
 





ABSTRACT

Title of dissertation: ACTIVE ACTIVITY RECOGNITION
WITH CONTEXT-AWARE ANNOTATOR
SELECTION

H M Sajjad Hossain, Doctor of Philosophy, 2019

Dissertation directed by: Associate Professor, Nirmalya Roy
Department of Information Systems

The proliferation of wearable and pervasive devices have revolutionized many

application domains ranging from health care, sports, entertainment etc. By ex-

ploiting the sensor rich wearable and Internet-of-Things (IoT) devices in smart en-

vironments, assessment and inference of Activities of Daily Living (ADL) have been

a major research proposition over the past decade. A multitude of activity recog-

nition models based on supervised, semi-supervised and unsupervised approaches

with significant performance improvements have been posited by the researchers.

However, collecting robust label information is fundamental for interpreting the un-

derlying activity data distributions distinctively, and training of the supervised and

semi-supervised learning models adequately. Moreover, in practical setting, the lim-

ited availability of ground truth information and the variabilities in activities make

the activity recognition models impractical for real-world deployment. This ground

truth annotation is objectively manual and tedious as it needs considerable amount

of human interventions. With the advent of Active Learning with multiple anno-

tators, the burden can be somewhat mitigated by actively acquiring labels of most



informative data instances. However, multiple annotators with varying degrees of

expertise poses new set of challenges in terms of quality of the label received and

availability of the annotator.

In this thesis, we investigate how this obligation of collecting ground truth

information can be mitigated by acquiring labels of most informative data instances

using Active Learning in activity recognition domain. We propose several active

learning enabled activity recognition models which help collect activity labels from

human annotators online and reduce the training time warranted while achieving

reasonably similar accuracy compared to traditional supervised models. We also

propose an active learning combined deep model which updates its network param-

eters based on the optimization of a joint loss function. In addition, it is both

difficult and annoying for an user to provide his own activity information continu-

ously while employing active learning. Introducing multiple annotators can allevi-

ate this adversity, but which annotator can provide reliable label is a fundamental

research question. We propose to model the interactions between the users and

annotators as relationships spanning across spatial and temporal space of activity

domain. We introduce a novel approach to quantify the strength of relations using

the spatial and temporal information of interactions, type of the relationships, and

activities. Our proposed model leverages model-free deep reinforcement learning in

a partially observable environment setting to capture the action-reward interaction

among multiple annotators. Our experiments in real-world settings exhibit that our

active deep model converges to optimal accuracy with fewer labeled instances and

achieves ≈ 8% improvement in accuracy in fewer iterations.
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Chapter 1: Introduction

1.1 Activity Recognition

Recently we have been experiencing rapid development in using ambient tech-

nologies and smart devices which has been triggered by the adaptable sensor tech-

nologies. These advancements in technologies have broadened the functional do-

main of mobile and sensor computing. As a result Internet of Things (IoTs) where

multimodal sensor setup is combined to perform context aware actions, is becom-

ing an integral component. Wide variety of context aware applications like occu-

pancy detection [2], HVAC control [3], localization, health monitoring [4] etc. ,

have been introduced. Combining with human activity recognition model, an IoT

inspired domain “Smart Home Technologies” have been gaining more attention for

health monitoring, independent living for senior citizens and making our life comfort-

able. Smartthings, Vera, Microsoft Lab of Things, openHAB, Ninjablocks, Twine,

CASAS:Smart Home in a Box [5] and other automation systems are already in the

market for the users. Researchers are extending the capabilities of these automation

systems by augmenting different functionalities. One major driving component for

these context-aware smart home technologies is to reliably learn the human activities

using the observable states of ambient and wearable sensor data.

1



1.2 Activity Labeling

For learning and recognizing activities of daily living (ADLs) machine learning

or rule based algorithms are being exploited extensively. Activity recognition using

wearable and ambient sensors in smart home domain is a well studied problem in

literature [6] [7] [8]. These trained models are then employed to make decisions

according to the domain of the application even in unknown situations. Traditional

passive learning approaches are only consistent with the existing class labels. The

training for passive learning is carried out in specific experimental setup which is not

ideal for real life applications due to a large variety of human activities and under-

pinning uncertainty with the data capturing. In order to build a robust and stable

model, we have to provide vast amount of labeled data- ground truth information

which is cumbersome and not always feasible. Building adaptive and personalized

model for individual users has become a crucial obligation because of the diversity

of a same activity across different individuals. For example, the differences in speed

of walking, gestures, sleep habits etc., are ambiguous to a general passive learning

model. Active learning [9] helps us to determine the most informative data points

which is a semi-supervised approach. We can actively query the users for labeling

informative data points and mitigate the necessity for acquiring a large amount of

labeled data points by applying active learning. In activity recognition tasks us-

ing ambient or wearable sensors, we have abundant unlabeled data instances which

makes active learning as an ideal solution for building an efficient classification

model. Although crowdsourcing provides the platform for labeling large amount of

2



data, the fundamental question is how much of these labeled data will be statistically

significant, reliable, noise free and just-in-time. Also from a requester perspective

increase demand in data labeling in turn increases the cost of crowdsourcing. There-

fore, a cost-effective crowdsourcing model needs to be designed. In this case, active

learning can potentially help us to identify potential important data instances that

can balance out the trade-off between cost and model performance.

In general, a subset of ADLs are dealt with and most of the proposed activity

recognition models are trained with a handful number of activities. On the other

hand, it is quite impossible to train the classifier with as many activities as possi-

ble. Thus we need an activity recognition system which can dynamically discover

unseen activities. Recognition model which can discover unseen activities has been

investigated in some of the previous works. [10] proposed a semantic attribute based

activity recognition model by creating an activity-attribute matrix for learning un-

seen activities while [11] proposed a metric learning based approach to reject unseen

activities. An activity recognition model using finite state machines which can dif-

ferentiate unimportant instances of activities for learning a generalized model has

been presented in [12]. The use of active learning for activity recognition systems

has been investigated by very few researchers. The authors of [13] have proposed

a bayesian active learning approach for labeling data in smart homes. Uncertainty

based active learning for activity recognition has been employed in [14] [15]. The

authors of [16] used entropy based measure to calculate the informativeness of ac-

tivity data instances. An activity recognition framework called Legion:AR [17] uses

active learning and seeks for labels from crowd on demand. AALO [18], a single
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habitant activity recognition model for smart homes uses active learning for label-

ing overlapped activities. In this study, we investigate an active learning enabled

activity recognition model which can help identify latent informative and as well as

unseen data instances and validate the annotators in the labeling process.

1.3 Quality of Labels

Acquiring labeled data instances is an important task for training supervised

and semi supervised machine learning models. In most of the problem domains, both

domain knowledge and label information for a learning algorithm are compiled by

the human annotators. As a result human intervention is indispensable for collecting

ground truths and labels. Therefore the labeling process is manual and the domain

experts have to put in hours of effort. As the amount of labeled data influences

the validity of the trained model [19], so traditionally we want to label as much

data as possible. Labeling large amount of data suggests engaging more domain

experts or extending the time for the labeling process. Adapting either of these

approaches is a daunting task as it is difficult to find abundant domain experts

who can relentlessly provide labels. Consider building an Activities of Daily Living

(ADLs) classifier using accelerometry data. If the sampling frequency is 30 Hz and

we collect data from a single user for a single day, we end up with approximately 2.5

million data instances. Moreover, the reliability, availability of domain experts, and

the incurring costs associated with data annotation process make it a painstaking

step while building a machine learning model. It is possible to reduce the complexity
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of data annotation by dissecting the problem domain and identifying the relevancy

of data with appropriate activity. For example, in case of ADLs we can select a

handful number of activities or emphasize more on a specific period of the day

instead of considering all of the data. From a machine learning perspective, we can

view this as to look for most important data instances which can have significant

impact on our classifier. For example, the data instances which are in proximity

to the decision boundary, or a representative instance from a dense region of the

instance space [20]. By utilizing Active Learning [21], we can therefore select the

most informative data instances and pose the label queries to the annotators. There

are alternative methods to reduce annotation effort other than Active Learning

like utilizing Crowdsourcing platforms [22] [23] [24] or training the learning model

using unlabeled data indeed [25] [26] [27]. However these approaches can invoke

negative impact, for example, annotators in Crowdsourcing platforms are mostly not

domain experts and can introduce noisy labels in the model. In addition, learning

model trained with only unlabeled data may not be able to portrait the underlying

distribution of the data accurately.

Even though active learning can be effective in acquiring labels, but its foun-

dation is built on impractical assumptions - an annotator who is always available to

provide the correct labels to every queries without incurring any cost and the active

learner can query as many instances as possible [28]. In practical, a single annotator

may or may not respond to all the queries. Therefore, exploiting multiple annotators

seems more practical [29] [30], nevertheless their expertise level may differ drasti-

cally. Moreover, the labels received from these imperfect annotators are not always
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reliable, so if we pose an important query to a wrong annotator all the efforts will

be pointless. Thus based on the informativeness of the selected data instance, its is

always desirable to pose the query to the right annotator.

1.4 Annotator Selection

Existing activity recognition methods endure limitation in terms of data scarcity

and scalability. The sensors produce an immense volume of data due to high sam-

pling frequency in order to capture fine-grained information without any loss. In

order to collect ground truth information, existing works have relied on the video

feed heavily where each video frame is mapped with the timestamp [31], and labeled

accordingly which is a painstakingly laborious process. In this work, we propose an

online annotator selection model while exploiting active learning in smart home ac-

tivity recognition domain. Every day we perform variety of ADLs, some we do it

on our own and some has correspondences. For example, we might cook alone but

have lunch or dinner in presence of someone else. While living in a society people

are connected to others in the means of relationships, they can be also related in

terms of social norms, work places, locations, events etc. Knowledge about certain

activities are also associated with these underlying semantic human relationships.

For example, if a person has a roommate, the roommate has better insights regard-

ing his daily activities while being at home whereas a person’s office colleagues may

have better understanding of his office related activities. Note that activities and

humans are also tightly connected by two important dimensions - temporal (time)
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and spatial (location). In most of the cases every human being tends to follow sim-

ilar activity patterns with respect to these dimensions. For instance, a person if at

work may have his lunch at 12:00-1:00 PM everyday but if at home he is likely to

have lunch at certain times in a day. Consequently the people who are connected

with each other have better concepts about their routines, habits and choices. In

addition, how well do others correspond to a person also helps to regulate the level

of concepts. While employing active learning, a very naive assumption is that we

can pose a query to an annotator as many times as needed, which is impractical in

most of the real life problem domains. For example, in our context the best annota-

tor will be always the person who actually performed the activity. The second best

choice can be a very close friend or a family member. From a greedy perspective we

always want to pose our query to these annotators. As a result a set of annotators

will be always initiated whereas others will remain idle. We propose to associate

a cost to each annotator with respect to their efficiency. Efficient annotators will

incur higher cost, as a result given a budget constraint we cannot always invoke

highly efficient annotators.

1.5 Contribution

Most of the proposed active learning model focused on finding the most in-

formative point using uncertainty measurement or maximizing error reduction. For

some classifiers a basic intuition is followed - any data instance closest to the decision

boundary is considered important and thus queried. Some approaches are strictly for
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SVM classifiers where the intention is to identify the instances from feature space

which will maximize the hyperplane margin. These approaches can yield good re-

sults and improve the overall performance, however they tend to ignore the prior

distribution of the feature space. Prior distribution can be useful for active learning

and ignoring them can create sampling bias in the overall system. Deep learning

algorithms have recently become popular because of their intrinsic nature of learn-

ing good feature representations given input data with complex patterns [32] [33].

Nevertheless, deep models still require large labeled dataset to tune their parameters

and adapt to the instances with distinctive scenarios.

In this study, we investigate and propose different active learning techniques in

activity recognition domain to mitigate the manual effort needed for ground truth

information collection. we propose a novel activity recognition algorithm which

harnesses the underlying efficient feature learning capability of deep models and the

competency of active learning to collect ground truth information. In most of the

existing works [34] [35] informative instance selection process using active learning is

administered independently from the principal inference model. Depending on the

methodology of the active sampling algorithm, the selection process can become over

confident and vulnerable to outliers over time. Thus it is necessary to propagate the

learned knowledge of active learning to the base model. In our model, we propose

to blend active learning with the deep model by jointly optimizing their respective

loss function. By doing this our model can also take advantage of the unlabeled

data instances during the training phase. Our model can then endure outliers and

adapt to diverse data distributions of the same activity.
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Our model applies active learning in a multiple annotator setting to ensure

effective use of active learning. The potential annotators for a certain user are

accumulated based on the similarity of their context information. We model the

similarity between users using the spatial and temporal properties of the user con-

text. The key insight here is that the potential annotators are those with whom we

interact with mostly in our day to day life. At first we demonstrate a contextual

multi armed bandit model with budget constraints where we take actions based on

our similarity metrics. We then further improve the model by employing model-free

reinforcement learning.
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Chapter 2: Related Work

Activity recognition has been one of the core research areas in ubiquitous

computing field for many years [36] [37] [38]. This rapid surge and advancement

in learning activity pattern have also assisted a plethora of application domains

ranging from sports [39] [40] [41] to health analytics [42]. Activity recognition re-

search have been addressed from two pespectives using computer vision [43] [44] [45]

and sensor modalities [46] [47] [31] [48] [49]. A variety of sensor modalities like ac-

celerometer, ambient sensors, RFID tags, Radar etc [50] [51] have been used in

sensor based approach. The major upsurge of mobile and wearable technologies

have also accelerated the activity recognition research [52]. Bao and Intille [36]

used five biaxial accelerometers which are placed in different parts of the body and

detected 20 activities. Hafiz et al. [53] used an array of micro-doppler radars to

detect different human body movements. In many of these works, shallow ma-

chine learning models like Decision Trees, HMM, SVM etc have been harnessed to

find meaningful relationship between the features learned from the sensor data and

the performed activity [50]. The widely used features in activity recognition do-

main include basis transform coding (e.g.signals with wavelet transform and Fourier

transform) [54], statistical parameters extracted from raw sensor signals [55] and
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symbolic representation [56]. Although these features are widely used in many time

series problems, they are heuristic and not task dependent. Activity recognition

models also have to address challenges like intraclass variability, interclass similar-

ity, the NULL-class dominance, complexness and diversity of physical activities [55].

Various machine learning models including both shallow learning [57] [58] [59] and

deep learning [60] [6] [61] [62] [63] [64] algorithm have been exploited in existing

activity recognition literature over the years. Several works have exploited ontology

framework to model the semantic relationships between objects and entities and

extracted activity reasoning out of the ontology [65] [66] [67] [68]. Activity recogni-

tion models exploiting supervised and semi-supervised learning algorithms have to

heavily rely on the number of labeled data instances. Some literature have proposed

models using unsupervised learning algorithms [25] [69] [70] [71] but if the distri-

bution of the data is not clearly inherent, unsupervised algorithms fail to find the

pattern in the data.

2.1 Deep Learning

In most of the cases activity recognition models based on shallow classifiers

deal with a set of handcrafted features. These features are then fed to the model,

but many of these features are not assured to be relevant and eventually this ex-

pedites difficulty in inferring complex activities. Some times statistical features

fail to capture substantial facets of human body movements. Due to recent ad-

vancements in high performance computing and implementation of deep architec-
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tures, researchers are now proposing activity recognition models using deep learn-

ing [72] [73] [74] [75] [76] [77]. The authors of [78] proposed a hybrid approach

using HMM and deep learning to infer activities from triaxial accelerometer data.

Francisco et al [79] demonstrated a model based on deep convolution and LSTM

recurrent network which is suitable for multimodal wearable sensors. Simple RBM

based model can outperform other activity recognition models has been demon-

strated in [64]. The authors also prove that resource usage of traditional RBM in

smartwatches is manageable. A deep model using an extension of Convolutional

Neural Netowrk and recurrent neural network has been proposed in [80]. Deep-

Ear [81] a deep learning enabled mobile audio sensing framework addresses the

issue of audio data classification. Li et al. [82] proposed an activity recognition

system based on convolutional neural network using passive RFID data. By con-

necting different Convolutional Neural Networks (CNN) through fusion methods, an

ensemble model is built to infer the kitchen related activities in [83]. The authors

of [84] investigated the effect of transferring kernel in the convolutional layers in

mobile activity recognition domain. Their work considered transfer between users,

application domains, different sensors and locations. They validated that kernel

transfer can reduce the training time by 17%. Guan et al. [6] proposed a Long

Short Term LSTM based ensemble model and tackled the problems of having im-

balanaced and problematic data for wearable devices. A hierarchical deep multi-task

learning model to detect simple and complex activities , AROMA [85] utilizes con-

volutional neural network(CNN) to extract features and then applies LSTM to learn

the temporal properties of the activities. Various researchers [70] [32] [86] [32] have
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also addressed the problem of sensor fusion and heterogeneity in presence of mul-

timodal sensors using deep learning methods. Guan et al. proposed an ensemble

model based on LSTM to address the problem of imbalanced dataset and data qual-

ity [6]. The authors of [87] proposed a novel model which can infer activities given

a sequence of past activities and durations. Several works have proposed to tackle

the problem of data insufficiency by applying transfer learning algorithms for deep

models [88] [66] [89]. Khan et al. have demonstrated a CNN inspired transductive

transfer learning model, HDCNN [88] which can attain high accuracy in absence

of any labeled information in the target domain. The authors of [90] proposed a

framework called STL which transfers intra-class knowledge iteratively to transform

both target and source domains into the same subspace. A personalized inference

model which reuses the lower layers of CNN network from the source domain in the

target domain and trains the upper layer of the target domain has been proposed

in [91].

2.2 Active Learning

Active learning algorithms aim to ease the learning complexity and cost by

sequentially selecting optimal number of informative unlabeled data instances to

query for their label in order to minimize the prediction error of the classification

model. Studies have shown that active learning can help reduce the labeling effort

in different domains [92] [93]. The most important step for active learning is to

define the informativeness measurement for data instances. In a smart home setting
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a wearable sensor reading may belong to watching television, a high level activity

class and sitting micro activity class. In such cases the learner can consolidate

both feature and label space (feature-label pair) instead of relying on the distinct

features for evaluating uncertainty. Evaluating instance uncertainty is a common

approach for measuring the informativeness of a data instance. The uncertainty

is measured with respect to the feature space. In this approach the learner can

focus more on the data instances which are confusing based on the uncertainty

score. Least Confident, Margin Sampling and Entropy learning are the most popular

informativeness measures [94]. Another uncertainty resolving approach is searching

through hypothesis space where the associated classifier maintains a set of candidate

hypothesis space known as version space. The goal of the active learning algorithm

is to minimize the cardinality of the version space which depicts maximal change

to the current classification model. One popular and significant contribution in this

approach is disagreement based active learning [95]. Another approach Variance

Reduction chooses the instances that minimize the square loss of a learner [96].

Some active learning works have proposed to augment instance correlations

where an utility metric from a sample or sample-label space has been defined as a

combination of an uncertainty function and a correlation function. In feature based

correlation, a similarity measurement [97] or a correlation matrix [98] on features has

been utilized to compare pairwise similarities of instances, so the informativeness

of an instance is weighted by average similarity on its neighbors. Label correlation

is widely used for multi label learning. Conventional active learning algorithms

considers an oracle to provide the correct label for each query always which is not
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ideal. Many of the existing active learning strategies are prone to introduce noise

on learning models, as the process of finding an optimal boundary between two

classes involves label queries that have lower proximity to the decision boundary

and usually these labels induce large noise. The authors of [99] have proposed an

algorithm A2 Learning which works in presence of arbitrary forms of noise. [100] uses

a randomized query mechanism and includes importance weights in the calculation

of empirical error rates, to compensate for the bias in the sample so that it is

possible to obtain rough estimates of the excess empirical error rates. we define the

label complexity of A2 learning [99] by using the disagreement coefficient has been

described in [95]. The authors of [101] proposed a bayesian based active learning

algorithm where queries are selected sequentially to reduce uncertainty. The authors

demonstrate that instead of focusing on minimizing uncertainty, the aim is to drive

uncertainty into a single decision region as quickly as possible. Next we discuss

the usage of active learning for practical applications such as smart home activity

recognition. In [102] the author used a hierarchical clustering for unlabeled instances

and then a data instance is picked randomly from the cluster. [93] tries to reduce

the classification variance by employing Query By Committee (QBC) method.

2.3 Active Learning & Activity Recognition

The use of active learning for attaining ground truth at low cost in activ-

ity recognition systems has been addressed in recent years [13] [103]. The authors

of [14] [15] used uncertainty based active learning for activity recognition. The au-
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thors of [16] used entropy based measure to calculate the informativeness of activity

data instances. Legion:AR [17], an activity recognition framework uses active learn-

ing and inquires for labels from crowd on demand. AALO [18] uses active learning

for labeling overlapped activities. The authors of [104] validates that by using ac-

tive learning the actual annotation cost can be reduced by 30-75%. [16] employed an

entropy based uncertainty measure to select the most informative instances and val-

idated that only 20% of the training data ensures convergence to the same accuracy

while using the whole training set. A variety of research where active learning has

been augmented with deep learning have also been proposed [105] [106] [107]. Zhu et

al. [108] proposed an active learning algorithm GAAL using Generative Adversarial

Network (GAN). GAAL generates new uncertain instances and then requests for

annotation to the human annotator. These labeled instances are then added back

to the training data set. A cost effective active learning algorithm in conjunction

with CNN (CEAL) to discover the large amount of high confidence samples from

the unlabeled set for feature learning has been proposed in [109].
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Chapter 3: Active learning validation

Our primary goal in this work is to exploit active learning to improve our

activity recognition model. First we want the proof of concept that active learning

is effective in our scenario. We employ active learning a single activity domain first

and then apply it in a more generalized settings with multiple activities. In the

first part of this chapter we investigate discretized sleep activity using a wrist worn

wearable device.

3.1 Sleep Monitoring

Sleep is the most important aspect of healthy and active living. Right amount

of sleep at the right time helps an individual to protect his physical, mental, cogni-

tive health and maintain his quality of life. The most durative of the Activities of

Daily Living (ADL), sleep, has a major synergic influence on a person’s functional,

behavioral and cognitive health. A deep understanding of sleep behavior and its rela-

tionship with its physiological signals, and contexts (such as eye or body movements)

is necessary to design and develop a robust intelligent sleep monitoring system. In

this chapter, we propose an intelligent algorithm to detect the microscopic states

of the sleep, which fundamentally constitute the components of a good and bad
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sleeping behavior and thus help shaping the formative assessment of sleep quality.

Our initial analysis includes the investigation of several classification techniques to

identify and correlate the relationship of microscopic sleep states with the overall

sleep behavior. Subsequently, we also propose an online algorithm based on change

point detection to process and classify the microscopic sleep states. We also de-

velop a lightweight version of the proposed algorithm for real-time sleep monitoring,

recognition and assessment at scale. For a larger deployment of our proposed model

across a community of individuals, we propose an active learning based method-

ology to reduce the effort of ground truth data collection and labeling. Finally,

we evaluate the performance of our proposed algorithms on real data traces, and

demonstrate the efficacy of our models for detecting and assessing the fine-grained

sleep states beyond an individual. Our focus here is whether active learning can im-

prove the process of sleep monitoring. We first conduct experiment with elemental

active learning methodologies for sleep activity and establish the ground for generic

activity recognition.

3.2 Motivation

Sleep monitoring has been in the limelight of research due to the growing need

of good quality sleep in person’s day to day lives. As well as sleep has a bi-directional

relationship with the well-being of a person [110]. Sleep disorders such as sleep ap-

nea, COPD (Chronic Obstructive Pulmonary Disease), Chronic renal diseases and

various other medical conditions can manifest itself as disruptions in sleep patterns
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and thus affect sleep quality [111]. [112] has defined sleep quality as one’s satisfaction

of the sleep experience, integrating aspects of sleep initiation, sleep maintenance,

sleep quantity, and refreshment upon awakening. Sleep quality is highly correlated

to exhaustion, discomfort, depression and lack of concentration during the day. The

quality of sleep can affect the intuitive symptoms caused by the underlying disease.

Clinical studies have suggested that if the sleep quality is improved, the underlying

symptoms of a patient might improve too. Monitoring sleep could help a physician

to diagnose the underlying condition. Clinically, Polysomnography (PSG) is used

for sleep monitoring, which is also the “gold standard” for sleep monitoring and di-

agnosis of sleep related disorders. PSG captures multiple physiological parameters

such as Electroencephalogram(EEG), Electrocardiogram (ECG), Electromyogram

(EMG), Electrooculogram (EOG) simultaneously which makes it the best solution

to diagnose sleep disorders. PSG provides general sleep measures, such as total

sleep time (TST) and sleep efficiency (SE), and also detects specific sleep stages.

