
© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising 
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

 

B. Wang, R. Wang and H. Song, "Toward the Trustworthiness of Industrial Robotics Using Differential 
Fuzz Testing," in IEEE Transactions on Industrial Informatics, 2022, doi: 10.1109/TII.2022.3211888. 
 

https://doi.org/10.1109/TII.2022.3211888  

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

 
Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

https://doi.org/10.1109/TII.2022.3211888
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 1

Toward the Trustworthiness of Industrial
Robotics Using Differential Fuzz Testing

Bingqing Wang, Rui Wang, and Houbin Song.

Abstract— Intelligent robots are a current application in
Industrial Internet of Things (IIoT), with their trustworthi-
ness being a topic of considerable research interest. Vul-
nerabilities in robot software may affect the trustworthi-
ness of robotics. To detect these vulnerabilities in robot
software, this study proposes a differential fuzz testing
method. The main idea is to continuously execute test
cases for different versions of software packages to detect
inconsistencies among outputs and eventually discover
vulnerabilities. First, test cases are generated, combining
seed generation and mutation, after which the measured
model of the packages in RVIZ is built and the generated
seeds are executed. The differences among inconsistent
outputs are calculated and the causes of the differences
analyzed. Two evaluation metrics for the inconsistencies
and seeds are presented. This method is applied to the
crucial package in ROS-MoveIt!. The results show that the
arm.go() of moveit commander has joint angle overflow.

Index Terms— differential fuzz testing, IIoT, robotics,
trustworthiness

I. INTRODUCTION

W ITH the development of information technology and
industry, the applications of Industrial Internet of

Things (IIoT), such as intelligent robots and sensors in the
aircraft and medical device manufacturing industries to name
a few, have increased. The deep integration of interconnected
devices and physical controls exposes systems that use this
technology to new forms of attack and therefore, the applica-
tion of the IIoT presents challenges such as security issues.
Vulnerabilities are defects in the specific implementation of
hardware, software, protocols, and system, which can enable
attackers to gain unauthorized access or destroy the system.
If the software of robots has such vulnerabilities, the in-
telligent robots will cause high-risk situations and even be
life-threatening. As guaranteeing the trustworthiness of robot
software is extremely important, it is a key research topic. For
example, ROS (robot operating system) is a universal robot
development platform [1], [2], [3], which runs many software

Manuscript received on April 29, 2022; revised on June 10, 2022
and July 29, 2022; accepted on September 20, 2022. This work was
supported by the National Natural Science Foundation of China under
Grants 61877040, National Key R&D Plan of China (2019YFB1309900).

B. Wang and R. Wang are with the Beijing Key Laboratory of
Electronic System Reliability Technology, College of Information En-
gineering, Capital Normal University, Beijing 100048, China (e-mail:
3301369886@qq.com;rwang04@cnu.edu.cn).

H. Song is with the Department of Information Systems, University
of Maryland, Baltimore County, Baltimore, MD 21250 USA (email:
h.song@ieee.org).

packages; hence, vulnerabilities hidden in any package version
of ROS would affect multiple users. When the static analysis
tool Coverity was used to test various ROS communication
function packages, such as ros comm, actionlib, and roslib,
multiple dangerous vulnerabilities, such as buffer overflow,
integer overflow and unsafe YAML loading, were discovered.
The alarming fact is that static analysis is a traditional software
testing method that does not run the target program [11] but
rather checks the correctness of the program by analyzing and
viewing the syntax, structure, process, and interface of the
source program [12]. Hence, it can only detect a limited set of
common errors, such as array binding operations and potential
deadlock problems [13]. Its main disadvantages include a high
false positive rate and the poor readability of test results.

Over the past few years, fuzzing [30], a gray box testing
method [14], has been widely applied in the software testing
field, such as operating systems [18], databases [19], web
applications [20] and blockchain [21]. Fuzzing finds software
vulnerabilities by providing unexpected inputs and monitoring
abnormal results [16] and is thus, one of the most common
software testing techniques for detecting bugs and vulnera-
bilities. The effectiveness of fuzzing mainly depends on the
quantity and quality of the generated test cases. At present,
the main generation methods of test cases can be classified
into generation-based and mutation-based methods. Under
generation-based methods, there are some popular fuzzers
such as ContractFuzzer [24] and SPIKE [25], which generate
inputs based on specific formats. In mutation-based methods,
fuzzers mutate existing test cases to generate new test cases
without any input grammar. Fuzzing does not consider the
internal implementation of the target program, but rather uses
the malformed inputs to cause the target program to produce
anomalies and find vulnerabilities [17]. Unlike traditional
testing methods, fuzzing [22] is not limited to the internal
implementation details and complexity of the system. Hence, it
not only saves time and effort, but it also has a low false alarm
rate [31]. Therefore, fuzzing is an efficient and convenient test
method to ensure the trustworthiness of the ROS packages.
However, due to the particularity of ROS, two challenges
remain.

• The basic execution unit of ROS is a node and it
has both asynchronous and synchronous data stream
communication. As different communication mechanisms
have different data formats, specific test cases for each
mechanism must be generated.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

• Some software packages often incorporate RVIZ (3D
visualization tool for ROS) to monitor and control the
behaviors of robotics. Therefore, this study cannot use
current fuzzing tools to test the software packages.

Although some packages are implemented in different
languages or different versions, they can achieve the same
function. For these packages, this study proposes a differ-
ential fuzz testing method to verify the accuracy of various
functions in practical applications. The concept of differential
fuzz testing is to continuously provide invalid, unexpected or
random data as inputs of several programs with the same
functions and monitor these programs to catch ”different
behavior” in terms of certain outputs. First, a fuzz testing
framework for ROS packages is established. According to
different requirements, the generation and mutation strategies
to generate test cases are designed, after which the concept
of differential testing [21] is integrated into the framework.
This study uses a unified test case file as the fuzzing input
and opens the visualization tools to execute the test. The
main idea is to continually generate test cases for different
communication mechanisms so that as many inconsistencies
as possible can be found among execution results. Finally, the
method is applied to experiments on robotic arm control and
the function packages that implement motion planning in robot
joint space and workspace are tested: moveit commander im-
plemented by python and move group interface implemented
by C++. This study generates 15246 seeds using fuzzer. It
is found that 9266 seeds triggered inconsistencies between
moveit commander and move group interface. After analysis,
move group interface was found to be more accurate than
moveit commander on some function implementation. The
arm.go() of moveit commander has joint angle overflow.
Contributions This study makes the following contributions.

