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Iterative Random Training Sampling Spectral Spatial
Classification for Hyperspectral Images

Chein-I Chang , Life Fellow, IEEE, Kenneth Yeonkong Ma , Chia-Chen Liang, Yi-Mei Kuo, Shuhan Chen ,
and Shengwei Zhong

Abstract—Hyperspectral image classification (HSIC) has gener-
ated considerable interests over the past years. However, one of
challenging issues arising in HSIC is inconsistent classification,
which is mainly caused by random training sampling (RTS) of
selecting training data. This is because a different set of training
samples may produce a different classification result. A general
approach to addressing this problem is the so-called K-fold method
which implements RTS K times and takes the average of overall
accuracy with respect to standard deviation to describe a confi-
dence level of classification performance. To deal with this issue, this
article develops an iterative RTS (IRTS) method as an alternative
to the K-fold method to reduce the uncertainty caused by RTS.
Its idea is to add the spatial filtered classification maps to the
image cube that is currently being processed via feedback loops
to augment image cubes iteratively. Then, the training samples
will be reselected randomly from the new augmented image cubes
iteration-by-iteration. As a result, the training samples selected
from each iteration will be updated by new added spatial informa-
tion captured by spatial filters implemented at the iteration. The
experimental results clearly demonstrate that IRTS successfully
improves classification accuracy as well as reduces inconsistency
in results.

Index Terms—Hyperspectral image classification (HSIC),
iterative random training sampling (IRTS), K-fold method,
random training sampling (RTS), spectral-spatial (SS).

NOMENCLATURE

AA Average accuracy.
CE Classification entropy.
CSD Class standard deviation.
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CSI Class self-information.
EPF Edge preserving filter.
Gabor-EPF Gabor-EPF fused filter.
GEPF Gaussian-EPF fused filter.
HSIC Hyperspectral image classification.
IEPF Iterative EPF.
IRTS Iterative random training sampling.
OA Overall accuracy.
OCE Overall class entropy.
OCSD Overall class standard deviation.
PMF Probability mass function.
RTS Random training sampling.
SD Standard deviation.
SE Sample entropy.
SR Sample ratio.
SS Spectral-spatial.
SSD Sample standard deviation.
SVM Support vector machine.
Cm mth class.
δ Classifier.
M Total number of classes.
N Total number of data samples without includ-

ing BKG samples.
δStraining Classifier using Straining.
Ntotal Size of Stotal.
ntraining
m Size of Straining

m .
pm(r) Probability of classifying the data sample r

into the mth class Cm.
Straining
m Set of training samples to be selected from

class Cm.
Straining Set of training samples.
Straining(l) lth selected training sample set.
Stotal Collection of all possible training sample

sets.
Ωdata Data space = {rn}Nn=1.
Ω(l) Data cube produced at the lth iteration.
ζ(δStraining(r)) Random variable defined on data space

Ωdata via a classifier δStraining(r) using train-
ing sample set Straining with r ∈ Ωdata =
{rn}Nn=1.

MAXMap(l)m mth class (Cm)-classification map produced
by a fusion process (13) using Straining(l) as
training sample set.

BMAXMap(l)m mth class (Cm)-binary map produced from
MAXMap(l)m by MAP.
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I. INTRODUCTION

HYPERSPECTRAL image classification (HSIC) has re-
ceived considerable interest, for instance, [1]–[7], to name

just a few. One of the challenges arising in HSIC is random
selection of training samples. Associated with it are two issues—
how to determine a training sample size for each class due to
imbalanced classes with varying sizes and how to select training
samples once each class training sample size is determined.
These two issues are very similar to the two issues encountered in
an endmember finding problem—how to determine the number
of endmembers to be found such as virtual dimensionality (VD)
[8] and how to find the desired endmembers such as N-finder
algorithm (N-FINDR) [9].

Regarding the first issue, a recent approach using class fea-
tures was developed [10], [11] to define the significance of each
class, referred to as class significance, which can be used to
determine the size of training samples allocated for each class,
provided that a total number of training samples are given. As
shown in [11], such class significance-determined class training
sample size worked more effectively and was better in terms of
average accuracy (AA) and overall accuracy (OA) than sample
ratio (SR) widely used in classification. Because this issue has
been addressed in [10] and [11], it will not be discussed in this
article. Instead, the second issue will be the main focus of this
article.

As for the second issue, a classic approach, called K-fold
method is generally used in pattern classification community,
specifically medical data analysis. Since a different set of ran-
domly selected training samples generally produces a different
classification result, the final classification results produced by
different sets of randomly selected training samples cannot be
reproducible and are also inconsistent. To mitigate this dilemma,
the K-fold method is generally being used for cross validation.
It requires running the same classification process repeatedly
K times using K different sets of randomly and independently
selected training samples, and then, calculating their mean as the
desired results along with the standard deviation (SD) which can
be used as a confidence level to determine the effectiveness of the
classification. The larger the SD, the greater the inconsistency in
classification, and thus, the higher the classification discrepancy.
SD is particularly worsen when only a very limited number of
training samples is available to be used for experiments.

This article looks into this random training sampling (RTS)
issue quite differently from an information theory point of view
[12], which has never been investigated in the past. It first
considers the traditional classification as a random classification
problem where a classifier using a set of RTS-selected training
samples is treated as a random classifier. It then defines the con-
cept of class self-information (CSI) to measure the uncertainty
of individual class accuracy caused by such a random classifier.
In this case, the class entropy (CE) is further defined by the
expectation of CSI over all the classes to measure the overall
uncertainty of AA and OA resulting from a random classifier
using RTS-selected training samples. In order to reduce CE and
SD, a new concept similar to but different from that used in
the K-fold method is particularly developed. It is called iterative
RTS (IRTS) which is implemented iteratively in a novel means.

Since IRTS is an iterative process, we further assume that
there are a total of nI iterations carried out by IRTS. At
each iteration, IRTS randomly selects a set of training samples
and these randomly selected training samples are performed
independently, iteration-by-iteration. So, it appears that IRTS
performs as if it is the K-fold method with K = nI . However,
there is a crucial difference between IRTS and the K-fold method
in the sense that the former operates on data cubes augmented
nI times by iterations as opposed to the latter which operates
the same original data cube over and over again K times. More
specifically, IRTS randomly selects a new set of training samples
from an augmented data cube expanded by including additional
spatial classification information obtained from the preceding
iteration, whereas the K-fold method randomly selects training
samples from the same original dataset K times independently.
Because of that, we refer to IRTS as one-fold nI -iteration RTS
in correspondence to the K-fold method without iterations to
indicate that one-fold nI -iteration RTS actually runs IRTS only
once throughnI iterations. There are three major key factors that
distinguish one-fold nI -iteration RTS with K = nI from the
K-fold method. One is the hyperspectral image cube on which
they operate. The K-fold method executes the same process on
the same dataset repeatedly and independently K times using
different sets of randomly selected training samples. By contrast,
one-fold nI -iteration RTS with K = nI randomly selects new
sets of training samples iteratively from nI augmented data
cubes which are generated iteration-by-iteration via feedback
loops. Another is how to determine the parameter “K” in the
K-fold method and “nI”. The parameter “K” used by the K-fold
method is predetermined, whereas “nI” used in one-fold nI -
iteration RTS is automatically determined by the stopping rule
implemented in the iterative process. Because the “nI” used in
one-fold RTS is generally unknown but rather determined by
the stopping rule, one-fold nI -iteration RTS indeed performs
IRTS. With this interpretation, IRTS can be considered as an
iterative version of a one-fold method which implements RTS
on nI augmented data cubes by nI iterations. On the other hand,
when K-fold IRTS is referred, it actually implements IRTS K
times independently using K different sets of training samples
randomly selected from the same original data cube, but each
fold implemented by IRTS is a single-fold IRTS, which is indeed
one-foldnI -iteration RTS. So, in such a K-fold IRTS, there are K
different values of nI , each of which is determined by the stop-
ping rule of a single one-fold IRTS, i.e., one-fold nI -iteration
RTS. The third and also crucial one is how to augment datasets
iteratively used by IRTS, i.e., one-fold nI -iteration RTS. This
issue does not exist in the K-fold method which uses the same
dataset repeatedly K times. The idea of data augmentation by
iterations is originated and derived from the iterative constrained
energy minimization (ICEM) [13]. Because CEM is a subpixel
target detector and does not take spatial information into ac-
count, ICEM includes a set of Gaussian filters to capture spatial
correlation from CEM-detected maps and feeds the Gaussian
filtered CEM-detected maps back to be added to the current
image cube to create a new augmented image cube. Then, the
same number of new training samples is randomly selected from
this new augmented image cube again for the use of the next
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iteration. Inspired by ICEM, a similar idea is developed for IRTS
by replacing CEM-detected maps with spectral classification
maps, such as edge preserving filter (EPF) in [2] or Gabor filter
in [14]. Accordingly, IRTS implements a feedback system which
augments the currently being processed image cube by adding a
new set of SF-ed spectral classification maps provided by each
feedback loop one iteration after another, and then randomly
reselects training samples from the newly augmented image
cube as a new set of training samples for the next round iteration.
So, generally speaking, IRTS can be implemented coupled with
any supervised classifier which requires training samples to
perform classification. However, to manifest the utility of IRTS
in classification, this article particularly selects spectral-spatial
(SS) classification to perform spectral classification and EPFs
as spatial filters (SFs) to capture spatial information from the
spectral classification maps which will be used to augment the
data cubes.