Conducting PSG requires specialized environment like sleep center or clinic which

makes it un-suitable for day to day sleep monitoring. Recent advances in the field

of sensor technology and wearables have led to the advent of various sleep moni-

toring wearable devices such as [113], Actiwatch [114], BASIS watch [115], Misfit

Shine, Withings Pulse O2, etc. These devices are commercially available in the

market except for the BASIS watch [115]. These devices record accelerometer data,

heart rate to monitor sleep quality. Research indicates that Actiwatch and Fitbit

captures the TST and the SE well. In other words, it focuses on calculating the

duration of sleep which gives a very good insight on someone’s sleep hygiene. How-
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ever, the BASIS B1 band [115] classifies sleep stages (REM, light sleep, deep sleep)

and provides the means to identify patterns and triggers which are causing sleep

disturbances [116]. The use of wearable devices has also been proved effective for

in-home sleep measurements and evaluations [117].

To evaluate a person’s sleep quality, it is important to detect the stages and

micro stages of sleep. Researchers view this problem as a classification problem and

have been using machine learning algorithms on the data extracted from the wear-

able devices. Existing sleep monitoring studies have been using supervised learning

algorithms where they collect and label a set of training data with pre-defined classes

which the system aims to detect. The higher the labeled training dataset, the better

is the classification. One of the major challenges faced by researchers while address-

ing this problem is the collection of the ground truth information. Collecting ground

truth without violating privacy (using cameras) of the individuals is an extremely

difficult task. It is also a herculean task for the test subjects and other human anno-

tators to annotate the data manually. Leveraging unsupervised algorithm can help

to eliminate the requirement for labeled data. However drawing boundaries between

similar instances (with respect to properties) but belonging to different classes are

difficult using unsupervised learning. The microscopic sleep states are very hard to

differentiate based on the accelerometer data as the signal patterns are quite similar

for different states. Feedbacks from the users can help us to differentiate between

these microscopic states. By employing Active learning (AL) [118], we can acquire

feedbacks from the users for important data instances. AL can not only mitigate

the manual effort needed for collecting ground truth information but also reduce the
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training time. AL retrieves the most informative data instances from a pool of unla-

beled data instances and pose them as queries to the annotators. As a consequence

we only have to label a handful number of instances. Several researches showed the

effectiveness of AL in activity recognition domain [119] [31] [120]. Using AL we can

improve our model incrementally based on the feedback provided by the annotators.

AL works in an online manner, where we receive a stream of instances and then form

a pool from which we select the single most informative instance. In order to get

bulk label information Crowdsourcing [121] has been exploited in different problem

domains. It has been used in activity recognition domain as well [24] [122]. We can

collect ground truth information of unlabeled samples in a bulk which will help to

improve our model. In addition, identifying and classifying only pre-defined sleep

stages is not sufficient for medical diagnosis. Even though the current state of the

art wearable technology cannot replace the PSG in clinical evaluations, obtaining

accurate sleep stages has been the aim of every researcher who works on this prob-

lem domain. Further, we have identified certain weaknesses in the literature such

as patients suffering from nightmare disorder, muscle contractions have not been

considered in any study. In this work, we propose a sleep monitoring model using

accelerometer mounted wearable device to classify previously unseen various sleep

states, that further improves patients sleep hygiene by being able to pinpoint the

causes of sleep disturbances. We train our model using supervised and unsuper-

vised learning algorithms and identify the basic sleep states - Rapid Eye Movement

(REM), non-REM (NREM) sleep, awake, movement, getting up from bed, getting

up and sitting. We also introduce a crowdsourcing model to collect large volume of
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labels and also introduce a sleep scoring module.

Wearable devices have become common and accessible to people these days

and researchers are making them evolve by incorporating various sensors as attested

by the new release of smart watches such as Google Android Wear [123], etc. The

world is moving more towards wearable technology which has expedited a plethora

of application domains ranging from health care applications [124] to sports [40].

In this study, we have used two different wearable devices - EZ430-Chronos [125]

and wActiSleep BT [114] worn on the waist. After collecting the data, we apply

a variant of gradient descent algorithm to build a classification model. Further,

we apply importance weighted active learning to label the uncertain data points

and also incorporate previously unseen sleep states. Active learning improves the

annotation effort greatly and improves the performance of classification model. We

also exploit crowdsourcing to collect bulk ground truth information in offline. In

order to discover abrupt changes on the data streams, increase the classification

accuracy, remove noises and provide greater support for informativeness in active

learning, we propose an online change point detection algorithm. Finally, we show

the results of our proposed algorithm using publicly available benchmark dataset

[126] which provides the sleep phases determined by clinical polysomnography where

the data was collected using wrist worn device.
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3.3 Sleep Studies

In medical studies Polysomnography (PSG) is the major sleep study to di-

agnose a patient’s sleep quality [127]. Polysomnography records biophysiological

changes that occur during the sleep. Apart from PSG, some other sleep studies

are Multiple Sleep Latency Test (MSLT) and Maintenance of Wakefulness Test

(MWT) [128]. These diagnoses are cumbersome and need a lot of prior setup,

for example, in case of PSG it requires 12 channels requiring almost 22 wire at-

tachments to a patient. Obviously this imposes a great level of discomfort to the

patients and its users. Early literatures [129] involving wearable devices to repli-

cate the Polysomnography results validated the applicability of actigraphy in sleep

monitoring. [130] provided further justification for the use of actigraphy in sleep

research. Van et al. proposed a model to support the feasibility of a continuous

home-monitoring of sleeping trends using wearable devices [131]. Recently the au-

thors of [117] proposed a wearable actigraphy device with low sampling rate for

in-home sleep assessment. Several other literatures [132] [133] [134] [135] [136] also

ascertain the strength and simplicity of wearable devices in sleep monitoring. The

authors of [137] developed a wearable neck cuff system for monitoring physiolog-

ical signals in real-time. The authors of [138] have developed a light-weight and

inexpensive in-ear wearable sensing system that can capture electrical activities of

the brain, eye and facial muscles. [138] have used a supervised non negative matrix

factorization algorithm to adaptively analyze the signals. A sleep monitoring model

using image analysis has been proposed in [139], but it has proved inefficient in

23



case of low light condition at night. [140] used near-infrared cameras to overcome

this challenge but the images still created non-uniformity. A novel sleep monitoring

framework- LullaBy to capture and monitor the sleeping environment using mi-

crophone, light sensor and motion sensor has been proposed in [141]. Yanzhi et

al. [142] put emphasis on the importance of breathing pattern while sleeping and

the proposed model captures the breathing sound using signal envelop detection on

the acoustic data. The proposed model can detect snore, cough, turn over and get

up using the acoustic features. The authors of [143] proposed a real-time system

to monitor the sleep conditions where pulse oximeter is exploited to monitor user’s

pulse oxygen saturation (SPO2) during the sleep process.

Pressure bed sensors have been used to supervise the postures and movements

of the users in sleep [144] [145]. Though these methods are unobtrusive and do not

create discomfort to the users, but still it has not been streamlined due to its cost

and deployment issues. [146] used fine-grained body positions from accelerometer

data using WISP tags attached to the sides of a bed. A novel framework for pres-

sure image analysis to monitor sleep postures including a set of geometrical features

for sleep posture characterization and three sparse classifiers for posture recognition

has been proposed in [147]. The authors of [148] have proposed a sleep monitoring

framework comprising of an accelerometer and a pressure sensor. Features pertain-

ing to body motion, respiration, body activity and heart rate were extracted and the

proposed framework fuses information from various features and detects the stages

of sleep. [149] have proposed a combined framework for fall and sleep monitoring of

elderly people by hypothesizing that the acceleration calculated from the accelerom-
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eter data will be in the range 0− 1.5m/s2. The authors of [150] have used a custom

made accelerometer chip which streams data to an Arduino board. In addition to

the accelerometer, a ECG sensor is also used. Features such as Heart Rate and

RR interval were extracted and Kushida’s algorithm-derived equation was used to

differentiate the sleep stages.

Sleep related research are gaining attention due to the recent proliferation of

low-cost easy-to-deploy technologies based on mobile and ambient sensors and its

large penetration in the market. Commercial wearbale devices, such as Fitbit [113],

Zeo [151], Actigraph [114], Jawbone, Sleep Tracker etc have been used extensively

these days for monitoring sleep and activities of daily living (ADLs). iSleep [152]

uses the built in microphone sensor of smartphone to detect the events which are

closely related to sleep quality like body movements, coughing, snoring etc. The

authors of [153] used the accelerometer sensor of the smartphone to track the sleep

duration and user movement patterns. [154] proposed a passive approach to track

some stationary features, such as user silence, ambient light, phone usage and charg-

ing etc for monitoring sleep habits and developed a mobile application BeWell [155]

for unified health monitoring. [156] used the daily context information of an user to

define the sleep quality. Sleep Hunter [157] used the accelerometer and microphone

sensors of the smartphone a fine-grained detection of sleep stage transition for sleep

quality monitoring and intelligent wake-up call. Mimo Baby Monitor is a bodysuit

for infants aged 0 - 12 and incorporates respiratory sensor, accelerometer sensor,

and temperature sensor to measure the physiological signals, body movements, and

temperature respectively. These signals are transmitted via bluetooth to an online
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data cloud and to the caretaker’s mobile [158]. Using several android apps like Sleep

As Android, Sleep Time Smart Alarm Clock [159], Sleep cycle, SleepBot, etc. it is

possible to monitor the quality of sleep. Other commercial unobtrusive technolo-

gies like Beddit [160], Hello Sense [161] can also monitor sleep. Hello Sense also

tracks the quality of the sleeping environment. [162] proposed to use change-point

segmentation on PSG data to differentiate macrostructural organization of sleep.

A point process based novel model for the assessment of heart rate variability and

respiratory sinus arrhythmia based on PSG data has been proposed in [163].

3.4 Overview of SleepWell Framework

Sleep is not just a dormant part of our lives, we remain very active and pass

through several important stages of sleep. Interference or disturbance in these states

can cause impatience, drowsiness and lack of concentration during the regular ac-

tivities of daily living. Therefore for maintaining a good sleep hygiene we have to

sleep a certain amount of time in each of those sleep states. There are two main

types of sleep states:

• Non-Rapid Eye Movement (NREM) (also known as quiet sleep). NREM con-

sists of three states (stage-1, stage-2, stage-3).

• Rapid Eye Movement (REM) (also known as active sleep).

A complete and healthy cycle of sleep consists of a progression from states 1 to

3 before reaching REM state, then the cycle starts over again. If the REM sleep

is disrupted and the person wakes up, the person’s circadian cycle is disrupted.
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Figure 3.1: An architectural overview of Sleep Well [1] Framework

In order to complete the cycle the person will move to REM state directly next

time. Thus it is very important to sleep a good amount of time each day and

maintain a good sleep cycle. REM sleep is considered as active sleep because in

this state people dream. If a person is having a nightmare disorder too often it is

possible that he/she is having problems to complete the sleep cycle. In this work,

we first focus on properly classifying the sleep cycle into these finer states. We also

propose to integrate some other broader intermediate sleep states such as movement,

getting up from bed and getting up and sitting. These other states would help to

identify the casual and formal causes of sleep disturbance and sleep latency and

provide meaningful insights on designing scalable sleep monitoring technologies and

automated assessment methodologies.

3.4.1 Sleep Well Architecture

In figure 3.1 we demonstrate our proposed framework. Our proposed frame-

work consists of the following logical components.
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• Feature Extraction: After collecting raw sensor data, this component pre-

processes and extracts the low level signal features as shown in Table 3.1 from

the processed raw sensor data. (Details in 3.5.1).

• Change Point Detection: After extracting features and analyzing the sleep

data, we noticed that change point occurs in sleep transitions (transition from

one stage to another, for example unconscious movement during sleeping, wak-

ing up, being restless in bed etc.). The importance of these change points has

proven to be very effective as it help removing noises in the data and detect

the exact point of the sleep transition. For example, when a person gets up

from the bed and starts walking, the accelerometer readings other than sleep

classes become noisy. Therefore by identifying change points we can partition

the data and have more fine-grained information for easing the training effort.

(Details in 3.6).

• Classification: At this stage we train our model using the features from

processed raw sensor data and build up our classification model to recognize

the several intermediate sleep states. We investigated an online gradient de-

scent [164] as our classification algorithm. This is different from traditional

gradient descent by dealing with importance weights to collaborate with ac-

tive learning and learning reductions. To calculate the average loss during

the classification process we propose to use squared loss function (Details in

3.6.1).

• Active Learning: After feeding the test data into our classification model
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and getting the prediction, active learning helps to calculate the informative-

ness of each data points. If any data point falls within an uncertain space

and while predicting it is found to be the most informative, then if the actual

label of the point is provided it would have more significant impact on the

classification model. This component then initiate prompt for “query user

label” and get the ground truth from the user. Subsequently the labels are

then used for re-training and updating the model. This component helps to

ensure better classification accuracy with minimal user feedback. This also

helps to scale the sleep monitoring model across multiple individuals. The in-

put from change point detection method strengthens the active learning query

selection by asking the user to label the appropriate sleep state transitioning

step. (Details in 3.7).

• Crowdsourcing: For large scale deployment we apply crowd sourcing for

reducing the ground truth collection effort. The problem with existing crowd

sourcing platforms is that there is no standard to evaluate the quality of the

workers. In our model we calculate two parameters for each worker - reliability

and awareness. Using these two parameters we rank the user and get the most

out of our crowdsourcing platform (Details in 3.8).

3.5 Sleep Well Framework Design

In this section we describe in details the design of our Sleep Well framework.

We first discuss about several micro-states of sleep and feature extraction process.
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Table 3.1: Features used for Sleep Micro-States Classification

Name Definition

Time

Domain

Features

Mean AVG (
∑

xi), AVG (
∑

yi), AVG (
∑

zi)

Mean-magnitude AVG
√

x2
i + y2i + z2i

Magnitude-Mean
√

x̄2 + ȳ2 + z̄2

Variance VAR (
∑

xi), VAR (
∑

yi), VAR (
∑

zi)

Co-Variance (Two-axis correlation) cov(xy) ; cov(yz) ; cov(xz)

Standard Deviation σx =
√∑

(x−x̄)2

n−1
; σx =

√∑
(x−x̄)2

n−1
; σx =

√∑
(x−x̄)2

n−1

Fre-

quency

Domain

Features

FFT-Magnitude m
(x)
j = |aj + bji| ; m

(y)
j = |aj + bji| ; m

(z)
j = |aj + bji|

FFT-Energy

∑N
j=1(m

2
j )

N
for x, y, z respectively

Next we discuss an online change point detection algorithm to have a better handle

on the microscopic sleep state classification problem.

3.5.1 Sleep Event Detection and Feature Extraction

We extract low-level features using each of the three components of the triaxial

accelerometer signal to capture the aspects of movements while sleeping. We use

both time and frequency domain features in our framework. As the user is not

physically active while sleeping, very few number of movements are involved, so we

choose a lower sampling frequency. We extract features from data using windows

of 60 samples, corresponding to 1 second of accelerometer data. From each window

we calculate the features mentioned in Table 3.1. Time domain features help to

differentiate dynamic to static movements. The frequency domain features help
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identifying patterns within acceleration data, which aids in discriminating discrete

movements and their intensities.

3.5.2 Feature Selection

Our model is primarily focused on community scaling, so fewer features will

scale the model computationally effective if we can achieve similar accuracy with

more features. We select the subset of features, best fit for our model by applying

Restricted Forward feature Selection (RFS) algorithm. It was performed in two

steps. First we applied Forward feature Selection (FS) algorithm which ranks the

features in decreasing order of their accuracy. The FS algorithm iterates through

the feature space and measures the Leave-One-Out-Cross-Validation (LOOCV) error

for each component in the feature space {f1, f2, f3.....fN}. In case of traditional FS,

after the first iteration, FS calculates the best individual feature fi. In the next

iterations, FS finds the best subset consisting of two components, fi and one other

from remaining N − 1 features. In the following iterations, FS ranks more features

and evaluates the subset accordingly, so that after N iterations, the winner is the

overall best feature set in these N iterations. In the second step we invoke the RFS

to restrict the number of features to rank at each iteration. After the first iteration

we consider only the first N/2 ranked features for the following iteration. After

adding another feature to the winner of the first iteration at the second iteration, we

consider the first N/3 components of the remaining ranks. RFS repeats this process

until it finds the best m feature sets. The difference between conventional FS and
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RFS is that RFS considers only a part of the remaining ranked features, whereas FS

considers all the features. Out of 8 features, the feature selection algorithm chose 4

features (FFT-Magnitude, FFT-Energy, Mean-Magnitude and Co-Variance) which

help to attain classification accuracy closer to using all the 8 features.

3.6 Change Point Detection

Change point detection helps find the abrupt variations in the sleep data

stream. While some change points provide meaningful insights and some not, our

motivation in this work is to find the sleep transitions by calculating the change

points (abrupt signal changes) and distinguish between the important and unim-

portant changes. This is not only helpful to detect the sleep-related events appro-

priately but also help remove noisy data points from the dataset. We develop a

Bayesian online changepoint detection [165] based algorithm for finer sleep related

event identification and online data noise reduction.

We first partition the entire sleep dataset in different regions based on a run

length [165]. Let, x1 : N = {x1, x2, x3, .....xN}T denote the N data points observed

over time T which is divided into non-overlapping partitions. Consider if we find

K change points then let the data set of partitioned data be {ρ1, ρ2, ρ3, ..., ρk} at

time indices {t1, t2, t3.......tk} where by definition t0 = 0 and tk+1 = N . The discrete

probability distribution over a time interval ti to tj is denoted by g (ti − tj). Each

partition ρt denotes a segment of the data at time t. The length of the each partition

or time since the last change point occurred, is defined as “run length“, r. The run
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length goes back to 0 if change point occurs, otherwise it increases by 1 as follows.

rn =


0, if changepoint occurs at (n− 1)

rn−1 + 1, otherwise

The conditional probability that a change point occurs on time tk after the last

change point at time tk−1 is

P (tk|tk−1) = g(tk − tk−1), where 0 < k − 1 < n (3.1)

We assume that the predictive distribution of a change point at any time instant

t only depends on the recent data. So the change points are assumed to follow

markov process. Thus the prior probability of a change point at a time instant tk is

dependent on the probability distribution of the observed data over the time interval

and the preceding change point.

P (tk) =
k−1∑
i=0

g(tk − ti)P (tk−1) (3.2)

The change point detection algorithm finds the number of change points and their

position by calculating the posterior probability P (rn|x1:n) and integrating it with

the predictive distribution P (xn+1|xn). We do this by calculating the joint distribu-
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tion of the current run length and observed data P (rn, x1:n).

P (rn, x1 : n) =
∑
rn−1

P (rn, rn−1, x1 : n)

=
∑
rn−1

P (rn, xn|rn−1, x1 : n−1)P (rn−1, x1 : n−1)

=
∑
rn−1

P (rn|rn−1)P (xn|rn−1, xn−r : n)P (rn−1, x1 : n−1) (3.3)

Where P (rn|rn−1) is the transition probability and P (xn|rn−1, xn−r : n) is the data

segment likelihood probability. We calculate the transition probability using equa-

tion

P (rn|rn−1) =


h(rn−1 + 1), if rn = 0

1− h(rn−1 + 1), if rn = rn−1 + 1

where h(x) = g(x)/
∑∞

i=x g(i). We calculate the posterior probability using

Bayes‘s rule:

P (rn|x1 : n) =
P (rn, x1 : n)∑n−1
i=0 P (ri, x1 : i)

(3.4)

We calculate the posterior probability of the run length at that time index which

corresponds to a new data sample. The pseudo code of this procedure is summarized

in Algorithm 1.

3.6.1 Classification

We classify the sleep states using an online gradient descent method which

leverages the importance weight on streaming data samples. To build up our classi-

fication model accurately we consider other sleep contexts such as body movements,
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Algorithm 1 Change Point Detection

1: Initialize: P (r0) = 1

2: for Each new data point xn do

3: Calculate the data segment likelihood probability,

4: P (xn|rn−1, xn−r : n)

5: Calculate the transition probability, P (rn|rn−1)

6: Calculate the joint distribution, P (rn, x1 : n)

7: Find the posterior distribution on current run length, P (rn|x1 : n)

8: Calculate the predictive distribution of xn based on previous observation.

P (xn|xn−1)

9: end for

but most of the sample data points resemble stationary states during the sleeping.

Online gradient descent with importance weight aware updates [164] helps to over-

come this limitation of data by assigning weight to classes with lesser data points.

The key principle here is: The assignment of importance weight h to a sample that

make it appears like a regular example of h times in the dataset. We assume C is

our classification model and use squared loss function for examining the consistency

of C. The goal of our classification model is to minimize the loss function which

reflects better accuracy. After each iteration of gradient descent, C is not altered,

rather it is improved by adding an estimator h in order to optimize the loss function.

We assume y is the true label and p is prediction of our model, where l(p, y) is the

35



loss function as shown in Eqn. (3.5). At each step C is updated using Eqn. (3.6)

l(p, y) =
1

2
(y − p)2 (3.5)

Cm+1 = Cm + h(x) (3.6)

Let w be the vector of weights and the training set is a set of (xi, yi, hi), i = 1, ...., T

where xt is a vector of d features. For linearity we assume p = wTx. Our goal is

to assign w in such a way so that the model C converges to the optimized solution.

Assigning weight to a data point (x, y), h times in a row have a cumulative effect

with scaling factor k(h) as shown in Eqn. (3.7). This scaling factor is defined by

Eqn. (3.8) where η is the learning rate [164]. At each iteration this weight is updated

accordingly to the loss function l. Our proposed classification algorithm for finer

non-stationary sleep states detection is shown in Algorithm 2.

wi+1 = wi − k(h)x (3.7)

k(h) =
p− y

xTx
(1− e−hηxT x) (3.8)

3.7 Active Learning Based Community Scaling

Our goal in this work is to scale the sleep monitoring model to a community

of individuals. While a significant research has been done on sleep monitoring and

assessment and intervention strategies, lack of novel scaling algorithms prohibit

the deployment, large scale validation, and acceptance of these technologies for

healthy lifestyle, smart health and independent living applications. In this section
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Algorithm 2 Importance Weighted Sleep Classification

1: Input: Extracted feature vectors from raw data.

2: Output: Predicted Sleep Class y.

3: Update the importance weight of the data points.

4: Initialize: ∀iwi ← 0

5: Get the feature vector for data point xi

6: Predict the class label yi for all xi

7: Calculate the scaling factor k(h)

8: for i = 0 to N do

9: Calculate the weight wi for each xi

10: Update: wi ← wi − p−y
xT x

(1− e−hηxT x)x

11: end for

we investigate how active learning based machine learning algorithms help build an

informative model in presence of a minimal labeled datasets. We also depict how

change point detection based time-series data analytics methodology help reduce

the data uncertainty and guide to the selection of most informative query.

Active learning has been proved to be very effective by combining it with super-

vised learning when a large pool of unlabeled data is available. Though traditional

passive learning takes the initiative to label the unlabeled data randomly, but most

of the data points which are selected randomly does not ensure better classification.

It is difficult to collect all of the sleep related ground truth information from the

user though by using the accelerometer sensor it is possible to broadly monitor the

user sleep behavior and the specific sleep duration. To collect more fine-grained de-
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tails about the sleep we train our proposed gradient based classifier with the causes

of sleep disruption (such as waking up from nightmare, muscle cramp etc). By

applying active learning we propose to collect the labels of these informative data

points so that our model can better classify the sleep stages and conditions and help

scale this model in presence of minimal amount of ground truth. While applying

active learning, one constraint is we have to assure that the whole labeling process

doesn’t become too intrusive. Crowd-sourcing can help us overcome this constraint

by collecting a large amount of labeled data via arbitrary participants and provides

aid in community scaling.

3.7.1 Query selection

In the following we briefly discuss the query selection approaches for active

learning:

• Query Synthesis: The active learner asks the human annotator for “label

membership“ by using membership queries. In this approach the learner gen-

erates instances rather than sample from existing unlabeled set. But the prob-

lem with this approach is human annotator may have difficulty interpreting

and labeling arbitrary instances.

• Stream based selective sampling: Each unlabeled instance is drawn at a

time from the input source and the learner may decide instantly whether to

query the instance or not. As we are using online classification algorithm and

the data are processed in stream, we use this sampling strategy for our active
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learner.

• Pool based sampling: Evaluates and ranks the entire collection of unlabeled

data before selecting the best query from a pool of instances.

3.7.2 Sampling metrics

Different sampling metrics such as least confident, margin sampling or maxi-

mum entropy based sampling are common in active learning algorithms. We propose

to use the importance weighted active learning approach to build our community

scaled sleep monitoring model [166]. To decide which points are most informative,

we first calculate the utility measurements of unlabeled data points. Whether a data

point xt will be queried or not depends on the history of labels seen so far based

on our change point detection, gradient based classification and the identity of the

point. If a change point is detected at data point xt at time index tn, and the label

of xt is inconsistent with the label of current run rn, we invoke active learning. A

probability measure pt is maintained for each data point xt. A coin flip, Qtε{0, 1}

with E[Qt] = pt determines whether the data point will be queried or not. If the

data point is queried based on the past history, then we update importance weight

by 1
pt
.