• It implements a differential fuzz testing framework
RROSFuzz (differential Fuzz testing combining RVIZ
with ROS packages) to efficiently find the differences
and vulnerabilities among different versions of packages.

• Two evaluation metrics for differential fuzzing are intro-
duced and four generation strategies and three mutation
strategies for test case generation are defined.

• RROSFuzz is applied to test the most widely used
software packages in ROS: move group interface and
moveit commander. Many inconsistencies are found and
move group interface is verified as more accurate than
moveit commander.

Paper Organization The rest of paper is organized as follows.
Section II provides a background on ROS and robot software
package, Section III introduces the design of RROSFuzz, Sec-
tion IV shows the evaluation results, and Section V proposes
future directions for improvement. Section VI surveys related
work and finally, Section VII concludes the paper.

II. BACKGROUND

A. Robot operating system
ROS is a flexible framework for writing robot software

[4], which integrates a large number of tools, libraries and
protocols, and thus, can help in considerably simplifying

the creation of complex tasks and stable behavior control
under diverse robot platforms [6], [7]. The ROS open-source
community has many software packages that can achieve the
same function; however, these packages are implemented by
different languages and institutions. The ROS runtime “graph”,
a peer-to-peer distributed communication mechanism, creates
a network that connects all processes [29] and it is through
the network that nodes can interact with each other and obtain
information published by other nodes. The computation graph
implements other communication mechanisms, such as topic,
service, and parameter server communication mechanisns. The
message is the data format used by the topic communication
mechanism and each message corresponds to a data type. ROS
messages not only support standard data types (integer, float
and boolean), but also include array and custom data types.

The rapid development of ROS has made it a standard of
the robotics field. Therefore, the vulnerability hidden in any
package version of ROS might result in serious consequences.
For example, MiR robots use ROS to expose the runtime
”graph” without any authentication, which allows attackers
to arbitrarily command the robot. The ROS communication
package ros comm has a buffer overflow vulnerability, which
allows attackers to cause denial of service.

move_group_interface
(C++)

moveit_commander
(Python)

GUI

ROS Param Server

m
ov

e_
g

ro
u

p

Robot  Controllers

Robot   3D Sensors

Robot  Sensors

JointT Rajectory
Act ion

PointCloudT opic

MoveGroupAct ion

Get  IK Service

Robot  status 
publishers

jointstatusT opic

Urdf Srdf Config

PickAct ion

Get  FK Service

Plan Path Service

Get  Planning
 Scene Service

T F

Fig. 1. Architecture diagram of MoveIt!.

B. Robot software package

• MoveIt! is the most advanced software for movement op-
erations [5] and is widely used in industry, business, de-
velopment, and other fields. As shown in Fig. 1, MoveIt!
provides three interfaces, including C++, python, and
GUI. The C++ and python interfaces can use the API pro-
vided by move group interface and moveit commander
to implement motion planning in the joint space and
workspace of the robot. These three interfaces can be used
to interact with move group through the communication
of action and service. Move group is the core node of
MoveIt! and it can integrate other independent functional
components to provide users with action instructions and
services [8]. By the communication topic and service,
move group receives point cloud messages, joint status
messages, and robot TF coordinate transformation from
the robot. In addition, move group requires the ROS
parameter server to provide the kinematic parameters of

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TOWARD THE TRUSTWORTHINESS OF INDUSTRIAL ROBOTICS USING DIFFERENTIAL FUZZ TESTING 3

Fig. 2. Overview of RROSFuzz: It consists of the test case generation module and differential fuzzing execution module.

the robot. These parameters will be generated based on
the unified robot description format (URDF) file during
the the setup assistant. The URDF is a standard XML
file. It defines a series of labels (such as links and joints)
to describe the robot model. The URDF file needs to be
written and implemented by the users.

• RVIZ is a 3D visualization tool, which is compatible with
various robot platforms. In RVIZ, XML can be used to
describe the size, quality, position, material, joints, and
other attributes of any physical objects such as robots
and surrounding objects. At the same time, RVIZ can also
graphically display the information of the robot’s sensors,
movement status and the changes in the surrounding
environment in real time.

III. RROSFUZZ DESIGN

An overview of RROSFuzz is given in Fig. 2. It consists
of two major parts: test case generation and differential fuzz
execution. The input parameters refer to the message type
and topic name. They are passed to the test case generation
module by the command line interface (CLI). The test case
generation module oversees handling input, seed generation
and mutation. The sequence tag enables each set of seeds
to obtain a unique number, which facilitates the review and
analysis of subsequent steps. Seed generation and mutation
are mainly based on seed generation and mutation strategies.
After the test cases are generated, RROSFuzz enters the
execution module for testing. The execution module uses the
topic mechanism to realize node communication (II.A), and
combines with the ROS visualization tool RVIZ to realize
human–computer interaction. According to the results of the
execution, the module will calculate the difference informa-
tion. Seed selection will keep and sort candidate seeds for
the next iteration mutation based on the difference. When
the execution output is inconsistent, the potential exception
is recorded for cause analysis and a report is obtained. The
implementation of the important components are depicted in
Fig. 2. This study also introduces the evaluation indicators to
improve the quality of seeds in differential fuzzing execution.

