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Unpredictable and heterogeneous weather conditions and road incidents are common factors that impact highway traffic speeds.
A better understanding of the interplay of different factors that affect roadway traffic speeds is essential for policymakers to
mitigate congestion and improve road safety.)is study investigates the effect of precipitation and incidents on the speed of traffic
in the eastbound direction of I-64 in Virginia. To the best of our knowledge, this is the first study that studies the relationship
between precipitation and incidents as factors that would have a combined effect on traffic stream speeds. Furthermore, using a
mixture model of two linear regressions, we were able to model the two different regimes that the traffic speed could be classified
into, namely, free-flow and congested. Using INRIX traffic data from 2013 through 2016 along a 25.6-mi section of Interstate 64 in
Virginia, results show that the reduction of traffic speed only due to incidents ranges from 41% to 75% if the road is already
congested. In this case, precipitation was found to be statistically insignificant. However, regardless of the incident impact, the
effect of light rain in free-flow conditions ranges from insignificant to a 4% speed reduction while the effect of heavy rain ranges
from a 0.6% to a 6.5% speed reduction when the incident severity is low but has a roughly double effect when the incident severity
is high.

1. Introduction

Unclear weather conditions and incidents are common
factors that impact traffic speed. While weather conditions
may include rain, snow, wind, and fog, traffic incidents are
defined as any nonrecurring event that causes lane closures
such as vehicle crashes, road construction, and work zones.
With the increase in travel demand and number of vehicles,
congestion has amplified impairing the efficiency of the road
network, especially highways. To alleviate this consequence,
developing novel Intelligent Transportation System (ITS)
technologies and reforming policies for traffic management
and operations has become substantial. By the same token,
quantifying the extent of weather conditions and incidents
on traffic stream speeds is a key in effective and real-time
traffic management and operation. Understanding the fac-
tors that impact the traffic speed of road networks has

attracted many researchers as it has a wide range of traffic
planning, management, and operations related applications.
)is includes many autonomous vehicle technologies [1, 2],
congestion mitigation and control [3], ecorouting tech-
nologies and vehicle routing operations [4], urban road
management [5], public transit operations [6], travel time
prediction [7, 8], and highway capacity analysis and pre-
diction [9].

Studying the factors that impact the traffic is not a trivial
task due to the complexity and highly dynamic nature of
traffic and road conditions. On the one hand, weather is an
important factor that impacts traffic stream speeds, but also
causes 15% of all nonrecurring congestion in the United
States [10]. Due to this, various studies have found that
weather conditions, especially intensity of precipitation,
have an important impact on traffic safety, demand, in-
tensity, and flow [11, 12]. )e heterogeneity and relative
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unpredictability of precipitation in different traffic locations
made understanding its effect appealing and important to
policymakers. As a result, minimizing the precipitation
impact on traffic operations as a traffic management strategy
should consider the traffic volume of the road network and
the behavior of drivers as they respond to different inten-
sities of precipitation [12, 13]. On the other hand, traffic
incidents, which produce lane restrictions, work zone
construction, and traffic accidents, are also one of the most
important factors and tend to dramatically impact traffic for
varying time periods [14]. Nevertheless, the rate of occur-
rence of these incidents implies that their cumulative impact
on the traffic cannot be neglected when modeling and
predicting traffic speed, as they cause about 35% of all
nonrecurring congestion in the United States if we com-
bined it with the work zone portion [10]. As a result, novel
traffic management strategies to mitigate the effect of traffic
incidents are essential to incident management agencies
around the world.