The active learning algorithmmaintains an effective hypothesis spaceHt through

out the process. Initially, Ht contains all of the hypotheses from global space H.
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The expected loss of a hypothesis, hεH at time T is defined by Eqn. (3.9).

LT (h) =
1

T

T∑
t=1

Qt

pt
l(h(xt), yt) (3.9)

As it progresses, Ht becomes narrower by taking a subset, and ensuring that the

factual loss of Ht+1 is not much worse than the smallest loss, L∗
t in Ht.

Ht+1 = {h εHt : Lt+1(h) ≤ L∗
t (h)} (3.10)

For each data point xt, the active learning algorithm looks at the range of predictions

and their losses by hypotheses in Ht and sets the sampling probability to the size

of this range.

pt = max
f,gεHt

max
y

l(f(xt), y)− l(g(xt), y) (3.11)

If the range is too high than the rejection threshold then the hypotheses disagree

greatly with each other. This certifies that the current prediction of xt lies in the

uncertain region. The active learning algorithm then queries for the label to settle

the uncertainty. Our proposed active learning algorithm for largely reducing the

micro-sleep states annotation effort is shown in Algorithm 3.

Apart from using only predefined class labels, the user can introduce new un-

seen class along with indicative attributes with the help of active learning. While

prompting for label of data point xt, we also collect the reason for their choice of

label in restricted number of words. We find specific attributes from the provided

reason and associate that attribute with the data point xt. For example, if a user

labels a data point as “getting up & sitting” and specifies the reason as “woke up

from nightmare”, Sleep Well framework extracts the attribute “Nightmare” from the
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provided reason. Subsequently we re-evaluate our classification model and apply a

recursive classification to associate the provided attributes to similar data points.

This help our model to achieve microscopic sleep state classification, and finer eval-

uation for more elaborative and accurate diagnosis of patients and eventually scale

the model beyond an individual premises.

3.8 Crowdsourcing

Crowdsourcing has been proved to be an effective component for collecting

labels in many machine learning applications. Large scale data processing and

annotating the data with multiple annotators or experts alleviate the traditional

process for gathering ground truth data which is lengthy, costly, and time consuming.

By using crowdsourcing though we accumulate a large volume of labeled data, but

we also increase the risk of introducing a lot of noisy and ambiguous labels into

our classifier. So it is necessary to identify potential reliable annotators and limit

the effect of introducing noisy labels. On the other hand, a major challenge in

crowdsourcing is to verify the provided labels. To tackle this we propose to calculate

the inter-annotator agreement using Fleiss’ Kappa statistics and identify the proper

label for the data point in concern. In our model we rank the annotators based

on their reliability and awareness of the feedback. Here reliability refers to the

correctness of the feedback and awareness indicates the willingness of the annotators.

For each annotator we maintain a probability measurement, δitk:
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Algorithm 3 Active Learning with Importance Weighted Sampling

1: Input: L = set of labeled instances {(x, y)l}Ll=1 U = set of unlabeled instances

{(x)u}Uu=1 A classifier model, Cθ

2: Output: Updated classifier model, Cθ.

3: Updated importance weight of queried data points.

4: for every instance in U do

5: set pt of instance xt using equation (3.11)

6: yt ←− Prediction of Cθ for xt

7: queried ←− False

8: if xt falls in between successive run rn−1 and rn using the posterior proba-

bility P (rn|x1 : n) then

9: if yt is not same as the label of current run rn then

10: query label yt; Lt ←− Lt−1 ∪ {xt, yt,
1
pt
}

11: queried ←− True

12: end if

13: end if

14: if pt is greater than rejection threshold and queried = False then

15: query label yt; Lt ←− Lt−1 ∪ {xt, yt,
1
pt
}

16: else

17: Lt ←− Lt−1

18: end if

19: Update the hypothesis space Ht

20: end for
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δjtk = P (yj = k|yj = t) (3.12)

In equation 3.12, δjtk denotes the probability that the annotator j provides the

class label k to an instance given that the true class label is t. Our goal is to learn the

parameter δjtk for each annotator. Suppose there are R annotators. If the number

of data instances is N , we initialize a N × R matrix M . Mij denotes the label of

instance i provided by annotator j. Given that yti is the true label for instance xi,

we assume that y1i , y
2
i ......y

R
i are independent. Let y = {yt1, yt2, yt3.....ytN} be the set

of true labels for the data instances. In our model δ is the reliability parameter.

Our goal is to learn an optimal estimator ŷ of y to minimize the imposed error

by provided noisy data points. By taking Beta prior on the reliabilities we can

formulate a maximum likelihood estimator δ̂ of δ using equation 3.13. By taking y

as hidden variable we can estimate δ̂ using expectation maximization [167].

δ̂ = argmax
δ

logP (δ|M) = argmax
δ

log
∑
y

P (δ, y|M) (3.13)

We calculate the awareness of a certain class c, acj by taking the percentage

of data of class c labeled by jth annotator. We assign weight wc
j to each annotator

by taking the product of their respective reliability of a certain data instance i and

awareness. Based on the weight for each class we rank the annotators with respect

to each class.

wc
j = δjtka

c
j (3.14)
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To verify our estimator we calculate the inter user agreement by using Fleiss’

Kappa statistics. The kappa k is defined in equation 3.15. In equation 3.15, 1− P̄e

gives the degree of agreement that is achievable, and, P̄ − P̄e gives the degree of

agreement actually achieved. If the annotators agree with each other then k = 1, if

not then k ≤ 0.

κ =
P̄ − P̄e

1− P̄e

(3.15)

Let n be the number of annotation per annotator, and let k be the number

of classes. Then nij represent the number of annotators who assigned instance i to

the j class. First calculate Pj, the proportion of all assignments which were to the

class j:

Pj =
1

Rn

R∑
i=1

nij, 1 =
1

n

k∑
j=1

nij (3.16)

Now calculate Pi, which denotes how many annotator pairs are in agreement,

relative to the number of all possible annotator pairs.

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1)

=
1

n(n− 1)

k∑
j=1

(n2
ij − nij)

=
1

n(n− 1)
[(

k∑
j=1

n2
ij)− (n)]

(3.17)

Now we can measure P̄ , which is the mean of all Pi and P̄e using Pj:
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Figure 3.2: An architectural overview of Crowdsourcing

P̄ =
1

N

N∑
i=1

Pi

=
1

Rn(n− 1)
(

R∑
i=1

k∑
j=1

n2
ij −Rn)

(3.18)

P̄e =
k∑

j=1

p2j (3.19)

In figure 3.2 the architecture of our crowdsourcing platform is shown.

3.9 Sleep Well Framework Evaluation

To evaluate our framework we focus on the following specificities. i) The

performance of different classification algorithms in comparison to our classification

approach, ii) Cross-user performance by building model with a user’s sleep model

and testing with someone else’s model, iii) Performance of our framework using
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different wrist-band devices with accelerometer sensor, iv) Impact of active learning

on our model, v) Precision of classifier when sleep attributes are introduced in the

model by active learning.

3.9.1 System Implementation

We have implemented and tested our model by using two separate devices -

wActiSleep-BT [114] and EZ430-Chronos [125], both of these devices contain 3-axis

accelerometer sensor. EZ430-Chronos device also has heart monitor, pressure and

temperature sensor. We collected raw accelerometer data from both of these devices

using API provided by the manufacturers. We implemented our own software to

extract raw data using C# programming language and then extracted the features

using python numpy library. We sampled the data in 60Hz frequency. For impor-

tance weighted classification and active learning we used the machine learning tool-

Vowpal Wabbit [168].
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Figure 3.3: Accelerometer reading when

standing
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Figure 3.4: Accelerometer reading when

lying
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3.9.2 Ground Truth Collection

We asked the users to log their sleep habits using sleep diary to correctly

label the data points. We asked the participants to note down their sleep routines

(preferred sleeping postures, regular hours of sleep, light intensity and sleep latency)

each day of the experiment. There were many challenges involved while collecting

the ground truth from the sleep diary. For example, consider two different scenarios,

1) the user is awake & lying and 2) awake & not lying. In case of stationary states

(when the user is not moving but he is either lying or just sitting in the bed)

the accelerometer readings are almost identical. Also when a user gets up in the

middle of the night and performs some activities (checking his phone, going to

bathroom etc.), there are movements involved. It was challenging to identify which

movements were during sleep and which were due to some activities. The user was

unable to correctly state the reason of movements in some cases. In Fig. 3.3 and

3.4, we can see two different movements (awake and standing, awake and lying).

The user went to bathroom at 2:03 AM and came back to bed at 2:12 AM. On the

other hand at 3:03 AM, the user was moving while lying. Therefore to assist the

ground truth collection, we investigate a posture analysis using the inclination of

the accelerometer. We observe that when perpendicular to gravity, accelerometers

are more sensitive to small changes in inclination, but as the inclination increases

the accelerometer becomes less sensitive to it. To resolve this issue we propose to

use two axis. As we are using wrist worn bands, inclination of axis y and z are used

to define the posture of the user. The z axis measures the direction of the gravity
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Figure 3.5: Raw accelerometer data

from Dataset 3.9.3.1.
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Figure 3.6: Raw accelerometer data

from dataset 3.9.3.2
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Figure 3.7: Timestamped mean-

magnitude feature value.
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Figure 3.8: Detected change points as-

sociated to figure 3.7

in the horizontal position, so coupling with the inclination of x axis help infer the

posture of the user. We calculate the inclination of the device by using Eqns. (3.20)

and (3.21).

We faced a challenge to define the threshold values for these inclinations as

different users have different sleeping postures. We experimented with different sleep

positions (On side, Face down, On your back) and calculated the inclination of the

device in those positions. We ran the J48 decision tree classifier on the postural
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Figure 3.10: Inclination

measurement accuracy

data. Based on the results of the classifier we defined the inclination threshold for

different states, such as if θy < 16◦ then the user is standing, if 16◦ < θy < 61◦ the

user is considered sitting, and for θx > 61◦ the user is considered lying. Fig. 3.10

shows the results of our posture calculation using the inclination method. We also

installed couple of motion sensors in the environment to strengthen our ground truth

collection. We put two motion sensors (Aeotec Multisensor [169]) near both sides

of the bed and another one mounted near the user’s body when he/she is sleeping.

The sensor mounted near the body captures the motion when the user is in the bed

while the other two on the sides of the bed monitor when the user is out of the

bed. While extracting information from the sensor, we assumed that consecutive

two data points from the sensors mounted on the sides correspond to getting in and

then getting out of the bed. These multisensors also have built in light sensor, so we

can detect the light condition in the sleeping environment using these sensors. Now

we are able to validate the movements of the users and calculate the overall time

he/she remained out of the bed efficiently by consolidating inclination measurement,

motion sensor and data from sleep diary. We were able to label most of the data
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Figure 3.12: Precision, recall and F1-

measurement with inter user classifica-

tion (dataset 3.9.3.2)

points correctly and remove noisy data points.

3.9.3 Datasets

We use real data traces collected from ≈ 60 users to validate the performance

of our Sleep Well framework. We also compare our results for data from different

body position.

3.9.3.1 Dataset with Clinical Ground Truth

We evaluate our model using publicly available benchmark dataset from Tech-

nische Universität Darmstadt [126] which provides sleep phases determined by clin-

ical polysomnography. The data set consists of timestamped raw acceleration data

collected using wrist worn data logger at a sampling rate of 100Hz and includes the

sleep stages (movements, awake, NoREM 1-3, REM, unknown) from 42 lab patients.

The trend of raw accelerometer reading in this dataset is shown in Fig. 3.5. There
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are seven different classes in this dataset among which majority of the data points

are labeled as unknown (51%) and awake (24%) with only a few important data

points which affect the classification model. After inspecting the dataset, we note

that the value of different data points of different classes were very close which im-

poses bias in our classification model. We handle this bias by assigning less weight to

abundant data points (unknown and awake) and improve the classification process

and accuracy.

3.9.3.2 Actigraph and Chronos Dataset

We collected sleep data using wActiSleep-BT and EZ430-Chronos at a sam-

pling rate of 60Hz from 17 participants for two weeks. Out of 17 participants (11

males and 6 females) 13 were graduate students, 3 working professionals and 1 un-

employed person. We conducted a survey beforehand to know about their sleep

routine. Using the survey we gathered information regarding sleep time, average

sleep hour, movement frequency in a scale of 1-5 and existing sleep disorders. We

then selected a set of participants with diverse sleep routine and disorders. We

asked the participants to put on the sensor when they go to the bed. The partic-

ipants were also instructed to maintain a log the timing of getting up and getting

in bed. The participants put the sensors on their waist using a belt. We noticed

that wActiSleep-BT device has better sensitivity due to slight movements rather

than EZ430-Chronos which help differentiate between actual movements and sleep

patterns from a user. Almost 65% data points of this dataset belong to Sleep class
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and 22% to Awake class. As a consequence, our dataset is also imbalanced. Fig. 3.6

shows the raw readings from ActiSleep device.

3.9.4 Evaluation Methodology

3.9.4.1 Supervised Learning

We carried out our experiments with 17 participants (11 males and 6 females)

over two weeks where each participant has provided data for 8-10 days. We validated

that 17 is a staistically significant population size using t-test. The trend in training

accuracy (intra user) with respect to size of the population is shown in figure 3.13.

We see that after increasing the population size more than 17, the accuracy is

not changing significantly. We proved our hypothesis that it did not happen by a

chance by conducting t-test using dataset 3.9.3.1. We conducted t-test with varying

population size and received p-value of 2.021 with 95% confidence interval. Although

we get a bit more accuracy if we increase the population size (74%), however due

to training time and resource consumption we chose 17 as the optimum population

size. Out of these 17 participants, 7 wore the EZ430-Chronos device and other 10

put on wActiSleep-BT. We split each data set into two parts, one for training and

other for testing. To overcome the class imbalance problem, the importance weight

play a significant role. We look at the confusion matrices of classifying two classes

(Sleep, Awake) in Table 3.2 & 3.3. It is evident that due to class imbalance, a lot

of the Awake class instances are inferred as Sleep if importance weight is not used.

We applied our classification models on the datasets mentioned in sections 3.9.3.1
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and 3.9.3.2.

Sleep Awake

Sleep 91% 9%

Awake 14% 86%

Table 3.2: Confusion matrix of

Sleep/Awake classifier with impor-

tance weight.

Sleep Awake

Sleep 80% 20%

Awake 51% 49%

Table 3.3: Confusion matrix of

Sleep/Awake classifier without impor-

tance weight.

Number of Users

Ac
cu

ra
cy

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0
10

20
30

40
50

60
70

80
90

10
0

Figure 3.13: The trend in intra user classification accuracy with varying population

size.

3.9.4.1.1 Intra User Classification

We tested different classification models with our proposed Online Stochastic

Gradient Descent (OSGD) method - Support Vector Machine (SVM), Multilayer

Perceptron (MP), LogitBoost (LB), Random Forest (RF), Logistic Regression (LR),

and Decision Tree (DT) - using different user’s dataset. The accuracy of different

classification model using one of the subject’s dataset from each datasets is shown
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Table 3.4: Accuracy (Dataset : 3.9.3.1 )(%) (Intra User)

OSGD SVM MP RF LR LB DT

Unknown 98.76 96.50 85.80 99.01 98.93 98.37 97.95

Stage-1 69.45 44.44 60.36 58.57 47.63 61.82 70.40

Stage-2 70.29 41.02 58.54 59.09 48.18 68.46 71.87

Stage-3 68.36 39.15 63.36 48.24 49.33 60.77 63.94

REM 58.22 37.28 49.11 41.55 38.31 41.03 59.10

Awake 74.78 68.12 72.10 70.01 64.96 66.90 72.73

Movement 72.59 69.31 62.88 70.66 65.60 63.27 71.25

Average 73.20 56.54 66.13 63.87 58.99 65.80 72.46

Table 3.5: Accuracy (Dataset : 3.9.3.2 )(%) (Intra User)

OSGD SVM MP RF LR LB DT

Sleep 87.79 87.98 80.8 84.01 73.32 76.63 88.52

Awake 77.9 71.35 75.66 67.91 73.56 70.21 75.69

Movement 76.25 74.87 68.32 68.41 70.27 72.11 75.14

Getting up & sitting 72.11 64.58 67.39 68.11 64.85 69.15 70.02

Getting up from bed 78.21 69.89 70.36 70.1 71.19 62.39 73.39

Average 78.45 73.73 72.50 71.70 70.63 70.09 76.54
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in Table 3.4 and 3.5. The average accuracy of OSGD is 73.20% for a patient from

dataset 3.9.3.1 and 78.45% for dataset 3.9.3.2. This attests that consideration of

inclination and sensor data and using it to correct labels in dataset 3.9.3.2 help yield

better classification results. Also the results indicate that putting the device on the

waist endows better accuracy. We investigated this disparity, and found that hand

movements are more abrupt and arbitrary which results in more confusing data

points. Also very subtle body movements are difficult to distinguish when using a

wrist worn accelerometer.

The major accuracy improvement was noticed for inferring the micro sleep

state. Although individual accuracy for classes - Stage 1, Stage 2 and REM for

Decision Tree (DT) classifier was better in dataset 3.9.3.1, but the average accuracy

of inferring sleep states (sleep stage 1-3, REM) is 66.58% which is better than

the average of DT classifier (66.32%). While for our dataset we achieved 87.79%

accuracy.

3.9.4.1.2 Cross User Classification

It is important that a classification process will not only recognize the sleep

states of an already seen user, but also help generalize the classification for new users.

We cross validated our approach with inter user classification model. We trained

our model using 20 patient’s data from dataset 3.9.3.1 and tested the trained model

with remaining 22 patient’s data. The average accuracy was 69.79%. With data

from dataset 3.9.3.2 we achieved 75.46% overall accuracy. Fig. 3.11 and 3.12 shows

the results in Precision (percentage of times that a recognition result made by the
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model is correct), Recall (percentage of times that a sleep state is detected) and

F1-measurement (combination of both recall and precision) for both the datasets.

Also in Fig. 3.14 represents the trend of loss for different datasets.
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Figure 3.14: Trend of loss for inter user

classification in different datasets
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Figure 3.15: Different active learning

techniques for Dataset 3.9.3.1.

3.9.5 Active Learning Experiments

In addition to supervised learning, we evaluate how we can improve the classi-

fication result using active learning with minimal user feedback. We have discussed

our active learning algorithm in section 3.7. We sampled both the datasets with

a window of 60 seconds on accelerometer data. Each sample is a feature vector

with 16 dimensions. Initial labeled dataset L1 consisting of 135089 samples (from

dataset 3.9.3.1) and L2 consisting of 42,000 samples (from dataset 3.9.3.2) are pro-

vided to the individual classifier C1 and C2 for training. Then unlabeled dataset U1

of 510113 (dataset 3.9.3.1) and U2 of 121,147 samples (dataset 3.9.3.2) are used to

test the classifier C1 and C2. The samples are provided sequentially with respect to
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Figure 3.17: Different attributes classifi-

cation result in getting up & sitting par-

tition.

timestamp.

The uncertain data points, meaning the points which the classifier was unable

to classify are queried in accordance with our active learning algorithm (3). We

calculated the loss at each phase after a data point is queried and the model is re-

trained. We compared our result with randomly selected samples for labeling. To

further assist the active learning process we validated the results with our change

point detection (CPD algorithm discussed in 3.6. When a change point is detected

in the dataset, we cross validated the change points with the classification result

with respect to the timestamp. Figs. 3.7 and 3.8 plot the association of change

points with timestamped accelerometer data points. If the label of the sample is

not consistent between each of the model we imposed active learning and queried the

data point. Initially with L1 and L2 we note the average classification accuracy as

63.8% and 70%. We applied importance weighted active learning, and see that the
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model converged faster with change point detection. 86719 samples (17% of total

samples) from U1 and 8843 samples (7.3% of total samples) from U2 were queried

for the model to converge in presence of CPD which helped achieve 72% (dataset

3.9.3.1) and 76.89% (dataset 3.9.3.2) accuracy, while with randomly selected data

points 68% and 73% accuracy was observed. Fig. 3.15 and 3.16 shows the change in

loss with random sampling, active learning with and without CPD techniques with

different datasets. We see that active learning with CPD outperforms the other

strategies. In case of dataset 3.9.3.1 we notice from Fig. 3.15 that the change in

loss is irregular. After analyzing the dataset 3.9.3.1 we found out that due to the

presence of noisy data points the loss increased.

Figure 3.18: Visual illustration of sen-

sor activation.

Class Kappa Z-

Score

P-

Value

Sleep 0.468 2.8 0.167

Awake 0.423 5.97 0.013

Movement 0.447 4.52 0.00678

Getting up &

Sitting

0.537 2.298 0.051

Getting up

from the bed

0.835 1.256 0.0006

Table 3.6: Fleiss Kappa Score (Inter user

agreement).
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3.9.6 Crowdsourcing Experiments

During this process we faced a challenge regarding what kinds of data to show

which can reflect the sleep classes. As audio, video or image data violate the privacy

of the user so we had to come up with a different methodology rather than traditional

image based crowd-sourcing. We presented some semantic information from the

users sleeping habit (regular hours of sleep, sleep latency, posture, average number

of times the user gets up at night, how much the user moves on average in percentage

and light condition) and a visual illustration of sensor activation (discussed in section

3.9.2) to the annotators. In Fig. 3.18, we show an example of visual illustration. The

double circled objects represent sensors and the activation is marked by red color.

In this example the sensor mounted near the head and the sensor mounted near

the right side of the bed are activated as the user was getting up from the bed. 10

annotators participated in our crowdsourcing experiment with a dataset containing

10,000 data instances from Dataset 3.9.3.2. In table 3.6 the kappa coefficient, z-

score and p-value for individual classes are shown. The kappa coefficients of sleep,

awake and movement classes are considerably low than other two classes. This was

due to the nature of these activities and sensitivity of the motion sensor. During

our experiment we have seen that, movement with smaller intensities while in sleep

or awake is sometimes not captured by the motion sensor. As a result most of the

annotators, defined those data instances as sleep. On the other hand, movement

with higher intensities while sleeping are annotated as awake, movement and getting

up & sitting. Also the first three activities are related to the state lying. As a result
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the posture information using inclination measurements did not help much. For

getting up from bed the visual illustrations were less noisy and easier to depict, as

a result the inter user agreement score is much better.

3.9.7 Introduction of New Unseen Class and Attributes

A user is able to personalize the model by introducing new unseen classes and

attributes with the help of active learning. We simulated our active learning algo-

rithm by introducing new class labels in the classification model. While collecting

the query label we also asked for the reason behind choosing the label from the anno-

tator, so that we can look for important indicators for the clinicians. We restricted

the length of the reason in 5 words. For example, if a sample is queried and the

annotator labels the sample as getting up and sitting, he can also state the reason for

labeling the data such as muscle cramp, stress or anxiety, nightmare etc., which are

microscopic events for sleep disruption. We applied a nested classification by con-

sidering these microscopic events as class labels. After classifying using our defined

general class labels, we partitioned each class label data and applied our classifica-

tion algorithm in separate partitions again by considering the provided attributes

as labels. For example, let us assume an user states reason ‘A’ as the cause of sleep

disruption or any kinds of changes in the pattern. Our framework then partitions

the data and the number of partition is equal to the number of class labels (in our

model it is 5), as a result in each partition the data points are of same class. Sleep

Well framework then performs a classification on separate partitions with class label
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‘A’. This nested classification process ascertain the microscopic sleep events. The

precision, recall and F1 score of recorded attributes (muscle cramp, heatburn, stom-

ach ache, stress, anxiety, and nightmare) for parent class “getting up and sitting“ is

presented in Fig. 3.17.

3.10 Conclusions

In this chapter, we described the design, implementation and evaluation of

Sleep Well, a sleep monitoring framework which helps classify the microscopic sleep

states using wearable devices. We postulated a gradient descent-based approach

which incorporates with importance weight aware updates in the microscopic sleep

state detection process. We also consolidated our framework by blending change

point detection and active learning in the inference pipeline. Our classification

achieved 78% accuracy with the aforementioned experimental setup. The empiri-

cal results demonstrate the effectiveness of our framework in determining different

sleep states. The result increased by 7% when active learning was employed. Our

approach helps accelerate the faster convergence to optimal sleep states detection

accuracy using minimal user feedback in presence of active learning. Besides that

with the help of change point detection, we were able to validate and interpret the

transitions between these sleep states. In future, we plan to investigate the combi-

nation of change point detection and classification to further improve the accuracy.