A. Input Handling
Input handling creates a dictionary and dynamically imports

ROS message modules. By executing shell instruction, this

study obtains arguments from CLI, which are then parsed
to achieve msg type. RROSFuzz receives msg type as input
and determines the type. When the type is not known, it
will create a dictionary via dynamically loading the ROS
message file. The dictionary contains ROS message type and
its parent module. This type of file ends with .msg and
describes the fields of the ROS message. The ROS message
fields can be used to generate source codes based on different
programming languages. Then, the RROSFuzz will generate
the ROS message class.

B. Seed Generation

Seed generation mainly involves generating initial seeds
based on the generation hypothesis strategies for a given ROS
message type. Algorithm 1 first creates a strategy dictionary
(Algorithm 1 line 3). Next, the algorithm obtains a list via
combining the itertable fields in the message class into a new
iterator through the zip function (Algorithm 1 line 4). Then,
it traverses the list, creates a type dictionary for the message
type, and maps the type dictionary to a strategy dictionary
(Algorithm 1 line 6-8). Finally, the message class is filled
according to the strategy dictionary to generate initial seeds
(Algorithm 1 line 10). RROSFuzz decorates the seeds with
given(), calls the seed generation module to randomly generate
test cases, and sets max examples in the setting() decorator to
control the number of test cases. Details of the generation
strategies are shown in Table 1.

Algorithm 1 Seed Generation

1: Input: a class describes properties of msg type C
2: Output: generated initial seeds S
3: strategy dict ← empty-dict
4: iterator ← combine(C.name, C.type)
5: /* Mapping type dictionary to strategy dictionary */
6: for name,type in iterator do
7: type dict ← ros type to dict(s type)
8: strategy dict ← mapping strategies(type dict[name])
9: end for

10: S ← strategy generator(msg class,strategy dict)

Generation Strategies. As shown in Table I, four strategies
are defined, including array, time, string, and combination
strategies based on the st module of the hypothesis package

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

TABLE I
GENERATION STRATEGIES

Message The corresponding function of Call strategy
Type The strategy dictionary
string string() st.text
time time() Time
array array() st.lists

complex ros type to dict() combination strategy

in Python to guide seed generation. For example, a st.text
strategy is defined to guide seed generation for string. For
the complex message type such as PointStamped in ROS, a
combination strategy is defined. This strategy will split the
message type, each part corresponding to its own strategy,
and finally combine them together and return a combination
strategy corresponding to the complex message type.

C. Seed Mutation
Seed mutation can also be used to generate seeds. As Algo-

rithm 2 shows, the algorithm first sets up mutation seeds and
mapping dict (Algorithm 2 line 3-4). The initial state of the
mutation seeds and mapping dict is empty. The mapping dict
represents the mutation strategy used for each seed. Then, the
algorithm traverses strategy list and selects the corresponding
mutation strategy to mutate the seeds (Algorithm 2 line 6-
9). The mutated seeds will be saved in the mutation seeds
list (Algorithm 2 line 8). To facilitate the evaluation of the
effectiveness of the mutation strategy, the algorithm saves the
seed and mutation strategy as key and value in mapping dict
respectively (Algorithm 2 line 9). Finally, the mutated seeds
will be written into the file (Algorithm 2 line 11).

Algorithm 2 Seed Mutation

1: Input: initial seed S, mutation strategies strategy list
2: Output: mutated seeds file f
3: mutation seeds ← empty-list
4: mapping dict ← empty-dict
5: /*Mutate and retain seeds and mutation strategy used*/
6: for i=0 → len(strategy list) do
7: S’ ← mutate(S,strategy list[i])
8: mutation seeds ← append(mutation seeds,S’)
9: mapping dict[S’] ← strategy list[i]

10: end for
11: f ← writeFile(mutation seeds)

The specific mutation strategies are shown in Table II. The
decimal part can have infinite digits when floats are converted
to binary and this causes a loss of precision. Thus, the bit flip
strategy focuses on the integers and the integer part of floats. It
realizes mutation via transforming integer to binary and setting
the step size and flip amount. The second mutation strategy is
arithmetic and achieves some operations by setting the upper
and lower limits of addition and subtraction. The final mutation
strategy, presets some “interesting values” to substitute data
and achieve mutation. As shown in Fig. 3, the “interesting
values” are generally numbers that may cause overflow.

Using the aforementioned three mutation strategies, this
study generates abundant test cases. In addition, four combined

Fig. 3. Examples of ”interesting values”.

strategies to further improve the randomness and diversity of
mutation in each iteration are defined.

• Comb1: Combination of the bit flip and arithmetic.
• Comb2: Combination of the bit flip and interesting.
• Comb3: Combination of the interesting and arithmetic.
• Comb4: Combination of the interesting, bit flip and

arithmetic.

TABLE II
MUTATION STRATEGIES

Name Object Type Description Of Mutation Strategy
bit flip float,integer transform integer to binary

set the step size and flip amount
arithmetic float,integer perform addition and subtraction

on integer and float
interesting string,time set different interesting values

float,integer different types of data

D. Unified Execution and Difference Computation
After mutating the seeds, the metric difference in the ROS

packages’ execution of seed backtracking and mutation in the
next iteration is compared. The RROSfuzz execution provides
a unified runtime environment for the proposed target program.

The basic execution unit of ROS is a node. ROS also
has a tool for managing nodes, namely the master, which is
equivalent to the management center of the entire network
communication architecture. The node is first registered at the
master, which then incorporates the node into the entire ROS
program. The first step is to get the message data that can
directly feed into target programs implemented by ROS pack-
ages with different versions. Executing command roscore turns
the master on. Then, one needs to enter into the workspace and
compile the packages via executing catkin make command.
Finally, the nodes are started through the rosrun command,
and RVIZ is opened through the command line or the launch
file is executed to realize the graphical display of external
information. The second step is to analyze the output results
and calculate the difference in the next iteration.

