qubit Hamiltonian [241].) In those cases a generalized approach

such as Ref. [214] is preferable. However, for the specific task of constructing local

rotations with robustness against high frequency noise bands, our method is a useful

and efficient tool.

We demonstrate the utility of our theory by generating control pulses that are

optimized to operate in the presence of broadband noise. One example we considered

is creating a stopband filter for both detuning and pulse amplitude noise. We report

at least an order of magnitude improvement in infidelity when our optimized pulse

is compared with known composite pulse sequences that are designed to address

one or both noise types. Although filter funciton engineering itself is not a novel

concept [214], our approach is efficient since the reverse engineering process circum-

vents the need to compute the evolution operator during the optimization process.

The optimizer only requires that we calculate a simple integral expression with the
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engineered parameters as its input. Furthermore, the engineered parameters offer

adequate flexibility to simultaneously target abitrary qubit gates while considering

control parameter constraints. In principle, more complicated constraints, such as

using different basis functions (Chebyshev, Walsh, Slepian, etc.), time-symmetric

or antisymmetric control [208, 210, 242], or spectral-phase-only optimization [207]

to name a few, can also be incorporated into our theory. Our results can also be

applied to quantum sensing where instead the goal is to maximize the filter function

in a limited noise spectral bandwidth [227, 243].

More broadly, we used our theoretical framework to analyze the robustness of

geometric gates to detuning and pulse amplitude errors. We proved a theorem for

the special case of a control constraint under which geometric gates are necessarily

superior to dynamical gates. We emphasize that the robustness we report is not a

generic property of geometric gates but rather a consequence of imposing control

constraints.
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Chapter 7

Summary

NISQ devices suffer primarily from coherent systematic error and stand to

benefit from robust quantum control derived using the theory of dynamical error

suppression. By lowering the gate error rates, we improve prospects of scalability

in current and future quantum devices which is necessary for the successful im-

plementation of fault-tolerant quantum computing. This dissertation explored two

methods of dynamical suppression in particular: composite pulse sequences and

filter function formalism.

Composite pulse sequences provide a simple method to compensate for the

effects of static control perturbations. In this method, robustness is achieved by

replacing a noisy quantum gate with a series of other noisy gates that are cleverly

designed to ensure that the gate error works against itself. We devoted Chapters 3

and 4 to the application of composite pulses in solid-state systems. In particular,

we examined how to dynamically correct entangling gates using simple Hahn-echo

like pulses. Although our method was successful in providing significant improve-

ments to the gate fidelity, there are several issues that must be addressed. First,

although concatenating different pulse sequences allows us to address more com-
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plex situations, it comes at the cost of significantly increasing gate time. This is

particularly troublesome in two-qubit gates since qubit coupling is usually weak in

some systems (e.g. transmons and singlet-triplet qubits). We saw in Chapter 3 that

concatenated pulse sequences in weakly-coupled transmon qubits require coherence

times that are not yet achievable with current devices. Fortunately, we were able to

avoid this issue in Chapter 4 by using a previously derived analytical model for the

entangling operation produced by capacitively-coupled singlet-triplet qubits. The

additional analytical insight allowed us to recognize special timings in the entan-

gling operation that can be used to design gates that are stroboscopically robust to

certain errors. This approach removed the need for long concatenated pulses since

the remaining errors can be efficiently handled by simple Hahn-echo like pulses.

Second, our composite pulses heavily relied on the availability of near-perfect

one-qubit operations. We saw in Chapter 3 how severely limiting one-qubit gate

errors are to the efficacy of composite pulses. This strongly motivates the need

for better one-qubit control protocols. It is conjectured that geometric quantum

computing is an excellent candidate for this task. Geometric quantum computing

is motivated by the robustness conjecture which states that geometric gates are

intrinsically robust to noise since the phase they accumulate is related to some global

property of the system’s evolution. To test the validity of this conjecture, we used the

notion of a filter function. We demonstrated in Chapter 5 that there is no intrinsic

robustness to neither geometric nor dynamical gates. Preferential phase robustness

exist due to the presence of control constraints. In the absence of constraints, it

is possible to find families of Hamiltonians that produce identical quantum gates
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and filter functions but with varying phase types ranging from purely geometric

to purely dynamical. The existence of such families concsequently invalidates the

robustness conjecture.