Also by conforming the attributes from user provided feedback into our architecture

will help provide meaningful insights for better understanding of sleeping behavior.
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Chapter 4: Active Activity Recognition

4.1 Active Learning Enabled Activity Recognition

Due to a large variety in number of Activities of Daily Living (ADLs), ac-

knowledging them in a supervised way is a non-trivial research problem. Most of

the previous researches have referenced a subset of ADLs and to initialize their

model, they acquire a vast amount of informative labeled training data. On the

other hand to collect ground truth and differentiate ADLs, human intervention is

indispensable. As a result it takes an immense effort and raises privacy concerns to

collect a reasonable amount of labeled data. In the previous section we validated

that active learning can help to acquire labeled information. In this section, we

propose to use active learning to alleviate the labeling effort and ground truth data

collection in a more generalized settings. We investigate and analyze different ac-

tive learning strategies to scale activity recognition and propose a dynamic k-means

clustering based active learning approach. Experimental results on real data traces

from a retirement community help validate the early promise of our approach.
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4.2 Contributions

Most of the proposed active learning model focused on finding the most in-

formative point using uncertainty measurement or maximizing error reduction. For

some classifiers a basic intuition is followed - any data instance closest to the decision

boundary is considered important and thus queried. Some approaches are strictly for

SVM classifiers where the intention is to identify the instances from feature space

which will maximize the hyperplane margin. These approaches can yield good re-

sults and improve the overall performance, however they tend to ignore the prior

distribution of the feature space. Prior distribution can be useful for active learning

and ignoring them can create sampling bias in the overall system. In this work we

propose a cluster based active learning model for activity recognition. Combining

clustering with active learning has been proposed in [93] [102] [170]. But postulat-

ing them for practical human-in-the-loop applications are still in its infancy. The

effectiveness of active learning is significantly dependent on the quality of the la-

bels acquired from prompting queries. When multiple annotators are involved, the

probability of introducing noisy inputs increases. On the other hand some of the

annotators might be reluctant to provide labels to the queries. In these cases the

throughput of active learning is largely hampered. It is necessary to model an active

learning algorithm which can handle noisy and reluctant annotators.

In our proposed model, we first create hard clusters without explicitly differ-

entiating the number of clusters, rather focusing the minimum number of clusters

in association with the existing number of labels in the label space. We posit the
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most informative instances in a cluster and, subsequently acquire label for them

using our novel objective function and finally reinstate the cluster label through

empirical validation. We also model an annotator selection model to capitalize the

efficient annotators so that the classifier model remains stable. In summary our pro-

posed active learning enabled activity recognition model contains following salient

contributions:

• We propose a dynamic k-means clustering algorithm for creating clusters of

unlabeled data.

• We propose an objective function to find the most informative data instance

in the cluster.

• We propose an annotator selection model when multiple labelers with varying

expertise are present.

• We propose to include an unsure option in our model to provide freedom to

annotators in case of complex data instances.

• We model our active learning algorithm when no ground truth information is

available.

• We validate our model using real life data traces and compare our model with

other viable active learning approaches such as disagreement based approach.

• We present a data representation technique for crowdsourcing smart home data

and discuss its implication on active learning assisted activity recognition.
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4.3 Overall Design & Challenges

Our proposed model is comprised of two significant steps. First formulate

clusters for the unlabeled data instance pool (U) using K-Means clustering. The

fundamental motivation behind using clustering over other active learning strate-

gies is computational complexity. Though uncertainty sampling based strategies are

computationally inexpensive, they tend to be biased and become over confident.

Other popular disagreement based strategies like Query By Committee (QBC) uses

the hypothesis space to form the committee, and maintaining a hypothesis space de-

mands a lot of computation. For a practical and real life system, we need an efficient

strategy with low computational complexity. Clustering based strategies reduces the

overall complexity of the active learning algorithm. Dasgupta et al. [102] used hi-

erarchical clustering which becomes computationally expensive for large data sets.

K-Means clustering is a widely used partition clustering method and if employed

with proper heuristic, K-means can achieve linear time complexity. The clustering

process follows a simple and easy way to classify a given data set through a certain

number of clusters (let us assume k clusters) fixed beforehand. The idea is to iden-

tify the center of the clusters - centroids, and then associate the data instances to

the closest centroid and formulate clusters. However the computational complexity

becomes NP Hard. One other challenge for applying K-Means clustering is that we

have to postulate the number of clusters explicitly. For building an adaptive and

spontaneous activity recognition model to discover unseen activities, it is not prac-

tical to posit the number of clusters beforehand. We iteratively run the clustering
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until we find a stable set of clusters with minimum clustering error. We decrease

and control the computational complexity of K-Means clustering by using Elkan’s

heuristic [171]. We apply a pool based sampling strategy for constructing instance

pool (U) as it has been used in practice [172] [173] [174]. We delve into the practical

application of active learning and particularity for smart home activity recognition

where a multitude of ambient and wearable sensor data streams are abundant. Thus

we design a sampling approach based on a pool of unlabeled data instances and then

pass it to our active learner.
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Figure 4.1: Overall framework for active learning inspired activity recognition.

After compiling the clusters out of unlabeled data instances pool, we find out

the most informative data instances and query them accordingly. We also incorpo-

rate the clusters with unseen activities in this underlying process. In order to find
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the most informative data instances, we formulate an objective function which is

constructed using entropy measurement and a similarity coefficient. The similarity

coefficient for any data instance is calculated by the distance measurement between

the points in its cluster and other surrounding cluster centers. Fig. 1 depicts this

entire active learning enabled activity recognition model.

4.4 Background

Given n points {x1, x2....., xn} ∈ Rd the goal of K-means is to find K cluster

centers {c1, c2...., cm} ∈ Rd and assignment {q1, . . . , qn} of the points to the centers.

K-Means clustering tries to find the position of the cluster centers and minimize the

distance of the data instances in Eqn 4.1. K-means is obtained for the case p=2 ( l2

norm), because in this case the optimal centers are the means of the input vectors

assigned to them.

E(c1, . . . , ck, q1, . . . , qn) =
n∑

i=1

‖xi − cqi‖ (4.1)

Minimizing the objective E is in general a difficult combinatorial problem, so lo-

cally optimal or approximated solutions are sought instead. E is also the average

reconstruction error, if the original points are approximated with the cluster cen-

ters. Thus K-means is used not only to group the input points into cluster, but

also to quantize their values. The basic K-means algorithm alternate between re-

estimating the centers and the assignments. Combined with a good initialization

strategy and potentially, by re-running the optimization from a number of random-

ized starting states, this algorithm helps reduce the complexity of handling expo-
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nential state-space of active learning and increase efficiency in practice. However,

despite its simplicity, simple K-means is often too slow. Thus we consider Elkan’s

algorithm [171], which uses the triangular inequality to cut down significantly the

cost of basic K-means.

4.5 Cluster Heuristics

Elkan’s algorithm [171] is different than Lloyd alternate optimization algorithm

(Lloyd’s algorithm) which calculates the triangular inequality to mitigate many dis-

tance calculations when assigning data instances to clusters. Although this heuristic

is much faster than Lloyd, but it needs storage proportional to the number of clus-

ters. which makes it difficult to operate in case of large number of clusters. The

base of this algorithm is that, if a centroid update does not move data instances

much, then most of the instance to center distance computations can be avoided

when the assignments are recomputed. To distinguish which distances need evalua-

tion, the algorithm bounds the distances by lower and upper bound using triangular

inequality after a center update. Elkan algorithms uses two key observations. First,

one has

‖xi − cqi‖ ≤ ‖c− cqi‖/2 ⇒ ‖xi − cqi‖ ≤ ‖xi − c‖ (4.2)

Thus if the distance between xi and its current center cqi is less than half the

distance of the center cqi to another center c, then c can be skipped when the new

assignment for xi is searched. Checking this requires keeping track of all the inter-

center distances, but centers are typically a small fraction of the training data, so
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overall this can be a significant saving. In particular, if this condition is satisfied

for all the centers c 6= cqi , the point xi can be skipped completely. Furthermore, the

condition can be tested also based on an upper bound U(x) of ‖xi− cqi‖. Second, if

a center c is updated to ĉ, then the new distance from x to ĉ is bounded from below

and above by

‖x− c‖ − ‖c− ĉ‖ ≤ ‖x− ĉ‖ ≤ ‖x− ĉ‖+ ‖c+ ĉ‖. (4.3)

This allows to maintain an upper bound on the distance of xi to its current center

cqi and a lower bound to any other center c.

U(x)← U(x) + ‖cqi − ĉqi‖ (4.4)

L(x, c)← L(x, c)− ‖c− ĉ‖. (4.5)

Traditional K-means clustering needs prior definition of number of clusters. But if

data instances of unseen classes are present in the data pool, they will be consid-

ered as outliers in the clustering process. Having outliers in the feature space can

significantly decrease the performance of the clustering algorithm if the number of

clusters are not properly defined. From these motivations we choose to apply an in-

cremental K-means clustering where at each iteration we increase K and record the

overall error for our clustering using the error function in Eqn. 4.6. The minimum

error depicts the best clustering for the data set and the corresponding number of

k cluster.

J =
k∑

j=1

n∑
i=1

‖x(j) − cj‖2 (4.6)
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4.6 Measuring Informativeness

After clustering the unlabeled data instances, our task is to figure out the most

informative data instance in different clusters. [102] proposed random sampling for

labeling the data. Instead of using random sampling we propose to use uncertainty

sampling to choose the most informative instance. One challenge is to differentiate

between outliers and most informative data instances as outliers will have much

higher uncertainty like the most informative instances. To represent whether a

data instance with high uncertainty is an outlier or not, we calculate the silhouette

coefficient [175], S
(xi)
c for each data instances. For each data instance xi, let a(i)

be the average dissimilarity of xi with all other data within the same cluster. a(i)

interprets how well a data instance xi is assigned to its own cluster. Where smaller

value of a(i) indicates better assignment of xi. The average dissimilarity of point

xi to a cluster c is defined as the average of the distance from xi to points in c.

Let b(i) be the lowest average dissimilarity of xi to any other cluster, of which xi is

not a member. The cluster with this lowest average dissimilarity is said to be the

“neighbouring cluster” of xi because it is the next best fit cluster for point xi. We

now define a silhouette:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4.7)

s(i) =



1− a(i)
b(i) , if a(i) < b(i)

0, if a(i) = b(i)

b(i)
a(i) − 1, if a(i) > b(i)

(4.8)
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From Eqn. 4.8 it is evident that −1 < s(i) < 1. For s(i) to be close to 1, we require

a(i) � b(i). As a(i) is a measure of how dissimilar xi is to its own cluster, a small

value means it is well matched. Furthermore, a large b(i) implies that xi is poorly

matched to its neighbouring cluster. Thus an s(i) close to 1 means that the instance

is appropriately clustered. If s(i) is close to negative one, then by the same logic

we note that xi would be more appropriate if it was clustered in its neighbouring

cluster. An s(i) near zero means that the instance is on the border of two natural

clusters. The informativeness is measured by the entropy of the instances. The

entropy of an instance is defined by the following equation:

eθ(x) = argmax
x

Hθ(y|x)

= argmax
x

(−
∑
y

Pθ(y|x) logPθ(y|x)) (4.9)

We combine this entropy measurement with the S
(xi)
c to filter out the most informa-

tive points. So the final objective function fc for finding the most informative point

becomes

fc(x) = argmax
x
{eθ(x) . S(xi)

c } (4.10)

By using Eqn. 4.10, the points which are properly clustered and has higher entropy

values are chosen. The points which has S
(xi)
c = 0 or negative values might also

be important. So instead of discarding those data instances, we randomly pick

instances and query them. An instance with S
(xi)
c closer to zero is close to the

boundary of two different clusters. If we have the same label as other data instances

in that cluster, we do not have to change the cluster, but if different label is received

71



we have to rearrange our cluster with respect to the received label. In Algorithm 4

we demonstrate the full active learner with K-means clustering.

4.7 Label Complexity

In order to identify the effectiveness of an active learning algorithm we have to

define Label Complexity. Label Complexity denotes the number of queries required

to train a approximately correct classifier while employing active learning. So we are

interested in finding the upper bound on the number of queries required. The label

complexity can be much smaller than the sample learning complexity of a passive

learning algorithm. Let Lc be the label complexity of an active learning algorithm

defined as P (err(ht) ≤ ε) ≥ 1 − δ, where ht is the output hypothesis after t-th

iteration and err is the error rate of ht. So label complexity Lc is the number of

labeled instances required to train a classifier with error rate less than ε.

During each iteration in our clustering algorithm k(k−1)/2 pairwise distances

between all centers are recomputed (Algorithm 4, line 4). Recomputing the centroids

using Elkan’s heuristic (Section 4.5) requires additional O(N) distance calculations.

To update the lower and upper bound K distances between current and new cen-

troids must be calculated which gives us O(N + K2) distance calculations at each

iteration. As the centroids calculation become close to convergence the distance

calculation becomes less common. For fixed K this is our general bound, but our

dynamic clustering algorithm iterate while adjusting the value of K. So for I itera-

tions the true general bound for our clustering algorithm will be O(N + K2)I . After
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Algorithm 4 Active Learner with K-Means Clustering

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1, mink = Minimum number

of clusters, θ = An error threshold.

2: Output: Clustered classification of U and most informative data instances in

each cluster.

3: for K = mink do

4: while Jcurrent > θ || K = mink do

5: for Each xi ∈ U do

6: if xi is a candidate centroid then

7: Compute L(xi, c)− ‖c− ĉ‖

8: Find the current assignment qi and bounds U(xi) by finding the

closest centers to each point

9: end if

10: end for

11: Estimate Center and Quantize the data instances in U to associate them

with a cluster c.

12: Compute the Error Jcurrent using Eqn. 4.6.

13: K = K + 1

14: end while

15: end for

16: for every xi ∈ U do

17: Calculate S
(xi)
c using eqn 4.8.

18: Calculate the objective function fc(x) using Eqn. 4.10.

19: Choose the instance with highest fc(x) and query for label.

20: end for
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calculating our objective function fc(x), the bound becomes {O(N)+O(N + K2)I}.

Then the true label complexity of our active learning algorithm depends on the num-

ber of cluster k as

O((
k

ε
) log

1

ε
+

1

ε
log (

1

δ
))

4.8 Selecting Annotator

We filtered out the most informative data instances in the previous step, but

it is quite impractical to presume in a real life environment that the annotators are

going to provide true and correct labels all the time. As the search for most infor-

mative data instances is important so is getting the true label for them, otherwise

unnecessary noise draws on our model. In order to build practical active learning

enabled activity recognition model, choosing the right annotator is crucial and it

becomes more challenging when the environment is cohabited by multiple inhabi-

tants. As all annotators are not expert in annotating a specific activity class, we

assign a sensitivity score to each annotator for each activity class. The sensitivity

is defined by the number of labels correctly labeled by an individual annotator.

µc
sen =

correctly labeled instances of class c

number of points queried of class c
(4.11)

Initially when an annotator has not labeled any examples from class ci, we assign

a sensitivity score of µci
sen = 0.5. Using the sensitivity score, we pinpoint the most

efficient annotator. To further strengthen the querying process, we choose the an-
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notator who has annotated a similar data instance with high sensitivity which is

annotator’s specificity δspec. For this we first monitor j neighboring data instances

who are closer to x. For our experimental purpose we chose j = 4.

δspeci =
1
k
×
∑j

i=1 µ
ak
xi

1 + 1
k
×
∑j

i=1 |x− xi|
(4.12)

In Eqn. 4.12, µak
xi

is our sensitivity of annotator, ak. |x − xi| is the euclidean

distance between the neighboring data instances. Our active learner is set to select

the annotator by the following Equation 4.13.

i = argmax(δspec1 , δspec2 . . . , δspeck) (4.13)

After selecting a subset of annotators we ranked accordingly based on their speci-

ficity score and query the data instance to top 4 annotators. If the confidence of the

data instance is less than 80% then we keep on querying until it reaches confidence

level of 80%. Here the confidence level for a data instance means the ratio of number

of labels and total number of query. If xi receives 6 labels of class cj out of total 10

queries, then the confidence score is 100× 6
10

= 60%.

4.8.1 Unsure Option

We want to grant freedom to the annotators while they provide labels to the

queries. It is possible that the provided scenario or setting may be confusing to the

annotator. So we will provide an unsure option to tackle such scenarios. This will

also help to relax the effort needed from the annotators for difficult data instances.

Instead of providing random labels, the unwilling annotators are able to provide
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unsure label which help noise reduction. Let us denote C as our target classifier

and after i iterations it transforms into Ci. As fc(x) is our objective function, the

queried instance picked in the (i+ 1)-th iteration is-

xi+1 = argmax
x∈Ui

fc(x|Li, Ci, S
(x)
ci

) (4.14)

Here Ui is the current set of unlabeled instances, Li is the current labeled data

and S
(x)
ci is the silhouette coefficient of x. We have defined how specific an annotator

(δspeci) is in section 4.8. Now we define another parameter to represent the overall

specificity of the all the existing annotators ω(x) which is a function of δspeci . Now

if we can rewrite the equation 4.14 as -

xi+1 = argmax
x∈Ui

fc(x|Li, Ci, S
(x)
ci

) . ω(x) (4.15)

We have to define ω(x) with respect to δspeci . For unsure option we assign

x = 0 and x = 1 otherwise. In Eqn 4.16 we define our ω(x) as a disjunction function

where x1 ∨ x2 = 0 if and only if x1 = 0 and x2 = 0 otherwise x1 ∨ x2 = 1. Also we

can see that 0 < ω(x) < 1.

ω(x) = ∨t∈T γ(δspeci(x)) (4.16)

The specificity model of the annotators may not be definite in the early stages

of learning, therefore the most informative instances are unlikely to be queried event

if annotators who can provide correct label exists. As our primary target for our
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dynamic K-means clustering is to minimize the error function J (Eqn 4.6), we rewrite

Eqn 4.14 and 4.15 as -

xi+1 = argmin
x∈Ui

(
k∑

j=1

n∑
i=1

‖x(j) − cj‖2) +M(1 − ω(x)) (4.17)

Here M is a large constant which confirm the instance x for which ω(x) < θ

would not be selected. θ is a threshold which we empirically define. We select our

suitable annotator using Eqn 4.13. After getting the label for the selected instance,

we re-organize our clusters and update the specificity of the annotator accordingly.

4.9 No Ground Truth

One of the major challenge in active learning is how to validate whether the

annotators are providing correct labels or not when no ground truth information

is available. This problem becomes more complicated as different annotators have

different expertise. Although it is possible to disregard this problem by only relying

on one annotator who will label his own activity data instances. The problem with

single annotator model is - if the user is reluctant to provide labels to the queries,

then active learning will be of no significant use. One of the other motivation for

dealing with no ground truth information is when new unseen classes are introduced.

New unseen classes have no prior data instances and their labels are nonexistent in

the label space. As the expertise of individuals have an influence on the provided

label, so it is necessary to devise a model to estimate the more probable label for

data instances with no ground truth information.
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4.9.1 Model Definition

Let us consider X to be our instance space with instances {x1, x2, ....., xN} and

Y to be our label space that have been provided by our annotators. The existing

labels in Y are observed labels whereas the true label space is Z. In ideal case

Y ≡ Z. Let us define random variables x ∈ X and z ∈ Z for input data instances

and true label respectively. Similarly we define random variables y(t) provided by

labeler t over label space Y where l = {1, 2, 3...., L}. There is a possibility that Y

is not fully observed as some y(l) will be missing because the annotator might not

provide any label for the query. The probabilistic graphical model for our random

variables are shown 4.2.

X ZY1 Y2 Y3 YL..........

Y

Figure 4.2: Graphical Model for input data instances X, Labels provided by L

annotators Y and the true label space Z of X data instances.

We have defined our necessary random variables, now we formulate the con-

ditional distribution as following

P (Y, Z|X) =
∏
i

p(zi|xi)
∏
l|l∈Li

(p(y
(l)
i |xi, zi)) (4.18)

In Eqn 4.18 Li denotes the set of annotators who provided a label for i-th

data instance. It is evident from the this equation that the label provided by the
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annotator is influenced by the true label z and the observed data instance x. In

order to calculate the conditional distribution we need to define p(y
(l)
i |xi, zi) and

p(zi|xi). We define a Gaussian model (Eqn 4.19) to calculate these parameters as

our input space X is a continuous domain in temporal and spatial domain. In our

Gaussian model σ and ω are variance and the prior probability of j-th distribution

respectively.

p(y
(l)
i |xi, zi) =

k∑
j=1

ωjN(y
(l)
i |zi, σl(xi)) (4.19)

We consider that p(y|x, z) 6= p(y|z) because the labels provided by the an-

notators not only depend on their expertise but also on the type of the presented

data. Annotators will be more comfortable to label data instances which are more

familiar to them. For example, some annotators are familiar with cooking activity

more than others. We capture this input dependent variability by taking the vari-

ance with respect to x and specific to each annotator l. Since y(l) is a multinomial

discrete random variable we take σl(xi) as a logistic function -

σ(xi) =
eβ

(c)
0 +x.β∑

c e
β
(c)
0 +x.β

(4.20)

It is possible to model our another parameter p(zi|xi) according to any dis-

tribution. For simplicity we model p(zi|xi) to be a multinomial logistic function as

well.
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4.9.2 Maximum Likelihood

We defined our model and now we need to estimate the logistic function .

We can calculate the parameters of σ(x) by maximizing the log-likelihood function.

As y(l) can take different discrete class labels, we model y(l) as a poisson random

variable. Then the likelihood function would be

p(y(l)|x;σ(x)) =
n∏

i=1

n!

(n− i)!i!
p(xi)

yi (1− p(xi))
n−yi (4.21)

The log likelihood then becomes as Eqn 4.22.

l[σ(x)] =
n∑

i=1

{log n!

(n− i)!i!
+ yi log p(xi) + (n− yi) log(1− p(xi))}

=
n∑

i=1

{log n!

(n− i)!i!
+ yi(log

p(xi)

1− p(xi)
) + n log(1− p(xi))}

=
n∑

i=1

{log n!

(n− i)!i!
+ yiσ(xi)(1 + xi) + n log(1− p(xi))}

=
n∑

i=1

{log n!

(n− i)!i!
+ yiσ(xi)(1 + xi) − log(1 + eσ(xi)(1+xi))} (4.22)

To maximize Eqn 4.22 we employ Expectation maximization algorithm.

4.9.2.0.1 E Step

In this step, we need to calculate the expectation of our log likelihood func-

tion. Conditional expectation of our log likelihood logp(y(l), z|x;σ(x)) is defined as
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following where β̄0 and β̄ are parameters for previous step.

E[log p(y(l), z|x;σx)|σ̄(x)]

=
∑
y

p(y(l)|z, σ̄(x)) log p(y(l), z|x;σ(x))

=
∑
y

pσ̄(x)(y
(l), z|x) log pσ(x)(y

(l), z|x) (4.23)

4.9.2.0.2 M Step

In this step, we need to maximize Eqn 4.23 which is difficult to optimize

because it contains the logarithm function of the sum. To solve this we take a partial

derivative of 4.23 with respect to our parameter δl(x) and calculate the gradients

∂x
∂δl(x)

. By taking the partial derivative equal to zero we solve the equation.

4.9.3 Estimating Ground Truth

We can estimate the ground truth even when new unseen class is introduced

by the following probability distribution

p(z|yl) =
∫ ∏

l

p(yl|z, x)p(z|x)dp(x) (4.24)

As when new unseen class label is introduced in the label space we have no

knowledge about the new sample’s prior distribution p(x). In such cases we can

gain knowledge from previously seen data instances. We take a sample X from our

existing input sample space X = {x1, x2....xs} and then we calculate the posterior

probability by
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p(z|yl) ≈ 1

S

S∑
s=1

p(z|xs)
∏
t

p(y(l)|z, xs)

4.10 Experimental Results

In this section we validate our active learning algorithm for activity recognition

and compare the outcome with other popular strategies. We set up a smart home

environment with PIR motion sensors and object sensors on different household

appliances. The PIR motion sensors were mounted on three different locations of a

single bedroom apartment (bedroom, living room and kitchen). The object sensors

were mounted on the broom, trashcan, laundry basket, dustpan and phone. The

object sensors have built in compass and accelerometer which provided the usage

and orientation of the objects. Two door sensors were placed on the apartment

door and on the closet door. In our experiment we considered only single inhabitant

environments. We had the following activities in our dataset - 1) brooming, 2)

cooking, 3) doing laundry (washing), 4) taking out the trash (cleaning), 5) eating,

6) sleeping and 7) using land line telephone (talking).