E. Evaluation Indicators
The main purpose of ROS is to facilitate the writing of

robot programs. Based on the reliability and availability of
data involved in robot development, this study specifies two
indicators: early input filtering and reasonable difference.

• Early Input Filtering. When the fuzzer generates test
files according to the input type of the target program, it
does not consider the rationality of the data in the actual
development and application. The purpose of establishing
the input filtering indicator is to remove data that do not
meet the actual application of the test module, such as

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TOWARD THE TRUSTWORTHINESS OF INDUSTRIAL ROBOTICS USING DIFFERENTIAL FUZZ TESTING 5

nan, inf, -inf and other data that are too large or too small,
keep some meaningful experimental data to achieve the
purpose of data optimization.

• Reasonable Difference. Different programs may present
a difference in processing data accuracy. To prevent this
difference impacting the results, a reasonable difference
indicator is set. Data analysis generally includes qual-
itative analysis and engineering calculation. Qualitative
analysis usually keeps two decimals for data whereas en-
gineering calculation keeps significant decimals between
four and six. To ensure the validity and actual meaning
of the data, the range is set between 10−4 and 10−6. In
the specific experiment, the function of the program and
application are combined to make a reasonable selection
within this range.

Based on the aforementioned two indicators, the evaluation
system are further defined. First, RROSFuzz completes the
generation of test cases through predefined generation and mu-
tation strategies. Next, the seeds that undergo the early input
filtering process will be retained. Then, the difference infor-
mation is automatically calculated by executing the program.
This information will be assessed using reasonable difference.
The quality of the seeds after the evaluation will be much
higher, further improving the efficiency of the experiment and
the accuracy of the experimental results.

Algorithm 3 Seed Selection

1: Input: mutated seeds S’, maximum difference record
2: Output: a list candidate seeds,

seed difference priority diff pri
3: diff ← run(S’)
4: candidate seeds ← sort(candidate seeds,cmp=diff pri)
5: /* Keep and sort seeds based on difference */
6: if isEvaluated(diff) then
7: diff pri[S’] ← diff
8: if diff>reord then
9: record ← diff /* update maximum difference */

10: candidate seeds ← append(candidate seeds,S’)
11: else
12: candidate seeds ← insert(candidate seeds,S’,diff)
13: end if
14: end if

F. Seed Selection

Difference can be used to measure the seeds’ ability of
inducing platforms to make differential decisions. Candidate
seeds are selected based on the metric difference. As Al-
gorithm 3 shows, the algorithm first obtains the difference
after executing seed (Algorithm 3 line 3). The initial candi-
date seeds are sorted based on the difference priority of each
seed (Algorithm 3 line 4). If the difference after executing
a mutated seed meets the reasonable difference indicator, the
algorithm will save the difference of the seed in diff pri (Algo-
rithm 3 line 6-7). If a mutated seed enlarges the difference after
executing, the maximum difference is updated and the seed is
appended directly in candidate seeds (Algorithm 3 line 8-10).
Otherwise, the seed is inserted into the candidate list based on

the difference priority (Algorithm 3 line 12). Seeds with high
priority will be considered as high-quality seeds and to have
a higher probability of triggering vulnerabilities. These seeds
will be preferentially selected in the next mutation iteration.
When the final execution output is inconsistent, an exception
is recorded and the cause is analyzed.

IV. EVALUATION

In this study, the proposed method is applied to the
MoveIt! package, which realizes the control of the robot
arm. For robots, the key challenge is to define a path for
the robot arm to pick up an object, especially when there
are obstacles within the environment. ROS provides MoveIt!,
including moveit commander implemented by Python and
move group interface implemented by C++, which, together,
can achieve the same function and help users to realize the
movement of the robot arm. For developers, the accuracy and
reliability of both the interface implementation will directly
affect the development process. The experiment details are
presented here and the following two questions are answered:
(i) Could RROSFuzz mutate high-quality seeds? (ii) Could
RROSFuzz find issues between packages through differential
fuzz testing?

A. Data and Environment Setup

ROS has released multiple versions for different Ubuntu
versions, such as Kinetic Kame, Melodic Morenia and Lunar
Loggerhead. Considering the fairness, to provide a stable
operating execution environment, the officially recommended
version, Kinetic Kame, was uniformly used. After choosing
the ROS Kinetic, all experiments were performed atop the
machine with 4 cores (Intel i5-8250U @1.60GHz), 8 GB of
memory, and Ubuntu 16.04 as the host operating system.

B. Experiment Process

This study established the execution flow of the tested
module. In Fig. 4, the six-axis robot arm description file
probot anno.xacro was prepared, after which the moveit setup
assistant was started by running the setup assistant.launch to
perform a series of configurations on the robot arm. After the
configuration was complete, a ROS package was generated. By
running demo.launch in the ROS package, the visualization
tool RVIZ could be started, the robot model loaded and
the move group node executed. In the testing process, RVIZ
needed to use some packages to display robot information,
such as effort, grid and robot model. Moreover, RVIZ inte-
grated motionPlanning to choose the path planning algorithm.
Finally, the nodes moveit fk c written by move group interface
and moveit fk demo written by moveit commander were run.
The function realized by forward kinematics was to set the
angles of six joints as the target pose. After the movement
of the robot arm was complete, the pose of the end effector
of the robot arm could be obtained. Therefore, the input data
for the tested module were the angles of the six joints. Array
was used to store the values of the joint angles of the six-axis
robot arm. The specific experiment process is as follows:

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Fig. 4. The execution flow of the tested module.

• Generate test case. First, the test case generation mod-
ule was executed and array type message data were
generated. The CLI interface received parameters and
transmitted them to the basic module for seed handling.
The basic module created a type dictionary of the array
and loaded the message file. Next, the strategy processing
module called the generation and mutation strategies to
complete the initial seed generation and mutation. Finally,
a test case file was sent to the next module. For example,
Fig. 5 shows a test case file with JSON format. The test
case is to represent the joint angle value of the six-axis
robot arm, which can be provided to two programs to
achieve the movement of robot arm.