Finally, we were able to use dynamical invariant theory in conjunction with

filter function formalism in Chapter 6 to derive an integral expression for a general

one-qubit filter function. We use this result to prove a theorem which outlines control

scenarios in which geometric gates are naturally superior to dynamical gates. More

practically, we used our result to reverse engineer a control Hamiltonian that is

robust against a specified noise PSD. We trained a neural network to produce a

control pulse that is optimal against broadband 1/f detuning and pulse amplitude

noise. Our method successfully generated gates that are consistently better than

known composite pulse sequences. Furthermore, our method is very general and

flexible enough to incorporate many relevant control parameter constraints.
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Appendix A: Analysis of the Length-2 Sequence

In Section 3.2 we noted that if all potential commuting errors are present then

there exists no σecho = σcd with c, d ∈ {I,X, Y, Z} that can satisfy

{σecho, σij} = 0∀ ij ∋ [σij, σab] = 0. (A.1)

To prove this, we begin by making the observation that there exists a maximal em-

bedding a⊕b ⊂ su(4) [244], where ’⊕’ implies commutation of elements between the

respective subalgebras. Let us take a = u(1) with σab as its generator. This means

all the generators of b, which we denote as b = {b1, b2, . . . bn}, commute with σab.

Thus, not only do error channels that commute with σab belong in this embedding,

but the echo pulse also must belong to the corresponding group embedding since it

also needs to commute with σab in order for the sequence to produce a non-identity

operation. Without losing any generality, we can partition b into two subsets as

b = {
{σij}︷ ︸︸ ︷

b1, b2, . . . |
b\{σij}︷ ︸︸ ︷
. . . bn},

where the left partition contains all the commuting errors that are relevant in the

system while the right partition is the coset containing the remaining elements of

the generating set of the subalgebra. A σecho which anticommutes with everything

on the left partition and commutes with σab can only exist in the coset. If all the
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possible commuting errors are present, then all the elements of b must belong to the

left partition, which leaves no possibility for σecho. In other words, if all commuting

errors are present, then there exists no σecho that can satisfy Equation (A.1) which

proves our claim.

When b is a semi-simple Lie-algebra, not all the elements of the coset b\{σij}

will necessarily anticommute with all elements of {σij}. Nonetheless, if the coset

happens to contain a σecho which anticommutes with all the relevant error channels

σij, it can be used for error correction. We now show that this is actually the case

for the length-2 sequence. But before proceeding further, we first remark that the

construction in Section 3.2 relies on the commutation and anticommutation relations

of two-qubit Pauli operators. For this reason, we restrict ourselves to embeddings

which contain the subalgebra b with spinor representation: so(4) ∼= su(2) ⊕ su(2)

[245]. Given our choice a = span(σab) as the u(1) subalgebra, there are two choices

for b.

In the first case with a = b, all the elements of the generating set

{σmI , σIm, σnn, σpp, σmp, σpm},

where m = a, n, and p are mutually distinct and arranged cyclically (e.g. m =

Z, n = X, p = Y ), commute with σaa. We can define the generators of the com-

muting su(2) subalgebras as σ±
X̃

≡ (σmI ± σIm)/2, σ±
Ỹ
≡ (σnp ± σpn)/2, and σ±

Z̃
≡

(σpp ∓ σnn)/2.

In the second case with a ̸= b, all the elements of the generating set

{σmI , σIn, σnm, σnp, σpm, σpp}
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commute with σab, where now we have m = a and n = b. The generators can be

defined as σ±
X̃
≡ (σmI ± σIn)/2, σ±

Ỹ
≡ (σnp ∓ σpm)/2, and σ±

Z̃
≡ (σpp ± σnm)/2.

