
Sampling Within k-Means Algorithm to Cluster Large
Datasets

Team Members: Jeremy Bejarano,1 Koushiki Bose,2 Tyler Brannan,3 Anita Thomas4

Faculty Mentors: Kofi Adragni5 and Nagaraj K. Neerchal5

Client: George Ostrouchov6

Technical Report HPCF–2011–12, www.umbc.edu/hpcf > Publications

Abstract

Due to current data collection technology, our ability to gather data has surpassed
our ability to analyze it. In particular, k-means, one of the simplest and fastest clus-
tering algorithms, is ill-equipped to handle extremely large datasets on even the most
powerful machines. Our new algorithm uses a sample from a dataset to decrease run-
time by reducing the amount of data analyzed. We perform a simulation study to
compare our sampling based k-means to the standard k-means algorithm by analyzing
both the speed and accuracy of the two methods. Results show that our algorithm is
significantly more efficient than the existing algorithm with comparable accuracy.

Key words. k-means, clustering large datasets, sample size, tolerance and confidence
intervals.

AMS subject classifications (2010). 65C20, 62H30, 62D05, 62F25.

1 Introduction

Scientific researchers are currently collecting vast amounts of data that need analysis. For
example, NASA’s Earth Science Data and Information System Project collects data from
seven satellites called the Afternoon Constellation. Each satellite simultaneously measures
atmospheric, oceanic, and chemical readings from different parts of the world. In total, they
transmit three Terabytes (1 Terabyte = 1024 Gigabytes) of data per day to Earth. Datasets
such as these are difficult to move or analyze.

Analysts often use clustering algorithms to group data points with similar attributes.
Though various clustering algorithms exist, our research focuses on Lloyd’s k-means algo-
rithm which iterates until the algorithm converges. It must calculate N · k distances per
iteration, where N is the total number of data points which are to be assigned to k clus-
ters. These distance calculations are time-intensive especially with multi-dimensional data.
Dr. George Ostrouchov suggested that sampling could ease this burden. The key challenge

1Department of Mathematics, Brigham Young University
2Department of Applied Mathematics, Brown University
3Department of Mathematics, North Carolina State University
4Department of Applied Mathematics, Illinois Institute of Technology
5Department of Mathematics and Statistics, University of Maryland, Baltimore County
6Oak Ridge National Laboratory

1

d Best Average
1 0.0000 0.0004
2 0.0000 0.0001
3 0.0001 1.2570
4 0.0000 0.0062

Table 1.1: Absolute difference between the standard and sampler accuracy values (in per-
centages).

was to find a sample size that was large enough to yield accurate results but small enough
to outperform the standard k-means’ runtime. To counter this problem, we introduced a
sampling function within the k-means algorithm. The sample size n is calculated after every
iteration. A random sample of size n is then used in the next iteration of the algorithm.
Once the algorithm converges on our sample, the entire dataset is classified into clusters,
and the k centers of the clusters are calculated.

We perform a simulation study to compare the efficiency and accuracy of our algorithm,
henceforth referred to as the Sampler, to the results obtained by simply running the standard
k-means, henceforth called the Standard on the entire dataset. Both best and average
accuracy on a scale from 0 to 100 were examined for each algorithm after each simulation’s
twenty trials. Table 1.1 lists the absolute difference between the two algorithms’ accuracy
values for the number of dimensions d. The algorithms have almost identical accuracies.
Let t1 be the Standard ’s total runtime and t2 be the Sampler ’s total runtime. Figure 1.1
plots the ratio t1/t2 versus number of dimensions. Thus, the sampler was t1/t2 times faster
than the standard as indicated by the vertical coordinate. Therefore, we conclude that the
sampler algorithm matches the accuracy of k-means while significantly decreasing runtime.

Figure 1.1: Ratio of total times of twenty trials (t1/t2).