Fig. 5. Example of the generated test case.

• Perform differential fuzzing. First, moveit fk c and
moveit fk demo continuously accepted test cases as in-
puts. The robot arm used test cases as target positions.
After completing the movement, two programs output
poses. Next, the difference information about two sets
of poses was calculated and the evaluation module was
entered. The seeds that met the evaluation indicators were
retained, after which we backtracked to the seed pool to
continuously generate more high-quality seeds. Finally,
the recorded difference information was combined to
analyze the reasons for the inconsistent outputs.

C. Could RROSFuzz generate high-quality seeds?

Within four days, RROSFuzz generated and executed 15246
non-redundant seeds. Among them, 60.78% of the seeds
successfully triggered the differential outputs. In the process
of mutation, RROSFuzz mutates seeds via basic mutation
strategies and combination strategies. If a seed was evaluated
as a high-quality seed, we would backtrack and obtain the
name of the mutation strategy it used. Then, we applied the
same mutation strategy to mutate the seed to generate more

high-quality seeds. Furthermore, to evaluate the efficiency and
quality of different mutation strategies, this study classified
2646 seeds based on the mutation strategies used.

Fig. 6. Statistical data of mutation.

As mentioned in Section III.C, this study designed three
basic and four combination mutation strategies, the perfor-
mance statistics of which are presented in Fig. 6. For the basic
strategies, compared with bit flip, arithmetic and “interesting”
strategies can mutate more seeds that can trigger inconsis-
tencies. The type of test case required by the target program
is an array of floating point numbers. The array stores the
six joints’ angles which has a relatively small range, such
as [-3.9212,3.9212]. Considering that floating-point numbers
are converted to binary, a loss of precision in the fractional
part is expected. Therefore, this study only focused on the
integer part in performing bit flip. While performing bit flip
for integers, some data exceeded the joint range, resulting
in invalid test cases. Arithmetic and interesting mutation
strategies are used for the fractional part and many values
can be set, which do not cause the data to exceed the valid
range. Therefore, they can mutate more high-quality seeds.
For the combination strategies, the third combination strategy,
arithmetic and interesting, can mutate 594 seeds to trigger
inconsistencies; the proportion is close to a quarter (22.4%).
This does not mean that the bit flip mutation strategy was
invalid, but in the process of combining with other strategies,
it may have filtered some inputs, which had a greater impact on
the value of the data,. Hence, it is reasonable to conclude that
RROSFuzz can mutate high-quality seeds from the statistics.

D. Could RROSFuzz find issues between packages
through differential fuzz testing?

In the experiment, 15246 test cases were successful exe-
cuted. Each test case was an array of six joints’ angles; the
angle of each joint should be within the range of the robot
arm description file. If it exceeded the range, the proposed
target programs would catch exceptions instead of interrupting
the execution of the programs. The distribution of test cases
is shown in Fig. 7. 80% of the test cases had this feature:
the number of joints’ angles close to zero was less than
three. The main reason is that after the evaluation process, we
backtracked the seeds that could trigger inconsistencies and
called the mutation strategies to generate more high-quality
seeds. In other words, in the test cases, 70% of the data was
more likely to trigger inconsistent outputs. Next, statistical
analysis was conducted on the inconsistent results.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TOWARD THE TRUSTWORTHINESS OF INDUSTRIAL ROBOTICS USING DIFFERENTIAL FUZZ TESTING 7

Fig. 7. The distribution of test cases.

As can be seen in Fig. 8 and Tab. III,through analyzing
the data, approximately 60.78% of the test cases could trigger
inconsistent outputs. The inconsistency outputs consist of the
data difference and positive and negative difference. Approx-
imately 48.9% of the data showed inconsistencies between
positive and negative. The outputs with inconsistent positive
and negative included two aspects, the coordinate values of
the end position of the robotic arm and the rotation values of
the posture. The proportion of the former was 17.6% and the
latter 31.3%. The data for the difference range of 10−2-10−1

accounts for 11.8%; however, approximately 11.9% of the data
difference range was less than 10−2. To a certain extent, these
inconsistencies indicate that the inaccuracy in the process of
realizing the forward kinematics of the robot arm affected the
results.

TABLE III
STATICTICAL DIFFERENCE

Difference Numbers Proportion

range <10−2 5980 39.3%
10−2-10−1 1796 11.8%

positive and
negative

coordinate values 2670 17.6%
rotation values 4760 31.3%

Fig. 8. The statistical results of difference information.

The reason for these differences is further analyzed here.
At the beginning, it should be noted that the functions imple-
mented by moveit commander and move group interface were

to control the robot arm movement. The following three steps
were required to complete the movement.

First, the robot arm moved to the initial position, which was
the robot pose set in the setup assistant.

Second, the target position needed to be set. In this exper-
iment, the array was used as our test case.

Finally, the robot arm moved to the target position, and the
difference was calculated by obtaining the pose of the end
effector of the robot arm.

In the whole aforementioned process, we verify them one by
one. The first step involved moving the robot arm to the initial
pose. After the robotic arm returns to the initial position, the
function that outputs the current position in two programs was
called. The result was that both reached the set initial position.
Next, the process of the setting target pose was verified,
which involved reading the test case file. Considering whether
the data read will be different due to rounding. Therefore,
after the test case file was read, all the data was output to
compare consistency. By analyzing the results, all the data
were consistent. The aforementioned step-by-step verification
showed that there was no problem in the first two processes
of the experiment. The only difference, here, was the last step,
which involved realizing the movement of the robotic arm.

