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Abstract: In this work, we provide a compressive sensing architecture for implementing on a space
based observatory for detecting transient photometric parallax caused by gravitational microlensing
events. Compressive sensing (CS) is a simultaneous data acquisition and compression technique,
which can greatly reduce on-board resources required for space flight data storage and ground
transmission. We simulate microlensing parallax observations using a space observatory constellation,
based on CS detectors. Our results show that average CS error is less than 0.5% using 25% Nyquist rate
samples. The error at peak magnification time is significantly lower than the error for distinguishing
any two microlensing parallax curves at their peak magnification. Thus, CS is an enabling technology
for detecting microlensing parallax, without causing any loss in detection accuracy.

Keywords: compressive sensing; gravitational microlensing; space observatory

1. Introduction

Gravitational microlensing is an astronomical phenomena. When a lensing body
comes in precise alignment with a source star, which is being observed through an optical
system, the light rays bend due to the gravitational effects of the lensing system, causing
a magnification in the observed light curve. By obtaining these photometric curves and
analyzing their characteristics, we can determine the science parameters of a lensing
system. We show a compressive sensing (CS) based architecture system for a space flight
constellation here, performing photometric measurements. Typically, the galactic bulge
is surveyed in order to increase the chances of capturing a microlensing event. A space
based microlensing parallax can be obtained using a CS architecture. A CS system will
enable capturing and collecting data in SmallSat type instruments by reducing the need for
on-board data storage and data downlink bandwidth.

Compressive sensing is a mathematical theory for sampling at a rate much lower than
the Nyquist rate, and yet reconstructing the signal back with little or no loss of information.
The signal is reconstructed by solving an underdetermined system. In a CS architecture,
to acquire a signal of size n, we collect m measurements, where m << n. One measurement
sample consists of a collective sum. We solve for Equation (1) to determine x through the
observation y [1–4].

ymx1 = Amxnxnx1 (1)

Using the acquired measurements vector y and the known measurement matrix A, we
can solve for a sparse x by applying various techniques, including greedy algorithms and
optimization algorithms.
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1.1. Motivation

We target our research for space flight instrumentation. For gravitational microlensing
measurements, obtaining microlensing parallax is of critical importance in order to acquire
properties of the lensing system. Our research enables development of a space flight
instrument telescope constellation to acquire microlensing parallax measurements. These
measurements would not be feasible on any SmallSat type instruments in a telescope
constellation due to limited on-board resources available on these instruments—unless
an intelligent and efficient way of sampling and compressing data is available, such as the
one we demonstrate here using compressive sensing techniques.

1.2. Goals

The goal of this paper is to demonstrate the application of CS to acquire gravitational
microlensing measurements. We aim to show that CS does not cause any significant errors
in detection of gravitational microlensing parallax measurements through our theory-based
simulation models.

1.3. Organization

This paper is organized in the following manner:

• In Section 2, we provide background on the theory of gravitational microlensing
parallax measurements.

• In Section 3, we provide background on CS theory and its application for gravitational
microlensing measurements.

• In Section 4, we show a potential CS detector implementation architecture for a
telescope constellation.

• In Section 5, we describe our simulation and modelling setup.
• In Section 6, we provide our simulation results and analysis.
• In Section 7, we discuss data volume and on-board resources required for space

instrument implementation.
• Finally, in Section 8, we provide conclusions.

2. Microlensing Parallax

In gravitational lensing, the surface brightness, which is the flux per area, is conserved.
The total flux increases or decreases, since the area increases or decreases. In microlens-
ing, distinct images, due to the gravitational effects of the lensing system, are not seen,
but, instead, magnification or demagnification of the source star is observed; the images
are not resolved. Since the Jacobian matrix gives the amount of change in the source star
flux in each direction, the transformation of the original source to the stretched source can
be mapped by the Jacobian. The absolute value of the inverse of determinant gives the
amount of magnification.

