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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA (")

by Thomas H. MclInisH (**) (), Joel N. Morsk (%) and Erwin M. Sanica (3)

Abstract. — Suppose an investor wishes to construct a portfolio of size k securities from a
population of n securities (k<n) such that a particular portfolio or target beta (B,) is achieved.
Since B, is a random variable, there will be some difference between a portfolio’s realized beta and
the target beta. We investigate the problem of finding the combination of k securities that minimizes
the variance of B,, or equivalently, minimizes the probability of a particular difference in target
and realized beta. We also seek answers to a number of related questions. These are concerned
with the effect on the variance of B, of naive selection of securities, of the choice of k, and of the
presence of a risk-free asset. We also examine the characteristics of securities included in the
optimal portfolio.

Keywords: Finance; investments; portfolio theory; beta, and risk.

Résumé. — Supposons qu’un investisseur souhaite construire un portefeuille ayant k valeurs
boursiéres extraites d’une population de n valeurs boursiéres (k <n), en vue @ obtenir une certaine
valeur B, du beta. Puisque B, est une variable aléatoire, il y aura une différence entre la réalisation
du béta par le portefeuille et la valeur visée du béta. Nous examinons le probléme de trouver la
combinaison de k valeurs mobiliéres qui minimise la variance de B, ou, de fagon équivalente, qui
minimise la probabilité d’une différence donnée entre le béta visé et le béta réalisé. Nous cherchons
aussi a répondre a un certain nombre de questions connexes : effet, sur la variance de B,, d’une
sélection naive des titres boursiers; du choix de k ; de la présence dactifs sans risque. Nous
examinons aussi les caractéristiques des titres inclus dans le portefeuille optimal.

I. INTRODUCTION

One normative implication of modern portfolio theory is that investors
holding diversified portfolios should only be concerned with systematic risk.
The most prominent measure of systematic risk is beta (+). Hence, investors
are advised to select a portfolio with a beta corresponding to their risk level.
But there is a dearth of advice in the literature concerning how to select
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132 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

stocks so that a portfolio has the desired beta (3). One method (discussed by
Blume [3]) would be to form a portfolio comprising a large number of stocks
having betas approximately equal to the desired level. Large portfolios are
suggested because there is evidence that individual betas are unstable [4],
though Bey [2] found that only a minority of stocks had unstable betas. But
Blume and Friend [5] have reported that a large proportion of portfolios are
undiversified. Even so, as early as 1975, 17% of individuals assessed risk in
terms of beta. The method suggested by Blume [3] of achieving a target beta
is obviously impractical for these portfolios.

Taking another approach, a number of authors have investigated using
accounting information and other fundamental characteristics of the firm to
predict betas [7, 12, 16 to 19]. In a recent study of this type, Hill and Stone [7]
developed a method which involves decomposing the accounting measures of
systematic risk into components representing both financial and operating
risk. Hill and Stone concluded that “forecasts of future market betas can be
significantly improved if one can predict future financial structure and opera-
ting risk” ([7], p. 629). While they show promise as methods for controlling
portfolio betas, the usefulness of techniques such as that of Hill and Stone
are limited by (1) the need for better models of the relationship between
market betas and the characteristics of the firm and (2) the requirement for
considerable amounts of accounting data.

This paper addresses the problem of selecting stocks for a small portfolio
so as to achieve a target beta. Some might argue that undiversified portfolios
should be concerned with unsystematic risk more than with systematic risk.
Nevertheless, we feel that there is sufficient justification for the work presented
here. Despite theoretical objections, many individual investors holding undiver-
sified portfolios undoubtedly seek to achieve a target beta. Further, we
indicate below how unsystematic risk may be incorporated into the model,
at least indirectly.

