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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA (*)

by Thomas H. MCINISH (**)(1)S Joel N. MORSE (2) and Erwin M. SANIGA (3)

Abstract. — Suppose an investor wishes to construct a portfolio of size k securities from a
population of n securities (k^ri) such that a particular portfolio or target bèta (pp) is achieved.
Since pp is a rondom variable, there will be some différence between a portfolio's realized bèta and
the target bèta. We investigate the problem offinding the combination ofk securities that minimizes
the variance of Ppï or equivalently, minimizes the probability of a particular différence in target
and realized bèta. We also seek answers to a number of related questions. These are concerned
with the effect on the variance of pp of naive sélection of securities, of the choice of fc, and of the
présence of a risk-free asset. We also examine the characteristics of securities included in the
optimal portfolio,

Keywords: Finance ; investments ; portfolio theory ; bèta, and risk.

Résumé. — Supposons qu'un investisseur souhaite construire un portefeuille ayant k valeurs
boursières extraites d'une population de n valeurs boursières (k^ri), en vue d'obtenir une certaine
valeur pp du beta. Puisque pp est une variable aléatoire, il y aura une différence entre la réalisation
du bêta par le portefeuille et la valeur visée du bèta. Nous examinons le problème de trouver la
combinaison de k valeurs mobilières qui minimise la variance de pp, ou, de façon équivalente, qui
minimise la probabilité d'une différence donnée entre le bêta visé et le bèta réalisé. Nous cherchons
aussi à répondre à un certain nombre de questions connexes : effet, sur la variance de pp, d'une
sélection naïve des titres boursiers ; du choix de k ; de la présence d'actifs sans risque. Nous
examinons aussi les caractéristiques des titres inclus dans le portefeuille optimal

I. INTRODUCTION

One normative implication of modem portfolio theory is that investors
holding diversified portfolios should only be concerned with systematic risk.
The most prominent measure of systematic risk is beta (4). Hence, investors
are advised to select a portfolio with a beta corresponding to their risk level.
But there is a dearth of advice in the literature concerning how to select
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(4) In the régressions of the return on a security against the return on the market, beta is the
coefficient of the return on the market.
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132 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

stocks so that a portfolio has the desired beta (5). One method (discussed by
Blume [3]) would be to form a portfolio comprising a large number of stocks
having betas approximately equal to the desired level. Large portfolios are
suggested because there is évidence that individùal betas are unstable [4],
though Bey [2] found that only a minority of stocks had unstable betas. But
Blume and Friend [5] have reported that a large proportion of portfolios are
undiversified. Even so, as early as 1975, 17% of individuals assessed risk in
terms of beta. The method suggested by Blume [3] of achieving a target beta
is obviously impractical for these portfolios.

Taking another approach, a number of authors have investigated using
accounting information and other fundamental characteristics of the firm to
predict betas [7, 12, 16 to 19]. In a recent study of this type, Hill and Stone [7]
developed a method which involves decomposing the accounting measures of
systematic risk into components representing both financial and operating
risk. Hill and Stone concluded that "forecasts of future market betas can be
significantly improved if one can predict future financial structure and opera-
ting risk" ([7], p. 629). While they show promise as methods for controlling
portfolio betas, the usefulness of techniques such as that of Hill and Stone
are limited by (1) the need for better models of the relationship between
market betas and the characteristics of the firm and (2) the requirement for
considérable amounts of accounting data.

This paper addresses the problem of selecting stocks for a small portfolio
so as to achieve a target beta. Some might argue that undiversified portfolios
should be concerned with unsystematic risk more than with systematic risk.
Nevertheless, we feel that there is suf f icient justification for the work presented
hère. Despite theoretical objections, many individùal investors holding undiver-
sified portfolios undoubtedly seek to achieve a target beta. Further, we
indicate below how unsystematic risk may be incorporated into the model,
at least indirectly.