2. Literature Review

Several previous studies attempted to analyze the effect of
weather conditions and different incidents on the traffic stream
speed in different locations. Weather conditions, especially
rain, have a varying yet significant impact on traffic speed and
its related traffic parameters, such as free-flow speed, traffic
volume, and capacity depending on the road type and the
severity of the situation, which trigger different responses by
the drivers [15]. Ibrahim and Hall investigated the effect in two
different rain severity [12]. )ey found a 1.9 to 12.9 km/h
reduction in traffic speeds due to light rain and a 4.8 to
16.1 km/h reduction in speed was reported due to heavy rain.
Work by Rakha et al. studied the impact of inclement weather
(rain, snow, and freezing rain) and visibility on the traffic
stream fundamental diagram using data from three cities:
Minneapolis/St. Paul, Seattle, and Baltimore [16, 17]. )e
precipitation data included intensities up to 1.6 and 0.33 cm/h
for rain and water equivalent of snow intensity, respectively.
)e study demonstrated that the traffic stream jam density is
not affected by weather conditions. Snow results in larger
reductions in traffic stream free-flow speed and capacity when
compared to rain. Reductions in roadway capacity are not
affected by the precipitation intensity except in the case of
snow. Reductions in free-flow speed and speed-at-capacity
increase as the rain and snow intensities increase. Finally, the
paper also developed free-flow speed, speed-at-capacity, and
capacity weather adjustment factors that are multiplied by the
base clear condition variables to compute inclement weather
parameters. )ese adjustment factors vary as a function of the
precipitation type, precipitation intensity, and visibility level
[18]. )ese models were used to develop a macroscopic
weather-tuned perimeter controller that was implemented in
the Integration software [19, 20] and tuned using clear weather
data and then tested for clear and inclement weather conditions
[21, 22]. Alhassan and Ben-Edigbe studied the effect of pre-
cipitation on traffic flow and, thus, the consequences on
highway capacity [9]. )ey found that there is a traffic flow
contraction and speed reduction of 3.52% due to precipitation.

Similarly, Akin et al. established a relationship between speed
and volume as a function of weather conditions in freeway
sections in Istanbul metropolitan area [23]. Results show that
rain decreased the average speed by 8 to 12% while wet surface
conditions reduced the average speeds by 6 to 7%. Cools et al.
focused on the effect of weather conditions on daily traffic
intensities in Belgium [13], in which results also showed that
rainfall reduces traffic intensity. However, Smith et al. argued,
by analyzing data from the Hampton Roads of Virginia, that
the reduction in speed due to rain was 3 to 5%, which is not as
dramatic as other studies found [24]. Rakha et al. had found
earlier that the impact of precipitation type (rain, snow, and
freezing rain) and visibility was different depending on the
location and the level of familiarity of drivers to the weather
conditions [17]. Specifically, Rakha et al. demonstrated that
drivers in cities where rain and snow are more common
seemed to exhibit larger reductions in speeds.

Figure 1 portrays the theoretical framework of the in-
teractions between rain, incidents, traffic speed, and traffic
flow [13, 25]. An example of how this framework would run
is the case of a heavy precipitation condition at a highway. As
soon as the rain starts, drivers might begin abruptly or
gradually brake to reduce their travel speed. )is reaction
could create a shockwave as a byproduct of the transitioning
from free-flow speed into congestion, which reduces road
capacities and corresponding traffic flow. Incidents may
occur during this transition such as road accidents, in-
creasing its frequency and/or its severity. )is example
shows that road incidents, rain, traffic speed, and flow are the
consequence of an interplay of a multifactorial process,
including behavioral, environmental, and technological
factors [26, 27].

Most of the previous studies modeled traffic speed with a
fixed mean albeit the two different regimes that it can
correspond to (i.e., flow-free and congested). )is study
attempts to quantify the impacts of precipitation and inci-
dents on traffic stream speed along a section of Interstate 64
(I-64) in Virginia. We modeled the speed using a mixture of
two components of linear regression. )e first component
represents the congested regime and the second component
represents the free-flow regime, in which the means of each
component vary as a function of the precipitation level and
lane closure ratio. )e fitted model allows us to understand
how the average speed (centroid) of each component
(cluster) changes as a function of precipitation and incident
severity. Understanding this should help transportation
planners, operation traffic engineers, and policymakers to
determine the extent of the precipitation and incidents’
effect when conducting level-of-service analysis. It also could
ease financial and time loss by traffic incidents, by providing
effective rerouting and evacuation plans for emergency
vehicles, providing drivers with real-time advisory messages
to effectively avoid impacted areas, or even for long-term
policymaking.

3. Dataset

In general, three datasets were used in this study, namely,
INRIX traffic data from 2013 to 2016 along a section of
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Interstate 64 (I-64), weather data, and incident data. )e
selected corridor data was used to obtain a daily traffic speed
matrix over spatial and temporal domains. )e precipitation
data was collected at the weather stations closest to the TMC
station based on the ZIP codes. And the incidents were
assigned to the corresponding TMC and were translated into
a matrix with dimensions identical to the speed data
dimensions.