In our approach to selecting a portfolio to achieve a target beta, we make
po assumption concerning the attribution of the uncertainty of a security’s
beta. We only note that this uncertainty exists because beta is a random
variable, and that this uncertainty can be measured using standard sfatistical
measures. Barry [1] has shown that uncertainty concerning portfolio risk/re-
turn parameters can affect optimal portfolio choice. We develop a model for
finding the optimal portfolio of size k among a finite universe of stocks of
size n where k<n. Among all the portfolios k having the desired beta, we

(5) Kalymon investigated the problem of assessing portfolio variance when the true values of
the parameters of the return distributions are unknown. But no attempt was made to determine
optimal portfolios nor was the analysis extended to systematic risk.
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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 133

define the optimal portfolio to be the portfolio which has the smallest variance
of portfolio beta. Our justification for this criterion is that a portfolio with
minimum variance of beta is also the portfolio that minimizes any difference
between realized and target beta.

Selecting a portfolio with this criterion suggests a number of related
questions. First, as the number of stocks in the portfolio is increased, what
is the rate of decrease in the variance of the optimal portfolio beta? If the
variance of beta for small optimal portfolios is large and decreases slowly as
portfolio size is increased, then large portfolios may be necessary to insure
that a portfolio has a desired beta. But if the variance of the betas of small
portfolios is small or if the rate of decrease in the variance as stocks are
added to the portfolio is great, then a portfolio with a desired beta can be
obtained with a small but properly selected group of stocks. Second, what is
the shape of the distribution of the variance of portfolio betas for various
portfolio sizes? If the distribution is heavy tailed, the implication is that
systematic methods of portfolio construction must be employed if an investor
wishes to be confident of achieving a portfolio beta near his target. Third,
do optimal portfolios generally contain securities whose estimated betas have
the smallest variance or securities with betas close to the desired portfolio
beta but having larger variances or is it some combination of small variance
and closeness to portfolio beta that is important? An answer to this question
might provide information useful in developings optimal portfolios from sets
of securities larger than those considered in this study. Fourth, given that
the beta and the standard error of the beta of the risk-free security are both
zero, will the risk-free security always (or usually) appear in the optimal
portfolio ? In the capital asset pricing model, unless only the market portfolio
is held, the risk-free security is always included in an investment port-
folio [6]).

We address these questions in the remainder of the paper. In section II we
describe the setting of this portfolio selection problem within capital market
theory. We present the optimization model which allows the achievement of
a minimum variance portfolio for a particular target in section III. In
section IV, the numerical results are presented and discussed. A summary is
given in section V,

. PORTFOLIO SELECTION

The Capital Asset Pricing Model (CAPM) as developed by Sharpe [14]
and Lintner {10] holds that:

R,=R,+B,(R,—R,), )
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134 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

where R; is the holding period return (HPR) on the i-th security, R, is the
risk-free rate, and R, is the HPR on the market. Beta (B;) is a measure of
the security or portfolio’s systematic risk. Defining r;, as the coefficient of
correlation between the return on security i and the return on the market,
and o; and o, as the standard deviation of the security and market return,
respectively, B;=(r;, 0:)/0,. Systematic risk is risk that a security shares with
the market while unsystematic risk is unique to a particular security. Standard
deviation is a measure of total risk (systematic plus unsystematic). The
coefficient of correlation (r;,) can be interpreted as the percentage of the
security’s risk that is systematic. Thus, beta is a measure of the amount of
systematic risk for a security relative to the amount of systematic risk for
the market (which has only systematic risk).

Suppose that an investor selects a target beta for his portfolio (8,), where:

B,=a;Bi+aBr+ ... +a B

ai=l,

' -

1
a;20i=1,2,..., k,

13

in which a,, a,, . . ., a, are the portfolio weights (i. e., the percentage of the
funds that are invested in the i-th security —note that we do not allow these
weights to be negative) and B,, B,, . . ., B, are the individual security betas.
B, indicates the portfolio manager’s risk tolerance. Our observation is that
the naive choice of securities to reach a target B, fails to recognize that the
variance of the realized (or ex post) B, can be controlled by a judicious
selection of the portfolio’s component securities.