Einstein’s ring forms when there is an exact alignment of the source, lens and ob-
server and is an important parameter for the basis of gravitational microlensing equations.
Einstein’s ring radius, θE, can be defined by Equation (2).

θE =

√
4GMDLS
c2DLDS

(2)

where M is the total mass of the lensing system, DLS is the distance from the lens to the
source, DL is the distance from the observer to the lensing system, and DS is the distance
from the observer to the source [5].

From the formalization from [6], rewriting this in terms of relative lens-source parallax,

πrel , where πrel =
AUDLS
DsDL

, we obtain

θE =
√

kMπrel (3)
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Here k =
4G

c2 AU
and AU is 1 Astronomical unit or 1.5× 108 km.

If we define microlensing parallax in terms of the relative lens-source parallax, we

obtain πE =
πrel
θE

[7,8],

M =
θ2

E
kπrel

(4)

=
θE

kπE
(5)

The amplification of a single lensed microlensing event light curve with time depen-
dency is given by Equation (6) [5].

A(t) =
u2

0 +

(
t− t0

tE

)2
+ 2[

u2
0 +

(
t− t0

tE

2)]1/2[
u2

0 +

(
t− t0

tE

)2
+ 4)

]1/2 (6)

The flux at each time sample, t, is given by Equation (7) [5].

F(t) = Fs A(t) + Fb (7)

Thus, from a photometric curve, for a single microlensing event, we can obtain the pa-
rameters: t0, tE, u0, Fs and Fb from a microlensing photometric curve. All of the parameters
are defined in Table 1.

Table 1. Microlensing parameter definitions obtained from a photometric curve.

Parameter Definition

t0 Time of peak magnification

tE Einstein ring crossing time:
θE

µrel

µ0 Impact parameter in units of θE

Fs Microlensing source star flux

Fb Microlensing source star blended flux

In Table 1, µrel is the relative lens-source proper motion. Here, obtaining the lens mass
remains unresolved, as we have two unknown parameters: θE and πrel . In order to break
the degeneracy to obtain specific microlensing parameters, measuring the parallax, πE,
offers once such solution [9,10]. If we obtain u0, we can solve for M, given πE. According
to [8], microlensing parallax can be measured in three ways:

• Motion of the Earth around the sun causing an annual parallax;
• Two or more space based observatories, separated by a significant baseline;
• Terrestrial parallax measured using a ground and space based observatory.

In our work, we focus on a constellation of a space based observatory to create
simultaneous parallax measurements.

We can define the parallel and perpendicular shifts due to a microlensing parallax
as in [6,8]. Let us assume o as the vector for the motion of the observatory. In a telescope
constellation, from [8], o = < o1, o2 >, where:

o1 = ε‖cosΩ (8)

and
o2 = ε‖sinλsinΩ (9)
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Here, ε =
R

AU
and we use λ =

π

6
in our simulations.

The parallax vector πE = (πEcosθ, πEsinθ), where θ is the lens source trajectory angle.
To obtain the shifts due to parallax, we obtain:

δτ = πE · o (10)

= πEcosθε‖cosΩ + πEsinθε‖sinλsinΩ (11)

δβ = πE × o (12)

= πEcosθε‖sinλsinΩ− πEsinθε‖cosΩ (13)

where Ω =
2π

P
(t− t0) + Φ, P is the orbital period, and Φ is the orbital phase relative to

t0 [8]. We use θ =
π

4
in our modelling. From Equation (6), we can write

u(t) =
[
u2

0 + τ2
]1/2

(14)

where τ =

(
t− t0

tE

)
.

We can define ũ(t) as the microlensing equations due to parallax [8]:

ũ(t) =
√
(u0 + δβ)2 + (τ + δτ)2 (15)

In this manner, we can define the new amplification equation as

Ã(t) =
ũ(t)2 + 2

ũ(t)
√

ũ(t)2 + 4
(16)

Thus, from a photometric curve with a microlens parallax, we can obtain u0 + δβ and
τ + δτ .