A general SS classifier implements a spectral classifier fol-
lowed by an SF to perform classification. One of the most
widely used supervised classifiers for HSIC is the support vector
machine (SVM) to find an optimal hyperplane separating two
classes. However, one main issue of SVM or any supervised
classifier is the requirement of a training sample set which
must be provided a priori to train the classifier. In other words,
the result of classification is strongly influenced by a selected
training sample set. Such RTS generally results in inconsistent
and different classification results. That is, when two different
SS classifiers are implemented for classification, it is often the
case that one SS classifier may perform better than the other
on a training sample set but worse on another different training
sample set. This is why the K-fold method has been widely used
to address this issue for cross validation.

Despite the fact that several sampling approaches for HSIC
are proposed in the literature to improve the classification per-
formance over traditional random sampling strategy, none of
them is close to IRTS developed in this article. For example,
[15] showed that the most informative training samples used
to train an SVM classifier were those boundary samples which
could create an effective hyperplane for binary classification.
Another is recent work on training sample selection reported
in [16], which introduced a controlled random sampling (CRS)
strategy to alleviate the side effects resulting from traditional
random sampling due to overlap between training and testing
samples selected from the same image. IRTS is completely
different from any existing sampling approach and has never
been explored before. Specifically, the EPF-based classifiers in
[2] are particularly selected as SS-classifiers implemented in
conjunction with IRTS to derive IRTS-EPF. So, IRTS-EPF can
be considered as an advanced version of IEPF [17] where IEPF
initially selected a set of randomly generated training samples
and used the same selected training sample set through the entire
iterative processes. Unlike IEPF, IRTS-EPF randomly reselects
a different set of training sample at each iteration.

Concluding this section, we summarize several contributions
made by IRTS-SS.

1) A new concept of random classification via an RTS theory
is introduced where a traditional classifier can be extended

and treated as a random classifier which can make random
decisions for classification. As a result, conventional SS
classification can be extended to IRTS-SS classification.

2) To measure the effectiveness of IRTS-SS, several new
information measures are derived from an information
theory, such as CSI, CE, overall CE (OCE)/average CE
(ACE), and sample entropy (SE).

3) By virtue of IRTS, many SS classifiers, such as ISVM [18],
EPF [2], IEPF [17], can be readily extended to their cor-
responding IRTS versions, IRTS-SVM, IRTS-Gaussian,
IRTS-Gabor, IRTS-EPF (including bilateral and guided
filters), and IRTS-IEPF.

4) Since EPF is strongly affected by its use of SFs, two
new fusion methods, referred to as IRTS-GEPF, which
fuses Gaussian filters with EPF, and IRTS-Gabor-EPF,
which fuses Gabor filters with EPF, are further proposed
to improve classification performance.

II. RANDOM CLASSIFICATION

In this section, we interpret the classification using a set of
randomly selected training samples as a random classification
problem. Specifically, let r(x,y) be a data sample at spatial
location (x,y) and δ be a classifier which classifies r(x,y) into
one of M classes {Cm}Mm=1. Also, let the likelihood of a
data sample to be classified into a class be expressed by M
probabilities{pm(r(x, y))}Mm=1 where pm(r(x, y))is the prob-
ability of r(x, y) to be classified by δ(r(x, y)) into mth class,
Cm when Straining is used to train the classifier δ(r(x, y)) for
classification. So, the uncertainty of the data sample r(x, y)
to be classified by δ(r(x, y)) into {Cm}Mm=1 is described by
{pm(r(x, y))}Mm=1 with the probability mass function (PMF)
obtained by a given selected training sample set Straining denoted
by PMF(r(x, y), Straining). In this case, for each data sample
r(x, y), we can define a random variable by ζStraining (δ(r(x, y)))
on a sample space specified by M classes Ωclass = {Cm}Mm=1

via δStraining(r(x, y))with PMF determined by a given selected
set of random training samples Straining.

To simplify and clarify notations, we let {r(x, y)}(x,y) =
{rn = r(x, y)}Nn=1 denote a total number of N data samples
in a hyperspectral image. In this case, there are N random
variables {ζStraining(δ(rn))}Nn=1, each of which has its own
PMF(r(x, y), Straining) = PMF(rn, S

training) to generate a
probability distribution PMF defied on Ωclass = {Cm}Mm=1. By
virtue of this PMF(rn, S

training), the uncertainty of a data
sample rn to be classified into Ωclass = {Cm}Mm=1 can then be
described by classification inconsistency for rn using Straining.
On the other hand, since the training sample set Straining is
selected randomly, it also creates a random variable to describe
the randomness of selecting training samples set. That is, the
probability of using Straining is denoted by PMF(Straining). Using
the PMF of such random variables, we can further define SE
to describe the uncertainty of a data sample rn resulting from
using Straining with the probability given by PMF(Straining).

Basically, there are two random variables associated with each
of data sample rn ∈ {rn}Nn=1. One is {ζStraining(δ(rn))}Nn=1

used to describe uncertainty of the data sample rn caused by



CHANG et al.: ITERATIVE RANDOM TRAINING SAMPLING SPECTRAL SPATIAL CLASSIFICATION FOR HYPERSPECTRAL IMAGES 3989

PMF(rn, S
training) using a specific Straining. The other is another

random variable ξ to describe the SE caused by the uncertainty
of choosing Straining according to PMF(Straining).

More specifically, assume that Straining(l) =
⋃M

m=1 S
training(l)
m where S

training(l)
m is the set of training

samples in the lth selected training sample set used to train a
classifier for the mth class. Then, all the total number of possible
training sample sets are given by

Stotal =

Ntotal
⋃

l=1

Straining(l) =

Ntotal
⋃

l=1

{
M⋃

m=1

Straining(l)
m

}

. (1)

Therefore, the random variable ξ(Straining(l)) is defined on
the sample space Stotal defined in (1) with the probability of
selecting the lth training sample set Straining(l) assumed to be
equally likely and given by

PMF(Straining(l)) =
1

N total
. (2)

Despite Ntotal being considerably large, it does not imply
that we need all Ntotal of training sample sets for classification.
The performance of a classifier is evaluated by AA and OA,
and its class uncertainty measured by PMF(rn, S

training) and
PMF(Straining). Finally, we use the three most widely used HSI
scenes, Purdue’s Indian Pines, Salinas, and University of Pavia
to illustrate the effectiveness of IRTS in uncertainty reduction
and improvement of classification accuracy.

III. RTS THEORY

Following Section II, we can further develop a theory, called
RTS theory to describe the uncertainty of classification incon-
sistency caused by random sampling.

Consider a data sample rn to be classified into M classes
{Cm}Mm=1. The classification of rn can be viewed as rolling a
dice with M faces where each face represents a specific class
of interest. We further assume that Straining is a set of training
samples to be selected for classification and δStraining(rn) is
a classifier using Straining to classify rn into one of M classes,
say, mth class, i.e., δStraining(rn) = Cm. Then, we can define
a random variable ζ(δStraining(rn)) on a probability space with
the sample space specified by M classesΩclass = {Cm}Mm=1 and
its PMF given by p(ζ(δStraining(rn) = Cm) = pm(rn), which
represents the class membership probability of assigning rn by
the classifier δStraining using the training sample set Straining to
the mth class Cm. Now, we can further assume that the entire
data sample space is given by Ωdata = {rn}Nn=1 where rn is the
nth data sample located at its particular spatial coordinate (x,y).
In this case, performing the classification of the nth data sample
rn is equivalent to rolling a dice with M faces using the random
variable ζ(δStraining(rn)) defined above for rn. So, classifying
the entire data space Ωdata = {rn}Nn=1 can be carried out by
N independent random variables {ζStraining(δ(rn))}Nn=1 defined
on the sample space ΩN

class =
∏N

n=1 Ω
n
class with Ωn

class = Ωclass

for 1 ≤ n ≤ N .
For each class Cm, let nm be the number of data samples

in Cm. Then, the total number of data samples to be classified

without including BKG samples is denoted by N given by

N =

M∑

m=1

nm. (3)

Also, let Straining
m be the set of training samples selected from

Cm to be used to classify data samples in Cm and Straining be
the total number of training samples used for classification and
given by

Straining =

M⋃

m=1

Straining
m (4)

where ntraining
m = |Straining

m | is the number of training samples
in Straining

m .
According to RTS, we randomly selectntraining

m samples from
Cm according to ground truth. So, when the K-fold method is
used to evaluate the performance of a classifier, it will have a
total number of possible training sample sets that it can choose
from, that is

N total =

(
n1

ntraining
1

)

×
(

n2

ntraining
2

)

× · · · ×
(

nM

ntraining
M

)

=

M∏

m=1

(
nm

ntraining
m

)

(5)

where (
nm

ntraining
m

) = nm!

ntraining
m !(nm−ntraining

m )!
.