The report is organized as follows. Section 2 introduces this problem in the context of
both k-means algorithms and hypothesizes sampling as a solution. Section 3 discusses the
implementation of sampling within the k-means algorithm and how sample size is determined.
Section 4 presents the results of the simulation study for datasets having different cluster
patterns and dimensions, examining the accuracy and runtimes of our methods in comparison
to the standard k-means algorithm found in R [4].

2

2 The Algorithm and Incorporation of Sampling

2.1 The k-Means Algorithm

The k-means algorithm [2] is a heuristic method of cluster analysis: the grouping of data
points to illustrate underlying similarities. Given a set of observations X = (x1, x2, . . . , xN)
and a set of k means, X̄ = (x̄1, x̄2, . . . , x̄k), this algorithm partitions N observations into
k clusters, S1, S2, . . . , Sk, with k ≤ N . Clusters are determined based on each obervation’s
Euclidean distance from each mean. The distance of every observation in X from each mean
in X̄ is computed. Observations are subsequently classified to the cluster Sj whose center
they are the closest, thereby minimizing the within-cluster sums of squares. Forming clusters
in this manner is known as the assignment step. The update step involves computing new
centers by finding the means of all the observations in a particular cluster. The assignment
and update steps are performed iteratively until convergence occurs. Convergence is said to
occur when, in a particular iteration, no data point is reclassified to a new cluster.

Typically, k-means is run multiple times, and the“best classification” is recorded, since
a poor choice of initial centers can result in incorrect classification and may even prevent
the algorithm from converging. “Best classification” is determined by comparing the within-
cluster sum of squares for each run; the run having the minimum within-cluster sum-of-
squares is identified as the “best classification”.

2.2 Sampling Within k-Means

Our algorithm, the Sampler, is a modification of Lloyd’s k-means algorithm [1] found in the
software R [4]. Initially, the assignment step runs on only a minute sample of the dataset,
as discussed in Section 3.3. Once these points are classified, the algorithm proceeds to the
update step. Next, the sample is updated using a function named block_sample. The
purpose of this function is to determine the size of the sample needed for the next iteration.
Section 3.1 discusses the block_sample function in detail. There are two difficulties in
randomly picking a sample from the dataset in each iteration: choosing random points
from a large dataset is time-consuming and is complicated by the need to sample without
replacement. This is especially difficult as the target datasets that we intend to use are
extremely large. This enlarges what are referred to as NUMA (Non-Uniform Memory Access)
issues. If we are to analyze only a small sample of the whole dataset randomly scattered
across all the data, the Sampler will lose considerable time efficiency as it jumps around to
read these data points. To minimize runtime, we estimate the maximum sample size n∗ that
the algorithm will need. Additionally, memory is saved since a new matrix containing only
the first n∗ data points of a random permutation of the original dataset is stored, rather
than all N points. We estimate the maximum size

n∗ = k

[
1

N
+
(w

2z∗

)2
]−1

, (2.1)

where the values of w and z∗ rely on a desired width of a confidence interval for the cluster
means. In constructing this confidence interval, we take the standard deviation to be one,

3

which is the maximum since the data has been centered and sphered. Additionally, to keep
our calculations consistent with Section 3.1, we apply a finite population corrector, taking N
as our population cluster size, so as to overestimate rather than underestimate the maximum
sample size.

Thus, only n∗ points are randomly chosen from our data and stored in a new dataset
where n∗ � N . When a sample of size n is needed, the first n points of this new dataset
are chosen. This prevents repeated NUMA issues by storing the part of the dataset that the
algorithm uses contiguously in memory. Hence we only need to access consecutive points in
our dataset, reducing our runtime.

When the algorithm converges, i.e., no points change their classification in a particular
iteration, we have a subset of the population that has been clustered into k clusters. On
the basis of the centers obtained, all N points in the dataset are now classified, and k new
centers are computed one last time based on the clusters. These k centers and k clusters are
the final output of our sampling algorithm.