3. CS Application for Gravitational Microlensing
3.1. CS Theory

Compressive sensing is a mathematical theory for sampling at a rate much lower than
the Nyquist rate, and yet reconstructing the signal back with little or no loss of information.
The signal is reconstructed by solving an underdetermined system. Sparsity in data sets
is a key component required for the accuracy in reconstruction using CS methods. If it is
not sparse in the sampling domain, we can transform it to a sparse domain, perform the
reconstruction, and then transform it back to the original domain [3,4]. In a CS architecture,
to acquire a signal of size n, we collect m measurements, where m << n. One measurement
sample consists of a collective sum. We solve for Equation (1) to determine x through the
observation y [1–4]: We can then reconstruct x using the acquired measurements vector, y,
and the known measurement matrtix, A.

3.2. CS Application

Transient events such as gravitational microlensing events can be detected using
differenced imaging. In differenced imaging, we take a difference of a good seeing reference
image with an observed image. We show a CS architecture for microlensing events, to obtain
the differenced images, which contain the source star magnification flux as shown in
Figure 1.
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Figure 1. CS Architecture. The blue block represents CS data acquisition which can be performed
on-board a spaceflight instrument, while the orange blocks represent computations which can be
performed on the ground. Image differencing can also be performed on-board to further reduce
data volume.

In architecture (Figure 1), differencing is applied to the CS measurements, resulting in
a reconstructed differenced image. A photometric curve can then be generated using the
flux of the source star pixels of the differenced image over time.

The architecture is implemented in the following manner:

1. Obtain CS based measurements, yo, for a spatial image.
CS can be applied by projecting a matrix, A, onto the region of interest, xo. This can be
done on a column-by-column basis for a n × n spatial region, xo. Thus, for 2D images,
y0 and A are of size m × n, where m << n.

2. Given A and a clean reference image, xr, construct measurements matrix yr, where
yr = Axr.

3. Apply a 2D differencing algorithm on yo and yr to obtain a differenced image, ydiff,
and the corresponding convolution kernel, M, which is used to match the observed
and reference CS measurement vectors, yo and yr [11]. In our modelling, we use
ydiff = yo − yr, by using the assumption that the PSF of the reference and observed
image is the same. This assumption is valid for space flight instruments when both
observed and reference images are obtained on-board the instrument.

4. Reconstruct the differenced image, x′diff using CS reconstruction algorithms, given A
and ydiff.

In our modelling, we assume the same PSF for the reference and observed image;
hence, in an ideal scenario, we would obtain a differenced image with only the microlensing
event present. A sample reference image, the observed image, a differenced image, is shown
in Figures 2–4, respectively.

Figure 2. Sample reference image.
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CS reconstruction, using the architecture in Figure 1, reconstructs the differenced image.

Figure 3. Sample observed image.

Figure 4. Sample differenced image.

4. CS Detector Architecture

There are numerous options for implementing a CS based detector system as discussed
in [12–14]. Spatial light modulators are used to implement measurement matrices. Previous
work by [15] show a CS implementation using coded aperture masks. In the literature
from [16–18], they implemented a single pixel camera using liquid crystal displays (LCD).
Their work shows that lensless single pixel cameras can be implemented using LCD as
their coded apertures.

In our analysis, we focus on using a DMD array for the CS projection. A CS architecture
using a DMD array can have a frame rate of 32 KHz with 2048 × 1080 pixels [13]. In our
simulations, we show the effectiveness with 25% of n. Let us assume n = 2048× 1040 pixels.
We would need 550,800 measurements. With the frame rate, this gives us 17.2 s to obtain one
CS image, in addition to the needed exposure time. A typical microlensing event can last
for 30 days. In [19], they discovered the shortest time scale microlensing event measured,
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where te ≈ 41.5 min. Using Nyquist rate for this short time scale, we would expect to

sample at least
te

2
≈ 20.75 s. Detection efficiency will not only depend on the cadence of

the system but also on the flux magnification and Field-of-view (FOV). The larger the FOV,
the greater the chances of detection of a microlensing event.