So, the classification of Ωdata = {rn}Nn=1 using the lth
training sample set Straining(l) can be considered as rolling
a dice with M faces described by N independent random
variables {ζStraining(l)(δ(rn))}Nn=1. As {ζStraining(l)(δ(rn))}Nn=1

runs through all training sample setsStraining(l) over Stotal in (1),
we will have

{
{ζStraining(l)(δ(rn))}Nn=1

}Ntotal

l=1

=
{
{ζStraining(l)(δ(rn))}Nn=1

}

Straining(l)∈Stotal
(6)

which shows that the classifier δ runs through all the training
sample sets given by (1) as well as the entire data sample space
Ωdata = {rn}Nn=1 to perform classification.

A. Probability of Classification

Suppose that δ is any arbitrary classifier used to classify data
samples Ωdata = {rn}Nn=1. In general, the class membership
assignment maps produced by δ consist of M binary maps, each
of which represents the classification result of an individual
class. These M binary values produced by δ for each sample
rn can be represented by an M-dimensional column vector

δ(rn) = y(rn) =

⎡

⎢
⎢
⎢
⎣

y1(rn)
y2(rn)

...
yM (rn)

⎤

⎥
⎥
⎥
⎦

(7)
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where ym(rn) is a binary-valued class membership assignment
for classifying rn into the mth class Cm given by

yj(rn) =

{
1 for j = m

0 for j �= m
for 1 ≤ j ≤M (8)

with rn assumed to be in Cm, i.e., rn ∈ Cm. More pre-
cisely, for each ym(rn), we can formulate the prior prob-
ability of ym(rn) conditioning on pm(rn) according to
{ζStraining(l)(δ(rn))}Straining(l)∈Stotal by only focusing on the
single data sample rn as follows:

p(ym(rn) |pm(rn) ) =

{
pm(rn),

1− pm(rn),
ym(rn) = 1
ym(rn) = 0

(9)

where pm(rn) indicates the probability of the data sample rn
assigned to Cm, i.e., a dice tossed for rn with the face up
turned out to be m. Specifically, pm(rn) is the probability that
a classifier will classify rn into Cm, pm(rn) and can be further
defined as

pm(rn) =
N total

ym(rn)=1

N total
, 1− pm(rn) =

N total
ym(rn)=0

N total
(10)

where N total
ym(rn)=1 represents the number of training sample

sets in Ntotal that classify rn into the ith class, and N total
ym(rn)=0

otherwise. Therefore, the closerN total
ym(rn)=1 is to Ntotal, the easier

it is for a classifier to classify rn. Finally,

M∑

m=1

pm(rn) = 1 (11)

where the parameter pm(rn) indicates the probability or likeli-
hood of rn to be classified into Cm.

B. Uncertainty Reduction

The concept of data sample uncertainty is very simple, which
is determined by pm(rn). That is, the smaller the value of
pm(rn), the more uncertainty of rn being assigned to Cm.
Therefore, a good classifier tries to make data sample uncertainty
as small as possible by letting

pj=m(rn)→ 1, pj �=m(rn)→ 0 with rn ∈ Cm. (12)

This means that as long as there is a sufficient number of train-
ing sample sets Straining(l) selected from Stotal in (1) for the clas-
sifier δ, the degree of classification inconsistency will approach
zero asymptotically. So, an interesting question is “is there an
effective as well as an efficient way to minimize classification
inconsistency without the need of going through a large number
of training sample sets selected from Stotal?” The IRTS proposed
in Section IV is particularly developed to address this issue.

IV. SS CLASSIFICATION USING IRTS

The IRTS presented in this section is to implement the RTS
discussed above iteratively where RTS is performed indepen-
dently iteration-by-iteration.

Many approaches to HSIC have been reported in the liter-
ature, among which SS-based methods are probably one of
most popular and widely used classification methods. An SS

method first implements a spectral-based classifier to perform
spectral classification and then follows up with SFs to obtain
spatial information from spectral-classified data samples. Such
spatial correlation captured by the SFs is indeed provided by
the used training samples. If this information is fed back to be
added to the current data cube to expand the data cube, then
this new augmented data cube will contain much needed spatial
classification information to help improve classification. Then,
we can perform RTS again to select another new set of training
samples from this new data cube. As a result of the newly
added SF-ed classification information provided by the new
RTS-selected training samples, the classification performance
will be further improved. The same process is continued on
iteratively and the issue of inconsistent classification results
caused by random training sample selection can, therefore, be
reduced. Due to its nice SS structure, an SS method is a perfect
candidate to be used in conjunction with IRTS. So, when IRTS
is implemented in conjunction with an SS method, it is referred
to as IRTS-SS. For example, if SVM and Gaussian filter are
used for spectral classifier and SF, respectively, it is referred to
as IRTS-SVM-Gaussian.

Two key steps implemented in IRTS-SS are worth being men-
tioned. One is that the training sample set used in each iteration
is randomly selected. This is quite different from using the same
training sample set in all iterations as was done [13]–[14], [17]–
[19]. The other is to fuse classification results produced by two
randomly selected training sample sets. Since the captured SF-ed
information provided by two different sets of training samples
contains more classification information than that provided by
the same fixed training sample set, the uncertainty caused by
classification inconsistency is further reduced by fusion.

Suppose that at the lth iteration IRTS-SS implements an
SF denoted by SF(l) which uses the lth training sample
set Straining(l) to produce the lth M spectral classification
maps {{SF(l)

m (rn)}Nn=1}Mm=1 where {SF(l)
m (rn)}Nn=1 is the

Cm-classification map for Ωdata = {rn}Nn=1. Then, the fusion
step of IRTS-SS fuses the mth spectral classification map at the
(l−1)th iteration SF(l−1)

m (rn) and the mth spectral classification
map at the lth iterationSF(l)

m (rn) for each data sample rn by
taking their maximum for 1 ≤ m ≤M as follows:

MAX(l)
m (rn) = max

{
SF(l)

m (rn), SF
(l−1)
m (rn)

}

MAXMap(l)m =
{
MAX(l)

m (rn)
}

rn∈Ωdata

. (13)

It should be noted that the training sample sets Straining(l−1)

used in the (l−1)th iteration and Straining(l) in the lth iteration
are randomly selected and they are different and completely
independent. The fusion process in (13) is to jointly capture the
information provided by the two different training sample sets
Straining(l−1) and Straining(l). Furthermore, the resulting fused
M classification maps obtained from (13) are then fed back to
the image data cube currently being processed to create a new
data cube, which will be used as a new dataset to reprocess
classification again in an iterative manner. This feedback process
can reduce the uncertainty caused by RTS. More specifically,
each iteration makes use of a different set of training data. If
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IRTS-SS is terminated by K iterations, it means that IRTS-SS
has used K different sets of training samples for classification.
The niche is that IRTS-SS correlates classification results pro-
duced by (13) to improve classification accuracy while reducing
classification uncertainty. This is very different from running the
K-fold method which implements the same algorithm K times in-
dependently without taking advantage of the correlation among
the K results. By including more and more spatial information
provided by SFs using different sets of training samples from
augmented data cubes iteration after iteration, the classification
results become more consistent and gradually converge until the
fused classification maps meet a stopping rule which is Tanimoto
index (TI) [20], defined as

TI(l)m =
|BMAXMap(l)m ∩ BMAXMap(l−1)m |
|BMAXMap(l)m ∪ BMAXMap(l−1)m | > ε (14)

for 1 ≤ m ≤M where the maximum a posteriori (MAP) de-
fined by (15) is used to produce binary map BMAXMap(l)m as
follows.