In practice B; is estimated using ordinary least squares. Because we are
sampling from a population, the estimate of beta is a random variable subject
to sampling error. Hence, if an investor proposes a target beta (B,) of 1.5,
the realized B, might differ greatly from 1.5. We wish to minimize the
probability of any difference between target and realized beta.

Our objective is to choose a set of portfolio weights, a;, i=1,2,...,k
which minimize the variance of B, ex ante, where:

k
var(Bp)=o§p= Y a?o},
i=1

The problem is cumbersome since there are a large number of portfolios of
size k that can be chosen from a universe of n securities. And each of these
portfolios must be optimally constructed.

R.A.LR.O. Recherche opérationnelle/Operations Research



PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 135

Note that the approach taken here is not to solve the classical
Markowitz [11] portfolio problem in which a set of efficient (nondominated)
portfolios is generated by specifying a particular risk or return level. In our
formulation, we assume that all the relevant or market risk of a security is
expressed by its beta, which is the essence of Sharpe’s [15] “diagonal” model.
We further assume that the investor defines his risk preference in terms of a
beta (B,) for the entire portfolio. While ignoring unsystematic risk is strictly
suitable only for well diversified portfolios, we argue that our approach has
considerable practical appeal and, in addition, allows a number of insights
into the problem of portfolio selection to achieve a target beta. Unsystematic
risk may be incorporated into the model by the appropriate selection of the
candidate securities from which the portfolios ultimately are formed. More
direct ways of incorporating unsystematic risk into the model represent an
area for future research.

Before the detailed presentation of the model in section III, it may be
useful to give a brief example of the process being modeled. Suppose an
investor seeks a two-security portfolio with a target beta of one. Further,
assume that these two securities will be selected from a list of candidate
securities given in Appendix I (a). There are 91 potential portfolios, but
only 49 of these have one security with a beta above the target beta and one
with a beta below.

If the investor sets a target beta of 1, he can achieve that goal on an
ex ante basis with any one of the 49 portfolios. But B,, taken ex post for
these portfolios, may be substantially different. By finding optimal weights,
a;, for all 49 pairs of possible portfolios, the minimum cﬁp portfolio can be

found by comparison. For this example, it can be shown that cﬁp has a

minimum of .015, a maximum of .139, and a standard deviation of .023.
For the minimum variance portfolio with c§p= .015, the 99% confidence

interval, if sampling from a normal population, would be . 6325<B,<1.367.
For the worst case, where c§p=0. 139, this interval would be

—0.118<B,<2.118. The advantage of the proper selection and weights of
individual securities is apparent.

III. THE OPTIMIZATION PROBLEM

Let the portfolio weights be a;, and the individual estimates be B; and cﬁj.
The problem is:
Minimize:

k
2 __ 2 2
c3,= 2 ai op.. (1)
i=1
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136 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

Subject to:

for all subsets of size k=2, 3, . .., n. The overall minimum cﬁp portfolio is
then found by comparison. While this approach may be theoretically ineffi-
cient, the development of a nonlinear, mixed integer programming algorithm
to solve (1) over all subsets of size k simultaneously would be cumbersome (°).
Further, some of the questions addressed in the introduction require a
determination of the distributions of cgp for each k, and solving (1) over all
subsets simultaneously would not provide this evidence.
To solve (1), form the Lagrangian.

Minimize :
alo} +asop,+ ... tajol —k (@ +a+ ... +a.—1)
—X(as By +ar B+ ... +aB—B,), (2
differentiate with respect to the variables a,, a,, . . ., @, Ay, A, and solve

simultaneously the remaining k+2 equations. When (2) is solved for all
subsets of size k, the minimum variance portfolio of size k is found by
comparison.