A CS detector system would be beneficial for use on Small Satellites, where data
storage and downlink can be limiting factors. Using a CS detector system on a constellation
of satellites, we can detect a microlensing parallax, as shown in Figure 5. In our simulations,
we assume the number of satellites in the constellation to be [0, nsat], where the maximum
number is nsat = 8.

Figure 5. A diagram of satellite constellations observing the same spatial region in order to capture a
microlensing parallax of any microlensing event occurring the given field-of-view. X represents a
satellite with a CS detector system.

A detector concept for placing a telescope on a Small Satellite can be based off of ASTE-
RIA (Arcsecond Space Telescope Enabling Research in Astrophysics) [20]. ASTERIA is a 6U
CubeSat with a telescope aperture of 6.7 cm with a CMOS detector of 2592× 2192 pixels.
For a CS system, our optics would include a telescope, micro-mirror arrays, or any spatial
light modulators, as well as a photodiode to acquire the sum total of the reflected light
from the micro-mirrors, as shown in Figure 6.

Figure 6. A potential CS implementation of the detector system using a telescope to acquire the light
from the spatial region, a set of micro-mirror arrays to reflect light using CS projection methods, and a
photodiode to capture a single measurement of the total reflected light.

State-of-the-Art Space Flight Instrumentation

In this section, we briefly discuss the current state-of-the-art and the advantages of
using a CS detector as compared to traditional detectors.
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The front-end-electronics for acquiring photometric measurements will be completely
transformed to a novel data acquisition approach using CS techniques, resulting in fewer
data samples, eventually putting the image reconstruction load onto computational imag-
ing. Key differences in the optical setup and read-out of traditional detectors and CS based
detectors are shown in Table 2.

Table 2. Comparison between traditional detectors and CS detectors.

Traditional Detectors CS Detectors

CCD Detectors Typically designed with spatial light modulators and
photodiode

Pixel by pixel readout of the image Total power reflected from the matrix projected onto the
image is measured

Digitization of each pixel readout Digitization of the total power read

The current state-of-the-art for microlensing parallax consists of large space obser-
vatories, like Nancy Grace Roman Space Telescope detecting an event, then alerting a
microlensing event, which is then followed up by a ground observatory. Use of large obser-
vatories is very costly. A CS based instrument can detect a microlensing event and capture
the complete set. If a parallax measurement is needed, a ground based observatory may be
alerted. However, replacing a large observatory with a smaller instrument constellation
for parallax detection, which acquires the same resolution science will be a game-changer,
causing significant reduction in costs and resources.

5. Simulation Setup

In this section, we discuss the microlensing parameters and the CS parameters used
for our simulation modelling.

5.1. Parallax Measurement Setup

In this section, we show effectiveness of CS over a range of δτ and δβ as described in
equations. We vary Φ, the space-flight instrument orbital phase to span over a range of
values of δτ and δβ. Our microlensing parallax, πE, is given by Equation (20). From [8], we
make the same assumptions of the source being located in the galactic bulge at 4 kpc, lens
at 8 kpc with a relative lens-source speed of 200 km/s to obtain the value of πE.

Hence, in a simple case, with origin as the center of the satellite trajectories, we
can write

δτ = πEε‖cosΩ (17)

δβ = πEε⊥sinΩ (18)

To generate our parallax measurements, we make the assumptions as in [8]:

1. Source is in the galactic bulge: Ds = 8 kpc
2. DL = 4 kpc

3. µrel = 200
km
s

We can write tEµrel = θE [21,22].

πE =
AU(DLS)

tEµrel DLDS
(19)

=
AU(0.000624s)

tE
(20)

We can use Equations (11) and (13) with the given value for πE in Equation (20). Our
simulations vary the value of R and Φ to determine the effect of CS reconstruction on
photometric curves with a microlensing parallax. We use R values as shown in Table 3.
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Table 3. Simulation setup parameters.