BMAX(l)
m (rn) =

{
1; MAX(l)

m (rn) > MAX
(l)
i∈{1,··· ,M},i�=m(rn)

0; otherwise

BMAXMap(l)m =
{
BMAX(l)

m (rn)
}

rn∈Ωdata

(15)

at the lth iteration. The idea of TI is to measure the discrep-
ancy between binary map BMAXMap(l−1)m and binary map
BMAXMap(l)m . If these two maps are identical, then TI = 1.
On the other hand, if these two maps are disjoint, then TI =
0. So, TI is right between 0 and 1 and the greater TI is, the
better the match between the two classification maps is. Once the
algorithm is terminated,BMAXMap(l)m is the final classification
map. The details of step-by-step implementation of IRTS-SS are
provided in the following.

IRTS-SS
1) Initial condition: Let Ω 0) and Straining(0) be the original

HSI image cube and an initial randomly selected training
sample set. Let ε be a prescribed threshold. Set l = 0.

2) At the lth iteration, implement an SS classifier on
Straining(l) to produce a probability map of each class Cm

SF(l) = {{SF(l)
m (rn)}Nn=1}Mm=1 for 1 ≤ m ≤M .

3) If l= 0, let l← l + 1and go to step 2. Otherwise, continue.
4) Fusion process: For each sample rn, find MAXMap(l)m =
{MAX(l)

m (rn)}rn∈Ωdata
via (13).

5) Implement MAP (15) on{MAXMap(l)m }Mm=1to
produce classification maps{BMAXMap(l)m }Mm=1 =
{{BMAX(l)

m (rn)}Nn=1}Mm=1.
6) If TI(l) > ε, go to step 8. Otherwise, continue.
7) Form a new data cube

Ω(l) = Ω(l−1) ∪
{
MAXMap

(l)
1

}
∪ · · · ∪

{
MAXMap

(l)
M

}

(16)
and regenerate a new set of training samples S(l). Let

l← l + 1, go to step 2.
8) The algorithm is terminated and {BMAXMap(l)m }Mm=1 are

the final classification maps.

The diagram of IRTS-SS depicted in Fig. 1 shows that at
the lth iteration, IRTS-SS uses the fusion process described by
(13) in step 4 in Fig. 2 to produce a new set of M SF-filtered
classification maps that will be fed back via a feedback loop to
be added to the current data cube Ω(l) to create a new data cube
Ω(l+1) described by step 7 for the next (l+1)th iteration. Then,
the new training sample set Straining(l+1) will be selected from
Ω(l+1)and used for spectral classification at the (l+1)th iteration.
In other words, each iteration represents an SS classification
using a newly selected training sample set. The key feature of
IRTS-SS is to fuse two consecutive SF-ed spectral classification
maps {{SF(l−1)

m (rn)}Nn=1}Mm=1 and {{SF(l)
m (rn)}Nn=1}Mm=1 de-

scribed in Fig. 2.
When IRTS-SS is implemented by an SS classifier, it allows

users to select a spectral classifier, such as SVM, and an SF,
such as Gaussian filter, Gabor filter [14], or EPF, to perform
classification. In this article, two SFs are selected to implement
IRTS-SS. The first one is EPF proposed in [2]. Even though EPF
shows significant improvement in classification performance of
HSIC, its performance is strongly affected by the used guided
image, which requires first or first three principal component
(PC) images of the original image cube to capture spatial infor-
mation for binary spectral-classification maps. In order to solve
this problem, we propose a new method which fuses the results
by a Gaussian filter and EPF, G(l) and EPF(l) at the lth iteration
by taking their maximum for 1 ≤ m ≤M

GEPF(l)
m (rn) = max

{
G(l)

m (rn),EPF
(l)
m (rn)

}
(17)

over each data sample rn. The method resulting from using (17)
is called Gaussian-EPF fused filter, referred to as GEPF.

Similar to (17), another filter, Gabor [14] can be also used
to fuse with EPF to derive Gabor-EPF fused filter (Gabor-EPF)
by fusing Gabor(l) and EPF(l) at the lth iteration by taking their
maximum for 1 ≤ m ≤M

Gabor− EPF(l)
m (rn) = max

{
Gabor(l)m (rn),EPF

(l)
m (rn)

}

(18)
over each data sample rn.

V. INFORMATION MEASURES DERIVED FOR RTS

As it is designed, IRTS-SS utilizes RTS to run an SS clas-
sifier iteratively. It works like the K-fold method to improve
classification inconsistency caused by RTS. In the mean time,
it also reduces uncertainty resulting from the randomness by
RTS. But how to assess the effectiveness of RTS quantitatively
in terms of classification inconsistency and uncertainty becomes
a challenging issue. This section develops several quantitative
measures from information theory.

For the purpose of illustration, we implement RTS K times
and each time uses a different set of randomly selected training
samples. We then calculate their average as a mean for final
classification along with the SD to reflect the confidence levels
of classification results. It should be noted that K must be
sufficiently large to generate meaningful and reliable statistics.
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Fig. 1. Graphic diagram of iterative process in IRTS-SS.

Fig. 2. Graphic diagram of fusion process (13) in IRTS-SS.

A. Classification Standard Deviation (CSD)

CSD calculates SD of classification of each data sample
produced by running RTS K times. Specifically, for a given data
sample rn, we define the single sample SD (SSD) of rn in the
Cm-classification map, denoted by SSDm(rn) = σm(rn), as

SSDm(rn) = σm(rn)

=

√
1
K

∑K
k=1

(
δ
(k)
m (rn)− δ̄Km(rn)

)2 (19)

where δ(k)m (rn) is defined by (7) with the subscript m indicating
the value of δ(rn) obtained for the mth classCm, K is the number
of times RTS is carried out, and δ̄

(K)
m (rn) =

1
K

∑K
k=1 δ

(k)
m (rn).

We can then further define the single Cm-CSD (CSDm) by
averaging SSDm(rk) over rn classified into Cm by

CSDm =
1

nm

∑

rn∈Cm

SSDm(rn). (20)

Finally, the average of CSDm in (20) over M classes
{Cm}Mm=1 can be calculated in two ways, either by the class
sample ratio (SR), nm/N , referred to as overall CSD (OCSD)

OCSD =
M∑

m=1

nm

N
CSDm (21)

which assumes that each class is weighted by SR or by letting
nm

N = 1
M , referred to as average CSD (ACSD)

ACSD =
1

M

M∑

m=1

CSDm (22)

which assumes that each class is weighted equally by 1/M.

B. Classification Entropy

For a given data sample rn we consider the probability of K
binary classification maps of rn assigned to a particular class,
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say, Cm by a classifier δ. From (7)–(9), we can define

p̄Km(rn) =
1

K

K∑

k=1

y(k)m (rn) (23)

where y
(k)
m (rn) indicates the binary classification map of Cm

assigned to rn by a classifier in the kth run, i.e., using the
kth random training sample set Strianing(k). Then, the average
probability vector can be defined by

p̄K(rn) =

⎡

⎢
⎢
⎢
⎣

p̄K1 (rn)
p̄K2 (rn)

...
p̄KM (rn)

⎤

⎥
⎥
⎥
⎦
=

1

K

⎡

⎢
⎢
⎢
⎢
⎣

∑K
k=1 y

(k)
1 (rn)

∑K
k=1 y

(k)
2 (rn)

...
∑K

k=1 y
(k)
M (rn)

⎤

⎥
⎥
⎥
⎥
⎦
. (24)

Once p̄K(rn) is calculated by (24), we can define CSI of rn
being classified into Cm by running a classifier K times using K
randomly selected training sample sets as Im(rn)

Im(rn) = − log p̄Km(rn) (25)

which indicates that the higher the p̄Km(rn) value is, the smaller
the CSI of rn and thus, the less the uncertainty of rn being
classified into the mth class by K runs. Using (25), we can further
define the uncertainty of the data sample rn as Shannon’s SE by

H(rn) = −
M∑

m=1

p̄Km(rn) log p̄
K
m(rn)

=

M∑

m=1

p̄Km(rn)Im(rn). (26)

So, a higher H(rn) indicates a higher uncertainty contained
in rn to be classified by a classifier running K times. Conversely,
a smaller H(rn) implies a smaller uncertainty contained in rn.
As a result, the classification results of rn gradually become
deterministic. Furthermore, like (20), we can also define Cm-
CE by averaging SE in (26) over the data samples classified into
Cm by

HCE(Cm) =
1

nm

∑

rn∈Cm

H(rn). (27)

In analogy with (21) and (22), we can also use (27) to define
the OCE similar to (20) by SR as

HOCE =
M∑

m=1

ni

N
HCE(Cm) (28)

and let nm

N = 1
M to define ACE similar to (22)

HACE =
1

M

M∑

m=1

HCE(Cm). (29)

V. PERFORMANCE EVALUATION

Several classification measures defined in [21] will be used
for the experiments and are summarized as follows.