TABLE IV
THE RESULTS OF THE CALCULATION

Close to Close to
move group interface moveit commander

seed numbers 6909 2357
proportion 74.56% 25.44%

Therefore, this study reviewed the source code of the
robot arm movement to further analyze the reasons. In
moveit commander and move group interface, arm.go() and
arm.move() respectively was used to realize the movement of
the robot arm. During moving, it first called the kinematics
planning algorithm and then planned an accessible path based
on the target pose. The kinematics planning algorithm used
by two functions was uniformly set in the setup assistant. As
a result, the reason for the inconsistencies was that, due to
the rotation of the joints, deviations were generated when
the robot arm was moving. The data for the 9266 sets of
inconsistent results generated was analyzed and verified. The
statistical results are shown in Table IV. Among the calculation
results of each set, 74.56% of the outputs are closer to
move group interface. As shown in Fig. 9, it is found that,
due to the overflow of the joint angle, the moveit fk demo
implemented by moveit commander caused the robotic arm
to not accurately reach the specified position. Furthermore,
because of overflow, the kinematic planning algorithm may not
be able to plan the path for the robotic arm. Next, we verify
the results and discuss the rationality of using this method.
Validation Method. The accuracy of moviet commander and

moveit group interface is verified by obtaining the final joints’
angles.
Rationality of Using this Method. This study analyzed the

whole process. First, the inputs were given, the six joints’

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Fig. 9. The results of experiments.

angles being stored in the array. The robot arm moved to the
final position, which can be expressed in the form of joints’
angles. This can be expressed in other ways, such as pose. By
giving the inputs, the robot arm returned to the initial position,
and then moved to the proposed target position. After the end
of the robot arm movement, the pose of the end effector of
the robot arm was used as an evaluation indicator. However,
because of DH parameters (the transformation relationship
from the end of the robot arm to the base coordinate system)
cannot be obtained, it was not feasible to verify the accuracy
of moveit commander and moveit group interface based on
pose. This study also obtained the final joints’ angles after the
robot arm movement. Then, the results were compared with
the set joints’ angles one by one. Finally, the difference was
calculated. The smaller the difference, the more accurate the
output pose. Whether it was the current joints’ angles or the
pose of the end effector of the robot arm that were output, the
overall meaning they represent was the same. Although they
used different representation methods, they all represented the
state of the robot arm after moving.

Fig. 10. the compare() function
.

Validation Process. This study defined and initialized the
container in the C++ program. After executing a test case,
the function getCurrentJointValues() was called and the results
were saved in the container. When all the test cases were
executed, a file f was generated. The python program also exe-
cuted a test case, called the function get current joint values()
and saved the results in a list. Then, as shown in Fig. 10,
the function compare() was defined to realize automatic cal-
culations. The function used the decimal module in python to
ensure accuracy. Finally, the function was called to perform
calculations during comparing differences. By outputting the

calculated results, most of the results were found to be closer
to the outputs of move group interface.

MoveIt! is of great significance to the development and
application of the robot. RROSFuzz found that the function
of moveit commander has vulnerability in achieving robot
arms movement. This vulnerability threatens the security and
trustworthiness of robot. If this vulnerability is not resolved, it
is possible to cause destruction during manipulating the robotic
arm, such as colliding with obstacles. Feedback has been
given to the vendor. As an integrated development platform,
ROS also contains many other important software packages.
The proposed method can be applied to the whole robot
system. In the specific application, the software packages
are only needed to provide the CLI interface parameters,
that is, the message type. Then, this method can be used to
generate initial seeds and mutate seeds. Finally, differential
fuzz testing can be performed. Hence, this study also answered
the second question raised at the beginning of this section.
Thus, inconsistencies in robot software packages can be found
using this method.

V. DISCUSSION

This study proposes a differential fuzz testing framework
and finds some issues. However, certain deficiencies remain.
These are to be improved upon in future work.

• More mutation strategies design. To generate more
abundant and random seeds, this study designs three
mutation strategies; however, more strategies are required.
Currently, this study just implements mutation for some
data types. In the future, more mutation strategies, such as
dictionary (that replaces/inserts tokens that automatically
generated or user-provided files), havoc (makes consider-
able mutations to the original file) and splice (joins two
files together to get a new file), will be developed.

• Support Instrumentation for Coverage. Program in-
strumentation involves the insertion of some probes into
the program on the basis of ensuring the original logic
integrity of the target program. These probes are essen-
tially code segments of information collection and can
be assignment statements and function to collect coverage
information. Through executing the program with probes,
the running characteristic data can be output into the
program. Future work will aim to achieve instrumentation
in the proposed method to obtain path coverage.

• More software packages in robot. The main idea is
to continuously generate seeds for different versions
of robot software packages, in order to find as many
inconsistencies among results as possible, and eventually
discover vulnerabilities. We first applied RROSFuzz to
moveit commander and move group interface. However,
robots have a considerable open source community. There
are many different versions implemented by different
languages or different organizations. These packages that
are also widely used may have some fatal vulnerability in
implementation. In the future, we will find more software
packages for testing.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TOWARD THE TRUSTWORTHINESS OF INDUSTRIAL ROBOTICS USING DIFFERENTIAL FUZZ TESTING 9

VI. RELATED WORK

Trustworthiness of Robotics. In 2017, the number of
vulnerabilities related to the robot system disclosed was 1493,
which is 1/10 of the number of vulnerabilities announced
in the whole year. These vulnerabilities directly threaten the
trustworthiness of the robot. In terms of robotics trustworthi-
ness, it has probably gone through three periods. Early on,
the research objects were the threat analysis of specific robot
application scenarios, such as household robots and unmanned
aerial vehicle. The focus was on remote communication and
control trustworthiness. Then, researchers explored the robot
framework. Mcclean et. al [19] verified the known trustwor-
thiness risks of the robot system (such as no authentication
and clear text communication) and the complexity of the
Cyber-Physical System [28]. Sean Rivera also proposed ROS-
defender [26], a comprehensive security architecture for ROS-
based robotic systems to defend against a large number of
attacks on ROS. Nowadays, researchers mainly investigate the
formal verification of protocols or communication between
nodes, establishment of runtime verification framework, and
encryption of publish subscribe model module. Jia JuanJuan
[20] proposed a formal verification method to verify the func-
tional correctness of the communication in robot programs.
By using a combination of model checking and theorem
proving, she verified the XML-RPC protocol code in the robot
system, including 205 functions of 63 program files. Debjyoti
Bera used a formal verification method to study the weak
termination of ROS systems [27].