R tE Cadence Observation Time

7000 km 1 day 48 min 1 day
42,000 km 1 day 48 min 1 day

1 AU 1 day 5.02 days 150.5 days

The different R values approximately correspond to the type of orbit the constellation
could be in: low earth orbit, geosynchronous orbit, and solar orbit, respectively [8,23].
We use eight equally space Φ values. Hence, our results could show the effect for any

constellation spaced at the given Φ values:
π

8
,

π

4
,

3π

8
,

π

2
,

5π

8
,

3π

4
,

7π

8
, π.

A tE value of 1 day depicts photometric curves due to free floating planets.

5.2. Compressive Sensing Setup

For CS application, we generate a realistic crowded star field with airy shaped PSF
with PSF radius ranging from (1,5) pixel units. For n× n image, we generate 0.75× n× n
star sources. The flux of the star sources ranges from 50 to 5000 units. In our simulations,
we use m = 0.25× n, where m is the number of CS measurements obtained. The number
of measurements, m, is a trade-off with the amount of error tolerance desired. We chose
m value such that we would keep the average error tolerance to under 1%. A Bernoulli
measurement matrix is used, which is varied during each Monte Carlo simulation. For a
given R and Ω, we run 100 Monte Carlo simulations at each time sample, t. The number
of Monte Carlo simulations chosen are based on two factors: (1) available computational
resources and (2) the minimum number needed, such that the average obtained over
all Monte Carlo simulations is as close to the “true” average. In order to find the “true”
average, we look at the standard deviation of the Monte Carlo simulations to verify that it
is as close to 0 as possible. Using 100 Monte Carlo simulations, for R = 7000, we obtain the
average standard deviation over all time samples and Φ values to be 1.2× 10−11. Similarly,
for R = 42,000 and R = 1AU, we obtain the average standard deviation to be 1.1× 10−11

and 0.0, respectively. Hence, we use 100 Monte Carlo simulations because the standard
deviation decreases to a minimal amount across that many number of simulations in our
setup. For CS reconstruction, we use the greedy algorithm, orthogonal matching pursuit,
as its computational time is relatively less than optimization algorithms.

6. Results

In our first set of simulations for R = 7000 km, we obtain the different parallax light
curves for each varying Φ as shown in Figure 7, with the figure legend shown in Figure 8.
The photometric curve without parallax, labeled as Original, is also shown for comparison.
We perform 100 Monte Carlo simulations for each time sample. For each R value, we show
% error in peak magnification value between each parallax photometric curve as well as the
difference in time shift for the peak magnification. The average CS reconstruction error for
R = 7000 km is shown in Table 4. Tables 5 and 6 show the error at peak magnification and the
time difference in hours at peak magnification for R = 7000 km, respectively. Microlensing
parallax provides a ∆u0, which shows the change in magnification amplitude, as well as a
∆t0, which shows a change in t0 location. The higher the R value, the greater the ∆.
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Table 4. Percent Error for CS reconstruction for each Φ for R = 7000 km. The second row shows
average % error over all time samples, the third row shows average % error at peak magnification,
and the last row shows the standard deviation of the % error at peak magnification.

Φ 0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
Avg % Err 0.175 0.230 0.088 0.109 0.163 0.161 0.240 0.098

Avg % Err at peak 0.075 0.06 1.07 0.068 1.09 0.076 0.081 0.073

Std dev. % Err at peak 0.057 0.064 9.94 0.056 9.94 0.086 0.070 0.068

Figure 7. Photometric curves generated by different parallax values, shown with its corresponding
CS reconstructed curve for R = 7000 km.