In either case, any error channel or echo pulse lies in the subspace spanned by

the “+” and “-” generators (e.g., σaI = σ+

X̃
+ σ−

X̃
). Therefore, any given echo pulse

can only anticommute with errors belonging to a different subspace. As an example,

since the σaI echo pulse belong to the subspace spanned by the σX̃ generators, then

only errors that belong in the σỸ and σZ̃ subspaces can be eliminated by a length-2

sequence. Therefore, if all the present commuting errors belong to at most two

subspaces only, then the length-2 sequence is sufficient for fixing the errors to first

order. The transmon qubit in the main text falls in this category.

A more precise statement of our initial claim is that the length-2 sequence

is not capable of correcting errors from all three subspaces. However, placing the

initial length-2 sequence inside another length-2 sequence which uses an echo pulse

that anticommutes with the initial one allows us to eliminate errors from all three

subspaces simultaneously. If we use σaI for our first sequence’s echo pulse, the

second echo pulse must be in the σỸ or σZ̃ subspace in order to satisfy the robustness

condition. Clearly, though, the u(1) term can not be corrected by a length-2 sequence

since it commutes with every allowable echo.
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Appendix B: Equivalence of the Length-2 sequence and the ECR

scheme

In this section we will show that the ECR scheme is mathematically equivalent

to a length-2 sequence with a σXZ echo pulse. We begin by noting that the hIZ

and hZZ terms in the effective Hamiltonian of a CR gate are proportional to Ω2,

whereas the hZX and hIX are only proportional to Ω. Thus, in the absence of noise,

the evolution can be generally expressed as

U (Ω, t) = exp
[
−it

(
Ω2 (aσIZ + bσZZ) + Ω (cσZX + dσIX)

)]
, (B.1)

where a, b, c, and d are given in App. C of Ref. [70]. Using the pulse sequence in

Eq. (3.14), we have

U(Ω, t)σXIU(−Ω, t)σXI .

The change from Ω → −Ω flips the sign of terms that are linearly proportional

to Ω. Furthermore, the two σXI surrounding U(−Ω, t) flip the sign of terms in

the exponential which anticommutes with σXI . Thus, the cumulative effect of this
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sequence is

U(Ω, t)σXIU(−Ω, t)σXI

= exp
[
− it

(
Ω2
(
aσIZ + bσZZ) + Ω

(
cσZX + dσIX

))]

× exp
[
− it

(
Ω2
(
aσIZ − bσZZ

)
− Ω

(
− cσZX + dσIX

))]
. (B.2)

On the other hand, a length-2 sequence with a σXZ echo pulse yields

U(Ω, t)σXZU(Ω, t)σXZ

= exp
[
− it

(
Ω2
(
aσIZ + bσZZ) + Ω

(
cσZX + dσIX

))]

× exp
[
− it

(
Ω2
(
aσIZ − bσZZ

)
+ Ω

(
cσZX − dσIX

))]
, (B.3)

where now we flip the sign of terms in the second exponential which anticommute

with σXZ . We see that in either case the final products are exactly equivalent.
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Appendix C: Analytical Expression for One-Qubit Clifford RB Fi-

delity

We now present an analytical expression for the Clifford RB fidelity of a one-

qubit gate under the error model given in Equation (3.15). In summary, the goal

of Clifford RB is to provide a simple, robust and scalable method for benchmarking

the full set of Clifford gates through randomization. The randomization process,

also known as twirling, produces a depolarizing channel whose average fidelity can

be modeled and experimentally measured. Since the average fidelity of a quantum

operation is invariant under the twirling process [246, 247], the measured fidelity is

representative of the original untwirled operation. For a more detailed discussion of

Clifford RB, we refer the reader to Ref. [55].

The key to creating a depolarizing error channel lies in the fact the uniform

probability distribution over the Clifford group, C, comprises a unitary two-design.