3.1. Study Area. INRIX traffic data from the years of 2013 to
2016 along the eastbound section of Interstate 64 (I-64) in
the State of Virginia were used in this study. )e selected
I-64 freeway corridor, which is shown in Figure 2, includes
30 segments along 25.6 miles, and the length of each segment
is unevenly divided in the raw data. Travel times for each
roadway segment were included in the raw data, which were
collected at 5min intervals to reduce the stochastic noise and
measurement error and obtain a daily traffic speed matrix
over spatial (upstream to downstream) and temporal (from
0:00 a.m. to 23:55 p.m.) domains.

3.2. Data Reduction. Data reduction was performed to
transfer the raw measured data into the required input data
format. In general, the spatiotemporal traffic speed matrix is
the fundamental format used as for the input data. )us,
reduction of INRIX probe data is one example where the
spatiotemporal traffic speed matrix is used, and a similar
process can be applied to other types of measured data (e.g.,
loop detector). INRIX data, which was mainly collected by
GPS-equipped vehicles, supplemented with traditional road
sensor data, along with mobile devices and other sources,
were provided for each roadway segment and time interval.
Each roadway segment corresponds to a traffic message
channel (TMC) station, in which the geographic TMC
station information is also provided. )e average travel time
for each TMC station can be used to derive the spatio-
temporal traffic state matrix. However, raw INRIX data also
includes missing data. As a result, the data reduction and
preprocessing were performed to address these problems as
Figure 3 depicts.

Based on the geographic information of each TMC
station, raw data were sorted along the roadway direction
(i.e., eastbound and westbound). Afterwards, the space mean
speed was calculated by dividing the length of the roadway
covered by a TMC by the average travel time.)e raw INRIX
data used in this study were aggregated at 5 min time

intervals into a matrix with two dimensions: spatial and
temporal intervals. Data imputation methods were devel-
oped to estimate the missing data using the neighboring cell
values. As shown in Figure 4, the result of this process is a
daily spatiotemporal traffic state matrix, which can be used
for clustering.

3.3. Weather Data. In addition to the traffic data, precipi-
tation data were collected at the weather stations closest to
the TMC station based on the provided ZIP codes, as shown
in Table 1. )e precipitation data were translated into data
matrices with dimensions identical to those of the speed data
in order to study the impact of the weather (i.e., precipi-
tation) on the highway traffic speed. Each roadway segment
corresponds to a traffic message channel (TMC) station. )e
entire road segment is covered by four weather stations, as
shown in Table 1. Each of these weather stations covers a set
of ZIP codes. Consequently, there is only one station that
covers one TMC. In other terms, the TMC is mapped to the
weather station that matches the TMC’s ZIP code. )e
weather data is shaped as a daily spatiotemporal weather
matrix that has the same size as the daily spatiotemporal
traffic state matrix (i.e., weather data is aggregated at 5 min
time intervals), in which we used the mean to aggregate the
precipitation.

3.4. Incident Data. )e provided incident data was not
assigned to a corresponding TMC, so we calculated the
distance of the collected events using the events start lati-
tude/longitude and end latitude/longitude. If the start and
end coordinates were not the same (i.e., the distance was
greater than zero), we calculated the midway point coor-
dinates using the Vincenty method [28]. To assign a TMC to
an event, we calculated the distance between the event’s
midway point coordinates and the corresponding TMC
segment’s start and end point coordinates. If the summation
of both distances was greater than the TMC’s segment length
(with 5% tolerance), then we assumed that the event did not
belong to that TMC. We repeated the previous steps for all
the TMC segments. Using the assigned TMC and the in-
cident date and duration, the incident data were structured
as data matrices with dimensions identical to the speed data
dimensions.)e resulted matrix was then used to investigate
the impact of the incident on the highway traffic speed.
Figure 5 shows a descriptive analysis for the incident data.

4. Methods

)is study investigates the rain and incident impacts on the
mean of highway traffic speed for different traffic regimes
(i.e., congested and free-flow). A mathematical modeling
technique was developed to pool rain and incident data and
estimate the change of centroids without sorting the data
into time bins. We developed a speed model to feature a
mix of two linear regressions for the two traffic regimes.
Each linear equation describes a relationship between two
independent variables derived from the weather and in-
cident data (i.e., precipitation level and ratio of closed

Traffic speed

Traffic flowRain

Incidents frequency and severity

Figure 1: Relationship between rain, incidents, traffic speed, and
traffic flow.
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lanes) and the dependent variable (i.e., traffic speed). To put
differently, instead of embedding two components as re-
gressors in one rigid model (i.e., with fixed means), the
proposed speed model mixes the two components in a
model whose means are function of speed when a segment
of the road is congested and when it could be considered as
free-flow speed.