3 Calculating Sample Size

3.1 Determination of Sample Size within Each Iteration

To cluster all the observations in our population, we need to find the centers (means) of each
cluster using k-means. In order to do this, we construct a confidence interval of a chosen
width around the means of each of the clusters in the sample, and estimate the sample size
needed for that confidence interval. For each of the k clusters, we use the sample mean
of each cluster x̄j , (for j = 1, 2, . . . , k), as an estimate for the means for the population
clusters. For large samples, by the central limit theorem we can say that for each of the
clusters, the sample mean follows an approximate normal distribution. Therefore, given a
confidence level C, the confidence interval is of the form

x̄j ± z∗
σj√
nj

j = 1, . . . , k

where σj is the population standard deviation for cluster j, nj is the size of the sample
needed from cluster j, and z∗ is the upper (1− C)/2 critical value for the standard normal
distribution. The value of z∗ is determined within the algorithm depending on the confidence
interval input by the user. In our problem, we are drawing samples without replacement, i.e.,
in every iteration, the additional points we choose do not belong to our existing sample set.
We also consider each sample point as coming from a cluster in the population. However,
we do not know the sizes of the clusters in our population. Because of this fact, our sample
size may not remain small in comparison with the population size, and therefore, we need
to make use of a finite population correction (fpc) [3, pages 27–28]. Since we are trying to
apply a confidence interval to the mean of every cluster, we need to know the population size
corresponding to every cluster. We call these population cluster sizes Nj. Since we do not

4

know the exact clusters in our population, we can estimate Nj by examining the quantity

ncj

n
,

which is the proportion of sample points that were classified into cluster j in the previous
sample. Here ncj refers to the number of points of the previous sample that were classi-
fied into cluster j by the previous iteration, and n is the previous sample size. Then our
population cluster sizes become

Nj =
ncj

n
N. (3.1)

Hence, our confidence interval takes the form

x̄j ± z∗
σj√
nj

√
Nj − nj

Nj

,

which can be simplified to

x̄j ± z∗σj

√
1

nj

− 1

Nj

.

If the chosen width of the above confidence interval is to be w, we get the following equation

w = 2

(
z∗σj

√
1

nj

− 1

Nj

)
. (3.2)

Solving the above expression for nj we have

nj =

[
1

Nj

+

(
w

2z∗σj

)2
]−1

. (3.3)

Once the sample size for each cluster is determined, the sample size n to be used in the next
iteration is:

n =
k∑

j=1

nj. (3.4)

3.2 Estimation of variance

Within each iteration of our Sampler algorithm, we recalculate the sample size for the desired
confidence interval. As shown in Equation (3.3), this calculation requires an estimate of σj

for each cluster Sj for j = 1, 2, . . . , k. Appealing to the central limit theorem, we treat the
points within each cluster x ∈ Sj with x ∈ Rd as normally distributed along each dimension,
centered at the true cluster centers µj ∈ Rd with standard deviation Σj ∈ Rd×d. Also,
we assume that each dimension is independent and thus Σj = diag ((σ1,j)

2, . . . , (σd,j)
2) .

Therefore,
Si

j ∼ N
(
µi

j, (σi,j)
2
)
. (3.5)

5

Note that throughout this section we use superscripts to denote a projection onto the ith
component dimension: thus x ∈ Rd but xi ∈ R for i = 1, . . . , d and Si

j as the set (here
the j-th cluster) whose elements have been projected onto the the i-th dimension. In our
algorithm we chose to estimate σi,j using the rough estimator

6σ̂i,j = max
x∈Sj

xi −min
x∈Sj

xi. (3.6)

This then leaves us with d·k estimates of standard deviations. Each σ̂i,j for j = 1, 2, . . . , k
and i = 1, . . . , d could potentially be used to calculate a sample size in Equation (3.3),
however, we wish only to produce one estimate σ̂j for each cluster. We thus define the
estimate of standard deviation (only in the sense that we use it to determine sample size)
for each cluster as the largest estimate among each dimension:

σ̂j := max
i

σ̂i,j. (3.7)

3.3 Initial Sample Size

In the first iteration of our algorithm, the Sampler clusters a minute sample from the dataset.
Our block_sample function has yet to run; thus we need an initial sample size. That size is
important since block_sample uses information from the previous iteration. Specifically, if
p1, p2, . . . , pk are the true proportions of the population data points for the k clusters, then
we want our initial sample to have approximately p1, p2, . . . , pk proportions of points from
the corresponding cluster.