In our approach to selecting a portfolio to achieve a target beta, we make
no assumption concerning the attribution of the uncertainty of a security's
beta. We only note that this uncertainty exists because beta is a random
variable, and that this uncertainty can be measured using standard sfatistical
measures. Barry [1] has shown that uncertainty concerning portfolio risk/re-
turn parameters can affect optimal portfolio choice. We develop a model for
finding the optimal portfolio of size k among a finite universe of stocks of
size n where k^n. Among all the portfolios k having the desired beta, we

(5) Kalymon investigated the problem of assessing portfolio variance when the true values of
the parameters of the return distributions are unknown. But no attempt was made to détermine
optimal portfolios nor was the analysis extended to systematic risk.
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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 133

define the optimal portfolio to be the portfolio which has the smallest variance
of portfolio bèta. Our justification for this criterion is that a portfolio with
minimum variance of bèta is also the portfolio that minimizes any différence
between realized and target bèta.

Selecting a portfolio with this criterion suggests a number of related
questions. First, as the number of stocks in the portfolio is increased, what
is the rate of decrease in the variance of the optimal portfolio bèta? If the
variance of bèta for small optimal portfolios is large and decreases slowly as
portfolio size is increased, then large portfolios may be necessary to insure
that a portfolio has a desired bèta. But if the variance of the betas of small
portfolios is small or if the rate of decrease in the variance as stocks are
added to the portfolio is great» then a portfolio with a desired bèta can be
obtained with a small but properly selected group of stocks. Second, what is
the shape of the distribution of the variance of portfolio betas for various
portfolio sizes? If the distribution is heavy tailed, the implication is that
systematic methods of portfolio construction must be employed if an investor
wishes to be confident of achieving a portfolio bèta near his target. Third,
do optimal portfolios generally contain securities whose estimated betas have
the smallest variance or securities with betas close to the desired portfolio
bèta but having larger variances or is it some combination of small variance
and cioseness to portfolio bèta that is important? An answer to this question
might provide information useful in developmgs optimal portfolios from sets
of securities larger than those considered in this study. Fourth* given that
the bèta and the standard error of the bèta of the risk-free security are both
zero, will the risk-free security always (or usually) appear in the optimal
portfolio ? In the capital asset pricing model, unless only the market portfolio
is held, the risk-free security is always included in an investment port-
folio [6],

We address these questions in the remainder of the paper. In section II we
describe the setting of this portfolio sélection probîem within capital market
theory. We present the optimization model which allows the achievement of
a minimum variance portfolio for a particular target in section III. In
section IV, the numerical results are presented and discussed. À summary is
given in section V»

a PORTTOUa SELECTION

The Capital Asset Pricing Model (CA PM) as developed by Sharpe f 14]
and Lintner [10] holds that:

R^Rf+biRm-R/)* (1)
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134 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

where Rt is the holding period return (HPR) on the i-th security, Rf is the
risk-free rate, and Rm is the HPR on the market. Beta (Pf) is a measure of
the security or portfolio's systematic risk. Defining rim as the coefficient of
corrélation between the return on security i and the return on the market,
and cr, and am as the standard déviation of the security and market return,
respectively, Pi = (rim crI)/am. Systematic risk is risk that a security shares with
the market whiîe unsystematic risk is unique to a particular security. Standard
déviation is a measure of total risk (systematic plus unsystematic). The
coefficient of corrélation (rim) can be interpreted as the percentage of the
security's risk that is systematic. Thus, beta is a measure of the amount of
systematic risk for a security relative to the amount of systematic risk for
the market (which has only systematic risk).

Suppose that an investor sélects a target beta for his portfolio (Pp), where:

E «1=1.

a ^ 0 i = l, 2, . . . , * ,

in which au a2, . . ., ak are the portfolio weights (i. e., the percentage of the
funds that are invested in the i-th security — note that we do not allow these
weights to be négative) and Pl5 f)2, . . •, P* are the individual security betas.
Pp indicates the portfolio manager's risk tolérance. Our observation is that
the naive choice of securities to reach a target Pp fails to recognize that the
variance of the realized (or ex post) pp can be controlled by a judicious
sélection of the portfolio's component securities.