4.1. Mixture of Linear Regressions (MLR). Finite Mixture of
Linear Regressions (MLR) models are effective tools for in-
vestigating a wide variety of stochastic phenomena, in which
they are used in many fields, including agriculture, biology,
economics, medicine, and genetics [29, 30]. In this study, it
can be used to analyze the effect of rain and incidents on the
traffic speed for different traffic regimes. Using mixture
models attempts to mainly relax three limitations [8]. First,
the mean of each component is not modeled as a function of
the available predictors. Second, the proportion variable is
fixed at each time bin, which limits the model’s flexibility.
)ird, information provided given the time bin of the day is
the probability of each component (fixed) and the 90th
percentile. )e following is a discussion of the background of
the proposed model. Mixture of linear regressions (MLR) is
one of the mixture families studied carefully in the literature
[31, 32].

)e mixture of linear regressions can be formulated as

p(y|X) � 􏽘 m
j�1

λj

σj

���
2π

√ e
− y− XTβj( 􏼁

2
/2σ2

j􏼐 􏼑
, (1)

which means, in a different way, that

yi �

x
T
i β1 + εi1with probability λ1,

x
T
i β2 + εi2with probability λ2,

⋮

x
T
i βm + εimwith probability 1 − 􏽘

m− 1
q�1 λq,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where y is a response corresponding to a predictor’s vector
XT, βj is a vector of regression coefficients for the jth mixture
component, λj is a mixing probability of the jth mixture
component, and m is the number of components in a
mixture model.

However, the model parameters ψ � β1, β2,􏼈

. . . , βm, σ21, σ
2
2, . . . , σ2m, λ1, λ2, . . . , λm} can be estimated by

maximizing the log-likelihood using the Expectation-Max-
imization algorithm (EM), given a set of response predictor
pairs (y1, x1), (y2, x2), . . . , (yn, xn).

4.2. Expectation-Maximization Algorithm (EM). )e EM
algorithm was found to be powerful in several previous
studies to estimate the parameters of finite mixture models
[7, 33–35]. )e EM algorithm iteratively finds the maximum

Figure 2: Layout of the study area on I-64, VA, where the blue markers show the start location of the TMCs and the orange markers show
the location of the weather stations (source: Google maps).
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likelihood estimates by alternating between two main steps,
namely, the E-step and M-step. )e equations of these two
steps to estimate the model parameters are shown in
Algorithm 1.

5. Results

To apply the proposed model, speed data corresponding to
each TMC was divided by the posted limit speed at that
TMC. Because speed distributions are skewed, the log-
normal distribution is preferred to the normal distribution.
Log of the relative speed is used as the response variable (y).
On the other hand, the incident predictor was defined as the
number of lanes closed due to the incident divided by the
facility’s total number of lanes. A total of 750 realizations
were drawn randomly from the data set to construct random
samples. Each of which had the log of the relative speed—i.e.,
log (speed/posted speed)—as the response and precipitation
level and percentage of lane closure as the explanatory
predictors for the model. We fitted the mixture of two linear
regressions (i.e., components) using this data.)emodel will
be useful to describe the change of the mean of the speed

distribution of the congested regime, as the first component,
and free-flow regime, as the second component, as a
function of the precipitation level and the percentage of lane
closure.

)e coefficients of the predictors (β1, β2), the variances
(σ21, σ

2
2), and the proportions (λ1, λ2) corresponding to each

component were estimated using the iterative EM algorithm
(i)-(iii) in Algorithm 1 for each realization. )e final model
parameters are the mean of the 750 estimates, which was
drawn randomly from the dataset. Once the final model is
derived, the mean of the speed distribution varies with the
precipitation intensity and road closure proportion for both
components. Given any combination of explanatory pre-
dictors, the final model computes the mean speeds for the
two components. Table 2 shows the estimated model
parameters.

As Figure 6 depicts, the first component mean—in the
congested regime—decreases as the percentage of road
closure increases. )e change in the mean of the first
component with the precipitation seems to be insignificant
with a relatively very trivial change in the mean as the
precipitation level varies. However, in order to check the
significance of the two explanatory predictors, we examined
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raw data
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Figure 3: Data reduction of INRIX probe data.
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Figure 4: )e spatiotemporal traffic speed matrix, where blue is the congested areas.

Table 1: )e TMC ZIP codes and the corresponding weather station.