We first assume the following.
nmm = Number of signal samples in the mth

class correctly classified into the mth class
Ĉm.

njm = Number of data samples in the mth class
Cm but actually classified into the jth class
Ĉj .

M = Number of classes.
Cm = Set of data samples in the mth class, by

ground truth.
nm =

∑M
j=1 njm = Number of data samples in Cm.

N = Total number of data samples, N =∑M
m=1 nm.

In traditional HSIC, the popular performance measurements
are CA and OA, given by

pA(Cm) = accuracy of the mth class =
nmm

M∑

j=1

njm

=
nmm

nm

(30)

POA =
1

N

M∑

m=1

nmm =

M∑

m=1

nm

N
pA(Cm) (31)

which shows that POAutilizes sample ratios as weights to aver-
age the accuracy of each class. In addition, we can consider all
classes to be equally likely by letting nm

N = 1
M to further define

PAAas AA by the number of classes M, expressed as

PAA =
1

M

M∑

m=1

nmm

nm
=

1

M

M∑

m=1

pA(Cm). (32)

Another measure is a new criterion developed in [13], called
precision rate (PR) given by

pPR(Cm) = PR of Cm =
n̂mm

n̂m
(33)

where n̂m =
∑M

j=1 n̂mj is the total number of data samples that
be classified into the mth class and n̂mj is the number of data
samples classified into mth class but supposed to be in jth class.
The overall PR (OPR) is defined by

POPR =

M∑

m=1

p(Ĉm)pPR(Cm) =

M∑

m=1

n̂m

N̂
pPR(Cm) (34)

whereN̂ =
∑M

m=1 n̂mis the total number of data samples be-
ing classified. Therefore, PR, also known as user’s accuracy,
is proposed to address the BKG issue. While many existing
classification methods have removed all unlabeled data samples
as BKG from classification, PR is the one that can include all
data samples for evaluation.

VII. EXPERIMENTS AND DISCUSSION OF RESULTS

Three popular and widely used real hyperspectral images,
Purdue’s Indiana Indian Pines, Salinas, and University of Pavia,
available at the website http://www.ehu.eus/ccwintco/index.

http://www.ehu.eus/ccwintco/index.php&quest;title ignorespaces &equals; ignorespaces Hyperspectral_Remote_Sensing_Scenes
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Fig. 3. Purdue’s Indiana Indian Pines scene. (a) Ground truth map. (b) Classes by colors.

php?title = Hyperspectral_Remote_Sensing_Scenes, were used
for experiments.

Since IRTS can be implemented with any SS classifier,
EPF-based methods developed in [2] were particularly selected
for experiments based on two main reasons. According to [2],
EPF-based methods generally performed well compared to
other existing SS methods. The other is that the source codes of
EPF-based methods are available on the authors’ website [22]
so that those who are interested in the work presented in this
article can use these codes to compare their results. Although
four versions of EPF were proposed in [2], only EPF-G-g
was used in this article since EPF-G-g was shown to perform
generally better than the other three EPF-based methods. It
utilizes a guided filter and first PC as the reference image to
perform SS classification. Recently, an iterative version of
EPF, called iterative EPF (IEPF) was developed in [17] which
has been shown to outperform EPF in classification. So, IEPF
was also included for comparison. Interestingly, IRTS-EPF
can be considered as a generalization of IEPF, which reselects
training samples instead of fixing training samples throughout
all iterations to improve the classification performance as well
as reduce the inconsistency of classification results.

Three parts of experiments were performed.
1) IEPF developed in [17] has been shown to achieve very

high classification accuracy (PAA = POA ≈ 98.5% for the
Purdue data; PAA ≈ 0.99%, POA ≈ 98.5% for University
of Pavia) and also perform significantly better than EPF.
It was believed that it would be very difficult to further
improve its classification performance. So, in the first part,
we conducted experiments to show that IRTS-EPF using
different sets of training samples at different iterations
indeed performed better than IEPF which used the same
set of training samples for all iterations.

2) With the second part, we investigated the issue of inconsis-
tent classification caused by uncertainty resulting from the
randomness of RTS. In doing so, IRTS was implemented
30 times as 30-fold IRTS to measure SD_POA to evaluate
the inconsistency in classification results produced by six
different methods, EPF, IEPF, IRTS-EPF, IRTS-GEPF,
IRTS-SVM-Gabor, and IRTS-Gabor-EPF. It turned out

that the SD_POA resulting from classification inconsis-
tency was significantly reduced by IRTS.

3) As the final and third part, we explored the utility of SSD
in (19) and SE in (25) in interpretation of misclassification
errors. First of all, SSD and SE were calculated as quanti-
tative measures. Second, their results were plotted as maps
for visual inspection to show data samples with high SSD
and SE, which were indeed the most difficult to be classi-
fied. This information can be obtained by K-fold IRTS,
not classification maps produced by a single run (i.e.,
onefold) of any classifiers including EPF, IEPF, IRTS-EPF,
IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-EPF.

A. Purdue Indiana Indian Pines

The first image used for the experiment was Purdue Univer-
sity’s Indiana Indian Pines shown in Fig. 3(a). It is a well-known
airborne visible/infrared imaging spectrometer (AVIRIS) image
scene with a spatial resolution of 20-m per pixel and spectral
resolution of 10 nm. Its ground truth of 16 class maps plus
BKG is provided in Fig. 3(b). It was recorded in June 1992
with 200 bands without including 20 bands, which are the water
absorption bands (bands 104–108 and 150–163, 220). Table I
tabulates all the 16 classes of interest along with the number of
data samples in each class where four small classes, classes 1, 7,
9, 16, contain less than 100 data samples and three large classes,
classes, 2, 11, 14, contain more than 1000 data samples. These
seven classes can be used to demonstrate the issue of imbalanced
classes in classification performance as discussed in [10].

Following the same parameters used in [2] and [17], the
total number of training samples Ntraining = 1025 was chosen
to be 10% of SR. Also, to compare the performance with
the original EPF-based method, the same number of selected
training samples was also approximately 1025 with the number
of selected training sample numbers for each class tabulated in
Table II.

According to the training sample size of each class determined
in Table II, we randomly selected training samples for the
experiments. Table III tabulatesPA,POA, andPAA of EPF, IEPF,

http://www.ehu.eus/ccwintco/index.php&quest;title ignorespaces &equals; ignorespaces Hyperspectral_Remote_Sensing_Scenes
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TABLE I
CLASS LABELS OF PURDUE INDIANA INDIAN PINES WITH NUMBER OF DATA SAMPLES IN EACH CLASS

TABLE II
NUMBER OF TRAINING SAMPLES ALLOCATED INTO EACH CLASS FOR PURDUE INDIANA PINES DATA

TABLE III
PA, POA, AND PAA OF EPF, IEPF, IRTS-EPF, IRTS-GEPF, IRTS-SVM-GABOR, AND IRTS-GABOR-EPF FOR PURDUE INDIAN PINES

WITH THE HIGHEST ACCURACY BOLDFACED

IRTS-EPF, IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-
EPF for the Purdue data. As we can see, IRTS-EPF performed
better than their counterparts, EPF and IEPF, with improve-
ments of POA from 93.88% and 98.05% to 99.02%, and PAA

from 96.49% and 98.65% to 98.77%. The highest classification
accuracy was produced by IRTS-GEPF with POA = 99.45%
and PAA = 99.73% followed by IRTS-Gabor-EPF with POA =
99.36% and PAA = 99.45%.

To further investigate the uncertainly caused by RTS, 30-fold
IRTS was performed and their results were averaged along
with their corresponding SDs and running times calculated and
tabulated in Table IV where the computer environment used was
2.90 GHz Intel corei7 CPU and 8 GB of memory. In addition,
their CSD with ACSD/OCSD and CE with ACE/OCE along
with their respective running times were also calculated and
tabulated in Table V. All the results clearly showed that IRTS
considerably reduced the uncertainty caused by RTS. Compared
to the results produced by IRTS in Table III, the results by
30-fold IRTS in Table IV were rather stable in terms of SD,
specifically, from 1.17%/0.52% down to 0.14% by using EPF.