Figure 8. Legend for Figure 7.
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Table 5. Percent error at peak magnification over 100 Monte Carlo simulations, between a microlens-
ing photometric curve with Φ shown in the first row, compared to the photometric curve with Φ in
the first column. Error values for R = 7000 km. Values in bold underline show where % error between
the two curves is less than 10%.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 12.0 25.3 40.0 50.2 56.5 59.8 60.1
π

8
13.6 - 15.2 31.8 43.4 50.6 54.4 54.7

π

4
33.9 17.9 - 19.6 33.3 41.7 46.2 46.6

3π

8
66.7 46.7 24.5 - 16.9 27.5 33.1 33.5

π

2
101 76.6 49.8 20.4 - 12.7 19.4 20.0

5π

8
130 102 71.6 37.9 14.5 - 7.72 8.34

3π

4
149 119 85.9 49.4 24.1 8.36 - 0.674

7π

8
151 121 87.2 50.4 24.9 9.10 0.679 -

Table 6. Time difference in Hours at peak magnification between a microlensing photometric
curve with Φ shown in the first row, compared to the photometric curve with Φ in the first column.
R = 7000 km.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 0 0.828 0.828 1.66 1.66 0.828 0.828
π

8
0 - 0.828 0.828 1.66 1.66 0.828 0.828

π

4
0.828 0.828 - 0 0.828 0.828 0. 0

3π

8
0.828 0.828 0 - 0.828 0.828 0 0

π

2
1.66 1.66 0.828 0.828 - 0 0.828 0.828

5π

8
1.66 1.66 0.828 0.828 0 - 0.828 0.828

3π

4
0.828 0.828 0 0 0.828 0.828 - 0

7π

8
0.828 0.828 0 0 0.828 0.828 0 -

In the next set of simulations, we use R = 42,000 km. We show the microlensing
parallax curves and the photometric curve without a microlensing parallax, shown as
Original, in Figure 9, with the figure legend shown in Figure 10. The corresponding errors
due to CS reconstruction are shown in Table 7. Tables 8 and 9 show % error at peak
magnification and time difference in hours at peak magnification, respectively.
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Figure 9. Photometric curves generated by different parallax values, shown with its corresponding
CS reconstructed curve for R = 42,000 km. The original photometric curve without any microlensing
effects is shown in red for comparison.

Figure 10. Legend for Figure 9.

Table 7. Percent Error for CS reconstruction for each Φ for R = 42,000 km. The second row shows
average % error over all time samples, the third row shows average % error at t0, and the last row
shows the standard deviation of the % error at t0.

Φ 0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
Avg % Err 0.108 0.110 0.182 0.110 0.191 0.208 0.173 0.201

Avg % Err at peak 1.07 0.059 0.091 1.07 0.086 0.063 0.062 0.071

Std dev. % Err at peak 9.94 0.041 0.205 9.94 0.094 0.049 0.062 0.057
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Table 8. Percent error at peak magnification between a microlensing photometric curve with Φ
shown in the first row, compared to the photometric curve with Φ in the first column. Error values for
R = 42,000 km. Values in bold underline show where % error between the two curves is less than 10%.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 22.1 7.50 109 215 25.1 59.7 70.9
π

8
28.3 - 18.7 168 305 3.85 48.3 62.6

π

4
8.11 15.8 - 126 241 19.0 56.5 68.5

3π

8
52.1 62.7 55.7 - 51.0 64.1 80.7 86.1

π

2
68.3 75.3 70.7 33.8 - 76.2 87.2 90.8

5π

8
33.5 4.00 23.5 179 321 - 46.2 61.1

3π

4
148 93.4 130 418 682 86.0 - 27.7

7π

8
243 168 218 617 982 157 38.3 -

Table 9. Time difference in Hours at peak magnification between microlensing photometric curve
with Φ shown in the first row, compared to the photometric curve with Φ in the first column. Error
values for R = 42,000 km.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 1.66 4.14 6.62 9.10 10.8 10.8 10.8
π