We trained our passive learner with the first four activities and left the last

three activities for our active learner to discover. We have used Decision Tree

classifier (J48) as our passive learner. We extracted features from the ambient

motion sensors which include the start and end of the sensor events, time span of

the event within a k-event window, and count of events in the window. We collected

data from 10 participants who reside in a retirement community. Each participant

82



provided around 24 hours of continuous sensor data. Average age of the participants

was 85. We evaluated our cluster performance using normalized mutual information

(NMI) using ground truth. Both the activity class label and clustering assignment

are considered as random variables in NMI. It measures the mutual information

between the two data instances, and normalizes it to a zero-to-one range. Let C be

the data instance representing the cluster assignments of instances, and K be the

random variable representing the class labels of the instances, the NMI is computed

by the following equation:

NMI =
2I(C;K)

H(C) +H(K)
(4.25)

Here I(X;Y ) = H(X)−H(X|Y ) is the mutual information between random vari-

ables X and Y. For our experimental validation, we focus on the following specificities

for our experiments: 1) Correctly classified instances by our active learner 2) In-

stance selection time 3) Mean Absolute Error 4) Number of average queries per data

instance for gaining confidence level of 80% 5) Annotator selection time 6) Impact

for introducing new unseen activities.

Figure 4.3: Smarthome System Setup.
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4.10.1 Smarthome System

We have used CloudEngines PogoPlug [176] as our central component which

interfaces with the motion sensors and object sensor tags. We built a custom linux

kernel for the PogoPlug and developed tools to communicate with the sensor tags.

The PogoPlug works as a bridge between the Sensor Tags and a standard 802.11N

network. Tests have indicated the device is stable in this capacity, and recovers from

power loss and outages on the external networks without any issue. The PogoPlug

is also successfully doing NAT translation in order to bridge additional Ethernet

devices on to the network. We are streaming and storing the data in real time in

our lab server. We have used Foscam IP camera for collecting ground truth. Due to

bandwidth limitation it was difficult to stream the video remotely, so we recorded the

video in SD card. Since video violates the privacy issue, each participant provided

only two hours of video data. In these two hours the participants were asked to

follow a script to perform several tasks related to our activity list. Rest of the

22 hours were not recorded which is our test data. Figure 4.3 demonstrates the

components of our system setup.

4.10.2 Supervised Model

In figure 4.4 the precision, recall and F1 score for each activity is shown for our

decision tree classifier. It is evident that the cooking activity has lower accuracy than

other activities. As in our experiments, we have placed object sensors on various

appliances and equipments, so it was possible to pin point an activity by tracking
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Figure 4.5: Comparison of performance

using traditional k-means and dynamic k-

means.

the usage of the object sensors. For example if we detected any movement for the

laundry basket, we labeled the data instance of the motion sensor as cleaning. As

for cooking activity there was no object sensor, so it was difficult to track down the

activity properly. In some cases the objects were just moved or handled, not used

for the corresponding activities which imposed noise in the dataset. For this reason

we filtered the dataset by taking an assumption for the duration of each activity. If

the duration of the performed activity was less than the threshold then we discard

the data instance for training. The thresholds were defined in an empirical manner.

Also some of the participants had pets in their apartment which introduced more

noises in the dataset as the pets move around the house abruptly.
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Algorithm 5 Query By Committee

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1

2: L = A pool of unlabeled instances {(x)l}Ll=1

3: k = number of iterations

4: Repeat k times

5: Generate a Committee of Classifiers C∗

6: ∀xi ∈ U , compute disagreement xi
V E using 4.26 based on the current committee.

7: Select a subset S of instances from U that maximizes utility.

8: Query instances of S

9: Remove S from U

10: Update L by adding S

11: Return
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Figure 4.6: Correctly classified instances

for our active learner.
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Figure 4.7: Correctly classified instances

for maximum entropy sampling.

4.10.3 Active Learning Experiments

We have mentioned the criteria for our active learning experiments beforehand.

We applied the active learning algorithm in a 10-fold cross validation and pool
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Figure 4.8: Correctly classified instances

for least confidence sampling.
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Figure 4.9: Correctly classified instances

for Query By Committee.
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Figure 4.10: Mean absolute error for our

active learner.
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Figure 4.11: Mean absolute error for

maximum entropy sampling.

based sampling manner. We initially started with a small labeled data set (5%

of train data), and then made queries by using different active learning strategies.

The results are shown for 100 iterations. We compare our algorithm with other

popular query strategies - maximum entropy, least confidence and vote entropy

or Query by Committee (QBC). QBC is a very effective alternative approach to

uncertainty sampling which has been applied in many classification problems. QBC

manipulates the version space and at each iteration it maintains a committee - an
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Figure 4.12: Mean absolute error for

least confidence sampling.
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Figure 4.13: Mean absolute error for

Query By Committee (QBC).
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Figure 4.14: Instance selection time for

our active learner.
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Figure 4.15: Instance selection time for

maximum entropy sampling.

effective set of hypotheses based on current training set. The committee evaluates

the potential utility of the unlabeled data instance. This utility measure is also

called disagreement measure. The disagreement measure for QBC was defined by

the following equation where Pc(y|x) is the average probability that y is the correct

activity label to the committee. The steps of a generalized QBC is show in algorithm

5.

xV E = argmax−
∑
y

Pc(y|x) logPc(y|x) (4.26)
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Figure 4.16: Instance selection time for

least confidence sampling.
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Figure 4.17: Instance selection time for

Query By Committee (QBC).

First we cluster the unlabeled data set using our dynamic k-means clustering

algorithm. In figure 4.5 we show the intra and inter cluster distance for our dynamic

k-means clustering algorithm comparing to simple k-means algorithm. We discuss

and compare our active learning algorithm based on each analysis criterion in the

following:

4.10.4 Correctly Classified Instances

One of the most important performance measurement for an active learning

algorithm is how many data instances were correctly classified. In figure 4.6 correctly

classified instance for our algorithm over 100 iterations is plotted. Most of the

query strategies show similar results and almost 75% of the instances are correctly

classified. However we monitor a lot of changes for least confident sampling as least

confident sampling only considers the best prediction and eventually throws away

other important information.
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4.10.5 Instance Selection Time

Instance selection time depicts the speed of the active learning algorithm.

Average instance selection time for all of the strategies were close to 200 ms (figure

4.14, 4.15, 4.16, 4.17).

4.10.6 Mean Absolute Error

Mean absolute error expresses the difference between the predicted value and

the actual value. In figure 4.10, 4.11, 4.12 and 4.13 the trend of mean absolute error

at each iteration for the query strategies are plotted. For our active learner (figure

4.10), the algorithm converges to lower mean absolute error than other approaches.

Mean absolute error for maximum entropy sampling was much higher. After in-

vestigating we found that maximum entropy sampling tends to be biased and over

generalized. As a result first the mean absolute error started to decrease and in the

end it started to increase.
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Figure 4.18: Accuracy of unseen activi-

ties.
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Table 4.1: Average number of queries for each activity for gaining confidence level

80%

Activity Avg. Number of Queries

Brooming 2

Cooking 9

Washing 3

Cleaning 5

Eating 12

Sleeping 16

Talking 3

4.10.7 Average Number of Queries

In our experiments we did not train our supervised model with the acquired

label using active learning till the label confidence is 80%. Average number of

queries for 100 data instances was ≈ 7. Average number of queries for each activity

is shown in table 4.1. From the table it is visible that for Cooking, Eating and

Sleeping activity the average number of queries were higher. As for these activities

there was no object sensors involved, it was difficult for the annotators to take the

decision. For sleeping activity, it was the highest as the movements detected while

sleeping are mislabeled frequently by the annotators. Also mostly the eating activity

was performed in the living room area, where the participants were frequently sitting

and doing their chores. This created confusion among the annotators. Cooking was
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another difficult high level activity to properly label as just being in the kitchen does

not indicate that the participant was cooking. In figure 4.19 we show the change in

NMI for our clustering algorithm for different active learning strategies. NMI close

to 1 means better correlation. Our active learner converges to 1 faster than other

query strategies.

4.10.8 Introducing Unseen Activities

We left out three activities (eating, sleeping and talking) while training our

supervised learning model S. Using active learning, we acquired labels of these

unseen activities. After querying them, we trained our supervised model with the

received new activity labels. In figure 4.18 we show the accuracy of S for these

new activities. Talking achieved the highest accuracy because of the object sensor

attached to the phone. Whenever a movement of the phone is involved, the super-

vised learner predicts the motion sensor event as talking. For other two activities

it was difficult as living room and bedroom involved so many movements. The

accuracy of recognizing sleeping is better than eating because the participants per-

formed more variety of activities in the living room than in the bedroom. And also

sleeping during night was properly classified by our supervised learner than sleeping

at daylight. After including the collected activity labels using our active learner,

we retrained our supervised learning model. Initially we labeled our training data

using a labeled data set L consisting of 21, 014 instances. On the other hand we

had an unlabeled data set U consisting of 126, 874 samples. Initially the average
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accuracy of S was ≈ 81. If we consider only the four activities, after applying our

active learning strategy the 87% accuracy was observed. If new unseen activities

are introduced, 77% accuracy is achieved.The actual accuracy decreased, because

initially the recognition capability of new unseen activities are low. The mentioned

accuracy is reported after 100 iterations, so we increased our iteration to 300 and

we achieved 79.5% accuracy. So if we query more data instances using our active

learner we can achieve better accuracy.
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compared to random sampling in multi la-

beler setting.

4.10.9 Annotator Selection

In this experiment, we validate our annotator selection model and the impact of

unsure options. Each annotator is modeled separately with respect to their expertise

which means annotators are associated with class labels for which they are expert in
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labeling. An annotator will provide correct labels with probability pt and give unsure

feedback when the data instance is confusing to them. We compare our model with

other annotator selection models ALC [177], IEThresh [28] and PMActive [178]. As

we have already mentioned, introducing wrong labels will enable noise in the model.

The average number of wrong labels acquired by these three models compared to

our algorithm is shown in Fig 4.20. It is evident that by providing unsure option we

were able to mitigate the number of incorrect label introduced by our active learning

algorithm (Active Learner). In Figure 4.21 we show the increase in accuracy while

employing our annotator selection model with our active learning algorithm and

random sampling.

4.11 Data Representation for Crowdsourcing and Active Learning

Sensor data representation in a user friendly way is a huge challenge in crowd-

sourcing domain. Even just applying active learning for querying the label from the

same user demands an effective and eloquent representation. One straight forward

approach for querying the user can be to ask what the user was doing at a cer-

tain timestamp. But all human do not have the ability to precisely recall an event

at a certain timestamp. Previous works have proposed to annotate image or video

recordings by the crowd [179] [17]. Although using image or video based surveillance

provides proper idea about the performed activities to the crowd but it violates the

privacy of the users.

It is certainly difficult to disjointly represent all the human activities, as there
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are activities which are similar in functional sense. For example, watching television

and studying both involves sitting. It is possible that they are performed at different

locations in the apartment, so we can pair activities with different indoor locations.

[119] used a visual representation of the motion sensor firing sequence and provided

the apartment layout to assist the crowd. But motion sensor activation not always

provides a straight forward indication of an activity. For example, a person might

be in the bathroom just to look at the mirror and the motion sensor will still be

activated. In a multi-inhabitant environment this becomes more complex. Object

sensors can help us greatly in these cases. With proper usage data of an object

paired with motion sensor and location information can ideally pinpoint the activity.

Human activities are performed in a pattern. While being at home, people are used

to eat, cook, vacuum or perform other household activities in a certain pattern.

For example, a person may eat his lunch at a certain time in most of the days.

Knowing these activity patterns can also help a crowd to understand the functional

and behavioral patterns of the user. So while crowdsourcing, it is important to

provide a semantic representation of the user activity pattern so that we can collect

noise free labels.

4.12 Discussion and Future Directions

The theoretical foundation of active learning is very rich and resourceful. Re-

searchers have proposed many effective approaches for active learning. But the

problem is these solutions are theoretically sound but computationally expensive.
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Simpler models like entropy based uncertainty calculation are effective but they im-

poses bias and runs the risk of becoming over confident on incorrect predictions. It

is difficult to make computationally expensive approaches applicable. Also not all

the approaches perform the same in a specific domain. Choosing the right approach

with respect to the scope of the domain is very important for active learning to be

effective. In smart home settings, multiple heterogeneous sensors impose various

types of uncertainties like biased readings, failed sensors etc. In multi inhabitant

environment the situation is much more complex. On the other hand in multi in-

habitant settings, we can take advantage of the inhabitants by asking them to label

each others data. But still it is extremely difficult to differentiate overlapped sensor

reading and individual’s activity.

Due to the dynamic nature and a huge variety of human activities it is difficult

to collect the ground truth information for an activity learning model. We can record

and annotate data sets for training the system from scratch for individual house and

individual person but this will be extremely costly. So leveraging active learning can

boost the ground truth collection process. As the basic movements and locations

of two or more activities can be same, the probability that they will belong to a

same cluster is higher. But automatic discovery of similar activities is not handled

in our proposed solution. In such cases we have to consider overlapped clusters to

properly separate two distinct activity classes. [18] demonstrated an approach for

overlapped activities, but the informativeness measurement has not been discussed

in their work.

One of the major challenges for making active learning and crowdsourcing
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practical is the expertise of the crowd. The crowd will not always provide the labels

correctly. Also the crowd may not be able to provide labels for some instances at

all. In some cases getting label for a data instance from only one annotator will not

be enough. Relabeling the data instances by other crowd will further validate the

consistency of the acquired label. For handling noisy input from crowd this clear

approach may be helpful, but still there is a chance that noise will be introduced.

As an example, we have to assume that the crowd is not expert and so it will be

challenging for them to differentiate between similar activities. Also if an unseen

activity which is very much alike with an existing one is queried, the crowd may

not provide new class label and annotate it with existing label. This impose both

bias and noise in the classification model. So the crowdsourcing model should be

able persist an agnostic environment. Researchers have proposed to incorporate

reliability of the annotators as an important factor while querying the data. But

opportunistically selecting reliable user compulsively is not a good approach as it

may annoy the annotator. For this reason, cost-sensitive crowdsourcing has been

gaining attention recently.
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Chapter 5: Scaling Activity Recognition

5.1 Activity recognition & Deep Learning

Deep learning architectures have been applied increasingly in multi-modal

problems which has empowered a large number of application domains needing much

less human supervision in the process. As unlabeled data are abundant in most of

the application domains, deep architectures are getting increasingly popular to ex-

tract meaningful information out of these large volume of data. One of the major

caveat of these architectures is that the training phase demands both computational

time and system resources much higher than shallow learning algorithms and it is

posing a difficult challenge for the researchers to implement the architectures in low-

power resource constrained devices. In this chapter, we propose a deep and active

learning enabled activity recognition model, DeActive, which is optimized according

to our problem domain and reduce the resource requirements. We incorporate ac-

tive learning in the process to minimize the human supervision along with the effort

needed for compiling ground truth. The DeActive model has been validated using

real data traces from a retirement community center (IRB #HP-00064387) and 4

public datasets. Our experimental results show that our model can contribute better

accuracy while ensuring less amount of resource usages in reduced time compared
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to other traditional deep learning approaches in activity recognition.

5.2 Motivation

Many algorithmic techniques in activity recognition (AR) literature such as

sparse coding [180], transfer learning [181], active learning [103], deep learning [182]

have been investigated recently for versatile AR application development and de-

ployment. While each approach has its own advantages and disadvantages in terms

of scalability, adaptability, and transferability of activity learning, recognition and

discovery models, in this work, we particularly focus on leveraging the simplicity

of those techniques and exploiting that to fulfill the emergent requirements of large

scale activity recognition in heterogeneous settings. Fundamentally we investigate

how the underlying inference pipeline of the activity recognition process in deep

architecture can be simplified. Such a simplified architecture can then be exploited

in various constrained (resource deprived smart devices) and unconstrained envi-

ronments (heterogeneous smart environments and multiple users population) where

the requirements of the applications may vary significantly. This help ramify the

performance of deep activity models, and reduce resource footprints in terms of

memory, CPU usage and computational time without compromising the inherent

power of the core methodologies. Incorporating resource efficiency and cost-effective

intelligent labeling techniques with the deep activity models help scale the activity

recognition models in diverse environments and showcase the effectiveness of deep

activity learning methodology when augmented with other simplistic popular ma-
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chine learning approaches.

One of the underpinning challenges in scaling this activity recognition models

outside any constrained environments is efficient feature representation from unla-

beled noisy source of data and accumulating significant amount of labeled training

data. Deep learning based unsupervised machine learning techniques have been

investigated to handle the scarcity of activity labels. While deep learning based

techniques have shown significant improvements for large scale activity recognition

problems [64], fitting the activity models in presence of unlabeled activity sam-

ples and mitigating the biasness of overfitting distributions are still challenging re-

search problems [183]. The unsupervised training and fine tuning phase of deep

nets also warrant substantial computational resources and labeled data sources, re-

spectively [184]. While shallow and supervised learning [74] suffer from representing

well the large scale activity learning model, the hierarchical deep learning [72] model

helps capture the finer details of the activity model. It incrementally helps miti-

gate the need for handcrafted features in layer by layer but at the cost of more

resource-hungry computational operations involving calculations of weight and bi-

asness parameters of the model [185]. The main objective of this work is not to

depreciate the intrinsic advantage of deep nets or appreciate the inherent advan-

tages of clustering with neural networks, but to showcase the viability of various

combination of these approaches for simplified and effective activity recognition at

scale.
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Trading the balance between this system-level resource need and application-

level performance improvement is a non-trivial research problem, and have been

investigated in recent activity recognition application domain [72]. Scaling the deep

learning model for small footprint devices such as smartphone and smart wrist-

watches have also been investigated by exploiting different inference phases of deep

model [186]. While the recent approaches investigated the runtime layer compres-

sion and deep architecture decomposition by crunching deep learning computational

complexity, we propose to investigate simple K-means clustering and active learning

approach to curtail the complexity of feature extraction and the burden of ground

truth data collection, respectively. While auto encoder is the approach to learn the

features in the deep activity models, we investigate a simple K-means clustering

strategy to learn and represent the features of the hidden nodes. This help to per-

colate the simplicity behind the feature extraction, representation, and learning in a

deep activity model and its performance in terms of system resource, computational

time and performance improvement.

Existing deep learning models assume that activity labels are available and

if not human annotator can be passively employed. In particular, stable supply of

structured and labeled data is substantial for an effective deep learning algorithm.

Despite the existence of plethora of data in pervasive computing, these collections

do not provide much information due to poorly or partially labeled. In order to

improve the model incrementally, Active Learning (AL) has been employed to select

the most informative data instances and subsequently acquire labels of these data
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instances. This reduces the burden of labeling data manually and accelerates the

training time. If infused together with deep learning, AL framework can help to

improve the efficiency of deep model. However AL frameworks only filter out most

informative instances from a pool of instances which are relatively small in number.

As a result, most of the instances with low uncertainty gets ignored. A handful of

labeled instances may not have a significant impact in the training of deep learning.

Although most informative instances can play a vital role in learning an important

pattern, but instances with low uncertainty can also help to fine tune the parameters

of a deep model. In this chapter, we propose to embed active learning at the training

phase of deep learning to query the most informative and cost-effective unlabeled

sample points to collect the labels and also utilize the low uncertain instances. At

first we demonstrate a scalable deep model, DeActive by exploiting the encoding

capability of k-means clustering. Then we demonstrate a how active learning can

help in training the model using a joint loss function.

5.3 DeActive

Our DeActive model is designed to work with sensor entities like ambient PIR

sensor, accelerometer etc. which are used for activity recognition. As we handle

the heterogeneous sensor entities, we need to pre-process the data accordingly due

to the variation in data. For example, ambient PIR sensor provides binary values

(1=Motion and 0 = No Motion). It is difficult to model an activity recognition

classifier using only binary sensor values, so it is necessary to extract some more
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Figure 5.1: Overall framework for DeActive activity recognition model. Deep Learn-

ing phase is composed of k-means encoders. The output of k-means in the final layer

is provided to the Active Learning phase which selects the most informative instances

from the unlabeled data pool.

information using the data. On the other hand, accelerometer sensors provide human

movement acceleration which has been an important indicator for activity pattern

recognition in recent years. As acceleration does not encounter binary values, the

processing of accelerometer data is different compared to PIR sensors. As a result

our pre-processing step handles different sensor data sources and extracts features.

DeActive model encompasses two important components - Deep Architecture and

Active Learning.

Real-time human activity and context monitoring using mobile devices or

wearables has become an essential constraint. Since deep learning algorithms have
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high complexity in terms of computation and resource availability [187], researches

are currently focusing on accelerating deep learning on mobile devices [64] [188].

Most of the smart home system controllers are embedded systems and have very

limited resources. For example the specs of Samsung SmartThings hub V2 is: 1GHz

ARM Cortex-A9 CPU, 512MB DDR3 RAM, and 4GB Flash memory. On the other

hand these devices do not have any GPUs which can assist executing deep archi-

tectures. The authors of [74] proposed a software accelerator DeepX for low power

mobile devices. DeepX is designed to optimize the execution by decomposing the

deep architecture and innovative use of resources. In DeActive, we try to optimize

the parameters of fully connected deep learning model by using k-means as our

encoder. The authors of [185] have shown that if properly initialized according to

the problem domain, k-means can accelerate the encoding process. We just need to

tune the parameter k in the hidden layers, as a result of which the calculation of

millions of parameters as in stacked RBM autoencoders is minimized.

Active Learning strategies are used to collect ground truth information with

minimal human supervision. Simpler active learning strategies like margin sam-

pling, uncertainty sampling and least confidence are easier to implement, however

overtime these sampling strategies become biased and overconfident [189]. Other

popular query strategies like Query by Committee (QBC) and disagreement based

approaches have higher computational complexity as they have to maintain a set

candidate hypothesis space which can get intractable overtime. It is possible to ini-

tialize a set of hypothesis space with smaller cardinality, however the probability of

ignoring the true hypothesis always remains. Cluster based active learning methods
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may provide a significant advantage over simpler ones in terms of effectiveness [190].

By exploiting the input distribution, we can cluster the most informative instances

after each iteration and query the ideal instances of those clusters like the centroids.

However cluster based approaches have limitations like querying the outlier cluster.

In DeActive, we employ a density-weighted heuristic to calculate the most infor-

mative data instances. The idea is to query the data instances which lie in the

dense region of the cluster so that we can label the neighboring instances as well.

We consider the euclidean distance as our similarity measure among the instances

while calculating the density. In order to remove the outliers from being queried we

take advantage of our k-means clustering and use the silhouette coefficient in our

final objective function. This coefficient is calculated by the distance measurement

between the points in its cluster and other surrounding cluster centers. We also

exploit this coefficient to filter out the representative instances of each clusters. If

the coefficient value is higher than a predefined threshold, then we consider it and

assign its label to all other instances inside the cluster. In Figure 5.1 we demonstrate

our overall DeActive framework.

5.4 Deep Active Learner

In Figure 5.2 we show a high level architecture of our proposed model. Ex-

isting algorithms consider active learning separate from the principal deep learning

process. Traditionally,a deep model is trained first using the labeled data instances

and occasionally unlabeled instances are used to pre-train and initialize the model
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Figure 5.2: A high level architectural overview of Active deep learner.

parameters. The posterior probabilities of the class labels are then collected from

the final softmax layer. An active learning sampling strategy is then applied on

the posterior probabilities to measure the informativeness of the current instance.

Here informativeness is considered in terms of the effect on the base learning al-

gorithm if the label is known for an instance. The effect can be a shift in the

decision boundary which eventually helps in reducing overall error of the model.

Uncertainty based informativeness measurement methods are highly acclaimed in

such cases because of their simplicity and reduced complexity compared to other

sampling strategies like searching through hypothesis space or expected error reduc-

tion. In our model we measure the level of uncertainty by calculating the entropy

of the data instance. The more uncertain an instance is, higher its entropy will

be. This situation arises when posterior probabilities of the output class labels are

close. This indicates that the classifier was unable to predict the actual label of the

provided data instance. However, deciding the informativeness by just measuring
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the entropy of the incoming data instance makes the process myopic and becomes

overconfident as time progresses. Thus it is necessary to properly determine which

instances are truly informative. For example, an outlier instance which does not

belong to any class will have high entropy which makes it an informative instance

accordingly. Therefore, the learning model needs to be able to properly differentiate

which instances it should focus on. In order to accomplish this we fuse the deep

model with the active learning algorithm by applying a joint optimization of the

individual objective functions. We present a joint loss function which consists of

cross-entropy loss of the neural network and the entropy function. We train our

model with both labeled and unlabeled data instances. Labeled instances help in

optimizing the cross-entropy part and the unlabeled instances help in optimizing

the network parameters to learn the informative instances.

We collect data from the smartphones carried by the users. We exploit four

sensors entities - accelerometer, gyroscope, magnetometer and the location sensor.

The first three sensors provide three axis data and the location sensor provides 2D

data. The streaming data are cached and form a pool of instances. We calculate the

entropy of these instances and select the instances with maximum entropy. After

selecting the informative instances, we pose the queries to the annotators.

5.5 Unsupervised Feature Learning

In recent years a lot of research have been conducted in the area of deep

learning for representing data in lower dimension. One of the prominent approach for
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feature learning in deep architectures is to use layers of non-linear processing units

for extraction and embedding of features. These layers are referred as auto encoders.