Also, in Table IV, 30-fold IRTS not only reduced the SD of POA

very effectively but also improvedPOA significantly, where four
30-fold IRTS methods produced POA up to 99% better than
30-fold EPF and 30-fold IEPF whose averaged POA values of
30-fold EPF and 30-fold IEPF were 93.02% and 97.95%. It
is interesting to note that 30-fold IRTS-SVM-Gabor produced
98.54% of POA and 98.98% of PAA, both of which were better
than EPF and IEPF but worse than IRTS-EPF and IRTS-GEPF
due to the fact that the used SVM was not as effective as
EPF. However, the performance of IRTS-SVM-Gabor can be
improved by fusing Gabor-filtered classification maps with EPF-
filtered classification maps where the averaged POA and PAA

of IRTS-Gabor-EPF were increased to 99.17% and 99.40%,
which performed better than IRTS-EPF and IRTS-SVM-Gabor.
As for running time, EPF required the least time since it did not
perform iterative processes. Among all the remaining classifiers
which require iterative processes, the ones using Gabor filters
required the most computing times with 2–4 times that required
by IRTS-GEPF and IRTS-EPF. This is because Gabor filter uses
2-D Gaussian filters compared to EFP and GEPF which are 1-D
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TABLE IV
AVERAGED PA, POA, ACSD/OCSD, AND ACE/OCE CALCULATED BY 30-FOLD EXPERIMENTS OF PURDUE INDIAN PINES

WITH THE HIGHEST ACCURACY BOLDFACED

TABLE V
UNCERTAINTY CAUSED BY USING CSD AND CE FOR 30-FOLD EXPERIMENTS OF PURDUE INDIAN PINES WITH THE LEAST CSD AND CE BOLDFACED

filters. Also, IRTS-GEPF required more time than IRTS-EPF
because IRTS-GEPF includes a fusion process that does not
exist in IRTS-EPF.

By comparing four IRTS-based classifications, we can see
that the smallest SD_POA was produced by 30-fold IRTS-
Gabor-EPF = 0.14% and the smallest SD_PAA = 0.08%
was generated by 30-fold IRTS-GEPF. On the other hand,
the lowest OCSD/ACSD and OCE/ACE were both produced
by 30-fold IRTS-GEPF with OCSD/ACSD = 0.0098/0.0057
and OCE/ACE = 0.0114/0.0067, which is lower than
OCE/ACE = 0.1048/0.0643 produced by EPF and OCE/ACE =
0.0430/0.0234 by using IEPF. Interestingly, even though 30-fold

IRTS-Gabor-EPF created the smallest SD_POA, it still produced
higher OCSD/ACSD and OCE/ACE than 30-fold IRTS-EPF and
30-fold IRTS-GEPF. This demonstrated that the smaller value of
SD_POA did not necessarily indicate more stable classification
results. So, OCSD/ACSD and OCE/ACE are generally needed
to evaluate the uncertainty of classification.

In the following, we will demonstrate the advantages of
utilizing SSD in (19) and SE in (26) to interpret classification
maps. Fig. 4 shows onefold classification results of all the
tested methods for the Purdue data where it is difficult to make
comparison by visual inspection. However, if we used the results
in Tables IV and V to plot their results as SSD and SE maps in
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Fig. 4. Classification results of six SS methods for the Purdue data. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor. (f) IRTS-Gabor-EPF.

Fig. 5. SSD maps produced by 30-fold experiments along with color bar of SSD maps. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor.
(f) IRTS-Gabor-EPF.

Fig. 6. SE maps produced by 30-fold experiments along with color bar of SE map. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor. (f)
IRTS-Gabor-EPF.

Figs. 5 and 6, the benefit of interpreting classification results
was immediately obvious. In 30-fold EPF results, most of the
data samples in each class had high SSD and SE in Figs. 5
and 6. As for 30-fold IEPF, SSD of most data samples was
reduced, but SSD of some regions was actually increased as
shown in Figs. 5(b) and 6(b). In other words, 30-fold IEPF
could significantly reduce the uncertainty caused by RTS, but it
also increased the inconsistency in classification of data samples
which were difficult to be classified, specifically class boundary
data samples. Compared to Figs. 5(a) and (b) and 6(a) and
(b) produced by 30-fold EPF and 30-fold IEPF, Figs. 5(c)–(f)
and 6(c)–(f) showed significant reduction of uncertainties of the
SSD and SE maps produced by 30-fold IRTS methods. We can
also observe that 30-fold IRTS-SVM-Gabor created the most
inconsistent classification result among the four IRTS methods
but it still performed better than 30-fold EPF and 30-fold IEPF in
terms of POA and PAA. Nevertheless, it was also inevitable that
some data samples would still show high uncertainty because
they were edge points located along their class boundaries. As
a result, these data samples were affected by BKG.

As a final experiment, we demonstrated the differences
between various SF-ed classification maps and their corre-
sponding MAP-threshold binary maps. To further illustrate
the imbalance class issue, we specifically picked two partic-
ular classes—class 7 which has 28 data samples to represent

a small class and class 11 which has 2455 data samples to
represent a large class, both of which did not do as well as
the other classes with their corresponding comparable sizes.
Figs. 7 and 8 compare the differences between various SF-ed
maps and their corresponding MAP-thesholded binary maps
for class 7 and class 11, respectively, where (a) EPF (PA =
96.43%), (b) IEPF (PA = 96.43%), (c) IRTS-EPF (PA =
96.43%), (d) IRTS-GEPF (PA = 100%), (e) IRTS-SVM-Gabor
(PA = 100%), and (f) IRTS-Gabor-EPF (PA = 100%)for class
7 and (a) EPF (PA = 93.65%), (b) IEPF (PA = 95.40%), (c)
IRTS-EPF (PA = 98.82%), (d) IRTS-GEPF (PA = 99.80%),
(e) IRTS-SVM-Gabor (PA = 98.45%), and (f) IRTS-Gabor-
EPF (PA = 99.19%) for class 11. As shown in these figures,
IRTS significantly improved the classification accuracy PA of
both classes regardless of their class sizes.

B. Salinas

A second real hyperspectral image scene is Salinas shown in
Fig. 9(a) along with Fig. 9(b) and (c) which shows the color
composite of the Salinas image and its corresponding ground
truth map in Fig. 9(b) by color class labels in Fig. 9(c). It is
also an AVIRIS image collected over Salinas Valley, California,
and with a spatial resolution of 3.7-m per pixel with spectral
resolution of 10 nm. The image cube has size of 512× 217×
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Fig. 7. Various SF-ed classification maps for class 7 in the first row and the corresponding binary classification maps in the second row. (a) EPF (PA = 96.43%).
(b) IEPF (PA = 96.43%). (c) IRTS-EPF (PA = 96.4%3). (d) IRTS-GEPF (PA = 100%). (e) IRTS-SVM-Gabor (PA = 100%). (f) IRTS-Gabor-EPF (PA =
100%).

Fig. 8. Various SF-ed classification maps for class 11 in the first row and the corresponding binary classification maps in the second row. (a) EPF (PA = 93.65%).
(b) IEPF (PA = 95.40%). (c) IRTS-EPF (PA = 98.82%). (d) IRTS-GEPF (PA = 99.80%). (e) IRTS-SVM-Gabor (PA = 98.45%). (f) IRTS-Gabor-EPF
(PA = 99.19%).

Fig. 9. Ground truth of Salinas scene with 16 classes. (a) Salinas scene.
(b) Ground-truth image. (c) Classes by colors.

224. This scene is very similar to the Purdue Indiana Indian Pines
scene which also excluded 20 water absorption bands which are
104–108, 150–163, and 220. Table VI tabulates the number of
data samples in parentheses collected for each class.

Unlike the Purdue data, all the classes are relatively large and
have over 900 data samples. So, there is no imbalanced class
issue in this dataset. In Salinas experiments, the sample ratio to
select training samples was set to 2% as was done in [2] where
the training sample size for each class was nearly equal and
around 67–70, as tabulated in Table VII.

According to the training sample size of each class determined
in Table VII, we randomly selected training samples for each
class and performed EPF, IEPF, IRTS-EPF, IRTS-GEPF, IRTS-
SVM-Gabor, and IRTS-Gabor-EPF for Salinas data. Table VIII
tabulates their PA, POA, and PAA values. As we can see from
Table VIII, IRTS-EPF and IRTS-GEPF performed better than
their counterparts EPF and IEPF, with improvements of PAA

by 0.2% (IEPF) and 2% (EPF) and POA by 1% (IEPF) and 5%
(EPF). It should be noted that since POA and PAA of IEPF were
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TABLE VI
CLASS LABELS OF SALINAS WITH NUMBER OF DATA SAMPLES IN EACH CLASS

TABLE VII
NUMBER OF TRAINING SAMPLES ALLOCATED INTO EACH CLASS FOR SALINAS

TABLE VIII
PA, POA, AND PAA OF EPF, IEPF, IRTS-EPF, IRTS-GEPF, IRTS-SVM-GABOR, AND IRTS-GABOR-EPF FOR SALINAS

WITH THE HIGHEST ACCURACY BOLDFACED

98.16% and 99.02%, which were already very high, to improve
IEPF would be very difficult, even by a small percentage. IRST-
EPF managed to improve IEPF by 1% for POA and 0.3% for
PAA, which were considered to be significant.