In practice & is estimated using ordinary least squares. Because we are
sampling from a population, the estimate of beta is a random variable subject
to sampling error. Hence, if an investor proposes a target beta (pp) of 1.5,
the realized Pp might differ greatly from 1.5. We wish to minimize the
probability of any différence between target and realized beta.

Our objective is to choose a set of portfolio weights, ap i = l , 2, . . ., k
which minimize the variance of Pp ex ante, where:

The problem is cumbersome since there are a large number of portfolios of
size k that can be chosen from a universe of n securities. And each of these
portfolios must be optimally constructed.
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PORTFOLIO SELECTION TO ACHIEVE A TARGET BETA 135

Note that the approach taken here is not to solve the classical
Markowitz [11] portfolio problem in which a set of efficient (nondominated)
portfolios is generated by specifying a particular risk or return level. In our
formulation, we assume that all the relevant or market risk of a security is
expressed by its bèta, which is the essence of Sharpe's [15] "diagonal" model.
We further assume that the investor defines his risk préférence in terms of a
bèta (Pp) for the entire portfolio. While ignoring unsystematic risk is strictly
suitable only for well diversified portfolios, we argue that our approach has
considérable practical appeal and, in addition, allows a number of insights
into the problem of portfolio sélection to achieve a target bèta. Unsystematic
risk may be incorporated into the model by the appropriate sélection of the
candidate securities from which the portfolios ultimately are formed. More
direct ways of incorporating unsystematic risk into the model represent an
area for future research.

Bef ore the detailed présentation of the model in section III, it may be
useful to give a brief example of the process being modeled. Suppose an
investor seeks a two-security portfolio with a target bèta of one. Further,
assume that these two securities will be selected from a list of candidate
securities given in Appendix I (a). There are 91 potential portfolios, but
only 49 of these have one security with a bèta above the target bèta and one
with a bèta below.

If the investor sets a target bèta of 1, he can achieve that goal on an
ex ante basis with any one of the 49 portfolios. But pp, taken ex post for
these portfolios, may be substantially different. By finding optimal weights,
ap for all 49 pairs of possible portfolios, the minimum a^p portfolio can be
found by comparison. For this example, it can be shown that ajp has a
minimum of .015, a maximum of . 139, and a Standard déviation of .023.
For the minimum variance portfolio with app=.015> the 99% confidence
interval, if sampling from a normal population, would be . 6325^ Pp^ 1. 367.
For the worst case, where af =0.139, this interval would be
— 0.118^P i 7^2.118. The advantage of the proper sélection and weights of
individual securities is apparent.

III. THE OPTIMIZATION PROBLEM

Let the portfolio weights be ap and the individual estimâtes be Py and oj..
The problem is:

Minimize: k

vol. 18, n° 2, mai 1984



136 T. H. MCINISH, J. N. MORSE, E. M. SANIGA

Subject to:

k

1 = 1

for ail subsets of size fc = 2, 3, . . ., n. The overall minimum a|p portfolio is
then found by comparison. While this approach may be theoretically ineffi-
cient, the development of a nonlinear, mixed integer programming algorithm
to soive (1) over ail subsets of size k simuïtaneously would be cumbersome (?).
Further, some of the questions addressed in the introduction require a
détermination of the distributions of Opp for each /c, and solving (1) over all
subsets simuïtaneously would not provide this évidence.

To solve (1), form the Lagrangian,
Minimise :

(2)

differentiate with respect to the variables au a2? , . ., ak, Xls X2
 anc*

simuïtaneously the remaining k -h 2 équations, When (2) is solved for ail
subsets of size k> the minimum variance portfolio of size k is found by
comparison.