These auto encoders are responsible for assembling lower dimensional representation

of the higher dimensional data. Given an input x ∈ Rn, an auto encoder attempts

to learn an encoding function f(x) ∈ Rk, k << n by iteratively minimizing the

error of reconstructing x through a decoding function g(f(x)) ∼= x ∈ Rn. The

authors of [185] showed that spherical k-means or spectral clustering can be used as

an alternative to encoders using sparse encoding or PCA. One major drawback for

using k-means is that the capability of discovering sparse directions in data largely

depends on the dataset size and dimension. If the data dimension is higher, we will

need a large volume of data to outperform other encoders. However, we consider

data is abundant and so our concern is to speed up the process. In this section we

discuss how we can exploit the k-means algorithm as our encoder.

5.5.1 K-Means Clustering

K-means clustering is a partitioning method where a set of observations are

partitioned into a specified number of clusters and similar observations reside in

the same cluster. Given a set of observations X = {x1, .., xn}, the observations

are assigned to k clusters by minimizing the error distance between cluster centers

C = {c1, c2, ...., ck} and X, while assigning W = {w1, ...., wk} class indexes:

E(C,W ) =
n∑

i=1

‖xi − cwi
‖ (5.1)
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In most of the cases this error distance Eqn. 5.1 is minimized using heuristics

like Loyd, Elkan etc [191]. But these heuristics are unable to adapt in case of

large amount of data. As in our case we plan to employ K-means as our hidden

encoder layer in deep architecture, so the algorithm needs to process a large volume

of data. To address this issue we propose to design our K-means using Stochastic

Gradient Descent. This version of K-means clustering has been proposed in the

literature for addressing large-scale learning tasks, due to its superior performance

and low resource footprint [192]. The objective function for k-means is Qkmeans =

mink
1
2
(x − wk). We calculate the gradient 5wk

Qkmeans = wk − xi by taking the

partial derivative of the Objective function. After this we update the learning rate

η and weight vector w according to Eqns. 5.2 and 5.3. The whole process iterates

until the cluster centers are no longer changing.

ηk = ηk + 1 (5.2)

wk = wk +
1

ηk
(x− wk) (5.3)

5.5.2 K-Means as Encoder

The K-means clustering algorithm takes two parameters, number of clusters k

and a set of observation vectors V . The algorithm returns cluster centers or centroids

C = {c1, c2, ...., ck} for each of the k clusters. While associating an observation vector

vi to a cluster kj, the primary goal is to minimize the distance between the vector

and cluster center. The result of k-means can be employed to quantize vectors.

The goal of vector quantization is to form encoding of vectors which reduces the
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expected distortion. Eventually k-means algorithm extracts a dictionary D ∈ Rn×k

of k vectors where each vector x(i) ∈ Rn, i = 1, ...,m is mapped to an encoded

vector which reduces the error in reconstruction. The definition of the dictionary is

as follows:

minimize
∑
i

‖D(i)
s − x(i)‖22 (5.4)

where ‖s(i)‖0 ≤ 1, ∀i and ‖D(j)‖2 = 1, ∀j

In Eqn. 5.4, s(i) ∈ Rn is a code vector associated with input data points

x(i). D(j) is the jth column of dictionary D. Our goal is to form the dictionary

D and extrapolate the code vectors of each data point x(i) in such a way that if

given s(i) and D, we can reconstruct the original x(i). Our objective is to reduce

the squared difference between x(i) and its analogous reconstruction D
(i)
s . This

is accomplished by two constraints described in Eqn. 5.4. The first constraint

‖s(i)‖0 ≤ 1 means that each code vector s(i) is forced to have at most one non-zero

entity. The second constraint ‖D(j)‖2 = 1 ensures that each column in the dictionary

is of unit length. The encoding and reconstruction mechanisms are similar to sparse

coding [193]. The difference between K-means and sparse coding is that the latter

allows more than one non-zero entity in each code vector s(i) which leads to more

precise representation. Although sparse coding can be interchangeable here but the

simplicity and scalability of K-means can be useful in scaling our activity recognition

system. Also we need to solve a convex optimization problem for every code vector

in sparse coding which requires an immense endeavor and conclusively makes it
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difficult to deploy at large scale. The optimal code vector s(i) used in K-means is:

s
(i)
j =


D(j)Tx(i), if j == argmaxl |D(l)Tx(i)|

0, otherwise

(5.5)

Using Eqn. 5.5 we can form the code vectors rapidly and can train very large

dictionaries immediately by alternative optimization of D and s. Also we only have

one parameter to tune for K-Means which is the number of centroids for each hidden

layer. At the final layer we apply k-means to find the desired k class indexes.

5.5.3 Initialization

One of the major problems of k-means algorithm is that it may produce empty

clusters depending on the initial centroids. Although for static cases this problem

is trivial and can be avoided by running the algorithm for couple of times. If empty

cluster problem is not handled, it may lead to significant performance reduction.

Therefore, it is important to properly initialize the centroids. Random initialization

of initial central vectors is one of the simplest approach, but this will not be effective

for sensor data. Whether the data are coming from ambient or wearable sensors,

the data tend to group too densely in some areas which results in a large number

of centroids starting in a dense region. Most of these centroids end up becoming

clusters with very few data instances. In order to avoid such scenario, we propose

to randomly initialize the centroids from a Normal distribution and then normalize

them to unit length in accordance with our constraint. Let X = {x1, ...., xi} be our
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data set and S = {s1, .., si} is our corresponding code vector matrix. We update

the centroids according to the following equation:

D = argmin
D
||DS −X||22 + ||D −Dold||22

= (SST + I)−1(XST +Dold) ≈ XST +Dold (5.6)

5.5.4 Feature Mapping

K-means returns a set of cluster centers or centroids with k cardinality, which

we use to design our feature mapping function. We consider two choices for our

feature mapping function: i) We add k binary features to each sample, where each

feature j has value one if and only if the jth centroid learned by k-means is the

closest to the sample under consideration (Eqn. 5.7). ii) A non linear mapping,

where we calculate the mean distance (µ) between the sample under consideration

and other centroids and then a feature has value if and only if the centroid learned

by k-means is within the radius of µ (Eqn. 5.8).

f 1
k (x) =


1 if k == argminj ||c(j)−x||22

0 Otherwise

(5.7)

f 2
k (x) = max{0, µ(z)− zk} (5.8)

5.5.5 Active Learning

Active Learning can help scaling our activity recognition model and reduce the

amount of effort needed for manual annotation. While deep learning assumes to have
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passive labeled data available in per-training phase or select them randomly from

a pool of labeled datasets, we propose to investigate how active learning could help

to improve the activity recognition performance at scale. Augmenting the training

phase of deep activity models with active learning is a crucial step to reduce both

computational time and system resource requirements. Therefore, our primary goal

here is to help find the most informative data instance which we will query from the

user. Here most informative instance is defined as an unlabeled instance which will

bring the greatest change in our current training model if label is provided. Let U

be the set of unlabeled data instances and L be the set of labeled data instances.

The active learning algorithm will select the most informative data instance out of k

samples from U in a pool based sampling setting. First we pre-train the deep learning

network in an unsupervised way using the unlabeled instance set U . Then we use

the labeled data set L to train the final output layer of k-means classifier, followed

by fine tuning the network. We consider an active learning strategy using the data

density by explicitly considering the structure of the data while selecting queries. If

we consider the data instances with high information content, the sampling strategy

will get biased and over confident as the time progress. So we also consider the data

instances which are representative of the underlying distribution. Here we scrutinize

the data instances which lie in the dense region of a cluster. The information density

heuristic is calculated by the following equation:

f(x) = argmax
x

Φ(x)×

(
1

card(U)

∑
x∈U

sim(x, x∗)

)β

(5.9)
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In our objective function f(x), card(U) depicts the cardinality of our unlabeled

data instance pool and Φ(x) represents the utility of x according to expected error

reduction of our k means classifier. The sim(x, x∗) measures the similarity between

x and all other data instances. Using equation 4.1 we get our loss function as

following:

L(x) = argmin
n∑

i=1

‖x− x∗‖ (5.10)

Our activity recognition model has no idea about what the error will be when it

receives a label from the query. Using the decision theoretic approach instead of

reducing error as a known value, we minimize it as an expected value by using the

model’s posterior distribution as an acceptable approximation. Using this intuition

our utility measure Φ(x) is defined as following:

Φ(x) = argmin
x

Ey|x[L(x)]

= argmin
x

∑
y

P (y|x)[
n∑

i=1

‖x− x∗‖] (5.11)

The term

(
1

card(U)

∑
x∈U

sim(x, x∗)

)β

in Equation 5.9 weights the informativeness of

x by its average similarity to all other instances. The parameter β controls the

relative importance of the density term. Our objective function can be less sensitive

to the outliers as it works in a dense region only. However if the dense region is

in between the boundary of two clusters it may choose unnecessary data instances

and outliers. To ensure that we introduce silhouette coefficient sic in our objective

function. Let d(i) be the average dissimilarity of xi with all other data within the

same vicinity. This portrays how well xi is assigned to it’s own cluster. d(i) is

defined as the average distance from xi to all other points in its own cluster. We
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define e(i) to be the lowest average dissimilarity of xi to any other cluster, of which

xi is not a member. The cluster with lowest e(i) is said to be the neighboring cluster

of the cluster where xi resides. Now we define our silhouette coefficient as following:

sic =
e(i)− d(i)

max{d(i), e(i)}
(5.12)

sic =



1− d(i)
e(i) , if d(i) < e(i)

0, if d(i) = e(i)

e(i)
d(i) − 1, if d(i) > e(i)

(5.13)

The value of sic ranges between -1 and 1. Smaller d(i) represents xi to be

analogous to its own cluster. On the other hand large e(i) illustrates xi to be poorly

matched to its neighboring cluster. As a result, sic close to 1 depicts appropriately

clustered instance and close to 0 means xi resides on the border of two clusters. So

by plugging in the coefficient into our objective function, we ensure that no outliers

or unnecessary data instances get queried. The final objective function for our active

learning method is

f(x) = argmax
x

[sic Φ(x)×

(
1

card(U)

∑
x∈U

sim(x, x∗)

)β

] (5.14)

The overall active learning strategy of our DeActive model is summarized in Algo-

rithm 6.

5.6 Deep Active Learner

Our model fuses active learning with deep model instead of just considering

the resultant posterior probabilities from the final layer of the neural network to
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measure the informativeness of an instance. Our deep model uses the standard

cross-entropy loss (Eqn. 5.15) to optimize the network parameters. In Eqn. 5.15 N

denotes the number of class, c is the target vector and y is the output vector which

is calculated using the softmax function yi =
epi∑N
k epk

. Here, pi =
∑

j=1 hjwij is the

weighted sums of the hidden layer activations.

Lc = −
1

nl

N∑
i=1

[ci log(yi)] (5.15)

We exploit the entropy of an instance as the measure of informativeness or

uncertainty. The entropy of an instance xi ∈ U from the unlabeled data instance

pool U is defined as,

H(yi) = −
N∑
j=1

yji log y
j
i (5.16)

Here yji denotes the probability of assigning instance xi to class j. We get this

assignment probability from the final layer of our neural network. In traditional

active learning settings, unlabeled data are not used in the training process. Queries

are posed based on the measurement of uncertainty only which is myopic and become

overconfident about wrong predictions overtime. In order to fuse deep model and

active learning together we employ a joint loss function [194] which is defined as

following

L =
1

nl

nl∑
i=1

L(ci, yi) +
λ

nu

n∑
i=nl+1

H(yi)

= − 1

nl

nl∑
i=1

N∑
i=1

[ci log(yi)]−
λ

nu

n∑
i=nl+1

N∑
j=1

yi log y
j
i (5.17)

In Eqn. 5.17, nl denotes the number of labeled data, nu is the number of

unlabeled instances and the parameter λ regulates the effect of entropy loss. We
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can derive the gradient of our loss function 5.17 by evaluating the partial derivative

of the cross-entropy loss and the entropy. The gradient of the cross-entropy loss is

∂Lc

∂hqr

= − ∂

∂hqr

(
1

nl

nl∑
i=1

N∑
i=1

[ci log(yi)]

)

=
∂

∂hqr

(
1

nl

nl∑
i=1

N∑
i=1

[ci log(
epi∑N
k epk

)]

)
=

1

nl

(pqr − yq) (5.18)

The partial derivative ∂H
∂hij

is the gradient of entropy H with respect to hidden

layer unit hij. The gradient of the entropy is

∂H

∂hqr

= − ∂

∂hqr

(
λ

nu

n∑
i=nl+1

N∑
j=1

xi log y
j
i

)

= − ∂

∂hqr

(
λ

nu

n∑
i=nl+1

N∑
j=1

epi∑N
k epk

log
ep

j
i∑N

k epk

)

= − λ

nu

∑∑
(pij log

∑
j′

ehij′ + pijpir − pij log
∑
j′

ehij′pir)

=
λ

nu

[
− pqrhqr − pqr + pqr

C∑
j=1

pqjhqj + pqr log
∑
j′

ehqj′

+ pqjpqr − log
∑
j′

ehqj′pqr

C∑
j=1

pqj

]

=
λ

nu

pqr

[ C∑
j=1

pqjhqj − hqr

]
(5.19)

The overall gradient then for our back-propagation update is the sum of the

cross-entropy gradient and the entropy gradient.

∂L

∂hqr

=
1

nl

(pqr − yq) +
λ

nu

pqr

C∑
j=1

pqjhqj − hqr (5.20)
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By assimilating the entropy in our loss function, the model becomes more

sensitive to highly informative instances. Also we can use all the unlabeled data

instances to train our model. Our deep active learning model is summarized in

Algorithm 7. We employ a convolutional neural network for our deep model. The

cross-entropy loss is computed using the labeled data instances and entropy loss

is computed using the unlabeled data instances. In each step, a batch is formed

using both labeled and unlabeled data instance. Our proposed joint optimization

ensures the network to reduce entropy along with the classifier loss. This enables

the classifier to filter out highly informative instances more efficiently and not focus

on outliers.

5.7 Preprocessing

In order to validate our DeActive model, data from two types of sensor modal-

ities are considered - ambient motion sensor and accelerometer sensor from smart-

phone or wearable. In this section we discuss the preprocessing of data from these

sensor modalities.

5.7.1 Ambient Sensor

Ambient motion or infrastructural sensors are embedded in smart environ-

ments. Largely these sensors are PIR motion sensors which detect motion in the

vicinity. It provides a value of 1 if a motion is detected otherwise 0. Other type

of sensor deployed is door sensors which also provides binary values (OPEN and
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Algorithm 6 DeActive Active Learning

1: Input: U = A pool of unlabeled instances {(x)u}Uu=1,

2: L = A pool of labeled instances {(x)l}Ll=1,

3: Edist = Error Distance from K-Means in the final Output layer of the deep

architecture

4: k = Number of Clusters or Activities

5: Output: Most informative data instances in each cluster.

6: D = {}

7: for every xi ∈ U do

8: Calculate the loss using Edist in eqn 5.10

9: Calculate base utility measure Φ(x) by taking the expected value of the loss

give label y.

10: Calculate the silhouette coefficient sic for instance xi

11: d Calculate the informativeness f(x) of xi using eqn 5.14

12: D = D + d

13: end for

14: q = instance with maximum f(x) and query for label l

15: if sqc > δ then

16: I = Neighbor instances of q

17: Assign label l to instances in I

18: end if

19: L = l + I
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Algorithm 7 Deep Active Learning

1: Input: U = a pool of unlabeled instances {(x)u}Uu=1, L = a pool of labeled

instances {(x)l}Ll=1, learning rate ε, batch size k, number of epoch t

2: Output: Trained Active Deep Model

3: initialize network parameters, weights w and bias b

4: for t = 1, 2, . . . T do

5: Create mini batches of size k from U and L

6: for each X l
i:i+k ∈ L and Xu

i:i+k ∈ U do

7: Calculate the gradient of cross-entropy loss Lc using X l
i:i+k

8: Calculate the gradient of entropy H

9: Gradient of loss ∂L
∂hqr
← ∂Lc

∂hqr
+ ∂H

∂hqr

10: Update network weights

11: end for

12: end for
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CLOSE) based on the motion of the door. Each sensor sequence is associated with

a timestamp which is discretized to an integer value, day of the week which is also

converted to an integer (0-6) where Monday being 0, ID of the previous activity per-

formed and finally the length of the current activity measured in number of sensor

events.

5.7.2 Accelermeter Sensor

Deep learning architectures are designed to process and deal noises of sequen-

tial sensor data by performing unsupervised feature learning. To extract meaningful

information from the data we apply a noise filter and extract statistical features from

the data. We apply a simple low pass filter to smooth out the arbitrary noises in

the accelerometer data and a high pass filter to remove the effect of gravity. The

accelerometer signals are then separated into frames using a fixed width sliding

window with 10% overlapping. We used a 3 seconds sliding window and set the

sampling frequency at 60Hz. We then extract statistical features which include:

• The mean, standard deviation and variance.

• Signal and differential vector magnitude.

• Signal entropy to differentiate between signals that correspond to different

activity patterns but similar energy signals.

• Pairwise correlation of between each pair of dimensions.

• Zero-crossing rate in each dimensions.
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• Weighted average of the frequency components to obtain a mean frequency.

• Magnitude and Energy of Fast Fourier Transform (FFT).

For our Deep Active Learner network, we collected data from 20 (14 male

and 6 female) participants over the course of a month in a real-world settings by

installing our developed application in the respective platform. Before the data

collection, the participants were given instructions to manually log their daily ac-

tivity routine as much as possible which can help us evaluate the performance of

the annotators. The set of activities our system monitors include {walking, eating,

running, working, sitting, standing}. The participants were instructed to keep the

phone in their front pant pocket if possible. The 3D sensors were sampled at 60Hz

and the location information were extracted every 10 mins. To train our classifier

and the annotator selection model, we collected training data from 10 out of these

20 participants in a controlled environment where the participants followed a script

and performed the 6 activities. Each subject participated in 5 sessions (30 mins per

session) and performed each activity multiple times. We recorded the sessions using

video camera in order to collect the ground truth information. In order to train our

annotator selection model, we created a dataset empirically from the experts. The

accelerometer data are divided into fixed sized frames using sliding window with

50% overlap with a window size of 64. The activity label for each frame are selected

by the majority class label in that frame.
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5.7.3 Data Normalization

After modeling the features for both sensor modalities, our next step is to

normalize the data so that the features will be rescaled as we want all features to

contribute equally. The normalized data will have the properties of standard normal

distribution with zero mean (µ = 0) and unit variance (δ = 1). As we are using

stochastic gradient descent for centroid calculation in our k-means encoder, certain

weights may update faster than others since the feature values play a role in the

weight updates with features being on different scales. Computation fo distance

measurement in k-means envisages each feature uniformly and so we have to ensure

that units of features do not alter the relative approximation of observations. Also

If a variance of a feature which is orders of magnitude larger than others, it might

influence the classification and make the class estimator unable to learn from other

features correctly as expected. So normalizing the features so that they are centered

around 0 with a standard deviation of 1 is important. The normalization is done

using: z = x−µ
δ
.

5.8 SenseBox Implementation

We collected real life data using our SenseBox [195] smart home system. The

SenseBox system is composed of an ARMv5-based hub that is placed in the resi-

dences of volunteers, along with several sensors (passive infrared and accelerometer)

that communicate back to the sensor hub via AXSEM AX5043 radios operating in

the 900 MHz ISM band. The receivers for the AXSEM radios are connected via

123



uBoot Bootloader

Primary Kernel (uImage)

Backup Kernel (uImage)

UBIFS Root Filesystem

Flash Layout

ARM v5 CPU 
(Marvell Kirkwood)

128 MB RAM

128 MB Flash

USB
Watchdog, 

Cryptographic 
Accelerator

Ethernet

802.11 Radio Legacy 
Devices

900 MHz
Receiver

802.11 Cameras(Ground Truth) Environmental Sensors (PIR, Accelerometer)

Event Bus

Figure 5.3: SenseBox architecture which has ARM v5 CPU. Multimodal sensors

dump the streaming data in the Event Bus and the system reads the new data from

there.

Ethernet which are inexpensive and provide adequate reliability for our application.

The ARMv5-based hub is built on top of a consumer NAS device, the Cloud En-

gines PogoPlug. Using the publicly available GPL sources, we rebuilt the kernel to

support kernel-level features we required in this application or felt we may require

in the future (e.g. Video4Linux, NAT, support for various wireless devices.) As

is typical in this scenario, subtle issues with downstream kernel code necessitated

fixing several issues before the kernel was able to be successfully built and stable.

As our deep learning algorithm uses torch [196] library, we have built torch for ARM

processor.
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5.9 Experimental Results

In this section we validate DeActive and compare the outcome with other

popular strategies. Apart from using our own data collected using SenseBox, we

also used four publicly available datasets to justify our framework. We provide

descriptions of the datasets in the following:

Opportunity Dataset : The OPPORTUNITY dataset [197] encompasses both

ambient motion and accelerometer sensor data from four participants. Each partic-

ipant performed a session five times and in each of these sessions they performed a

set of kitchen activities. Accelerometer sensors are placed on 12 different places of

the body. We considered a subset of these data set which included accelerometer

data from the upper limbs of the body. About 75% of the data instances do not

correspond to any class.

CASAS Dataset : The CASAS dataset [198] contains ambient motion sen-

sor data deployed in the WSU smart apartment. Couple of item sensors are also

mounted on some objects to detect their usages. The data represents participants

performing five ADL activities in the apartment (Make a phone call, Wash hands,

Cook, Eat, Clean).

WISDM Dataset : The WISDM dataset [199] has triaxial accelerometer data

from 29 users collected by android smartphone. This dataset has 1, 098, 207 data

instances of 6 classes - Walking, Jogging, Upstairs, Downstairs, Sitting and Standing.

Skoda Daphnet Dataset : The Skoda Daphnet dataset [200] contains the freez-

ing of gait in users with Parkinson’s disease. Three acceleration sensors on the hip,
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thigh and ankle were attached to 10 subjects. The data are classified into three

classes - Freeze, No Freeze and No Experiment.

SenseBox Dataset : Using our own smart home system SenseBox [195] we

collected data from 10 participants [201] (IRB - #HP-00064387) from a retirement

community. Three ambient motion sensors and seven object sensors were installed in

each participant apartment. We installed the motion sensors in three different rooms

(bedroom, living room and kitchen) of each single bedroom apartment. The object

sensors were mounted on difference appliances (broom, trashcan, laundry basket,

dustpan and phone). The users also wore a wearable device on their dominant

hand which provided 3D acceleration data for each of the activities. Our dataset

has five activities - Cooking, Cleaning, Brooming, Eating, Sleeping. The ground

truth information was collected using video recordings. Each participant provided

24 hours of continuous sensor data for 20 days.

We evaluate our model using precision, recall and F1 measures. However these

measures also exhibit biasness due to population prevalence and label bias as they

inherently ignore handling of negative examples [202]. As a result we also calculate

Informedness and Markedness measures to avoid bias by integrating inverse recall

and inverse precision respectively.

markedness = precision+ inversePrecision− 1

informedness = recall + inverseRecall − 1

Markedness and Informedness articulate how marked and informed the classifier is

respectively with comparison to chance. We evaluated our active learning algorithm
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by comparing with other simple active learning methodologies - Maximum Entropy

sampling, Query By Committee and Random sampling. In order to compare these

methods we calculated Normalized Mutual Information (NMI) using the ground

truth information. Both the true activity class label and queried label assignment

are considered as random variables in NMI. NMI measures the mutual information

between these two assignments and normalizes them to zero to one range. If we

consider K be the random variable of queried class labels of data instances and C

be the true labels then the NMI is computed by equation: NMI = 2I(C;K)
H(C)+H(K)

. Here

I(X;Y ) = H(X)−H(X|Y ) is the mutual information between random variables X

and Y.

5.9.1 Performance Analysis

In this section, we examine the performance of our DeActive model on real

world datasets described in the previous section. In our proposed model we use 3

hidden layers with 150 neurons in each layer. We first normalize the data with zero

mean and standard variance. The deep activity recognition models are trained using

stochastic gradient decent with mini-batch size of 0.60. In Table 5.1 we compare our

model with other deep architectures for SenseBox dataset. It is apparent that our

model achieves better accuracy (92.84%) with 3 hidden layers and 150 nodes at each

layer. We experimented with different number of features and empirically we got

better results for 500 features for all the deep architectures. For each of the dataset

we pick a set of labeled samples with 1000 data instances and train our classifier
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with 80% data of this set. We leave the rest of the 20% for validation. Due to

relatively small number of classes available in our dataset we experienced overfitting

problem. We applied “dropout” method which is a widely used technique to tackle

the overfitting problem. We trained our model offline using our lab server.