To calculate SD, CSD, and CE along with their OCSD/ACSD
and OCE/ACE we performed 30 folds for EPF, IEPF, IRTS-
EPF,IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-EPF. Ta-
ble IX tabulates the averaged PA and POA produced by 30-fold
EPF, 30-fold IEPF, 30-fold IRTS-EPF, 30-fold IRTS-GEPF,
30-fold IRTS-SVM-Gabor, and 30-fold Gabor-EPF along with
their respective SD and running time at the last row where
30-fold IEPF improved 30-fold EPF by 2.6% from 96.02% to
98.67% and 30-fold IRTS-EPF improved POA of 30-fold IEPF
from 98.67% to 99.28% and PAA from 99.21% to 99.44%. So,
once again, the results produced by using 30-fold IRTS were
always better than their counterparts without IRTS in terms of
POA and SD_POA. Apparently, 30-fold EPF was the worst one
with SD_POA = 1.11% and 30-fold IRTS-EPF was the best

with SD_POA = 0.14% which was eight times better than the
worst one and 30-fold IEPF was somewhere in between. Once
again, the ones using Gabor filters required the most computing
times with about three times that required by IRTS-EPF and
IRTS-GEPF.

Table X also tabulates CSD, CE, OCSD/ACSD, and
OCE/ACE according to the results in Table IX. Once again,
the most stable classifier is IRTS-EPF followed by IRTS-GEPF
and IRTS-Gabor-EPF where the OCSD and OCE of 30-fold
IRTS-EPF were 0.0056 and 0.0064 which is nearly ten times
better than EPF with OCSD = 0.0479 and OCE = 0.0567.

Fig. 10 shows onefold classification results of EPF, IEPF,
IRTS-EPF, IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-
EPF for Salinas for visual inspection where the misclassified
data samples could be identified by the ground truth. However,
if we used the results in Tables IX and X to calculate SSD in (19)
and SE in (26) and plotted their results as SSD and SE maps,
the uncertainty of SSD and SE caused by these misclassified
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TABLE IX
AVERAGED SD OF PA AND POA CALCULATED BY 30-FOLD EXPERIMENTS OF SALINAS DATA WITH THE HIGHEST ACCURACY AND SMALLEST SD BOLDFACED

TABLE X
UNCERTAINTY OF CSD AND CE FOR 30-FOLD EXPERIMENTS FOR SALINAS DATA WITH THE LEAST CSD AND CE BOLDFACED

Fig. 10. Classification results of six SS methods for Salinas. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor. (f) IRTS-Gabor-EPF.
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Fig. 11. SSD maps produced by 30-fold experiments along with color bar of SSD maps. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor.
(f) IRTS-Gabor-EPF.

Fig. 12. SE maps produced by 30-fold experiments along with color bar of SE maps. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor.
(f) IRTS-Gabor-EPF.

data samples was better characterized by Figs. 11 and 12. By
visual inspection, it is clear to note that EPF was the worst
one and IRTS-EPF, IRTS-GEPF, and IRTS-Gabor-EPF clearly
outperformed EPF and IEPF with much smaller SSD and SE.
Specifically, IRTS-EPF seemed to do better than the other three
IRTS-based classifications.

Since Salinas has only large classes, the differences be-
tween the SF-ed classification maps and their corresponding
MAP-threshold binary maps were very similar to that obtained
from class 11 of the Purdue data. In this case, due to limited
space and also to avoid duplication, their experiments are not
included.

C. University of Pavia

A third hyperspectral image data shown in Fig. 13(a) was
recorded by the ROSIS-03 satellite sensor over an urban area
surrounding the University of Pavia, Italy. It is of size 610×
340× 115 with a spatial resolution of 1.3-m per pixel and a
spectral coverage ranging from 0.43 to 0.86 μm with spectral
resolution of 4 nm (12 most noisy channels were removed before
experiments). Nine classes of interest are considered for this
image. Fig. 13(c) provides its ground-truth map along with color
class labels in Fig. 13(b). Table X also tabulates the number of
data samples in parentheses collected for each class where all

Fig. 13. Ground truth of the University of Pavia scene with nine classes.
(a) University of Pavia scene. (b) Ground-truth map. (c) Classes by colors.

the classes have more than 1000 data samples except one class,
class 9, which has 947 data samples. Like Salinas there is no
imbalanced class issue for this scene. It should be noted that
[2] used 6% of SR to select training samples which were too
many according to our experiments. So, the training sample size
for each class was set to 100 as was done in [14] and listed
in Table XI with a total number of 900 training samples with
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TABLE XI
CLASS LABELS OF THE UNIVERSITY OF PAVIA WITH NUMBER OF DATA SAMPLES IN EACH CLASS

TABLE XII
NUMBER OF TRAINING SAMPLES ALLOCATED INTO EACH CLASS FOR THE UNIVERSITY OF PAVIA

TABLE XIII
PA, POA, AND PAA OF EPF, IEPF, IRTS-EPF, AND IRTS-GEPF FOR THE UNIVERSITY OF PAVIA WITH THE HIGHEST ACCURACY BOLDFACED

TABLE XIV
AVERAGED SD OF PA AND POA CALCULATED BY 30-FOLD EXPERIMENTS OF THE UNIVERSITY OF PAVIA WITH THE HIGHEST

ACCURACY AND SMALLEST SD BOLDFACED

approximately 2% of SR, which was the same as that used for
Salinas.

Now, we randomly selected training samples according to
the training sample size of each class determined in Table XII
and calculated PA, POA, and PAA of EPF, IEPF, IRTS-EPF,
IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-EPF for the
University of Pavia. The results are tabulated in Table XIII which
showed that IRTS-EPF performed better than its counterparts,
EPF and IEPF, with improvements from 0.5% (IEPF) and 2.6%
(EPF) in PAA and from 1% (IEPF) and 2.5% (EPF) in POA.
Like Salinas, it should be noted that since the POA and PAA

of IEPF were 98.43% and 98.85%, which were already very

high, to improve them would be very difficult. The fact that
IRTS-EPF managed to improve IEPF by 1% for POA and 0.5%
for PAA was significant and the best IRTS result was produced
by IRTS-Gabor-EPF with POA = 99.68% and PAA = 99.67%.

To calculate SD, we performed 30 folds for EPF, IEPF, IRTS-
EPF, IRTS-GEPF, IRTS-SVM-Gabor, and IRTS-Gabor-EPF. Ta-
ble XIV also tabulates the average and SD of PA and POA for
30-fold EPF-, 30-fold IEPF-, and 30-fold IRTS-based classifiers
along with their running times. Once again, the results produced
by using IRTS were always better than their counterparts without
suing IRTS, where 30-fold EPF was the worst one and 30-fold
IRTS clearly outperformed 30-fold EPF and 30-fold IEPF with
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TABLE XV
UNCERTAINTY MEASUREMENTS OF CSD AND CE FOR 30-FOLD EXPERIMENTS FOR THE UNIVERSITY OF PAVIA WITH THE SMALLEST CSD AND CE BOLDFACED

Fig. 14. Classification maps produced by six SS methods for the University of Pavia data. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d) IRTS-GEPF. (e) IRTS-SVM-Gabor.
(f) IRTS-Gabor-EPF.

higher POA and smaller SD_POA. The highest averaged POA =
99.64% and PAA = 99.72% were both produced by 30-fold
IRTS-Gabor-EPF along with the smallest SD_POA = 0.12%
and SD_PAA = 0.08%. However, the ones using Gabor filters
did require the most computing times with about 2–5 times that
required by IRTS-GEPF and IRTS-EPF.

To further measure the uncertainty resulting from RTS, Ta-
ble XV tabulates CSD and CE along with their OCSD/ACSD and
OCE/ACE where IRTS-Gabor-EPF produced the most stable
classification results with the smallest OCSD, ACSD and OCE,
ACE.