By definition, this gives the twirling condition

1

|C|

|C|∑

i=1

(
C†
iΛCi

)
(ρ) =

∫

U(d)

(
U †ΛU

)
(ρ)dU, (C.1)

where Ci are elements of the Clifford group, Λ is an arbitrary quantum channel

acting on the system, and the integral is taken with respect to the Haar measure on

U(2n) with n being the number of qubits. The integral in Equation (C.1) produces
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a unique depolarizing channel Λd with the same average fidelity as Λ [246, 247]. The

depolarizing channel is modeled by

Λd(ρ) = pρ+ (1 − p)
I

2n
,

whose fidelity (as well as Λ’s) is given by

F = p+
1 − p

2n
.

To estimate the average fidelity of one-qubit under the error model given in

Equation (3.15), we simply replace Λ accordingly and evaluate the sum:

1

|C|

|C|∑

i=1

(
C†
i exp

[
−iε

2
r̂ · σ⃗

]
Ci
)

(ρ)

=
1

|C|

|C|∑

i=1

C†
i exp

[
−iε

2
r̂ · σ⃗

]
CiρC†

i exp
[
i
ε

2
r̂ · σ⃗

]
Ci

=
I

2
+

1 + 2 cos (θ)

3

ρ̂ · σ⃗
2

. (C.2)

Since ρ = I+ρ̂·σ⃗
2

, then we must have

p =
1 + 2 cos (θ)

3
.

Thus, the average Clifford RB fidelity is

F =
2 + cos (θ)

3
. (C.3)

In the main text we noted that we used virtual gates in our simulations. This

means that any Z-gates in the Clifford group are treated as noiseless gates. Thus, we

can approximate the fidelity when using virtual Z-gates by appropriately weighting

the fidelity of the 24 one-qubit Clifford gates:

FVZ =
20F + 4

24
=

13 + 5 cos (θ)

18
, (C.4)
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where we assumed that we had 4 noiseless gates (I, Z, Z±π
2
). Assuming a Gaussian

noise model with a standard deviation δθ, we can average over noise realizations

and get

FVZ =
1√

2πδθ2

∫ ∞

−∞
exp

[−θ2
2δθ2

]
13 + 5 cos (θ)

18
dθ

=
13 + 5 exp

[
− δθ2

2

]

18
. (C.5)
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Appendix D: Effects of Exchange Ramping Evolution

In the main text we only considered the case when the exchange Ji(t) is con-

trolled using rectangular pulses both in the beginning and the end of the evolution.

Realistically, there is a finite rise time, τ , to go from Ji(−τ) ≈ 0 up to Ji(0) = Ji+ji,

and, since Equation (4.20) tells us that the exchange should have gone through a

odd number of half cycles at the end of the gate, back down from Ji(tgate) = Ji to

Ji(tgate+τ) ≈ 0. We now consider the effects of the evolution during the finite ramp

on our optimization scheme. We will show that the effects are negligible, assuming

typical values for the coupling, noise, and rise time.

We choose the well-studied Rosen-Zener pulse shape [248–250] for our ramp:

Ji(t) =





Ji,u sech
(
2πt
τ

)
, −τ < t < 0

Ji,d sech
(

2π(t−tgate)
τ

)
, tgate < t < tgate + τ,

(D.1)

where Ji,u = Ji + ji is the upward ramp amplitude and Ji,d = Ji is the downward

ramp amplitude. In addition, since there is a rough proportionality between the

average capacitive coupling and the average exchanges, α ∝ J1J2 [108], the coupling

also has a finite ramping time. However, we take τ = 1 ns which is consistent with

experimental ramp times in spin qubits [251], and so a typical coupling that ranges

up to 1 − 2 MHz [88, 108] has a negligible effect on such a short time scale. Thus
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the evolution during the ramp is dominated by the local terms, and the ramping

Hamiltonian takes the form

H =
2∑

i=1

(
Ji(t)

2
σ
(i)
Z +

hi
2
σ
(i)
X

)
. (D.2)

We first consider the case where the exchange is ramped up. We begin by

noting that since the spin operators for each qubit commute, then we can separate

the evolution operator into U(t) = U1(t)U2(t). Each of these evolution operators

are solutions to

ı
d

dt
Ui(t) =

(
Ji,u sech

(
2πt
τ

)

2
σ
(i)
Z +

hi
2
σ
(i)
X

)
Ui(t). (D.3)