Architecture Accuracy(%)

DBN 85.52

RBM 89.78

CNN 86.16

Sparse Autoencoder 84.11

DeActive (1 Layer) 87.34

DeActive (2 Layers) 89.34

DeActive (3 Layers) 92.34

Table 5.1: Accuracy of different deep architectures on SenseBox dataset

5.9.2 Classification Accuracy

We first evaluate accuracy of different datasets with ambient motion sensor

data using our model. We show the Precision, Recall, F1, Informedness and Marked-

ness score of individual datasets in Figure 5.4 and 5.5 . For Opportunity dataset

(Fig 5.4b), we see that preparing coffee achieved lowest accuracy as these activi-

ties involved similar movement using kitchen appliances. For SenseBox dataset we

experience comparatively low accuracy for cooking, eating sleeping and brooming
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Figure 5.4: Precision, recall, F1, informedness and markedness score of each activity

in CASAS and Opportunity datasets (ambient motion sensor data).
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Figure 5.5: (a) Precision, recall, F1, informedness and markedness score of each

activity in SenseBox dataset (ambient motion sensor data) and (b) illustrates the

accuracy of different shallow learning algorithms compared to our DeActive frame-

work.

than cleaning. After further investigation we found that cooking activity has a lot

of false positives. About 38% time our prediction algorithm predicted cooking as
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Figure 5.6: Precision, recall, F1, informedness and markedness score of SenseBox

and Opportunity datasets (3D acceleration data).
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Figure 5.7: Precision, recall, F1, informedness and markedness score of WISDM and

Skoda datasets (3D acceleration data).

eating and cleaning. By reviewing the ground truth information we confirmed that

in these cases the participant was in the kitchen but not cooking. The participant

sometimes ate in the kitchen and also there are times when he was cleaning the

appliances. As a result our model confused these two classes with cooking activity.
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Eating activity is also hard to detect using just the ambient motion sensor as the

participants ate in different locations at times. We faced similar problem as cook-

ing activity in this case and majority of the false positives were labeled as cooking.

Although we have attached an acceleration sensor with the broom to detect the

Brooming activity but due to mobility in different rooms while brooming it created

false positives. Similarly for CASAS dataset we received much higher accuracy for

all the activities except Eat. The line chart in Figure 5.11 shows the convergence

of accuracy with respect to the percentage of dataset used in the experiment.
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Figure 5.8: The figures demonstrate the performance of our active learning algo-

rithm.

Now we validate our model with 3D acceleration data. In this case we also show

the same metrics used in previous experiment for each activity in each dataset in

Figure 5.7 and 5.6. Each dataset showed much better accuracy when accelerometers
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Activity Recognition System Skoda Opportu-

nity

WISDM SenseBox

Deep Convolutional and LSTM Re-

current Neural Networks for Multi-

modal Wearable Activity Recogni-

tion [79]

95.8 91.20 95.86 88.09

Convolutional Neural Networks for

human activity recognition using

mobile sensors [203]

88.19 93.17 94.75 84.20

Deep Activity Recognition Models

with Triaxial Accelerometers [78]

89.38 86.39 94.46 87.54

Our deep learning framework DeAc-

tive

92.34 94.06 97.24 92.34

Table 5.2: Comparison of our DeActive algorithm with other existing approaches

for different datasets.

were involved. In both SenseBox and WISDM a single accelerometer sensor entity

is utilized. In our dataset we employed a wearable device placed on the dominant

arm of the participant and for WISDM a smartphone. Brooming (Figure 5.6a)

achieved much better accuracy than using just the ambient sensors as our deep learn-

ing architecture was able to find better feature representation from the acceleration

data. In Opportunity dataset we experience less accuracy for Prepare Sandwich and
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Figure 5.9: The figures demonstrate the performance of our active learning algo-

rithm.

Cleanup activity. After further investigation we found that about 31% of Prepare

Sandwich class was labeled as Cleanup and Prepare Coffee. These two activities had

similar feature representations in our model and as a result the predictor mislabeled

them. With Skoda data set we have achieved much higher accuracy compared to

other datasets as the activities considered had distinct feature representations. In

case of SenseBox dataset again we achieved low accuracy for eating and cooking

classes. For further validation we looked into our video recordings and found that

different participants had different eating behavior. Also the eating pattern largely

depends on the cuisine and the type of food you are eating. For example, some

foods are eaten using fork and knives (rice, steak vegetables etc.), some using only

spoon (soup, stew, chowder etc.) and some using only hand (burger, sandwich etc.).
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Due to these variations it was difficult to capture distinguishing feature between

different eating movements. For cooking activity, we experienced similar challenges

due to variations in cooking style. Some of the participants were not spending much

time in cooking. Also during cooking, we saw that the participants were doing other

activities concurrently like talking over the phone, moving stuffs or watch television

etc. As a result we achieved low accuracy for cooking activity. For WISDM dataset,

the overall accuracy was much higher (≈ 92%) than other datasets as the activi-

ties considered have distinct signature pattern in the accelerometer data. In Table

6.3 we compare our DeActive model with some recent existing activity recognition

works which are based on deep learning. Although these state-of-the-art models

experimented on different datasets, still we have achieved similar or better accu-

racy. These models also take more training time and require more resources than

our model.
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5.9.3 Effect of Active Learning

We applied our active learning algorithm in a 10-fold cross validation manner.

We started our active learning experiment with 20,000 unlabeled data instances

and randomly selected 1000 labeled instances. We adopt pool based sampling in

our experiment. After analyzing the results of silhouette coefficient, we empirically

define 0.73 as our threshold. In Figure 5.8a we exhibit the change in model ac-

curacy over 800 iterations. In each iteration we query the most informative 500

data instances and after receiving the label we add it to our training dataset. The

instances which are within our predefined threshold (0.73), we also annotate them

in accordance with their associated most informative instance. We compare our al-

gorithm with other popular active learning strategies like maximum entropy, Query

by Committee(QBC) and random sampling. It is evident from the figure that our

active learning strategy outperforms other popular strategies and converges faster.

Our model achieves better performance with respect to recognition accuracy after

acquiring same percentage of labeled examples.

In Figure 5.8b we show the effect in NMI for our model. From the figure

we see that our model is converging to optimal accuracy faster. The higher NMI

represents that the assigned label by our classifier and the label from the annotator

is getting closer. We also look at how many instances were incorrectly classified in

100 iterations using our active learning algorithm in figure 5.9b. It is noticeable from

the figure that our active learning algorithm is more stable in correctly classifying

instances compared to other strategies which indicates that only vital instances are
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being selected for querying. Another important parameter for evaluating active

learning algorithm is to monitor the speed or the time it takes to select instances in

each iteration. Average instance selection times for entropy, QBC, random sampling

and DeActive are - 0.76s, 0.73s, 0.80s, 0.468s. DeActive is almost 40% faster than

other strategies while selecting instances. In figure 5.9a we show the progression of

instance selection time for the first 100 iterations for all active learning strategies.

5.9.4 Device Performance

We investigate the performance of our DeActive model in SenseBox archi-

tecture. In Figure 5.10 we see that our algorithm executes much faster than other

algorithms. In [64], the execution time is reported as 20.78 msec with 50 hidden

layers and 3,289,600 parameters. In our case the execution time is close to 10 msec

with 3 hidden layers. However [64] used Snapdragon 400 quad core CPU whereas

we used single core CPU.

5.9.5 Deep Active Learner Network

We have employed Convolutional Neural Network (CNN) as our deep model.

In a frame we have 64 instances generated from 4 sensors (accelerometer, gyroscope,

magnetometer, location), so our input size is 64×11 (9 from 3D sensors and 2 output

from the location sensor). Our network has 3 convolution layers with filter size of

5 followed by a max pooling layer with filter size 2 and a fully connected layer. A

softmax classifier is used at the final layer for the classification task. We applied
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batch normalization after each convolution layer to handle internal covariate shift.

We also used dropout as our regularization method at the dense layer. Number of

filters in the convolution layers are 32, 64, 128 respectively and network uses ReLU

activation function. We set the model parameters α = 0.005 and β = 0.00002. We

use adam optimizer with batch size of 32.

5.9.6 Classifier Performance

walking sitting standing eating running
activity

0

20

40

60

80

100

sc
or

e

precision recall f1

(a)

0 5 10 15 20 25
Iteration

10

15

20

25

30

35

Lo
ss

Training
Testing

(b)

Figure 5.12: (a) shows precision, recall and F1-score of our classifier for different

activities. (b) the trend of loss function during training and testing.

At first we utilize the whole dataset to train our model to evaluate the per-

formance of our classifier. We split the entire dataset into training (60%), valida-

tion(20%) and testing(20%) dataset. We achieved an overall accuracy of 92.05%.

The confusion matrix is shown in Table 5.3. We see that we achieved comparatively

low accuracy for eating and sitting activity. Upon further investigation we found

that this is due to the nature of these two activities. Most of the time the users
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were eating while sitting and some of the time the users were eating while walking

and standing as well. Thats majority of the instances of misclassified are labeled as

sitting, while some were predicted to be standing and walking. The same problem

persists for the sitting activity as well. Majority of the mislabeled instances are la-

beled as eating. However, we have received better accuracy for sitting in compared

to eating activity. After looking at the pattern of both of these activities, we noticed

that when the users were idly sitting they used their phone quite often and while

eating the phone remained idle most of the time. This deviation was captured by

the model and hence it achieved better accuracy for sitting activity. The precision,

recall and F1-score of our classifier are exhibited in Figure 5.12a. In Figure 5.12b

we demonstrate the trend of our loss function during training and testing.

Table 5.3: Confusion Matrix

Walking Eating Running Sitting Standing

Walking 98.19% 0% 1.12% 0.19% 0.50%

Eating 2% 79% 0% 16.10% 3.9%

Running 0.72% 0% 99.17% 0% 0.11

Sitting 1.01% 11% 0.38% 87.56% 0.05%

Standing 0.02% 2.38% 0.21% 1.03% 96.36%
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Figure 5.13: Weight distribution in log

scale of different layers using cross-

entropy loss.

Figure 5.14: Weight distribution in log

scale of different layers using our joint

loss function.

We analyze the performance of our model while employing active learning.

For this we train our model with only 30% labeled instances from our dataset. In

order to train our joint optimization function we also fed same number of unlabeled

instances to be consistent with batch size during training. We have used 15% of our

unlabeled dataset for this purpose. Initially we have achieved 83.26% accuracy with

the provided labeled and unlabeled instances. In order to see the effect of our joint

optimization we examined the weight distribution in different layers of our network.

In Figure 5.13 and 5.14 we plot the value of the weight distribution in log scale while

optimizing only cross-entropy loss and our joint loss. It is evident from the figure that

our joint loss function enabled lower values for the individual layer weights compared

to traditional cross-entropy loss function. When the weights are large, the layers are

more sensitive to small noises in the input data. This had significant effect when

we were doing entropy calculation for the unlabeled data instances. The network
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produced much different value in the output layer due to the larger weight which

eventually enabled higher number of queries that included outliers. We randomly

sampled 100 unlabeled instances from the holdout unlabeled data instance pool and

calculated entropy for both network. We applied this over 10,000 iterations and

calculated the average number of queries received for both these loss functions. We

received on average 29 and 8 queries from the network with cross-entropy loss and

the network with our joint loss respectively. The difference in number of informative

data instances selected is significant for both these networks. This poses a problem

as the queries begin to pile up drastically for individual annotators. By doing joint

optimization we were able to mitigate the effect of noisy instances.
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Chapter 6: Annotator Selection

In this chapter we discuss two annotator selection model in conjunction with

active learning by exploiting the social relationships among the activity witnesses.

We discuss active learning, the contextual multi armed bandit problem and the

modeling of arms or actions of the bandit, the rewards and the context of our

problem domain and a reinforcement learning based annotator selection model.

6.1 Architecture

Our annotator selection framework, SocialAnnotator is composed of three ma-

jor components. We have an activity recognition classifier which is trained on labeled

data instances from wearable devices that provide raw accelerometer data. After

building a stable classifier, we start feeding unlabeled instances and predict the

class label. Let us consider the output of the classifier are class probabilities. The

class with highest probability or likelihood is the final prediction. However, if the

range of values does not fall within a pre-defined threshold then we assume that

the classifier is uncertain about which class the data instance belongs to. If labels

are provided for these kinds of instances, it may help improve the efficiency of our

classifier. In order to filter these instances we send the unlabeled data instances in

141



a pool to our Active Learner module. In our active learner module, we measure the

entropy of the instances and select an instance with maximum entropy. We then

send the selected instance to our Annotator Selection module. Note that in our

daily life we interact with a number of people. The interaction can be physical or

virtual through social network but every interaction is an opportunity to observe

and share information. The key insight here is that we are connected and have more

interactions with the people who we are related with us. These connected people

might be direct witnesses of what we are doing in our day to day life. As a result

these social relationships and correspondence lead us to have knowledge about the

activity patterns of the people we are connected with. We get the direct information

about their location and any activity performed by them in their work place from

the ontology. Using this information, we try to extract the hidden facts whether

they can be direct witnesses of each others activity.

We calculate the spatio-temporal distance between two connected users using

their probability distribution of location. The spatio-temporal distance lets us know

about the intersection between their location distribution. We also incorporate a

weight based on the strength of the relationship. The people with whom we interact

more have higher potential to know about our daily routines. After formulating

the distance parameter, we model a budget constrained context aware multi-armed

bandit. The task of the bandit is to select annotator given the distance parameter

and context. We design the bandit in such a way so that it does not act in a greedy

way by introducing costs associated with each annotator and a budget constraint.

We adapt a game theoretic approach where we have to ensure maximum gain and
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Figure 6.1: A high level structure of the modules in SocialAnnotator framework.

Based on classifier’s feedback, a pool of unlabeled instances are supplied to the

Active Learner which then filters out the data instance with maximum uncertainty.

The Annotator Selection module receives the instance and based on the context

information it poses the query to the selected annotator. Upon receiving the label

it adds the instance to the labeled dataset.
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keep track of our budget as well. The costs associated with the annotators are not

static, as the level of interaction evolves over time. For example, we have regular

interactions with the people at our work place during the week days, but over the

weekend we tend to mingle with close friends. Also a person can be connected

through multiple relationships (close friend and colleague in a work place at the

same time). Therefore, we consider the cumulative relationship weights of all the

relations for quantifying the level of correspondence between two users. Figure 6.1

depicts a conceptual structure of our SocialAnnotator framework.

In our second approach, instead of bounding our reward values, we adopt a

functional approximation approach using deep reinforcement learning. We extend

our deep active learner architecture by placing our annotator selection module in

Figure 6.2. Our proposed model is comprised of two interlinked networks - ac-

tor/action and critic/policy network. The goal of the actor network is to predict

the optimum annotator given the current context of the user. Given the current con-

text and the candidate annotator selected from the actor network, the critic network

tries to reach the optimum policy and approximates the reward gained by choosing

the candidate annotator. The reason we adapt an actor-critic model is because of

our continuous state space. In traditional Q-learning approach, we have a finite set

of actions and states for which we calculate the reward received for every possible

combinations. However, if one of them among action and state space is continuous

then the traditional reward calculation becomes intractable. As a result we model

our annotator selection component as a functional approximation problem. After

receiving the feedback from the selected annotator we add the newly received label
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Figure 6.2: The left side of the figure illustrates our active learning enabled deep

model and in the right side of the figure our annotator selection pipeline is shown.

to our labeled data set. We re-train our model after a certain interval with the

expanded labeled dataset. If an annotator refuses to answer the query and discards

it, then it is added back to the unlabeled data instance pool.

6.2 Distance Metrics

In this section we discuss the metrics which correlate our annotators with

activities.

6.2.1 Spatio Temporal Distance

We calculate the spatio-temporal distance of the related users when an activity

is performed. This distance metric implies if an user has any knowledge about the

performed activity by another user he is related to. While computing this parameter,

we also consider the neighboring locations. We calculate the likelihood of each

related user j being in a location li given the current context xt. We process this as
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a categorical distribution. Let us consider a set of activities W with whom the user

ui is connected. The location of each activity is an observation of our distribution,

and the location set L(W ) is a sample of that distribution with cardinality m.

Each location in li ∈ L(P ) has a prior probability. We denote the probabilities of

locations as vector p = (p1, p2, p3...pm). Let us consider q be the location probability

distribution of an annotator ai who is connected to user ui through a relation. We

then calculate the conditional distributions of p and q given context xt and time

t. Using these conditional distributions we calculate the distance between them

using Bhattacharyya distance [204]. The distance between these two conditional

distributions is defined as:

dst(p(x, t), q(x, t)) = −ln(B(p(x), q(x)))

=
m∑
i=1

√
pi(x, t), qi(x, t) (6.1)

In Eqn 6.1, B is the Bhattacharyya coefficient which provides the measurement

of overlap between the two probability distributions. This distance provides us

information regarding the annotators who reside closer to the user. We calculate

this spatio-temporal distance for all the connected users and take the annotators who

were closest to the vicinity. If no annotator was present in the vicinity where the

user performed the activity, we assume that annotators dwelling in the neighboring

locations may have knowledge about the activity label. In such cases we consider

the distance of the neighboring locations which are inferred using the neighbor Of

relation from the ontology.
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6.2.2 Activity-Activity Distance

We exploit the connectivity among activities to filter appropriate annotators.

Our intuition is that if the properties of an activity Wi prevails in a similar spa-

tial and temporal space to another activity Wj and an annotator ak has efficiently

provided reliable labels to activity Wj then ak is a potential annotator who can

provide label of activity Wi. To calculate this distance we consider three compo-

nents of an activity pair - correlation, spatial and temporal. Correlation calculates

the co-occurrence frequency of the activity pair, the spatial and temporal compo-

nent models the probability of an activity pertaining to the same location and time

constraints. The distance is defined as:

d(wi, wj) = f(wi, wj)N (||tai − taj ||2, µt, σt)

N (||lai − laj ||2, µs, σs) (6.2)

In eqn 6.2, f(wi, wj) denotes the co-occurrence frequency between a pair of

activity, lai , laj , tai , taj are the spatial and temporal parameters of the associated

activities.

6.2.3 Relationship Weight

The strength of the social relationship can be integral in selecting annotator.

There may not be any annotator who directly witnessed the user doing an activity.

However, human being follows a cognitive routine most of the time and the persons
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mostly associated with his life are acquainted with the routine. For example, the

family members living with the user are usually more familiar with his routine. Some

annotators can also be remotely connected (e.g. updates on social network, talking

over the phone or even playing online games together). So certain relationships

provide more emphasis and demand more attention while choosing the annotator.

For this reason, we try to provide weight to each connected user according to the

relation. However this weight can not be static for all of the users as in real life

not all relationships are same and they evolve over time. For example, consider the

relationship with your office colleagues, initially they could be just colleagues but

over time some might become your close friend. On the other hand one might be in

touch with their parents on regular basis, but a different person might not. So for

each person the weight of relationship is different. We use the relationship intensity

strength proposed in [205] to model our relationship weight. The interaction between

two users (e.g. phone call, messaging, meeting etc.) or shared information (e.g.

playing soccer together, common hobby) are designated as “rate factor”. Depending

on the social aspect these rate factors regulates the strength of a relationship. The

partial relationship weight between user k and j for one factor is defined as:

Wf (k, j) =
ωkj

∑l
i=1 ft

1 + ln(1 + lc)
(6.3)

In eqn 6.3 ωkj is the weight of the rate factor, l is the count of rate factors, lc is

the count of instances of the rate factor and ft models the time influence. The final

weight W (k, j) is measured by taking the arithmetic mean of the partial weights of
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all the rate factors.

Now that we have formulated all our distance metrics, we now define our final

user to user distance metric. The activity-activity distance metric provides the

distance between activities and finds the similarity among them. We maintain the

count of such activities for which the annotators have performance score more than

a pre-defined threshold δ. We utilize this count as an additional weight Wc for the

annotators. The final distance is calculated using the following equation:

D(k, j) = W (k, j)Wc dkj

(
p(x, t), q(x, t)

)
(6.4)

6.3 Background & Methodology

In this section, we setup the annotator selection problem investigated in the

thesis. We discuss the preliminaries of both multi-armed bandit and reinforcement

learning algorithms.

6.3.1 Active Learning

Conventional supervised learning algorithms compile models based on the

available patterns in the provided training dataset. The level of sophistication for

these models largely depends on both quantity and quality of the provided labeled

instances. Active learning takes a different approach by making the learning pro-

cess ongoing and interactive. It also helps to relieve the pressure of collecting large

amount of labeled data instances. Active learning is fitting for problems pertaining
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to large amount of unlabeled data instances. In the context of activity recognition

using wearable devices, we have to process overwhelming number of data instances

which makes active learning befitting. We only label the data instances which pro-

vide highest gain which is reducing the generalized error of our classifier. In our

proposed model we propose to use Active learning using pool-based sampling as we

receive a stream of data in a very short period of time. We select a data instance

from a pool of instances in a greedy way Queries are typically conforming to the

measure of uncertainty. Here our assumption is that the instances which are least

certain are close to the decision boundary and labeling these instances will provide

maximum gain. To measure the uncertainty we calculate the entropy of the pro-

vided instances and query the instance with maximum entropy. We calculate the

maximum entropy and select an instance by following equation

xH = argmax
x

Hθ(Y |x)

= argmax
x
−
∑
y

Pθ(y|x)log Ptheta(y|x) (6.5)

6.3.2 Contextual Multi-Armed Bandit

A contextual bandit problem is composed of N arms or actions. In our context

an action refers to selecting an annotator. On each iteration, based on the revealed

context the learner decides one action to choose and observes the associated reward

of only the action applied. As the rewards corresponding to other actions remain

hidden from the learner so the learner receives only partial information about the
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reward space. The goal is to maximize this reward in each iteration. However, by

selecting a sub set of the actions in a regular manner might always provide maximum

reward. For example, a person’s spouse or close friend has better idea about his

daily activity routine than any one else. So by selecting the spouse or close friend

in each round will maximize the reward outcome. If we consider the annotators as

resources, prompting the same set of annotators will lead to resource exhaustion.

In order to tackle this, we introduce a resource constraint or budget for each of the

annotator. The annotators who ensures higher potential reward, incur higher cost.

As a result given an overall budget our aim is to maximize the total reward while

ensuring aggregated resource consumption remains bounded by a given budget.

Let us denote the action set as A = {a1, · · · , ak}. We consider the cardinality

ofA to be finite as an user is connected to a finite number of people. A d-dimensional

feature vector xt ∈ X denotes the context information received at time t. At each

time t, an agent or policy π decides to choose an action ai based on the context xt

and receives reward rti . The history of taken actions and received reward is denoted

by Ht−1 → {ai(τ), rτ , xi(τ)} for i = 1, . . . , N and τ = 1, ....., t − 1 where ai(τ)

denotes the chosen action which generated reward rτ . The reward of an action is

generated from an unknown distribution regulated by the given context. Let us

consider the optimum action at t is a∗i and its corresponding reward is r̃ti .

We want to select the action which results in reward close to the optimum one,

so the aim is to maximize the reward in each step and minimize the difference be-

tween the overall optimum reward and the reward received. The difference between

the optimal reward and the aggregated reward received is called regret. We provide
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a formal definition of regret as following

R =
T∑
t=1

Rt =
T∑
t=1

(r̃ti − rti) (6.6)

In this eqn, r̃ti is the optimum reward at step t and rti is the reward received. Let

us define our reward function as rt = f(xt, ai(t)), where f(xt, ai(t)) is the reward

mapping function for arm ai(t). In general the reward mapping function using

context and action is defined as f(xt, ai(t)) = xT
t wi+ εi where x

T
t is the transpose of

the contextual information, wi is a coefficient vector and εi is drawn from a Gaussian

distribution N (0, σ2). The weight wi for each annotator is projected independently

based on the received reward from each user. However in our case, there is collective

influence among users.

In order to maximize the reward function, the agent needs to learn the under-

lying function f which maps the context to action. In order to acquire knowledge

about the latent function f , the agent has to explore other actions instead of choos-

ing the optimum action which provides the best outcome. ε is our exploration

parameter. The predictive distribution of our reward function depends on the cur-

rent context and the history of actions taken. This is a normal distribution with

mean µr and variance V and defined as following

pθ(rt|HT−1, xt) = N (µr(t), Vt) (6.7)

Each action ai(t) is also associated with a cost ctai . The cost associated with

an annotator is variable in each round as the distance between users defined in eqn

6.4 varies over time. The costs are independently and identically drawn from an

unknown continuous distribution with mean µc. We adhere to the same settings

152



in [206]: (i) the rewards of an action are independent of its costs (ii) the rewards

and costs of an arm are not influenced by other actions (iii) the rewards and costs of

an action are independent and identically distributed at each iteration. Let us define

a known parameter, budget B which designates the number of time the algorithm

can invoke annotators. This budget constrain also helps us to supervise the stopping

time ts(B) of our algorithm which is defined as following

ts(B)∑
i=1

ciai ≤ B <

ts(B)+1∑
i=1

ciai (6.8)

Let us denote R∗ as our optimum aggregated reward at stopping time ts(B).