Weather station ZIP code
Williamsburg-Jamestown Airport 23185
Felker Army Airfield 23603
Newport News/Williamsburg Intl. Airport 23601, 23602, 23603, 23606, and 23608
Langley Air Force Base Airport 23666 and 23669
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Figure 5: Continued.
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the histogram of the estimated coefficients of the 750 ran-
dom samples, shown in Figure 7(a). We found that roughly
20% of the estimates are less than zero, indicating that the
95% confidence interval contains zero. )is confirms that
precipitation level does not significantly influence the mean
of the first component. By the same token, we examined the
histogram of the closure proportion, shown in Figure 7(b),
and found that the 95% confidence interval does not contain
zero, leading us to conclude that the closure proportion
significantly reduces the mean of the first component.

On the other hand, Figure 8 depicts that the second
component (free-flow regime) mean decreases as the ratio of
closed lanes increases or as the precipitation level increases.
To test the significance of the two explanatory predictors, we

examined the histogram of the estimated coefficients of 750
random samples, shown in Figure 9. Neither coefficients’
histograms include zero. Consequently, their 95% confi-
dence intervals do not contain zero, and we conclude that as
the precipitation increases or the closed lanes ratio increases,
the mean speed of the second component decreases.

5.1. Cut-Off Speed. We used the estimated parameters of the
closed lanes ratio (σ21, σ

2
2, λ1, λ2) of the model and the Bayes

rule to compute the cut-off relative speed such that the
misclassification error is minimized. )is cut-off speed rel-
ative to the closed lanes ratio is used as a classification
threshold between the congested and the free-flow regimes.
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Figure 5: Above: map of the study area on I-64. VA shows the location and the number of incidents at each TMC (source: Google maps).
Below left: histogram shows the categories of the reported incidents. Below right: histogram shows the distribution of the scene clearance
times for all the 2365 incidents, which are the total during the analysis period.

Let ψ(k) be parameter estimates after the kth iteration.
E-step:

(1) Estimate the posterior probability of the ith observation comes from component j,
(i) w
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(k)
j ϕj(yi|xi,ψ(k)))

where ϕj(yi|xi,ψ(k)) is the probability density function of the jth component.
M-step:

(2) Find a new parameter that estimates ψ(k+1) by maximizing the log-likelihood function in equation
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where X is an nx(p + 1) predictor matrix, Y is the corresponding nx1 response vector, andW is an nxn diagonal matrix. Now, by
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(3) Alternate repeatedly between the E-step and M-step until the incomplete log-likelihood converges to an arbitrarily
small value as follows:
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where ξ is a small number.

ALGORITHM 1: )e EM algorithm.
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)e output of applying the above threshold is a spatiotem-
poral binary matrix with dimensions identical to the spa-
tiotemporal speedmatrix. A “1” in the binarymatrix identifies

a segment as congested, and a “0” represents free-flow
conditions. Given the probability distribution for congestion
and free-flow speeds, the Bayes rule is used as shown in

Table 2: Parameters’ estimates of the mixture of log-normal regression model.

Parameter First component (congested regime) Second component (free-flow regime)
Intercept − 0.5802 0.0860
Precipitation coefficient 0.0480 − 0.1250
Ratio of closed lanes coefficient − 1.0075 − 0.0762
Standard deviation 0.6544 0.0636
Mixing probability (λ) 0.0987 0.9013
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p vc|vi( 􏼁 � p vi|vc( 􏼁p vc( 􏼁, (3)

p vf|vi􏼐 􏼑 � p vi|vf􏼐 􏼑p vf􏼐 􏼑, (4)

where vi is the speed at any time i, vc is the speed at con-
gestion, and vf is the speed at free-flow. )e optimum
threshold is the value of the speed at which
p(vc|vi) � p(vf|vi), as illustrated in Figure 10(a). Assuming
this threshold can be calculated, any speed above the
threshold line is classified as free-flow and any speed below it
is identified as congested. )e relative cut-off speed for the
I-64 stretch studied in this paper is shown in Figure 10(b).
All segments with relative speeds greater than the threshold
are classified as free-flow segments, and other segments are
classified as congested segments. For example, if half of a

segment on I-64 is closed (one closed lane out of two
available) and the observed speed is greater than ∼0.54 of the
speed limit, then the segment is included in the free-flow
regime. Otherwise, the segment is considered in the con-
gested regime.