In order for us to use known analytical results, we first rotate to a frame so that

Ui(t) = exp
[
ı
π

4
σ
(i)
Y

]
exp

[
ıt
hi
2
σ
(i)
Z

]
U ′
i(t). (D.4)

This allows us to write two coupled differential equations





ı ṡ(t) =
Ji,u sech

(
2πt
/
τ
)

2
e−ıhitp(t),

ı ṗ(t) =
Ji,u sech

(
2πt
/
τ
)

2
eıhits(t),

(D.5)

where U ′
i(t)ψ

′(to) = (s(t), p(t))t and ψ′(to) is the initial wavefunction. Using the

results from Refs. [248, 250], we can write the time-evolution in the rotating frame

for t ≤ 0 as

U ′
i(t) = UI1+ UXσ

(i)
X + UYσ

(i)
y + UZσ

(i)
Z , (D.6)
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where

UI =
1

2

{
2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;
1 − ıhiτ

2
; z

]
+ 2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;
1 + ıhiτ

2
; z

]}

UX =
1

4
Jiτ sech

[
t

τ

]


e−ıhit2F1

[
1 − Ji,uτ

2
, 1 +

Ji,uτ

2
; 3−ıhiτ

2
; z
]

hiτ + ı

−
eıhit2F1

[
1 − Ji,uτ

2
, 1 +

Ji,uτ

2
; 3+ıhiτ

2
; z
]

hiτ − ı



 (D.7)

UY = ı
1

4
Jiτ sech

[
t

τ

]


e−ıhit2F1

[
1 − Ji,uτ

2
, 1 +

Ji,uτ

2
; 3−ıhiτ

2
; z
]

hiτ + ı

+
eıhit2F1

[
1 − Ji,uτ

2
, 1 +

Ji,uτ

2
; 3+ıhiτ

2
; z
]

hiτ − ı





UZ =
1

2

{
2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;
1 + ıhiτ

2
; z

]
− 2F1

[
− Ji,uτ

2
,
Ji,uτ

2
;
1 − ıhiτ

2
; z

]}
,

and 2F1[a, b; c; d] is Gauss’s hypergeometric function and z = 1
2

(
1 + tanh

[
t
τ

])
. We

note that U ′
i(t) satisfies the initial condition U ′

i(−∞) = 1. In order to get the actual

solution to equation (D.3) with Ui(−τ) = 1, we use the composition property of

time-evolution operators:

Ui(t;−τ) = Ui(t;−∞)U †
i (−τ ;−∞), (D.8)

where U(t; to) indicates the evolution from to to t. More explicitly, the upward

ramp evolution operator that corresponds to the Hamiltonian in equation (D.2) is

approximately given by

Uu(t;−τ) = exp

[
ı
π

4

2∑

i=1

σ
(i)
Y

]
exp

[
ıt

2∑

i=1

hiσ
(i)
Z

]
U ′
1(t)

× U ′†
1 (−τ)U ′

2(t)U
′†
2 (−τ)

× exp

[
ıτ

2∑

i=1

hiσ
(i)
Z

]
exp

[
−ıπ

4

2∑

i=1

σ
(i)
Y

]
.

(D.9)
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To solve for the downward ramp evolution, we first note that there is a relation-

ship between the upward and downward ramp Hamiltonian when their amplitudes

are similar: Hd(t) = Hu(tgate − t). Using this, then we can write the time-evolution

of the downward ramp as

Ud(t) = T exp

[
−ı
∫ t

tgate

Hd(t
′)dt′

]
. (D.10)

where T denotes the time-ordering operator. Using a simple change of variable

and using the composition property of time-evolution operators, we can express the

evolution of the downward ramp in terms of the upward ramp:

Ud(t) = T exp

[
−ı
∫ t

tgate

Hu(tgate − t′)dt′

]

= T exp

[
ı

∫ tgate−t

0

Hu(t
′′)dt′′

]

= T exp

[
ı

∫ tgate−t

−τ
Hu(t

′′)dt′′
]

× T exp

[
ı

∫ −τ

0

Hu(t
′′)dt′′

]