(b) The nonlinear mixed integer programming model to solve (1) over all subsets of sîze k is:

Subject to:

Minimize

X** 1

x ~ 0 or 1,
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IV. NUMERICAL ANALYSIS

We draw our candidate securities for the portfolios from a list given by
Fama [6], p. 123. Of his 30 securities, each described by a P, and a cjp., 14 are
chosen by drawing random numbers from a uniform distribution [see
Appendix I (a)]. These 14 securities comprise data set 1. To increase the
diversity of the data used, three additional data sets were constructed from
data set 1, as follows:

1. Data set 2: The first 13 securities in Appendix I (a) plus a risk-free
security for which Pi4 = 0, a p i 4 = 0.

2. Data set 3: The last ten securities in I(a) plus four additional securities
obtained by doubling the betas for securities 1-4 in Appendix I (a) and calcula-
ting revised ap. using the formula :

<jp. = 0.0961+0.

[This formula was obtained by régression analysis of data in I(a).]
3. Data set 4: The last ten securities in Appendix I(a) plus four additional

securities obtained by halving the betas of securities 1-4 in Appendix I(a)
and calculating revised crp. using the formula in 2 above. Superior methods
of choosing the list of candidate securities represent an area for future
research.

To explain the computational difficulty and to défend our use of only
14 securities, recall that we wish to find the weights of each of the securities
in the portfolio of size k that yield the target bèta, Pp. We label a portfolio
"admissible" if:

where % represent the individual security betas in the subset of size k of the
set of n securities. An upper bound on the number of admissible portfolios
of size k is obtained when the target bèta occupies the n/2 position in the set
of ranked individual betas. This upper bound is:

and:

n/2\ / n/2 \
} x l for n even,

i J \k-ij

/(n+l)/2\ / (n-l) /2\
x{ for n odd,

V * J \ k-i J
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138 T. H, MCINISH, J- K MORSE, E. M. SANIGA

where i = &/2 for k even and r=(k~f* l)/2 for k odd. For example, with n= 14,
k=6, at most 1,225 portfolios must be constructed. With n—30, fc = 6, at
most 207,025 portfolios must be constructed.

We solve (2) for every possible admissible portfolio of size fc = 2» 3, . . ., 6»
and target beta ( ^ = 0 . 4 , 1.0, 1.6) in each of the four data sets. We also
find the cornbination of a fourteen security portfolio that minimizes trjj for
each data set and target beta. Thus, our expérimental design is 6 x 3 x 4
(fc, pp, data set). Appendix II(a) and (b) contain some descriptive statistics
for the distribution of &lp for each cell in this design. Note that for fc = 14,
only one minimum a^ portfolio can be constructed,

Recall from the introduction that there are four questions we wish to
answer concerning the properties of portfolios constructed in this manner.
These are: (1) What is the rate of decrease of the minimum a« as k increases?

pp

(2) What is the distribution of &lp for fixed k ? (3) What are the characteristics
of securities included in the minimum af portfolio? and (4) What is the
usefulness of a risk-free asset in the pool of candidate securities? We address
these in turn.

The minimum a^ for each data set and target beta [see Appendix II (a)]
reveal that of decreases asymptoticially as k increases, Previous research
(see Wagner and Lau [20]) indicates that diversification benefits in terms of
réduction of total risk (i e. variance) leveled off as the number of securities
in the portfolio reached ten to twelve. Our results are in terms of the
variability of the systematic risk represented by beta and are, therefore, not
directly comparable. But we also observe a "îeveling off' or asymptotic
behavior of risk as a function of portfolio size.

One possible measure of the benefit of increased diversification is the width
of a 99% confidence bound for the traget beta. This bound assumes P( and,
therefore, the linear combination pp is normally distributed, If this bound is
such that beta is estimated to within say, ±25% of its value, then further
diversification would be unnecessary. Using this arbitrary measure, our results
indicate that portfolios of size 5 or 6 are sufficient And these results are
achieved from a security population of size 14. If the security population is
larger, the 5 or 6 security portfolio is an upper bound on the size required
for maximum diversification benefits since more securities will allow more
and, therefore, possibly better portfolios to be constructed.