6. Discussion

)is study aims not only to understand the effect of incidents
and precipitation, each separately, but also to identify the
relationship between the two factors. )is comprehensive
analysis allows policymakers to assess the appropriateness
and effectiveness of the adapted local traffic management
strategies. Table 3 shows the resulting reduction in the traffic
speed due to different levels of precipitation and incident
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severity when the observed speed is in the free-flow or
congested regimes along the I-64 section of highway in
Virginia. To define precipitation level, we assumed that if
precipitation is less than half the average precipitation data
that were collected at the weather stations during the study
period (2013–2016), then it is light rain; otherwise, it is a
heavy rain. To define the incident severity, we assumed that
if a third (or less) of the lanes are blocked, then it is low
severity. However, if the closed lanes are more than a third,
then this is high severity incident. )e logic of this as-
sumption is based on the fact that the studied segment of
I-64 has either two or three lanes in the eastbound direction,
which means that if only one lane is closed, we considered
this a low severity incident. By the same token, if two lanes or
three are blocked, this is considered as a high severity in-
cident. Our analysis also shows that precipitation is a sta-
tistically insignificant factor when speed is congested (see
Figure 7), so we only reported the effect of different incident
severities on the traffic stream speed when the road is
congested in Table 3. Results of the free-flow regime show
that, without taking the incident impact into account, while
light rain has an insignificant effect on the traffic stream
speed, heavy rain slightly reduces the speed by a maximum

of 4%. )is resulted in an undramatic precipitation effect,
which coincides with the conclusion of a previous study on
the same region [24]. However, when considering incidents,
light rain has a marginal effect on the speed when the in-
cident severity is low but reduces the speed by 0.6–4% when
the incident severity is high. In turn, heavy rain reduces the
speed by 0.6–6.5% when the incident severity is low but has
roughly double this effect when the incident severity is high.
In contrast, whereas precipitation has an insignificant effect
on the traffic stream speed when the road is congested, low
and high incident severity incidents have steep effects
ranging from 41–57% and 58–75%, respectively.

7. Conclusion

Several initiatives are being taken by Traffic Management
Centers (TMCs), incident management agencies, and pol-
icymakers to mitigate congestion, improve incident-
responding time, and develop preplanned diversion and
emergency routes. )ese initiatives include leveraging the
use of Intelligent Transportation Systems (ITSs) and orga-
nizing effective coordination amongst different agencies. To
meet these aggressive yet required goals, agencies should
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Table 3: Reduction in traffic stream speed due to precipitation and incidents in the free-flow regime and only due to incidents in the
congested regime.

Incident severity Precipitation level
Reduction in traffic speed (%)

Free-flow regime Congested regime

No Incident Light 0.0 0Heavy 0.0–0.4

Low
No rain 0.0

41–57Light 0.0–0.5
Heavy 0.6–6.5

High
No rain 0.0

58–75Light 0.6–4.0
Heavy 6.5–10.0
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have a better understanding of the interplay of different
factors that affect traffic stream speed.)is study investigates
the effect of precipitation and incidents on the speed of
traffic on I-64 in Virginia. Light and heavy rain reduce the
decision time to policymakers and lessen the amount of
drivers’ control on their vehicles by disturbing visibility,
increasing physical discomfort, and reducing the roadway
coefficient of friction. Road incidents increase the vulner-
ability as they could create traffic shockwaves, which reduce
road capacities and corresponding traffic flow. To the best of
our knowledge, this is the first study that discusses the re-
lationship between precipitation and incidents as factors that
would have a combined impact on traffic speed. Further-
more, this study reckons for the two different regimes that
the traffic speed could be classified into, free-flow and
congestion, using a mixture model of two linear regressions.
Using mixture models provides the needed flexibility by
having two components with two different means corre-
sponding to the two different speed regimes.

)is study used INRIX traffic data from 2013 to 2016
along a 25.6-mi section of Interstate 64 in Virginia. Pre-
cipitation data were collected from weather stations closest
to the TMC station, and incident data were assigned to the
corresponding TMC. Results show that the effect on traffic
speed is vividly higher if the road has already been con-
gested, yet the significant effect is derived only from one
factor, namely, incident severity. Specifically, low and high
severity incidents produce speed reductions ranging from
41% to 57% and 58% to 75%, respectively. Regardless of
whether the incident impact is considered, the effect of light
rain in the free-flow regimes ranges from insignificant to a
4% speed reduction. On the other hand, the effect of heavy
rain ranges from a 0.6% to a 6.5% speed reduction when the
incident severity is low but has a roughly double effect when
the incident severity is high.
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