= T exp

[
ı

∫ tgate−t

−τ
Hu(t

′′)dt′′
]

×
(
T exp

[
ı

∫ 0

−τ
Hu(t

′′)dt′′
])†

= Ūu(tgate − t;−τ)Ū †
u(0,−τ).

where the bar indicates change from Ji,u → −Ji,d, and hi → −hi. Therefore, the
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downward ramp evolution operator is given by

Ud(t; tgate) = exp

[
ı
π

4

2∑

i=1

σ
(i)
Y

]
exp

[
−ı(τ − t)

2∑

i=1

hiσ
(i)
Z

]

× Ū ′
1(τ − t)Ū ′

1(0)Ū ′
2(τ − t)Ū ′

2(0)

× exp

[
−ıπ

4

2∑

i=1

σ
(i)
Y

]
.

(D.11)

Now that we have an analytical expression for the ramp evolution operators,

we can finally address how they affect the error channels and our optimization. In

the presence of noise, it can be verified numerically with the parameters provided

in Section 4.4 that perturbations in Ji results in infidelities that are one to two

orders of magnitude smaller than the infidelities we report in the main text. This

can be mainly attributed to the fact that hi ≫ Ji and τ is relatively short. Thus,

the dominant source of error in the ramp evolution is due to perturbations in the

magnetic gradient δhi. However, if we assume 1 ns ramp times and a standard

deviation δhi = 8neV [112], the resulting infidelities are also found to be an order of

magnitude smaller than those discussed in the main text. Thus, provided that δhiτ

is much less than the remaining errors in Table 4.2, then the errors associated with

the ramp can be neglected.

Finally, we address how the unperturbed ramp evolution affect the error chan-

nels. The total evolution of the qubits is given by

U(t) = Uu(t)R1(t) exp

[
−ıtαh1h2

Ω1Ω2

σZZ

]
R2(t)Ud(t). (D.12)

We can rewrite this in terms of our optimized gate given in equation (4.14):

U(t) = Uu(t)R1(t)Unl(t)R2(t)Ud. (D.13)
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Since Uu and Ud are purely local operations and provided that the ramp errors are

negligible, then applying an initial local rotation R†
1(t)U

†
u(t) and a final local rotation

U †
d(t)R†

2(t) ensures that our optimized gate Unl(t) and its errors are unperturbed by

the ramps.
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Appendix E: Error Channels

We present here a table of error channels for the dissimilar qubit case in

Section 4.3.
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Table E.1: First-order errors for the similar qubit case with Ji ≫ hi. Due to the

complexity of the error channels, we had only shown the errors due to fluctuations

in the first qubit. To find the effects of perturbations in the second qubit, one need

only generate a second table where the labels are swapped (1 ↔ 2 and σij ↔ σji).

σIX 0
σIY 0

σIZ

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(

∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
2Ω2

1
− ıt∂χ1

∂j1
δj1

)
sin2

(
J1J2αt
Ω1Ω2

)

σXI

[(
ı(h1δJ1−J1δh1) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1)
4χ1Ω1

)
sin(2χ1t)

− ı
2

cos(2χ1t)
(
∂ξ1
∂h1
δh1 + ∂ξ1

∂J1
δJ1 + ∂ξ1

∂j1
δj1

)]
cos
(
J1J2αt
Ω1Ω2

)

σXX
ıh1J2αt(J1δh1−h1δJ1)

2Ω3
1Ω2

− ıJ1J2tδα
2Ω1Ω2

σXY

(
ı

(
(h1δJ1−J1δh1) sin(ω1t+ξ1)+2Ω2

1t
(

∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
4Ω2

1
+ ı

2
t∂χ1

∂j1
δj1

)
sin
(

2J1J2αt
Ω1Ω2

)

σXZ 0

σY I

[
ı(h1δJ1−J1δh1)(cos(2χ1t) cos(ω1t+ξ1))

2Ω2
1

+ ı(h1δh1+J1δJ1) sin
2(χ1t)