To obtain a representative first sample, we can construct a confidence interval for the
proportions [5, pages 411–415]. Choosing a confidence level of C and a width of w, the
sample size is determined below. The value z∗ in Equations (3.8) and (3.9) represents the
critical value for the (1−C)/2 upper of the standard normal distribution. We use the worst-
case scenario of p = 0.5 to determine the variance, so that we get a conservative estimate of
the sample size required.

w = 2

(
z∗
√

p(1− p)

n

)
(3.8)

n =

(
2z∗
√

p(1− p)

w

)2

(3.9)

Solving for n with w = 0.06 and C = 95%, we get n ≈ 1000. Our code takes this number as
given. Note that if the size of the dataset is less than 1000, the Sampler will simply use the
entire dataset, no different than the Standard.

6

4 Simulation Study

4.1 Accuracy and Efficiency of k-Means Sampler

In examining the accuracy and efficiency of the two algorithms, we perform studies to com-
pare the classifications, cluster centers, and runtimes.

Accuracy (Acc) is measured by the percentage of points correctly classified. The Eu-
clidean norm between the true centers µj of our generated dataset and the centers x̄j deter-
mined by the algorithms is used as a measure of error

k∑
j=1

‖x̄j − µj‖ = Err. (4.1)

The time taken is simply the wall clock time observed for each of the two algorithms. Note
that for the Sampler, the time taken to randomize the data as discussed in Section 2.2 is
included. Randomization is essential for this algorithm in case the data has underlying
patterns. Hence, this time cannot be ignored when making comparisons. Additionally, the
time taken to center and sphere the data is included for both algorithms.

4.2 Data Generation

For our study we generate test data as follows. We generate the points within each cluster
x ∈ Sj with x ∈ Rd from normal distributions.We generate points across every dimension i
such that they are normally distributed along each dimension, centered at the true cluster
centers µj ∈ Rd with standard deviation Σj ∈ Rd×d (we use the same notation as in Section
3.2). Each dimension is generated independently and thus Σj = diag ((σ1,j)

2, . . . , (σd,j)
2).

Again,
Si

j ∼ N
(
µi

j, (σi,j)
2
)
. (4.2)

For our study, all points generated by the parameters (µi
j, σi,j) are said to have a true

classification of j.

4.3 Results

Our first study examined four datasets, of one, two, three, and four dimensions. We used a
95% confidence level and a width of 0.01 in all our studies. The cluster sizes were all equal
in this study. Results for N = 119, 603, 200, k = 4, with each algorithm run 20 times on the
same dataset, are given in Tables 4.1 and 4.2. The maximum sample size n∗ calculated for
all our datasets is 613, 845. Notice that this is only 0.5132% of the entire dataset, and assists
in the speedup of our algorithm. For the 20 trials, Table 4.1 gives the best results obtained
from each of the two algorithms, for each dataset. Table 4.2 lists the averages and standard
errors (s.e.) of the three statistics reported. In each of the 20 trials, both the algorithms were
provided with identical centers, with different centers across runs. “Best results” refer to the
particular run of the algorithm that gave the minimum within-cluster sum of squares. The

7

(a)One Dimension Acc Err Time
k-Means 99.0679 0.0235 1113
k-Means Sampler 99.0679 0.02277 419

(b)Two Dimensions Acc Err Time
k-Means 98.7610 0.0331 1619
k-Means Sampler 98.7610 0.0331 770

(c)Three Dimensions Acc Err Time
k-Means 99.8563 0.0044 11787
k-Means Sampler 99.8562 0.0044 1151

(d)Four Dimensions Acc Err Time
k-Means 99.9719 0.0039 15729
k-Means Sampler 99.9719 0.0039 1830

Table 4.1: Best results obtained from generated data: comparison with true clusters.

third column in Table 4.1 gives the total time taken for all the 20 runs. This is significant
since it allows us to compare the times taken by both the algorithms in achieving similar
accuracies and errors. It is seen that they both have nearly identical errors and accuracies,
but the Sampler significantly and consistently outperforms the Standard in terms of time.