(¢} The nonlinear mixed integer programming model to solve (1) over all subsets of size k is:
n
Minimize of, = 3. af x; 03,
- aj xj, k i=1
Subject to:

n
2 a;x;B;=Bp,
=t

z a;x;=1,
j=1
Y x;=k, k=23, . 1,
=1
a; < x;, j=1,2,...,n,
x;=0 or 1,
a;>0.
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IV. NUMERICAL ANALYSIS

We draw our candidate securities for the portfolios from a list given by
Fama [6], p. 123. Of his 30 securities, each described by a B; and a o, 14 are
chosen by drawing random numbers from a uniform distribution [see
Appendix I (a)]. These 14 securities comprise data set 1. To increase the
diversity of the data used, three additional data sets were constructed from
data set 1, as follows:

1. Data set 2: The first 13 securities in Appendix I (a) plus a risk-free
security for which B,,=0, 65 ,,=0.

2. Data set 3: The last ten securities in I(a) plus four additional securities
obtained by doubling the betas for securities 1-4 in Appendix I(a) and calcula-
ting revised Og; using the formula :

Gp,=0.0961+0.1307(B)).

[This formula was obtained by regression analysis of data in I(a).]

3. Data set 4: The last ten securities in Appendix I(a) plus four additional
securities obtained by halving the betas of securities 1-4 in Appendix I(a)
and calculating revised Op; using the formula in 2 above. Superior methods
of choosing the list of candidate securities represent an area for future
research.

To explain the computational difficulty and to defend our use of only
14 securities, recall that we wish to find the weights of each of the securities
in the portfolio of size k that yield the target beta, B,. We label a portfolio
“‘admissible” if:

min (B;) < B, < max (B)), i=1,2,...,k,
where B; represent the individual security betas in the subset of size k of the
set of n securities. An upper bound on the number of admissible portfolios

of size k is obtained when the target beta occupies the n/2 position in the set
of ranked individual betas. This upper bound is:

<n/.2) X ( "/2'> for n even,
i k—i

((n+'l)/2) X ((n-—l)‘/Z) for n odd,
i k—i

and:

vol. 18, n° 2, mai 1984



138 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

where i=k/2 for k even and i=(k + 1)/2 for k odd. For example, with n=14,
k=6, at most 1,225 portfolios must be constructed. With n=30, k=6, at
most 207,025 portfolios must be constructed.

We solve (2) for every possible admissible portfolio of size k=2, 3, ..., 6,
and target beta (B,=0.4, 1.0, 1.6) in each of the four data sets. We also
find the combination of a fourteen security portfolio that minimizes cgp for
each data set and target beta. Thus, our experimental design is 6x3 x4
(k, B,, data set). Appendix II(a) and (b) contain some descriptive statistics
for the distribution of o'ﬁp for each cell in this design. Note that for k=14,
only one minimum cﬁp portfolio can be constructed.

Recall from the introduction that there are four questions we wish to
answer concerning the properties of portfolios constructed in this manner.
These are: (1) What is the rate of decrease of the minimum oﬁp as k increases ?
(2) What is the distribution of cép for fixed k ? (3) What are the characteristics
of securities included in the minimum cf;p portfolio? and (4) What is the

usefulness of a risk-free asset in the pool of candidate securities? We address
these in turn.

The minimum cgy for each data set and target beta [see Appendix II(a)]
reveal that cﬁp decreases asymptoticially as k increases. Previous research
{see Wagner and Lau [20]) indicates that diversification benefits in terms of
reduction of total risk (i. e. variance) leveled off as the number of securities
in the portfolio reached ten to twelve. Our results are in terms of the
variability of the systematic risk represented by beta and are, therefore, not
directly comparable. But we also observe a “leveling off” or asymptotic
behavior of risk as a function of portfolio size.

One possible measure of the benefit of increased diversification is the width
of a 99%; confidence bound for the traget beta. This bound assumes B; and,
therefore, the linear combination B, is normally distributed. If this bound is
such that beta is estimated to within say, +25% of its value, then further
diversification would be unnecessary. Using this arbitrary measure, our results
indicate that portfolios of size 5 or 6 are sufficient. And these results are
achieved from a security population of size 14. If the security population is
larger, the 5 or 6 security portfolio is an upper bound on the size required
for maximum diversification benefits since more securities will allow more
and, therefore, possibly better portfolios to be constructed.