8
1.66 - 2.48 4.97 7.45 9.10 9.10 9.10

π

4
4.14 2.48 - 2.48 4.97 6.62 6.62 6.62

3π

8
6.62 4.97 2.48 - 2.48 4.14 4.14 4.14

π

2
9.10 7.45 4.97 2.48 - 1.66 1.66 1.66

5π

8
10.8 9.10 6.62 4.14 1.66 - 0 0

3π

4
10.8 9.10 6.62 4.14 1.66 0 - 0

7π

8
10.8 9.10 6.62 4.14 1.66 0 0 -

Figure 11 shows the microlensing parallax curves for R = 1 AU. In this figure, we do
not show the microlensing curve without parallax (Original curve in Figures 7 and 9) for
comparison, as the ∆ in u0 and t0 are significantly high and will not be clearly readable
with the given sampling cadence and observation window. Figure 12 is the corresponding
legend. In Table 10, we show the % error due to CS reconstruction in the photometric curves.
Tables 11 and 12 show % error at peak magnification and time difference in days at peak
magnification, respectively.
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Figure 11. Photometric curves generated by different parallax values, shown with its corresponding
CS reconstructed curve for R = 1 AU. The magnification is significantly lower because the differenced
image is reconstructed using our CS technique, and the ∆ in both u0 and t0 is significantly high.

For all three categories, as shown in Figures 7, 9, and 11, the CS reconstructed curves
and original curves overlap, as CS reconstruction nearly perfectly reconstructs the original
curve. Average CS reconstruction % error over all samples for the photometric curve with
no microlensing parallax was 0.175%, and the average % error at t0 was 0.100%.

Figure 12. Legend for Figure 11.

Table 10. Percent Error for CS reconstruction for each Φ for R = 1 AU. The second row shows average
% error over all time samples, the third row shows average % error at the peak of each curve, and the
last row shows the standard deviation of the % error at the peak.

Φ 0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
Avg % Err 0.437 0.441 0.633 0.743 0.621 0.348 0.616 0.582

Avg % Err at peak 0.186 0.192 0.192 0.194 0.183 0.119 0.106 0.117

Std dev. % Err at peak 0.146 0.190 0.178 0.183 0.137 0.287 0.092 0.083
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Our results show that there is no significant error for a microlensing parallax event
using CS techniques. For all the photometric curves, the average error is less than 0.5% for
all CS reconstructed curves and less than 1.1% at peak magnification time.

Table 11. Percent error at peak between a microlensing photometric curve with Φ shown in the first
row, compared to the photometric curve with Φ in the first column. Error values for R = 1 AU. Values
in bold underline show where % error between the two curves is less than 5%.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 12.7 27.2 43.7 18.7 276 217 167
π

8
11.3 - 12.8 27.5 5.34 234 181 137

π

4
21.4 11.4 - 13.0 6.65 196 149 110

3π

8
30.4 21.5 11.5 - 17.4 162 121 85.6

π

2
15.8 5.07 7.12 21.0 - 217 167 125

5π

8
73.4 70.0 66.2 61.8 68.4 - 15.7 29.1

3π

4
68.5 64.4 59.9 54.7 62.5 18.6 - 15.9

7π

8
62.5 57.7 52.3 46.1 55.5 41.0 18.9 -

Table 12. Time difference in Days at peak between a microlensing photometric curve with Φ shown
in the first row, compared to the photometric curve with Φ in the first column. Error values for
R = 1 AU. Values in bold underline show where % error between the two curves is less than 5%.