2χ1Ω1

+ ı
2

sin(2χ1t)
(
∂ξ1
∂h1
δh1 + ∂ξ1

∂J1
δJ1 + ∂ξ1

∂j1
δj1

)]
cos
(
J1J2αt
Ω1Ω2

)

σY X

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(

∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
4Ω2

1
− ı

2
t∂χ1

∂j1
δj1

)
sin
(

2J1J2αt
Ω1Ω2

)

σY Y
ıh1J2αt(J1δh1−h1δJ1)

2Ω3
1Ω2

− ıJ1J2tδα
2Ω1Ω2

σY Z 0

σZI

(
ı

(
(J1δh1−h1δJ1) sin(ω1t+ξ1)−2Ω2

1t
(

∂χ1
∂h1

δh1+
∂χ1
∂J1

δJ1

))
2Ω2

1
− ıt∂χ1

∂j1
δj1

)
cos2

(
J1J2αt
Ω1Ω2

)

σZX

[
ı(J1δh1−h1δJ1) cos(2χ1t) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1) sin
2(χ1t)

2χ1Ω1

− ı
2

sin(2χ1t)
(
∂ξ1
∂h1
δh1 + ∂ξ1

∂J1
δJ1 + ∂ξ1

∂j1
δj1

) ]
sin
(
J1J2αt
Ω1Ω2

)

σZY

[(
ı(h1δJ1−J1δh1) cos(ω1t+ξ1)

2Ω2
1

− ı(h1δh1+J1δJ1)
4χ1Ω1

)
sin(2χ1t)

− ı
2

cos(2χ1t)
(
∂ξ1
∂h1
δh1 + ∂ξ1

∂J1
δJ1 + ∂ξ1

∂j1
δj1

)]
sin
(
J1J2αt
Ω1Ω2

)

σZZ 0

141



Appendix F: Estimating gate fidelity using filter functions

We now provide a more detailed derivation of the average gate infidelity pro-

vided in Equation (6.14) which was reported in Ref. [47]. We begin by writing the

noisy Hamiltonian as

H(t) = Hc(t) +He(t), (F.1)

where Hc(t) is the deterministic control Hamiltonian and He(t) is the stochastic

error Hamiltonian which can generally expressed as in Equation (6.13). By moving

to the interaction frame, we can write the noisy time evolution U(t) = Uc(t)Ue(t)

where each factors are solutions to the following Schrödinger equations:

iU̇c(t) = Hc(t)Uc(t) (F.2)

iU̇e(t) =
(
U †
c (t)HeUc(t)

)
Ue(t). (F.3)

For sufficiently weak noise, we can perturbatively expand Ue(t) using the Magnus

expansion and write

Ue(T ) ≈ exp

[
−i
∫ T

0

U †
c (t)He(t)Uc(t)dt

]
. (F.4)
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The average gate infidelity is given by

⟨I⟩ = ⟨1 − Ftr⟩ =
〈

1 −
∣∣tr
(
U †
cU
)
/ tr

(
U †
cUc
)∣∣2
〉

=
〈
1 − |trUe/2|2

〉

≈
〈

tr

∫ T

0

∫ T

0

U †
c (t1)He(t1)Uc(t1)U

†
c (t2)He(t2)Uc(t2)dt1dt2

〉
. (F.5)

We can use the adjoint representation of Uc(t) defined through

Rij(t) =
1

2
tr
(
U †
c (t)σiUc(t)σj

)
(F.6)

and Equation (6.13) to rewrite Equation (F.5) into

⟨I⟩ ≈
∑

q,i,j,k

∫ T

0

∫ T

0

⟨δq(t1)δq(t2)⟩χq,i(t1)χq,j(t2)

×Rik(t1)Rjk(t2)dt1dt2. (F.7)

We may invoke the Wiener-Khinchin theorem for a wide-sense stationary noise pro-

cess to express the autocorrelation function of δq(t) as the Fourier transform of its