The distributions of o\p for particuîar k are described by the statistics
given in Appendix II (a) and (&). These distributions allow us to détermine
the value of solving(l) or (2) to find the minimum cr| portfolio, a time
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consuming process at best. If the <jp were relatively close, an investor might
only have to consider several combinations of k securities in constructing his
portfolio. If the o\p were widespread, some systematic and possibly costly
(as in our formulation) method of portfolio construction must be employed.
The statistics contained in the appendices reveal that the latter case is true;
in many cells of the experiment design, the distributions are fat tailed and
positively skewed. The exceptions occur usually when target p = 1.6, a situa-
tion in which few admissible portfolios exist (7<). To illustrate the problem,
consider data base 2 with target bèta = 1. Some characteristics of the probabi-
lity distribution of <j\p for fc = 2are: min = 0.015 7, mean = 0.0302,
range = 0.059 24, a\p = 0. 0122, Jb[ = 1.9009 and b2 = 6. 925, where b1 and
b2 are the usual measures of skewness and kurtosis, respectively. ïf the
unwary investor selected one of the optimally constructed portfolios of size
2 from the 14 securities in the data base, his bounds on aj are
0.015 7gappg0.07494 (8). If he employs our enumerative procedure his
optimal 99% bound on target bèta = 1 is 1 ± 3 (0.015 7)1/2 or (0. 624, 1. 375).
The distribution of o\p is a Type I Pearson, or J shaped with heavy tails.
Percentage points of the distribution can be found in tables given by Johnson,
Nixon and Amos [8], Using these tables, we can show that 99% confidence
bounds on target beta=lbased on .10, .50, and . 90 percentiles of the
distribution of agp are respectively (0.571, 1.429), (0.522, 1.478), (0.350,
1. 650). The width of these bounds imply that the naive investor, even though
optimally weighing the k securities he chooses, has a high probability of
achieving a bèta substantially different from that planned.

Fortunately, an escape from the computational nightmare of enumeration
can be found by investigating the composition of the minimum ojp portfolios.
In all cases, two factors seem to be of importance. The first is plausible ; the
<7p for an included security should be small. The second is known ; the betas
of the included securities should be near the target bèta, which supports the
claim of Blume [3]. Further analysis is neccssary to détermine explicitly the
performance of these heuristic rules, especially in cases where there are
tradeoff s between proximity to target bèta and the magnitude of op. But given
a large population of candidate securities, a target bèta, and a specified k, it

(7) This is, of course, an artificial resuit since our population is comprised of 14 securities.
Consider data set 1, with target bèta =1.6. Only 13 different portfolios can be constructed.

(8) These were found by rounding Jb[ = 1.9 and b2 = 7.0.
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140 T, H. MCIMSH, J. N. MORSE, E. M, SANIGA

is reasonable to assume that the investor will find a number of low a ?

securities with bèta close to a target bèta. And large populations of candidate
securities typify practical situations.

To illustrate our heuristic, consider the <sf for the securities in data set L
The securities with the most variability are numbers 14, 1, 11, and 9 (in
descending order). It is interesting to note that these securities never appear
in the optimal portfolios we calculated.

For our second rule, namely that Px should be near the target bèta Pp, the
évidence is not so clear. Security # 12, with P12=

r • 14» appears rather frequen»
tly, which is consistent with our heuristic. ïn data set 4, where there was a
surfeit of low bèta securities, security #7 (p7 = 2. 24) appeared in every single
portfolio (for Pp= . 4, 1, and 1.6).

The effect of including a risk-free security (Py—Ö, &$.—0) in the candidate
list is inconsistent. We find that the minimum crjj portfolio includes this
security in several cases. More specifically, this security is included when
fc = 6> target bèta=0.4 and when k=4, 5,6, target bèta =1.6 . But, the
numerical évidence is that the, risk-free security may not be included in the
optimal portfolio. This finding is not consistent with capital market theory*
If we consider the conclusions presented in the last section, this phenomenon
can be explained by noting that while o^ = ö, the disadvantage of the distance
of P=ö from the target bèta of 0.4, 1.0 or 1.6 may outweigh the advantage
of the small varianœ in determinmg whether inclusion of this security in the
portfolio is appropriate.