The distributions of ogp for particular k are described by the statistics

given in Appendix II(a) and (b). These distributions allow us to determine
the value of solving (1) or (2) to find the minimum cf,p portfolio, a time
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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 139

consuming process at best. If the cgp were relatively close, an investor might
only have to consider several combinations of k securities in constructing his
portfolio. If the cﬁp were widespread, some systematic and possibly costly
(as in our formulation) method of portfolio construction must be employed.
The statistics contained in the appendices reveal that the latter case is true;
in many cells of the experiment design, the distributions are fat tailed and
positively skewed. The exceptions occur usually when target B=1.6, a situa-
tion in which few admissible portfolios exist (*). To illustrate the problem,
consider data base 2 with target beta=1. Some characteristics of the probabi-
lity distribution of o-f,p for k=2are: min=0.0157, mean=0.0302,
range=0.059 24, o§p=0.0122, \/b—1=1.9009 and b,=6.925, where b, and
b, are the usual measures of skewness and kurtosis, respectively. If the
unwary investor selected one of the optimally constructed portfolios of size
2 from the 14 securities in the data base, his bounds on cép are
0.0157§c§p§0.07494 (®). If he employs our enumerative procedure his
optimal 999 bound on target beta=11s 1 + 3 (0.0157)'/2 or (0. 624, 1.375).
The distribution of cﬁp is a Type I Pearson, or J shaped with heavy tails.
Percentage points of the distribution can be found in tables given by Johnson,
Nixon and Amos [8]. Using these tables, we can show that 999 confidence
bounds on target beta=1 based on .10, .50, and .90 percentiles of the
distribution of cﬁp are respectively (0.571, 1.429), (0.522, 1.478), (0. 350,
1.650). The width of these bounds imply that the naive investor, even though
optimally weighing the k securities he chooses, has a high probability of
achieving a beta substantially different from that planned.

Fortunately, an escape from the computational nightmare of enumeration
can be found by investigating the composition of the minimum o-ﬁp portfolios.
In all cases, two factors seem to be of importance. The first is plausible; the
o, for an included security should be small. The second is known; the betas
of the included securities should be near the target beta, which supports the
claim of Blume [3]. Further analysis is neccssary to determine explicitly the
performance of these heuristic rules, especially in cases where there are
tradeoffs between proximity to target beta and the magnitude of o But given
a large population of candidate securities, a target beta, and a specified k, it

(7) This is, of course, an artificial result since our population is comprised of 14 securities.
Consider data set 1, with target beta=1.6. Only 13 different portfolios can be constructed.

(8) These were found by rounding _/b, =1.9 and b,=7.0.
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140 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

is reasonable to assume that the investor will find a number of low o
securities with beta close to a target beta. And large populations of candidate
securities typify practical situations.

To illustrate our heuristic, consider the crép for the securities in data set 1.
The securities with the most variability are numbers 14, 1, 11, and 9 (in
descending order). It is interesting to note that these securities never appear
in the optimal portfolios we calculated. :

For our second rule, namely that §; should be near the target beta B, the
evidence is not so clear. Security # 12, with B, = . 14, appears rather frequen-
tly, which is consistent with our heuristic. In data set 4, where there was a
surfeit of low beta securities, security #7 (B,=2.24) appeared in every single
portfolio (for B,= .4, 1, and 1.6).

The effect of including a risk-free security (B;=0, og,=0) in the candidate
list is inconsistent. We find that the minimum cﬁp portfolio includes this
security in several cases. More specifically, this security is included when
k=6, target beta=0.4 and when k=4, 5, 6, target beta=1.6. But, the
‘numerical evidence is that the risk-free security may not be inciuded in the
optimal portfolio. This finding is not consistent with capital market theory.
If we consider the conclusions presented in the last section, this phenomenon
can be explained by noting that while o, =0, the disadvantage of the distance
of B=0 from the target beta of 0.4, 1.0 or 1.6 may outweigh the advantage
of the small variance in determining whether inclusion of this security in the
portfolio is appropriate.