We calculate the expected regret, evaluated over the randomness of rewards and

costs by modifying eqn 6.6.

R = R∗ − E
[ ts(B)∑

t=1

(rtat)
]

(6.9)

6.3.2.0.1 Actions

The action space for an user is proportional to the number of connected an-

notators in the ontology. An action corresponds to selecting an annotator from the

correspondence vector M built using the ontology of annotator relationship. Each

element mij ≥ 0 is congruent to how relevant the annotator is with respect to the

user in terms of our distance metric and labeling accuracy. The expected reward to

cost ratio of an annotator ai is ρai =
µ
ai
r

µ
ai
c
. According to [206], if both reward and cost

distribution of an action is known, pulling the arm with maximum ρ can provide the
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expected reward as the optimal algorithm. When the distributions are unknown,

we should select the annotator with the maximum ρ and also ensure exploration on

the other rarely selected annotators.

6.3.2.0.2 Context

A context vector xt portrays the features and characteristics of each annotator.

The features considered in a context vector are the timestamp t, location s, n

performance metrics of the annotator with respect to each activity p1, . . . , pn. We

do not include the sensor data in the context vector.

6.3.2.0.3 Reward

Our reward mapping function randomly generates reward according to the

conditional probability measure defined in eqn 6.7. Initially the model is uncertain

about the value θ.

Our reward mapping function f is defined to measure the reduction in variance

of our classification model between two iterations. For making things simple, our

objective is to minimize the squared loss of the true label and the label received

from an annotator. We define our expected error as following

E
[
(ŷ − y)2|xt, yl

]
= EY |x

[
(y − EY |x[y|x, yl])2

]
+ (EL[ŷ]− EY |x[y|x])2 + EL

[
(ŷ − EL[ŷ])

2
]

(6.10)

In eqn 6.10 EL[.] is the expectation over the labeled training set L, ŷ is the
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label received from an annotator and y is the true label of the instance. EY |x

[
(y −

EY |x[y|x])2
]
indicates noise or uncertainty of y given x. The second term represents

bias which is the error due to the selected action. The third term represents the

output variance of our model. Therefore minimizing the variance will ensure to

minimize the generalization error of our model. So we try to reduce error by select-

ing annotators that establish highest variance reduction of our activity recognition

model. For any action ai, number of times it is invoked nai,t, average cost c̄ai,t and

average reward r̄ai,t and the exploration parameter is εai,t =
√

2log(t−1)
ni,t

. We calculate

index Dai,t for each annotator:

Jai,t =
r̄ai,t
c̄ai,t

+
r̄εi,t
c̄ai,t

+
r̄εi,t
c̄ai,t

D(k, i) (6.11)

In eqn 6.11, the average reward to cost ratio represents the exploitation. The

first influences our algorithm to choose the arms with higher rewards. The explo-

ration term
r̄εi,t
c̄ai,t

favors the annotators who provide less reward and as a result invoked

infrequently with lower costs. Exploring weaker annotators may be conducive as our

budget is limited. The final term enforces joint exploitation and exploration.

6.3.3 Reinforcement Learning Preliminaries

Majority of the real-world problems involving reinforcement learning are mod-

eled in accordance to Markov decision processes (MDP) [207]. By modeling through

MDPs, we can formalize the decision-making process by considering not only the

reward of the immediate action but also the outcome of the consecutive actions. We
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consider an agent interacting with the environment E in discrete timesteps t. At

each time step t, the agent observes a representation of the environment st ∈ S and

takes an action ai from a set of actions A namely selects an annotator and receives a

reward rt+1 ∈ R ⊂ R. In our context, the set of actions or annotators and rewards

are finite as we have a countable number of annotators who are connected with a

specific user. The discrete probability distributions of random variables ai and rt

depend only on the prior state and action. The process of choosing action given the

state of the environment and receiving reward continues until we reach a terminal

state. However, in our problem domain there is no terminal state as the process of

annotation will never finish. A state st is defined by the data we are receiving from

the sensor modalities. As the sources of our data stream provide continuous value,

hence our state space is also continuous meaning the probability density of the next

state is continuous in the action taken at the current state. The state-transition

probability function is defined as
∫
s′
T (s, a, s′)ds′ = P (st+1 = s′|st = s, ai = a)

A policy π defines the behavior of an agent which outlines states to a proba-

bility distribution over the annotators π : S → P (A). The primary goal of any RL

agent is to maximize discounted cumulative future reward or return, Gt =
∞∑
t=0

γtRt+1

from a state at given any given time t where γ is the discount rate and 0 ≤ γ ≤ 1.

The value function vπ(s) of a state s under policy π is the expected return start-

ing from that state which provides insight about how good a state is. The formal

definition of this state− value function is defined by

vπ(s) = Eπ[Gt|st = s] = Eπ[
∞∑
k=0

γkRt+k+1|st = s] (6.12)
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Similarly the action-value qπ(s, a) function for policy π taking action a while being

in state s provides insight about how good a state-action pair is. It is defined by

the following:

qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ[
∞∑
k=0

γkRt+k+1|st = s, at = a] (6.13)

The optimal Bellman equation for both these value functions are then defined

as

v∗(st) = max
π

vπ(s)

= max
ai

∑
st+1,r

p(st+1, r|st, ai)[r + γv∗(st+1)] (6.14)

q∗(s, a) = E[rt+1 + γmax
a′

q∗(st+1, a
′)|st = s, at = a]

=
∑

st+1,r|st,a

[r + γmax
a′

q∗(st+1, a
′)] (6.15)

We can solve these value functions using value iteration algorithm by bootstrapping

the feedback received to attain optimum policy and action at each step iteratively.

As our state space is continuous, it is impossible to calculate the value function for

every state-action pair. Therefore, it is difficult to evaluate the value functions in

Eqn 6.15 and 6.14. Our goal is then to find a good approximate solution given the

circumstantial prior encounters.
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6.3.4 Deep Reinforcement Learning

The deep deterministic policy gradient (DDPG) [208] method based on deter-

ministic policy gradient (DPG) [209] can adapt to domains with stochastic continu-

ous state transitions. Instead of learning the value functions directly DDPG aims to

approximate and improve both the policy and action value functions. The policy π

is parameterized by θπ that directly models the action probabilities by tweaking the

parameters θ at each time step t. The action-value function q(s, a; θq) is parameter-

ized by θq. We train two separate neural network for these value functions where

the policy update network is called the actor network and the action-value update

network is called the critic network. The critic network evaluates the action-value

function by minimizing the following loss function

L(θq) = Es,a∼ρ(.)[(yi − q(st, at; θ
i
q)

2] + wθiq
θiq

2
(6.16)

yi = E[rt+1 + γmax
a′

q(st+1, a
′; θi−1

q |st, a)] (6.17)

The parameters θq are then updated using the batch stochastic gradient de-

scent method in Eqn. 6.18 where ∇θqL(θq) is the derivative of the loss function with

respect to θq and αq is the learning rate for the critic network.

θq → θq − αq∇θqL(θq) (6.18)

We define the quality of our policy π as the average rate of reward. So we need to

update the actor network by calculating the policy gradient of the rate of reward.
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Figure 6.3: Actor critic network flow

The average reward received is defined as:

J(θπ) = lim
h→∞

1

h

h∑
t=1

E[rt|s0, a0:t−1 ∼ π]

= lim
t→∞

E[rt|s0, a0:t−1 ∼ π]

=
∑
s

µπ(s)
∑
a

π(a|st, θπ)
∑

p(st+1, r|st, a)r (6.19)

In Eqn 6.19 s0 is our initial state and µπ is the steady-state distribution under

policy π, µπ(s) = limt→∞ Pr(st = s|a0:t ∼ π). The actor network is updated using

batch gradient descent as well using the gradient of the policy gradient function

J(θπ) with the step size parameter αq.

θπ → θπ − απ∇θπL(θπ) (6.20)

Our annotator selection model is inspired by the actor-critic based reinforce-

ment learning method. The flow of information and the training process is shown in

figure 6.3. Taking an action is analogous to selecting an annotator from a finite set
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Algorithm 8 Annotator Selection Policy using DDPG

1: Input: activity fragments Fk, k = 1 . . . K with associated annotator fragments

(st, a
t
i)

2: Input: parameterized policy π(ati|st, θπ)

3: Input: parameterized state-value function v(st, θq)

4: initialize state-value parameter θq and policy parameter θπ to 0

5: initialize target function θ̂q ← θq and θ̂π ← θπ

6: initialize starting state s0

7: for each time step t do

8: Select annotator atj using current policy π

9: Evaluate state-value function q(st, a
t
j, θq)

10: Evaluate expected state-value yi using optimum annotator ati

11: Calculate the loss of critic network L(θq)

12: Calculate the average reward rate J(θπ) for state st

13: Evaluate the gradients ∇L(θq) and ∇J(θπ)

14: Update θq and θπ

15: θ̂q ← (1− η)θ̂q + ηθ̂q

16: θ̂π ← (1− η)θ̂π + ηθ̂π

17: Update state st ← st+1

18: end for
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of annotators A. At any given time t a state is defined as a tuple , st = {dt,mt, gt, lt}

where dt,mt and gt represents three dimensional accelerometer, magnetometer and

gyroscope data and lt is the two dimensional location information of the user. The

actor network is updated using the gradient of the policy gradient function defined

in Eqn. 6.19. The gradient is defined as following:

∇πJ(θπ) = ∇π

[∑
s

µπ(s)
∑
a

π(a|st, θπ)
∑

p(st+1, r|st, a)r
]

=
∑
s

µ(s)
∑
a

∇π(a|s)qπ(s, a) (6.21)

While training the actor − critic networks, the loss function defined Eqn.

6.17 and the gradient calculation in 6.21 is calculated over a minibatch size of 32

samples. Also we use Adam optimizer to ensure efficient learning over directly

applying gradient update using Eqn. 6.18 and 6.20. We exploit the method proposed

by [208] to fix the problem of divergence when directly setting the parameters of

the target function in Eqn. 6.17 at every step. We record the update of θq and θπ

by calculating moving average θ̂ ← (1− η)θ̂ + ηθ̂ where θ̂ represents θq and θπ and

η = 0.001 is the decay factor.

6.4 Experimental Evaluation

In this section we evaluate our proposed model in details by discussing our

experimental setup, data collection process, network architecture and our evaluation

methodologies. We focus on addressing the following questions:
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• What is the effect of joint optimization while fusing deep learning and active

learning methods?

• Is the system able to generalize for the other users for both activity classifica-

tion and active learning method?

• How does the performance vary with the unlabeled dataset used in the training

phase?

• What is the performance of the system in terms of calculating most informative

data instances? How effective the model is while handling outliers?

• How many queries are generated on average for a user in a day? How hard

were the queries for the users?

• What are the performance scores of the respective annotators?

• Is the feedback received from the annotators improving the performance of the

model?

6.4.1 Setup

We collected activity data using wearable devices from 5 users over the course

of 16 days. We used android smart watch Moto360 to collect the accelerometer

data. We also collected the location information of the users using GPS which we

only used for ground truth. We have implemented an app in both android and

iOS platform (http://mpsc.umbc.edu/sajjad/socialannotator/) to collect mo-

bile sensor data and pose query to the users . A picture of our system running
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Figure 6.4: SocialAnnotator application interface.

on both the platforms are shown in Figure 6.4. Our app exploits the three di-

mensional accelerometer, gyroscope, magnetometer and two dimensional location

sensors. The users can control which sensor to turn on and off based on their pref-

erence of the battery status. Individual users can create account and add potential

annotators who are referred as “Friend” in the application. While adding a friend

to the annotator list, we also prompt the user to mention the relationship with the

annotator from a list of pre-defined relationships - {Parent, Child, Sibling, Friend,

Colleague, Neighbor, Spouse}. The users can also tag locations with a semantic

name like -“work”, “home” etc. so that the location information can be displayed

in the query. Instead of providing notification to the users whenever a new query

arrives, we queue the new query in the Query tab. A user can then view the queries

at his suitable time and provide feedback to the queries or discard them if he/she is
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unsure about the potential activity information. The back-end is developed using

MongoDB and python-flask based web service which handles all the requests. The

deep active learner classifier and the annotator selection model are implemented

using tensorflow. A web-service is deployed using the trained model which interacts

with the request handler service. In our experiment we monitored 5 daily activities

- {eating, sleeping, phone calling, working, cooking}.

The sensor data are directly uploaded to our lab server from the wearable de-

vice and we preprocess(feature extraction, filtering, noise reduction etc.) the data

in the server. As previously stated in our SocialAnnotator pipeline in Figure 6.1,

we train a supervised classifier first to recognize the performed activity. We have

used a simple decision tree based classifier. Initially after training our model with

labeled instances we achieved an average accuracy of 77%. Even if we have achieved

low accuracy compared to the existing literature, we are only concerned about in-

vestigating how efficient labeling can help to improve the performance of activity

recognition model. We have For our budgeted multi-armed bandit, the reward and

cost of each annotator are sampled from a beta distribution. The parameters of the

these distributions are sampled from [1,5]. The budget of our framework is chosen

from the set {200, 300, 400, 500, 1000}. We compare our annotator selection model

with different contextual multi armed bandit algorithm - LinUCB, ε-Greedy, EXP4

and Random sampling. In case of Random sampling, the annotator is chosen at

random in each iteration. All the contextual bandit algorithms are executed up to

300 iterations per user in this experiment.

Two separate neural networks are trained to approximate the actor and critic
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functions. In figure 6.5 we show the architecture of our actor and critic network.

The critic network consists of two fully connected layers with 300 and 500 units

respectively. The action component a is provided in the second layer of the network.

The actor network has one fully connected layer with 500 units. Leaky rectified linear

units (ReLU) are used as the activation function for both of these network.
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Figure 6.5: Architecture of actor-critic network.

The actor and critic network are interlinked which facilitates the activations of

the neurons to flow from actor to critic network. Therefore, the gradient of the critic

network influences the actor network as well during back propagation. By connecting

the networks together, the critic network control the directions of improvement in the

action space without explicit targets. We incrementally decrease the learning rate

of the critic network when the critic value increases. The learning rate is updated

165



to αq = 0.0001× 10αQ̃ after every hundred steps where α < 0 and Q̃ is the mean of

critic value in the last hundred steps. This helps the model in generalization and be

autonomous from the convergence speed. For the actor network, we use a constant

learning rate απ = 0.0001.
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Figure 6.6: (a) shows the distribution of normalized reward with respect to number

of queries. (b) shows per-annotator labeling time

distribution.

6.4.2 Bandit Performance

In Table 6.1, we list and compare average rewards(r̄), average costs(c̄), average

reward to cost ratio (r̄/c̄) and the percentage of time optimal annotator gets selected

(% opt) of different bandit algorithms. From the statistics we see that LinUCB and

ε-Greedy perform worst with respect EXP4 and our model. Both these algorithms

are not meant for problems with budget constaints and as a result they do not

take budget into consideration. Our model can achieve higher reward at lower cost

contrast to other bandits which verifies that we are choosing optimal annotator at
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each step. In figure 6.6a the trend of average reward obtained at each step is shown.

It is evident that our proposed algorithm outperforms the other bandit algorithm

settings. More context information like detailed interaction, fine grained location

information etc. might further improve the model.

Table 6.1: Statistics of SocialAnnotator compared to other multi-armed bandit al-

gorithm

r̄ c̄ r̄/c̄ % opt

Random 0.763 0.793 0.962 1.67

LinUCB 0.758 0.814 0.932 0.8

ε-Greedy 0.796 0.886 0.8984 1.32

EXP4 0.864 0.810 1.067 61.17

SocialAnnotator 0.913 0.267 3.419 73.42

6.4.3 Annotator Selection

We monitor the performance of each annotator and maintain a score for each

activity associated with the connected users. In Figure 6.6b we provide the anno-

tation time distributions of each user using boxplot. A box depicts the majority of

annotation times and the median time is marked with a solid line inside the box. It

is noticeable from the figure that each user have different time distribution which

means the efficiency, promptness and reliability of each user varies. We also deduce

that the annotator might not provide the label at all. We show the percentage of
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Figure 6.7: (a) represents the stack plot of percentage of correctly labeled instances

of all the connected users for each user. (b) illustrates the mean annotation time

for different bandit algorithms.

correctly labeled instances by each user in Figure 6.7a. As User 5 is only connected

to User 4 and User 1 there are only three scores for him including the score of

labeling his own activity. It is apparent that all the users are efficient in labeling

their own activity.

Table 6.2: Labeling result of each user

Correct Label Wrong Label No Label

User 1 324 49 27

User 2 306 68 26

User 3 285 83 32

User 4 310 73 17

User 5 345 37 18
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We notice that User 1 and User 5 were able to label each others data quite

precisely. We found that these two users were living in the same apartment and

User 1 is spouse of User 5. Their quantity of interaction was also very high as apart

from living together they were also talking with each other over the phone couple

of times a day. We also notice from the figure that User 2 and User 4 were able

to label the activity of each other with good accuracy (82% for User 2 and 78% for

User 4 ). After investigating into it, we observed that these two users were working

together at the same place and had a lot of interactions. User 3 and User 4 also

worked at the same place but they had very less interaction with each other which

is reflected in their annotation efficiency. Receiving the label information as early

as possible is aslo imperative. If we do not receive a label for the queried instance

within a certain pre-defined threshold tme, we discard the annotator. As a result, if

we pose the query to an user who may delay in providing the label or not provide the

label at all, we not only spoil resources but also lose valuable information. In Figure

6.7b we show the mean annotation time needed using different bandit algorithm for

varying number of queries. Our model exhibits lowest mean ( 30 mins) than all

other approaches and getting the labels at the right time. As a result our model

also ensures immediate result along with the conservation of information. To further

validate our claim, we show the number of wrong labels received for different bandit

algorithms in 300 iterations in Figure 6.8a. After 300 iterations, SocialAnnotator

indicates lowest number of wrong labels, which proves that we are posing the queries

to the right person at the right time. The cumulative labeling accuracy of each user

is also described in Table 6.2.
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Figure 6.9: (a) shows the number of wrong lables received in 300 iterations for

different bandit algorithms. (b) illustrates the precision, recall and f1-score of our

base classifier using different settings. (c) depicts the final precision, recall and

f1-score of each activity. (d) demonstrates the progression of accuracy after each

iteration.

6.4.4 Actor-Critic Performance

To demonstrate the effectiveness of our annotator selection algorithm, we com-

pared our algorithm with other popular deep reinforcement learning algorithm -
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Deep Q-Network (DQN) [210]. In Figure 6.10a we show the evolution of the average

total reward during training for both our model and DQN. Both averaged reward

plots are quite noisy, pointing that the learning algorithms are not making steady

progress. However for our model, we achieve higher reward on average than DQN.

In Figure 6.10b we show the normalized reward with the progression of number of

queries posed. We see that our model, approximates better reward than DQN and

converges faster to the optimum reward received. The reward distribution for indi-

vidual users are shown in Figure 6.11. We received comparatively high reward from

User12, User14, User19 and User9 than other users. Upon investigation, we noticed

most of the queries posed to these users were of themselves, which they were able to

label with high efficiency. Their annotator list or number of connected users were

below average. The average number of connection each user had in our experiments

were 6. For the aforementioned users, they had fewer than 3 connections which

made the algorithm to pose the queries to them more often. In Figure 6.12 the

distributions of annotation time for individual users are presented.

6.4.5 Active Learning Performance

For our SocialAnnotator model, We have achieved an overall accuracy of 77%

for our base classifier. We trained our model with only 5% (1050) of the total labeled

data instances. We apply active learning and incrementally query instances. We

show the overall accuracy of our classifier after 400 iterations in Figure 6.8b. By

employing SocialAnnotator we accomplish an average accuracy of ≈ 84% which is
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Figure 6.10: (a) illustrates average reward received with respect to number of epochs

while training. (b) shows the progression of normalized reward with respect to

number of posed queries.

an improvement of 7% compared to our base classifier. NoAnnotator title demon-

strates the results when we do not administer annotator selection. We notice that

it only improve the accuracy by ≈ 1-2% even if we have applied active learning.

So posing the query to the right person helps to improve the accuacy of our clas-

sifier. In Figure 6.9a we show the accuracy of individual activities after applying

SocialAnnotator. We see that Cooking and Working show low accuracies with

respect to other activities. After further investigation, we noticed that these two

activities itself are very complex and experienced low accuracies in our base classifier

as well (68% and 64%). However, SocialAnnotator actually increased the accuracy

by ≈ 8-10%. Consequently SocialAnnotator helps to improve the accuracies of com-

plex activities which are hard to infer. Figure 6.9b shows the change of accuracy

in 400 iterations. Our algorithm converges to optimum accuracy faster than other
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approaches.

After training our deep active learner model with 30% labeled instances only,

we achieved 83.26% prediction accuracy. We then calculate most informative in-

stances from a pool of unlabeled instances at each iteration. After each 100 queries

we retrain our model and adjust the model parameters with the received label infor-

mation. We then validate our model accuracy using our test dataset. We compare

our model with other existing deep models in Table 6.3. In Table 6.3 we report the

progression of model accuracy after each 100 queries. We see that using active learn-

ing all the models are exhibiting gradual improvement. The model proposed in [203]

exhibits highest increment in accuracy (≈ 9%) after 400 iterations. Our model shows

better initial accuracy and converges faster to optimum accuracy which is (92.05%).

Table 6.3: Comparison of our algorithm with other existing approaches with varying

number of queries.

AR System Number of Queries

0 100 200 300 400

Francisco [79] 81.2 84.14 87.87 88.57 89.47

Ming Zeng et al. [203] 80.39 82.47 86.33 87.59 89.25

Mohammad et al. [78] 81.01 83.17 84.11 87.89 88.32

Our model 83.26 85.65 88.39 90.48 91.64
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Chapter 7: Conclusion and Future Works

In this thesis, we have proposed and validated a number of active learning

methodologies to help us build a scalable activity recognition model. By acquiring

active feedback from the users, we get more refined and precise activity information.

We have proposed a novel annotator selection method SocialAnnotator, by exploit-

ing social relationships among the users to improve the efficiency of active learning

in activity recognition context. Our proposed model selects annotator based on the

strength of the relationships and spatio-temporal distance metrics among the users.

We also consider the similarities between the activities in our model to calculate

the level of correspondence among the users. Prior works with active learning that

propose to mitigate the labeling effort, have not considered the influence of annota-

tors in their model. Our results show that, SocialAnnotator can compliment active

learning and establish reliable, prompt and accurate label information. We have

demonstrated that by using our methodology, we improved the accuracy of our base

classifier by ≈ 7%. In our current approach while calculating the distance between

two users, we only consider a very few interactions between them. In future we want

to apprehend more interactions as well as more context information unobtrusively.

Also in terms of evaluating the performance of the annotators we are not considering
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the complexity of the queries. If we evaluate the annotators based on how many

queries he or she has answered in that case it does not properly reflect the true

efficiency and effectiveness of them. Here the complexity of the query reflect how

subtle the activity was. For example, during performing an activity, the user might

be doing another activity for a very short period of time. The information about

that would be fundamental for our model to learn. So if an annotator were to answer

that, it would make a profound impact in learning the feature representation. For

this reason we want to investigate how we can define the sample complexity in fu-

ture and make the active learning process more effective. One more important factor

for making active learning effective is considering the availability of the annotators.

This is important because the timing to pose the query is important. If we provide

the query to the user in the middle of the night, then generally a prompt response

is not expected. In future we want to address this issue of annotator availability.

We want to monitor the users phone usages and social network interactions without

needing any feedback from them and add more sensor modalities like ambient in-

frastructure sensor to record the movements in detail. We also plan to do the regret

anaylsis of our algorithm and derive the upper-bound in future. Another important

aspect we did not address in our work is the underlying loss of efficiency for employ-

ing annotator selection model. We intend to investigate and quantify the trade off

between traditional active learning approach without annotator selection and with

annotator selection. We can then understand the true improvement of our proposed

approach. If the annotators provide misleading labels in the earlier iterations then

the annotator selection methodology will fail to adapt and eventually the selected
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candidates will be wrong. In such cases we want to investigate trust region based

policy optimization in future to address this problem and ensure we do not explore

to unknown region while doing exploration for other candidate annotators.
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[84] Francisco Javier Ordóñez Morales and Daniel Roggen. Deep convolutional
feature transfer across mobile activity recognition domains, sensor modalities
and locations. In Proceedings of the 2016 ACM International Symposium on
Wearable Computers, ISWC ’16, pages 92–99, 2016.

[85] Liangying Peng, Ling Chen, Zhenan Ye, and Yi Zhang. AROMA: A deep
multi-task learning based simple and complex human activity recognition
method using wearable sensors. IMWUT, 2(2):74:1–74:16, 2018.

[86] Akhil Mathur, Tianlin Zhang, Sourav Bhattacharya, Petar Velickovic, Leonid
Joffe, Nicholas D. Lane, Fahim Kawsar, and Pietro Liò. Using deep data aug-
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