PSD: ⟨δq(t1), δq(t2)⟩ = 1
2π

∫∞
−∞ Sq(ω)eiω(t2−t1)dω. If we further define

Rq,k(ω) :=
∑

i

∫ T

0

χq,i(t)Rik(t)e
iωtdt, (F.8)

we can finally compactly write the gate infidelity as

⟨I⟩ ≈ 1

2π

∑

q

∫ ∞

−∞
Sq(ω)Fq(ω)dω, (F.9)

where Fq(ω) ≡∑k |Rq,k(ω)|2.
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Appendix G: Numerical optimization method

We describe here the details of our numerical optimization in Section 6.3. We

used Julia’s DiffEqFlux package to create a feedforward deep neural network with

one input neuron, two output neurons, and two hidden layers with 16 neurons each.

Our goal is to minimize the cost given in Equation (6.32). The infidelity integral of

a noise process q in the first two terms of Equation (6.32) can be expressed as

⟨Iq⟩ ≈
1

2π

∫ ∞

−∞

∫ T

0

∫ T

0

(Λ(t1)χ⃗q(t1))
⊺ Λ(t2)χ⃗q(t2)Sq(ω)eiω(t1−t2) dt1 dt2 dω, (G.1)

where χ⃗ = [χq,X , χq,Y , χq,Z ]⊺ is the error sensitivity vector. In the main text, the

noise PSD assumes one of two nontrivial forms: A
ω

and Aωc

ω2 . We can evaluate the

frequency integrals analytically which are given by

∫ ωc

ω0

A

ω
eiωt dt = 2 (Ci (ωct) − Ci (ωot)) , (G.2)

∫ ∞

ωc

Aωc
ω2

eiωt dt = −πωct+ 2 cos (ωct) + 2ωct Si (ωct) , (G.3)

where Ci(t) and Si(t) are the cosine and sine integral function, respectively. Let

us define gq(t1 − t2) = 1
2π

∫∞
−∞ Sq(ω)eiω(t1−t2) dω. This allows us to express Equa-

tion (G.1) as

∫ T

0

∫ T

0

gq(t1 − t2) (Λ(t1)χ⃗q(t1))
⊺ Λ(t2)χ⃗q(t2) dt1 dt2. (G.4)
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We can approximate the integrals by converting them into a series of matrix mul-

tiplications. In particular, we can treat each time integral as an integral operator

which has gq as its kernel and takes in vq = Λχ⃗q as input. Therefore, the average

infidelity may be rewritten in the following bilinear form

⟨Iq⟩ ≈ v⊺
qLvq, (G.5)

where L is a matrix that approximates the double time integral.

In our work, the cost is completely vectorized by evaluating the cost terms in

evenly spaced intervals of time. The infidelity integrals are evaluated using Equa-

tion (G.5) while derivatives, which are used in evaluating quantities such as Ω in

Equation (6.27), are implemented using finite differences. Thus, the speed and ac-

curacy of optimization may be controlled by choosing an appropriate level of time

discretization.
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[183] E. Sjöqvist, D. M. Tong, L. M. Andersson, B. Hessmo, M. Johansson, and
K. Singh, New Journal of Physics 14, 103035 (2012).

[184] W. Pfeifer, The Lie Algebras su(N) (Birkhäuser, Basel, 2003).
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[198] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R. Hanson, Science
330, 60 (2010).

[199] B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C. L. Hollenberg,
F. Jelezko, and J. Wrachtrup, Phys. Rev. B 83, 081201 (2011).

[200] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G.
Cory, Y. Nakamura, J.-S. Tsai, and W. D. Oliver, Nature Physics 7, 565
(2011).

[201] K. R. Brown, A. W. Harrow, and I. L. Chuang, Phys. Rev. A 70, 052318
(2004).

[202] R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas, and J. M.
Martinis, Phys. Rev. Lett. 93, 077003 (2004).

[203] C. Kabytayev, T. J. Green, K. Khodjasteh, M. J. Biercuk, L. Viola, and K. R.
Brown, Phys. Rev. A 90, 012316 (2014).
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[218] U. Güngördü and J. P. Kestner, Robust quantum gates using smooth pulses
and physics-informed neural networks (2020), arXiv:2011.02512 .
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