As a final point, we note that each minimum variance portfolio of size k
is a subset of the portfolio of size k+v, v>1. This nesting phenomenon is
not surprising given that some securities are, in a sense, dominant with regard
to having a small oy, and a B; close to B,

V. SUMMARY AND CONCLUSIONS

We have presented a model to select securities such that the variance of
the beta of the resulting portfolio is minimized. Our numerical results indicate
that a small number of securities, say 5 or 6, will yield a portfolio enjoying
the maximum benefits of diversification. But portfolios of this size should
not be selected without care because we find that the distributions of the
variances of target beta for naively selected portfolios are positively skewed
and have fat tails. An optimal solution can be found only if the investor is
prepared to analytically determine the combination of securities that minimize
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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 141

the variance of target beta. Fortunately, heuristic selection rules show pro-
mise. Studying large numbers of optimal portfolios, we find that securities
which are included typically have two properties: (1) a low standard deviation
of beta and (2) a beta which is close to the target beta. An interesting result
is that when a risk-free security is available, it does not usually appear in the
portfolio with minimum variance of beta.

APPENDIX I

Description of data

1(a): The 14 Securities From Fama

Security Number
Used Used B: Op;
in this by F
Paper y Fama
1 5 0.69 0.245
2 7 1.11 0.191
3 8 1.14 0.202
4 10 1.30 0.201
5 12 0.66 0.140
6 13 0.87 0.177
7 15 2.24 0.413
8 16 1.01 0.180
9 17 1.22 0.334
10 18 0.58 0.145
11 19 0.67 0.196
12 20 0.14 0.028
13 23 0.53 0.227
14 30 1.34 0.522
1(b): Characteristics of Data Sets
Data Set Average B; Average o,
1 .985 .228
2 .89 .191
3 1.288 275
4 .834 215

vol. 18, n° 2, mai 1984




142 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

APPENDIX II

Summary statistics for o3

I (a): Minimums and Means o,

B=.4 B=1. B=1.6

=~

Data set Minimum Mean Minimum Mean Minimum Mean

.0025015 .0063834( .0157088 .0361512 | .0361016 .0659072
.0015926 .0028549} .0102517 .0226994 | .0309026 .0484600
.0012498 .0019159] .0077577 .0158739 | .0251122 .0413519
.0010617 .0014930(| .0063518 .0118418 | .0195146 .0355996
.0009549 .0012530( .0054104 .0093147 | .0161225 .0307846
.006 96 .00352 .0105

—

.0025015 .0073110} .0157088 .0302448 { .0361016 .0609073
0015526 0032659 | .0102517 .0i$9686 ) .0305026 .0483945
.0012498 .0021562| .0077577 .0143628 | .0243760 .0394674
.0010617 .0016349| .0063518 .0109313 | .0187037 .0323360
.0009503 .0013301} .0054104 .0087204 | .0152059 .0266745
.000 530 .00331 .00847

—

0027497 .0056193| .0190743 .0367489 | .0389811 .0680255
0017185 .0026188| .0119556 .0228260 | .0258416 .0472319
0013417 .0018123| .0084820 .0160254 | .0204213 .0362077
.0011511 .0014435| .0066553 .0120224 | .0163204 .0293208
.0010302 .0012318( .0055008 .0094537].0136919 .0244517
.00073 .00324 .009 31

SN BWN AL AHEWN AL HEWN

p—

.0032165 .0116167| .0199706 .0482796 | .0480177 .0728003
.0018645 .0084985| .0122926 .0331548 | .0423902 .0578929
.0014639 .0068067| .0093342 .0246316 | .0322976 .0515968
.0012346 .0056365| .0082943 .0190565 | .0269379 .0459622
.0011109 .0047295| .0074503 .0151856 | .0238301 .0408969
.00076 .00518 .01570

—
AN BEBWN
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I1(b): Other Summary Statistics of cgp