We notice a marked difference in results as we proceed to higher dimensions. In the case
of three-dimensional data, we notice that both the algorithms do not perform as well on
average, seen in Table 4.2 (c). However, if we examine the best results, we achieve 99.9%
accuracy and Err = 0.0044 for both the algorithms. Thus, eventually, both algorithms give
good results but show a large difference in time. The Sampler takes only 1, 151 seconds for
20 trials, compared to 11, 787 seconds for the Standard as seen in Table 4.1 (c). Therefore,
for three dimensions, it is considerably more efficient to use the Sampler. Similar conclusions
can be drawn from four-dimensional data in Tables 4.1 (d) and 4.2 (d).

Our second study was on datasets with different types of clusters. These datasets also
had 119, 603, 200 points. Although the data was generated in a similar way compared to the
first study, the cluster sizes were not equal, along with other minor changes in parameters.
Results for these datasets are very similar to the ones observed in Tables 4.1 and 4.2. Once
again, best results, accuracies, errors, means and standard errors are all very similar for both
the algorithms. Likewise, we also notice a significant decrease in time when the Sampler is
used.

Figure 4.1 summarizes the time results for the data used in first study. It plots the times
taken for all 20 trials for both the algorithms, against the number of dimensions. Notice that
although both the algorithms increase in time with dimensions, this increase is minimal in
case of k-means sampler, showing an approximately linear increase.

Results for two of the 20 trials from three-dimensional data are given in Table 4.5. Table
4.5 (a) gives the results for a particular run when both the algorithms performed well. Table
4.5 (b) gives results for a particular run when both the algorithms performed poorly. These
results illustrate two vital points.

8

(a)One Dimension Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 99.0679 0.0000 0.0235 0.0000 55.6679 2.2271
k-Means Sampler 99.0675 0.0001 0.0259 0.0008 20.9617 0.1414

(b)Two Dimensions Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 98.7610 0.0000 0.0331 0.0000 80.9680 1.4953
k-Means Sampler 98.7611 0.0000 0.0332 0.0000 38.5109 0.1475

(c)Three Dimensions Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 76.1653 5.7822 10.0762 2.3218 589.3905 112.7390
k-Means Sampler 77.4223 5.4655 9.9661 2.3000 57.5484 0.2734

(c)Four Dimensions Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 69.9848 6.9862 12.9450 2.9797 786.4350 148.6328
k-Means Sampler 69.9910 6.9855 12.9360 2.9776 91.4829 2.5904

Table 4.2: Summary of results obtained from generated data: comparison with true clusters.

(a)Two Dimension Acc Err Time
k-Means 98.7328 0.1371 1873
k-Means Sampler 98.7324 0.1376 778

(b)Three Dimensions Acc Err Time
k-Means 99.9092 0.0275 8455
k-Means Sampler 99.9092 0.0276 1161

Table 4.3: Best results obtained from second version of generated data: comparison with
true clusters.

(a)Two Dimension Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 98.7328 0.0000 0.1371 0.0000 93.6284 3.0807
k-Means Sampler 98.7329 0.0004 0.1369 0.0004 38.8944 0.0805

(b)Three Dimensions Acc s.e.(Acc) Err s.e.(Err) Time s.e.(Time)
k-Means 88.8786 4.4288 13.9884 4.6640 422.7588 102.2657
k-Means Sampler 88.8703 4.4272 13.9645 4.6713 58.0578 0.3901

Table 4.4: Summary of results obtained from second version of generated data: comparison
with true clusters.