Fuzzing Technique. As a software testing technology, the
core idea of fuzzing is to automatically or semi-automatically
input random data into the program and monitor program
exceptions (crash and assertion failure) to detect potential
program errors. By using fuzzing technology, the robustness
and security of the application can be ensured. Godefroid
et. al used the fuzzing tool SAGE [23] to find more than
20 unknown vulnerabilities in large Windows applications.
Jiang Bo et. al proposed ContractFuzzer [24], a fuzzing tool
applied to smart contracts. The tool performs fuzzing and
runtime monitoring to detect vulnerabilities that occur during
execution, which can generate fewer false positives. Aitel
[25] successfully discovered multiple unknown vulnerabilities
through the fuzzing tool SPIKE.

Differential Testing. Differential testing is a kind of random
test, which is a component of mature technology for large-
scale software and systems. In general, there are two cases of
differential testing. The first analyzes the difference between
executing different inputs on the same programs while the
other analyzes the difference between executing the same in-
puts on multiple programs or variants. When using the second
differential testing, two or more comparable systems must be
available. These systems provide many detailed mechanically
generated test cases. If the results are different, or one of the
systems loops or crashes indefinitely, the bug-exposuring test
is performed. For example, DLFuzz [21] continuously mutates
the inputs to maximize the neuron coverage and prediction
difference between original inputs and mutated inputs to guide
the DL system to expose incorrect behaviors. DeepXplore [22]

is a white box differential testing framework of system testing
for real world DL.

VII. CONCLUSION

This paper proposes RROSFuzz, the differential fuzz testing
method, to efficiently discover vulnerabilities of robot software
packages implemented by different programming languages
and versions. In this method, a fuzzer that generates abundant
seeds within a short time is designed. The fuzzer includes
four generation strategies and three mutation strategies. Then,
two evaluation metrics are introduced: early input filtering
and reasonable difference, which improves the quality of
seeds. Finally, taking guidance from difference information,
seeds are preserved and selected. In addition, this method is
applied to an experiment involving robotic arm control. By
executing 15246 inputs on moveit commander implemented
by Python and move group interface implemented by C++, it
is found that 60.78% showed differential performance. Analy-
sis showed that move group interface is more accurate than
moveit commander on some function implementations. The
function of moveit commander has the joint’angle overflow
vulnerability in realizing robot arm movement. Although the
differential fuzz testing method is used to find the problems
with robot software packages, some points can be optimized
in the design of the method, such as the introduction of an
instrument to capture the path coverage and the design of
richer generation and mutation strategies for test cases.

REFERENCES

[1] M. Basheer and A. Varol, ”An Overview of Robot Operating System
Forensics,” 2019 1st International Informatics and Software Engineering
Conference (UBMYK), 2019, pp. 1-4.

[2] Y. Saito, F. Sato, T. Azumi, S. Kato and N. Nishio, ”ROSCH:Real-
Time Scheduling Framework for ROS,” 2018 IEEE 24th International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2018, pp. 52-58.

[3] Huang J, Erdogan C, Zhang Y, et al. ROSRV: Runtime Verification for
Robots[C]//International Conference on Runtime Verification. Springer,
Cham, 2014: 247-254.

[4] S. Rivera, S. Lagraa and R. State, ”ROSploit: Cybersecurity Tool for
ROS,” 2019 Third IEEE International Conference on Robotic Computing
(IRC), 2019, pp. 415-416.

[5] Bai CC, Cheng WY, Guo HT. Brief Analysis of open source
ROS robot Operating System [J].Science and Information Technology,
2019,000(036):2.

[6] Z. Ma, L. Zhu, P. Wang and Y. Zhao, ”ROS-Based Multi-Robot System
Simulator,” 2019 Chinese Automation Congress (CAC), 2019, pp. 4228-
4232.

[7] S. M. D. Almeida and L. V, ”Design and Simulation of Micro Servo
Robot in Robot Operating System,” 2020 IEEE Recent Advances in
Intelligent Computational Systems (RAICS), 2020, pp. 91-95.

[8] Liu RJ, Wang F, Zhang Q. ROS based trajectory planning of robotic
arm [J].Navigation, positioning and timing.2016(6).

[9] Lian-Lian Sun, Yi-Na Shao, Mei-Xiang You, Cheng-Hua Li.ROS-
mediated BNIP3-dependent Mitophagy Promotes Coelomocyte Survival
in Apostichopus Japonicus in Response to Vibrio Splendidus infec-
tion[J].Zoological Research,2022,43(02):285-300.

[10] S. Kuzin and G. Sziebig, ”SROS: Educational, Low-Cost Autonomous
Mobile Robot Design Based on ROS,” 2020 IEEE/SICE International
Symposium on System Integration (SII), 2020, pp. 1052-1057.

[11] Wang Ying, Wang Bingqing, Guan Yong, Li Xiaojuan, Wang Rui.
Differential Fuzzing Method for ROS [J]. Journal of Software,
2021,32(06):1867-1881.

[12] J. Wang, B. Chen, L. Wei and Y. Liu, ”Skyfire: Data-Driven Seed
Generation for Fuzzing,” 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 579-594.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

[13] Dai LC, Zhang YR, Li FZ. A Brief Analysis of traditional Software
Testing Methods [J].Science and Technology Wind, 2011(16):136-137.

[14] Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,
Huizhong Li, and Xiang Shi. 2019. EVMFuzzer: Detect EVM Vulner-
abilities via Fuzz Testing. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Association for Computing
Machinery, New York, NY, USA, 1110–1114.