As a final point, we note that each minimum variance portfolio of size k
is a subset of the portfolio of size k + v, u>\. This nesting phenomenon is
not surprising given that some securities are, in a sensé, dominant with regard
to having a small a^ and a (̂  close to P r

V. SUMMARY AND CONCLUSIONS

We have presented a model to select securities such that the variance of
the bèta of the resulting portfolio is minimized, Our numerical results indicate
that a small number of securities» say 5 or 6, will yield a portfolio enjoying
the maximum benefits of diversification. But portfolios of this size should
not be selected without care because we find that the distributions of the
variances of target bèta for naively selected portfolios are positively skewed
and have fat tails. An optimal solution can be found only if the investor is
prepared to analyticaUy détermine the combination of securities that minimize
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the variance of target bèta. Fortunately, heuristic sélection rules show pro-
mise. Studying large numbers of optimal portfolios, we find that securities
which are included typically have two properties: (1) a low standard déviation
of bèta and (2) a bèta which is close to the target bèta. An interesting result
is that when a risk-free security is available, it does not usually appear in the
portfolio with minimum variance of bèta.

APPENDIX I

Description of data

I(a): The 14 Securities From Fama

Security Number

Used
in this
Paper

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Used
by Fama

5
7
8

10
12
13
15
16
17
18
19
20
23
30

Pi

0.69
1.11
1.14
1.30
0.66
0.87
2.24
1.01
1.22
0.58
0.67
0.14
0.53
1.34

0.245
0.191
0.202
0.201
0.140
0.177
0.413
0.180
0.334
0.145
0.196
0.028
0.227
0.522

l{b): Characteristics of Data Sets

Data Set

1
2
3
4

Average pf

.985

.89
1.288
.834

Average ap.

.228

.191

.275

.215
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142 T. H. MCINISH, J. N. MORSE, E. M. SAN1GA

APPENDIX II

Summary statistics for a\p

II (a): Minimums and Means aj[

Data set

1

2

3

4

k

2
3
4
5
6

14

2
3
4
5
6

14

2
3
4
5
6

14

2
3
4
5
6

14

Minimum

.0025015

.0015926

.001 249 8
,0010617
.0009549
.00696

.002 5015

.0015926

.0012498

.0010617

.0009503
.000530

.0027497

.001718 5

.0013417
,0011511
.0010302
.00073

.003 2165

.0018645

.0014639

.0012346

.0011109

.00076

= ,4

Mean

,0063834
.0028549
.0019159
.0014930
.0012530

.007 3110

.0032699

.0021562

.0016349

.0013301

.0056193

.0026188

.0018123

.001443 5

.0012318

.0116167

.008498 5

.0068067

.0056365

.004729 5

P -
Minimum

.015708 8

.0102517

.0077577

.0063518

.0054104

.00352

.015708 8

.0102517

.0077577

.0063518

.0054104

.00331

.0190743

.0119556

.0084820

.006655 3

.005 5008

.00324

.0199706

.0122926
,0093342
.0082943
.0074503
.00518

1.

Mean

.0361512

.0226994

.0158739

.0118418

.0093147

.0302448

.019968 6

.014 362 8

.0109313

.008 7204

.0367489

.022 8260

.0160254

.0120224

.009453 7

.048 2796

.0331548

.0246316

.0190565

.0151856

Minimum

.0361016

.0309026

.0251122

.019 5146

.016122 5

.0105

.0361016

.0309026

.0243760

.018703 7

.015 2059

.00847

.0389811

.025 8416

.0204213

.0163204

.013 691 9

.00931

.048017 7

.042 3902

.0322976

.026937 9
,023 8301
.015 70

1,6

Mean

.0659072

.0484600

.0413519

.035 5996

.0307846

.060907 3

.048 394 5

.0394674

.032 3360

.026674 5

.068 025 5

.047 2319
,036207 7
.029 3208
.0244517

.0728003

.0578929

.0515968

.045962 2

.0408969
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II {b): Other Summary Statistics of