Data set B k Range g;i?;?;ﬁ Skewness Kurtosis

2 .0111302 .0038135 0.8092466 | 2.2758500

3 .0052941 .0011151 1.3922215 | 4.4995588

B= .4 4 .0028613 .0005025 1.5295972 | 5.6155747
S .0017402 .000276 4 14396225 | 5.8829128

6 .001 1840 .0001706 1.2462705 | 5.4187258

2 .124304 8 .0230184 24297246 | 9.9163552

3 .066 1959 .0118695 2.3177439 | 9.1331932

1 ....... . B=1.0 4 0622272 .007 3145 3.1285751 | 17.728 8094
S .0591481 .0044868 3.6347901 | 27.068 8799

6 .0419173 .0027317 3.3880793 | 27.6873396

2 .1159228 .0289246 2.0244906 | 6.7226320

3 1038094 3 .009954 2 0.1556519 | 1.9843573

B=1.6 4 10379291 .0082936 0.4299027 | 2.4875503
S 0421261 0075231 0.5451865 | 3.0416177

6 .0419317 .0070487 0.5616002 | 3.1439061

2 .0176706 .0043472 1.2215193 | 4.0022574

3 0065635 .0012780 1.3498642 | 5.0033259

B= .4 4 .003604 6 .0006162 1.2551957 | 5.0853985
5 .0023918 .0003574 1.1474560 | 4.739908 4

6 0016166 .0002265 1.0874350 | 4.4636235

2 .0592414 .0122589 1.9009895 | 6.9259092

3 .0374804 .007 1060 1.6521596 | 6.1376190

2 . B=1.0 4 .0354387 .0047058 2.2115268 |10.5236618
5 10346871 .003 0660 2.7781773 | 17.5270060

6 .0275169 .0019381 2.8029624 |21.7052852

2 10509233 0151228 0.0347605 | 2.0311148

3 .038094 3 .0099655 0.2236347 | 1.9956217

B=1.6 4 .0386654 .0082719 0.5891961 | 2.8385157
5 .0429370 .007 6898 0.7972654 | 2.5018768

6 10428484 .0070878 0.9901556 | 2.7829236
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11 {b) (continued)
Data set k Range csi:i‘il:t?;g Skewness Kurtosis

2 0105229 0031836 1.0927047 | 3.1870972

3 0039526 0008565 1.5380816 | 4.9963812

= 4 4 0020583 0003696 1.6453896 | 6.3178043
5 10012903 .000 1964 1.4699549 | 6.2218930

6 0008879 0001179 1.1853246 | 5.2656060

2 .1209394 0216688 2.7871741 | 2.3334132

3 0638184 0101983 2.0808971 | 3.8710734

3 ... =10 4 0600668 0064783 23626165 | 3.9323939
5 0417952 0043496 2.6963079 | 1.8943872

6 0318000 .002964 8 324310661 1.1263251

2 .1407428 0321537 2.3334132 1§ 7.3298971

3 1284540 0186634 3.8710734 | 21.7459955

B=16 4 1220266 0114137 39323939 | 36.1256434
5 1172542 0079472 1.894 3872 | 19.345784 5

6 .0386526 0062613 1.1263251 | 4.1881324

2 015721 8 0049104 <-0.2479338 ¢ 18372566

3 0166445 0052294 0.1970323 | 1.3914850

B= 4 4 0152201 10049903 0.3730358 | 1.3824717
S 0147793 .004 569 1 0.5022293 | 1.4683263

6 .0142611 0041176 0.6289642 | 1.6006275

2 .1200430 0277915 1.5377652 | 4.8522963

3 0881366 .0179380 1.4242418 | 4.4822654

4 ... =10 4 0769155 0130754 1.8002116 | 6.6256228
5 0692957 0095713 22278834 | 9.9542564

6 0629559 0068776 2.5300755 | 13.1652474

2 1040067 0253118 24381145 8.1011198

3 0338643 .007 3960 —0.1457451 | 2.2386921

B=1.6 4 .0338149 0071419 —0.0467723 1 23651551
5 0375383 .0075295 0.0435641 | 26137719

6 10393020 .0078994 0.1425508 | 2.4834050
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