[15] S. Pani, H. V. Nallagonda, S. Prakash, V. R, R. K. Medicherla and R.
M. A, ”Smart Contract Fuzzing for Enterprises: The Language Agnostic
Way,” 2022 14th International Conference on COMmunication Systems
& NETworkS (COMSNETS), 2022, pp. 1-6.

[16] Yuanliang Chen, Yu Jiang, Jie Liang, Mingzhe Wang, and Xun Jiao.
Enfuzz: From ensemble learning to ensemble fuzzing. arXiv preprint
arXiv:1807.00182, 2018.

[17] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li,Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing.In CollAFL:Path
Sensitive Fuzzing, page 0. IEEE.

[18] Google. honggfuzz. http://honggfuzz.com/, 2016.
[19] J. McClean, C. Stull, C. Farrar, D. Mascareas, A preliminary cyber-

physical security assessment of the robot operating system (ros), in:
Proc. SPIE, vol. 8741, 2013, pp. 874110–874110–8.

[20] Jia JJ, Shi ZP, Guan Yong, et al. Formal Validation of XML-RPC
protocol implementation in ROS [J]. Minicomputer Systems, 2015,
36(12): 2629-2633.

[21] Guo J, Jiang Y, Zhao Y, Chen Q, Sun JG. DLFuzz: Differential Fuzzing
Testing of Deep Learning Systems. In: Proc. of the 26th ACM SIGSOFT
Intĺ Symp. on Foundations of Software Engineering (FSE). New York:
Association for Computing Machinery, 2018. 4-9.

[22] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang,
Yu Jiang: ICS Protocol Fuzzing: Coverage Guided Packet Crack and
Generation. DAC 2020: 1-6.

[23] Godefroid P, Levin M Y, Molnar D. SAGE: whitebox fuzzing for security
testing [J]. Communications of the ACM, 2012, 55(3): 40-44.

[24] B. Jiang, Y. Liu and W. K. Chan, ”ContractFuzzer: Fuzzing Smart Con-
tracts for Vulnerability Detection,” 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018, pp. 259-
269.

[25] Aitel D. The advantages of block-based protocol analysis for security
testing [J]. Immunity Inc., February, 2002, 105: 106.

[26] S. Rivera, S. Lagraa, C. Nita-Rotaru, S. Becker and R. State, ”ROS-
Defender: SDN-Based Security Policy Enforcement for Robotic Appli-
cations,” 2019 IEEE Security and Privacy Workshops (SPW), 2019, pp.
114-119.

[27] Bera D, van Hee K M, van der Werf J M. Designing weakly terminating
ROS systems[C]//International Conference on Application and Theory
of Petri Nets and Concurrency. Springer, Berlin, Heidelberg, 2012: 328-
347.

[28] Mansour Alali, Ahmad Almogren, Mohammad Mehedi Hassan, Iehab Al
Rassan, M. Bhuiyan, Improving risk assessment model of cyber security
using fuzzy logic inference system. Comput. Secur. 74: 323-339 (2018).

[29] Haoyue Wang, Yangyang Zhang, Jianxin Li, Richong Zhang, Zakirul
Alam Bhuiyan, RPS-TSM: A Robot Perception System Based on
Temporal Semantic Map. Proc. of SpaCCS Workshops 2017: 524-533.

[30] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, Aiguo Cui:HEALER: Relation Learning Guided Kernel Fuzzing.
SOSP 2021: 344-358.

[31] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, Yu Jiang: Zeror: Speed
Up Fuzzing with Coverage-sensitive Tracing and Scheduling. ASE 2020:
858-870.

BingQing Wang was born in 1997. She re-
ceived her M.S. degree from the College of infor-
mation engineering of Capital Normal University,
Beijing, China in 2022. She participated in the
National Natural Science Foundation of China
under Grants 61877040. Her main research di-
rection was robot software security. She and her
team proposed using the fuzzing and differential
fuzzing methods to find vulnerabilities in ROS
(Robot Operating System).She has participated
in the preparation of the paper. What’s more, she

has published a paper in the Journal of Software and also got a patent.
She applied for a CVE number.

Rui Wang is currently a Professor of Capital
Normal University, China. She received the B.S.
degree in computer science from Xi’an Jiao-
tong University in 2004 and received the Ph.D.
degrees in Computer Science and Technology
from Tsinghua University in 2012. Her research
interests include the safety and security of robot
system, formal verification and their applica-
tions in cyber-physical systems. Dr. Wang has
published more than 50 papers in international
conferences and Journals. She presided over 2

National Science Foundation of China and other projects. Dr. Wang
received the Best Paper Awards from CPSCom-2019, ICII 2019.

Houbing Song is a Tenured Associate Pro-
fessor of AI and the Director of the Security
and Optimization for Networked Globe Labora-
tory (SONG Lab, www.SONGLab.us), University
of Maryland, Baltimore County, Baltimore, MD
21250 USA. He received the Ph.D. degree in
electrical engineering from the University of Vir-
ginia, Charlottesville, VA, in August 2012. His
research interests include cyber-physical sys-
tems/internet of things, cybersecurity and pri-
vacy, and AI/machine learning/big data analyt-

ics. His research has been featured by popular news media outlets,
including IEEE GlobalSpec’s Engineering360. Dr. Song is a senior
member of ACM, and an ACM Distinguished Speaker. Dr. Song is
a Highly Cited Researcher identified by Clarivate (2021) and a Top
1000 Computer Scientist identified by Research.com. Dr. Song was a
recipient of the Best Paper Awards from CPSCom-2019, ICII 2019, ICNS
2019, CBDCom 2020, WASA 2020, DASC 2021, GLOBECOM 2021 and
IEEE INFOCOM 2022.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3211888

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 04,2022 at 15:37:35 UTC from IEEE Xplore.  Restrictions apply. 


	Blank coversheet.pdf
	Toward_the_Trustworthiness_of_Industrial_Robotics_Using_Differential_Fuzz_Testing