Data set

1

2

P

p= .4

(3=1.0

(3=1.6

P= .4

p-i.o

P=1.6

k

1
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

Range

.0111302

.0052941

.0028613

.0017402

.0011840

.1243048

.0661959

.062227 2

.059 148 1

.041917 3

.1159228

.0380943

.0379291

.042 126 1

.0419317

.0176706

.006563 5

.003 6046

.002 3918

.0016166

.0592414

.0374804

.0354387

.0346871

.027 5169

.050923 3

.038094 3

.0386654

.0429370

.0428484

Standard
déviation

.003 813 5

.0011151

.000502 5

.0002764

.0001706

.0230184

.011869 5

.007 3145

.0044868

.0027317

.0289246

.0099542

.008293 6

.007 5231

.0070487

.0043472

.0012780

.0006162

.0003574

.0002265

.0122589

.0071060

.004 705 8

.0030660

.001 938 1

.0151228

.009965 5

.0082719

.0076898

.0070878

Skewness

0.8092466
1.3922215
1.529 597 2
1.439622 5
1.246270 5

2.429724 6
2.317743 9
3.1285751
3.6347901
3.388079 3

2.0244906
0.1556519
0.4299027
0.5451865
0.5616002

1.221519 3
1.3498642
1.255195 7
1.1474560
1.0874350

1.900989 5
1.6521596
2.2115268
2.7781773
2.8029624

0.0347605
0.223634 7
0.5891961
0.7972654
0.9901556

Kurtosis

2.2758500
4.499 558 8
5.615 5747
5.8829128
5.418 725 8

9.9163552
9.1331932

17.7288094
27.068 8799
27.687 3396

6.7226320
1.984357 3
2.4875503
3.0416177
3.1439061

4.0022574
5.003 3259
5.085 398 5
4.7399084
4.463 623 5

6.9259092
6.137 6190

10.523 6618
17.5270060
21.7052852

2.031114 8
1.9956217
2.838 5157
2.5018768
2.782923 6
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II (h) (commuée)

Data set

3

4 . . . . . . . .

k

2
3

P= ,4 4
5
6

2
3

p = LO 4
5 ï
6

2
3

p=L6 4
5
6

2
3

p= .4 4
5
6

2
3

p=LO 4
5
6

2
3

£=1.6 4
5
6

Range

.0105229

.0039526

.0020583

.0012903

.0008879

,1209394
.0638184
,0600668
.0417952
,0318000

,1407428
.1284540
.1220266
A17 254 2
.0386526

.0157218

.0166445

.0152201

.0147793

.0142611

.1200430

.0881366

.076915 5

.0692957

.0629559

.1040067

.0338643

.0338149

.037538 3

.0393020

Standard
déviation

.0031836
,0008565
.0003696
.0001964
,0001179

.0216688

.010198 3

.0064783
,0043496
.0029648

.0321537

.0186634

.0114137
,0079472
,0062613

.0049104

.0052294

.0049903

.004 5691

.0041176

.0277915
,0179380
.0130754
.0095713
.0068776

.025 3118

.0073960

.0071419

.007 5295

.0078994

Skewness

L0927Ö47
1.5380816
L6453896
1.4699549
1.185 3246

2.7871741
2.0808971
23626165
2.6963079
3.2431066

2.3334132
3.8710734
3.9323939
1.894387 2
1.1263251

0.2479338
0,1970323
0.3730358
0.502229 3
0,6289642

1.5377652
1.4242418
1.8002116
2.2278834
2.5300755

2.4381145
- 0.145 7451
-0.0467723

0,0435641
0.142 5508

Kurtosis

3.1870972
4.9963812
63178043
6.2218930
5.2656060

2333413 2
3.8710734
3.9323939
1,8943872
L126 3251

73298971
21.745995 5
36.1256434
193457845
4,1881324

LB372566
13914850
13824717
L468 3263
1.600627 5

4.8522963
4.4822654
6.6256228
9.9542564

13.1652474

8.1011198
2.2386921
2365 155 1
2.6137719
2.4834050
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