0 π

8
π

4
3π

8
π

2
5π

8
3π

4
7π

8
0 - 25.9 51.9 77.8 88.2 62.3 36.3 10.4
π

8
25.9 - 25.9 51.9 62.3 88.2 62.3 36.3

π

4
51.9 25.9 - 25.9 36.3 114 88.2 62.3

3π

8
77.8 51.9 25.9 - 10.4 140 114 88.2

π

2
88.2 62.3 36.3 10.4 - 151 125 98.6

5π

8
62.3 88.2 114 140 151 - 25.9 51.9

3π

4
36.3 62.3 88.2 114 125 25.9 - 25.9

7π

8
10.4 36.3 62.3 88.2 98.6 51.9 25.9 -

From our simulations, we note that the parallax curves get more distinguished for
higher R values, that is, the time separation and amplitude separation between the photo-
metric curves is higher. From our simulations, we show that the error due to CS reconstruc-
tion is less than the error between any two microlens parallax curves. However, we can use
Tables 5, 8 and 11 as a basis to determine the optimal orbital phases to choose for satellite
placement. Although CS reconstruction results show average error within the % error for
the two curves, a better placement, if using less than eight satellites, would be to choose
orbital phases which have a greater microlensing detectability.
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7. Data Volume and Resources

In this section, we perform a comparison analysis of using traditional detectors versus
CS based detectors.

1. Data volume storage
Using a n× n image, with a 14-bit ADC resolution, we would expect the total data
volume to be:

Traditional Detector CS detector

14 bits × n× n 14 bits × m× n

We would make the assumption that the photodetector is not saturated with the
ADC bit resolution needed to sample. Without data compression, we will need to
transfer 14n2 bits/ FOV using a traditional detector. Using CS approach for 25%
measurements, we can will need to transmit 14× 0.25× n× n = 3.5n2 bits/ FOV.

2. Computational resources
On-board computation will consist of programming the spatial modulator and storing
the m× n size acquired data for each n× n spatial image. To compare this with a tra-
ditional detector system, we would require computational resources for compressing
data on-board, in order to be accommodated in the data down-link bandwidth.
In terms of on-board Field Programmable Gate Array (FPGA) resources for each
of the modules listed in Table 13, we would expect a similar amount of logic gates,
except for item 3. There are different methods for implementing data compression,
including compression algorithms and pixel averaging [24,25]. For CS detectors,
spatial modulation implementation will depend on the spatial modulator used. In ad-
dition, we would require either storage or generation and transmission of the spatial
modulation matrix (CS measurement matrix) on-board. The on-board storage needed
for traditional detectors would be significantly higher than storage needed for CS
architecture modules.

Table 13. FPGA modules comparison for a traditional detector and CS based detector.

Traditional Detector CS Detector

1 Data acquisition (ADC) interface Data acquisition (ADC) interface

2 Data storage module Data storage module

3 Data compression Spatial modulation implementation

4 Data packetization and transmission Data packetization and transmission

3. Optics
A traditional detector consists of a telescope and a detector, typically a CCD camera.
In the case for CS, we would need a telescope, as well as lenses, to focus the light
on a spatial modulator device, such as a DMD array, followed by a photodetector.
However, lensless cameras for CS applications have been implemented [16–18] and
would need to be studied for a SmallSat type instrument. The optical path required to
implement the detector system will be further studied in future work.

8. Conclusions

We simulated microlensing parallax curves with different orbital phases using CS
techniques. Our CS simulation results show an error of less than 0.5% over all time
samples and an average error of less than 1.1% at t0, while using 25% of traditional detector

measurements for microlensing parallax light curves with a range of Φ from [0,
7π

8
].

Despite different microlensing parallaxes at the three orbital radii generating different
photometric curves with significant difference in flux magnitude, CS worked well for all



Signals 2022, 3 575

the cases. The CS error at peak magnification for R = 7000 km, 42,000 km, and 1 AU,
at each Φ value is less than the error between the parallax curve generated with that
particular Φ value and any other parallax curve generated using the Φ value ranges. This
shows that CS reconstruction should not cause any significant errors in detection of a
microlensing parallax curve for any given Φ value. Using CS, we can significantly reduce
the data storage volume, as well as data downlink bandwidth—both of which can be
a limitation for SmallSat type instruments. CS shows potential for implementation in a
SmallSat constellation for detecting microlensing parallax events.
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