(a)Correct Clusters Accuracy Error Time
k-Means 99.8564 0.0044 95.0131
k-Means Sampler 99.8564 0.0044 56.6900

(b)Incorrect Clusters Accuracy Error Time
k-Means 37.5989 21.3402 1090.0576
k-Means Sampler 37.7884 21.4123 57.1936

Table 4.5: Example differences in runtime.

9

Figure 4.1: Variation in time for best results across dimensions.

First, for all 120 trials with our 6 datasets, both algorithms either work extremely well
or quite poorly. In none of our trials did one algorithm do well while the other did poorly.
When we ran our studies, we noticed that the poor performance can be attributed to poor
random initial centers, e.g, starting with three centers from the same true cluster. Since
both the algorithms begin with identical centers in every trial (but different centers between
trials), if our algorithm does choose a sample that is representative of the entire dataset, it
follows that both algorithms should perform similarly. Thus, the fact that both algorithms
either succeed or fail together for each trial gives further credence to the assertion that our
algorithm can match k-means in terms of accuracy.

Second, Table 4.5 alerts the reader as to why the Sampler has drastically better times
in three and four dimensions. If the algorithms fail, they both usually reach the maximum
number of iterations, 250 for our studies, or a number close to that. However, the Sampler
runs approximately 250 times on no more than n∗ = 613, 845 points while the Standard
uses all 119, 603, 200 points. Therefore, the Standard takes significantly more time to get a
wrong answer. As mentioned in Section 2.1, k-means is usually run mutltiple times due to
the possibility of poor random initial centers. Thus, this time issue is quite important as
an analyst may run k-means five times to ensure the best results. But, if the Standard fails
even once, the runtime will be significantly longer than for the Sampler.

5 Conclusion

Further work on this project might include a more comprehensive study both on more varied
test datasets as well as on real weather datasets. This is especially important considering
that this preliminary study was performed on rather tame datasets. Also, these datasets
should analyze the performance of the algorithm on varied values of k. Lastly, this paper
showed that the algorithm was accurate for relatively low sample sizes. We would like to
analyze this further to see how accurate the algorithm is for even lower sample sizes. We
could find the lowest sample sizes, by manipulating width and confidence level, for which
the algorithm would be acceptably accurate.

In order for our algorithm to be a success, it needs to meet two benchmarks: match
the accuracy of the standard k-means algorithm and significantly reduce runtime. Both

10

goals are accomplished for all six datasets analyzed. However, on datasets of three and four
dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the
correct classifications on some trials. Nevertheless, our algorithm consistently matches the
performance of the standard algorithm while becoming remarkably more efficient with time.
Therefore, we conclude that analysts can use our algorithm, expecting accurate results in
considerably less time.

Acknowledgments

This research was conducted during Summer 2011 in the REU Site: Interdisciplinary Pro-
gram in High Performance Computing (www.umbc.edu/hpcreu) in the UMBC Department
of Mathematics and Statistics, funded by the National Science Foundation (grant no. DMS–
0851749). This program is also supported by UMBC, the Department of Mathematics
and Statistics, the Center for Interdisciplinary Research and Consulting (CIRC), and the
UMBC High Performance Computing Facility (HPCF). The computational hardware in
HPCF (www.umbc.edu/hpcf) is partially funded by the National Science Foundation through
the MRI program (grant no. CNS–0821258) and the SCREMS program (grant no. DMS–
0821311), with additional substantial support from UMBC.

References

[1] S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information
Theory, 28 (1982), pp. 128–137.

[2] J. MacQueen, Some methods for classification and analysis of multivariate observa-
tions, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, L. M. Le Cam and J. Neyman, eds., vol. 1, Berkeley, CA: University of
California Press, 1967, pp. 281–297.

[3] N. K. Neerchal and S. P. Millard, Environmental Statistics, CRC Press LLC,
2001.

[4] R Development Core Team, R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-
07-0, http://www.R-project.org/.

[5] D. D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical Statistics
with Applications, Cengage Learning, seventh ed., 2008.

11