Unlike Salinas, the classification maps produced by single-
fold methods, EPF, IEPF, IRTS-EPF, IRTS-GEPF, IRTS-SVM-
Gabor, and IRTS-Gabor-EPF shown in Fig. 14 were busy and
very difficult to be used to assess the effectiveness of the test
methods if we simply compare their results in Fig. 14 against the
ground truth in Fig. 13(b) by visual inspection. In this case, we
took advantage of plotting the SSD and SE maps of classification
results in Figs. 15 and 16 produced by 30-fold EPF, 30-fold IEPF,
30-fold IRTS-EPF, 30-fold IRTS-GEPF, 30-fold IRTS-SVM-
Gabor, and 30-fold IRTS-Gabor-EPF. By visual inspection of
these SSD and SE maps, it turned out to be very obvious that EPF
was the worst one and IRTS-EPF, IRTS-GEPF, and IRTS-Gabor-
EPF clearly outperformed EPF and IEPF with much smaller SSD

and SE. Also, according to the conducted experiments, IRTS-
GEPF generally performed better than IRTS-EPF for the Purdue
and the University of Pavia datasets but slightly worse than that
for Salinas. This may be due to the reason that using Gaussian
filters is not effective for this scene to correctly extract spatial
correlation among classified data samples. On the other hand,
IRTS-Gabor-EPF using Gabor filters, which did not work as
well as IRTS-GEPF for the Purdue and Salinas datasets, worked
effectively for the University of Pavia.

One again, like Salinas data, the University of Pavia also has
large classes, the differences between the SF-ed classification
maps and their corresponding MAP-threshold binary maps were
very similar to that obtained from class 11 of the Purdue data.
In this case, due to limited space and also to avoid duplication,
their experiments are not included.

VIII. NOVELTIES AND DISCUSSIONS

Several novel ideas presented in this article are worth being
mentioned in this section.

A. Novelties of IRTS Theory

The most important novelty of this article is to develop an
IRTS theory for HSIC. As it is named, IRTS consists of two
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Fig. 15. SSD maps produced by 30-fold experiments for the University of Pavia data along with color bar of SSD maps. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d)
IRTS-GEPF. (e) IRTS-SVM-Gabor. (f) IRTS-Gabor-EPF.

Fig. 16. SE maps produced by 30-fold experiments for the University of Pavia data along with color bar of SE maps. (a) EPF. (b) IEPF. (c) IRTS-EPF. (d)
IRTS-GEPF. (e) IRTS-SVM-Gabor. (f) IRTS-Gabor-EPF.

processes. One is an iterative feedback process (IFP) which uses
a set of selected training samples to perform SS classification
and feeds back SF-ed spectral classification maps to be added
to the current image cube to form a new image cube for the next
round iteration. The other is RTS which implements random
sampling strategy to select a different set of training samples in
each iteration so as to reduce the uncertainty caused by RTS after
each iteration. The reason for uncertainty reduction is the new
image cube augmented by IFP after each iteration includes more
and more SF-ed spatial information about the classification.
Accordingly, data sample misclassification is decreased iteration
after iteration. Thus, the inconsistency in classification caused
by RTS is further reduced by such an iterative process. Imple-
menting IFP in conjunction with RTS derives IRTS as an iterative
process which carries out nI iterations with each iteration using
a randomly selected training sample set. With this interpretation,
IRTS can be considered as an iterative version of a single-fold
method nI -iteration RTS. Since the parameter “nI” is generally
unknown and automatically determined by a stopping rule, this
single-fold nI -iteration RTS is referred to as onefold IRTS and
abbreviated as IRTS. So, when IRTS is implemented K times, it
is called K-fold IRTS which has K different values of nI , that
is, each fold IRTS runs its own nI iterations, which varies with
each different fold.

Another crucial novelty is to augment the data cube after each
iteration. More specifically, the augmented data incorporates the
SF-ed spectral classification maps produced by training samples
in the preceding iteration to create a new data cube for the
next round of iteration. Its idea is similar to semisupervised
classification, which grows training samples by including new
unlabeled data samples as new training samples in an iterative
manner, such as active learning [23]–[26]. The key difference be-
tween IRTS and semisupervised classification is that the former
grows data cube iteration-by-iteration, while the latter grows
training samples iteratively. Their concepts are completely
different.

A third important novelty is to take advantage of RTS to model
the traditional classification as a random classification problem
where a classifier can be implemented as a random classifier
from a probabilistic point of view. As a result, an information
theory approach can be used to measure randomness resulting
from RTS.

With the introduction of a random classifier, a fourth and
interesting novelty is to introduce new concepts, SSD, SE, and
CE, from an information theory aspect as objective measures
to calculate the uncertainty of data samples and classes. To the
authors’ best knowledge, no similar ideas were reported in the
literature.
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Finally, by virtue of SSD, SE, and CE, a fifth novelty is
the development OCSD and ACSD, which can be considered
as counterparts of OA and AA to be used to evaluate class
inconsistency. Similarly, OCE and ACE can also be considered
as counterparts of OA and AA to measure uncertainty.

B. Discussions

The central premise of this article is to address the RTS issue
on the selection of training samples. The developed IRTS theory
not only can work for classification but also can be applied to any
supervised system which utilizes random sampling strategy to
train the system. Specifically, IRTS is designed to iteratively re-
sample training data randomly for each iteration. Interestingly,
in previous approaches such as ICEM [13], IEPF [17], the train-
ing samples are randomly selected initially from labeled data
samples but this same set of initially selected random training
samples is then used throughout all the iterations. Comparing
to these approaches, IRTS randomly selects a different set of
labeled data samples as training samples for each new iteration.
Consequently, the training samples selected for each iteration are
new and completely random. Intuitively speaking, such random
sampling seems to create more randomness. As a matter of fact,
it is not. This is because the randomness is reduced by new
augmented data cubes to be used for data reprocessing. Such
new augmented data cubes are generated iteration-by-iteration
by including the new SF-ed spectral classification maps into the
current data cube via feedback. These added SF-ed classification
maps provide additional spatial classification information about
the classified data samples as to improve classification while
reducing misclassification errors through an iterative process.
This is completely different from the commonly used K-fold
method for cross validation which uses the same data cube to run
K times independently to calculate its mean and SD to reflect the
confidential interval. IRTS offers a novel approach which rein-
terprets the K-fold method as an iterative method which grows
data cubes iteration-by-iteration from which training samples
are resampled randomly. Such a new resampled training dataset
contains new spatial information fed back by previous iterations
to help improve classification performance.

One common challenging issue in classification is classifica-
tion inconsistency primarily caused by the randomness resulting
from the use of training samples randomly selected from labeled
data samples. It is not caused by classifiers.

Another is the use of limited labeled data samples which is
also another major reason to create classification inconsistency.
Such an inconsistency phenomenon occurs in many other fields
of machine learning and computer vision. The developed IRTS
theory addresses these two issues altogether by providing an
effective means of reducing classification inconsistency and
uncertainty.

Finally, since IRTS is independent of applications and clas-
sifiers, it can also be applied to other supervised applications
which require selecting random training samples, such as target
detection, spectral unmixing, etc. It can also be applied to other
classifiers, such as deep learning network in [7] and convo-
lutional neural networks (CNNs) [27]. As a matter of fact, a

new approach of developing CNNs implemented using IRTS is
currently undertaken.

IX. CONCLUSION

This article develops a new approach to HSIC, called IRTS-SS
which can reduce the classification inconsistency and uncer-
tainty caused by RTS so as to improve classification accuracy.
In what follows, we summarize the key features of IRTS-SS.

1) IRTS is particularly designed to reduce randomness
caused by RTS. Its key idea is to repeatedly use different
sets of training samples selected by RTS in each iteration
carried out by IRTS via feedback loops.

2) IRTS can be implemented in conjunction with any SS
classifier to improve its classification performance. For
example, it has been shown in [17] that IEPF performed
much better than EPF in [2] via feedback. As demonstrated
in our experiments, when they were implemented with
IRTS, their classification rates were further increased up
to more than 99% for all three image scenes. This is
significant given the fact that it is generally very difficult
to improve a classifier which already scores very high
classification rates even by a very small percentage.

3) According to conducted experiments, IRTS can reduce
SD_POA significantly in a single one-fold without using
multiple folds as the K-fold method does. In other words,
the classification uncertainty reduced by IRTS is nearly the
same as that using K-fold IRTS. This demonstrates that a
single one-fold IRTS is sufficiently enough to reduce the
uncertainty of classification inconsistency caused by RTS
without going through K folds. This finding is intriguing.
When a single one-fold IRTS is implemented, it takes
advantages of correlation among classification results pro-
duced by different sets of random training samples. As a
consequence, it is expected that a single one-fold IRTS will
only require a much smaller number of iterations nI than
K to achieve what a K-fold method for cross validation
can do. This is a very important advantage because it
demonstrated that there was no need for using a K-fold
method to reduce the uncertainty caused by randomness
resulting from RTS.

4) Furthermore, IRTS also extends IEPF in two ways. One is
IRTS-EPF, which uses different sets of training samples
at each iteration compared to IEPF, which uses the same
fixed set of training samples in all iterations. The other
is to fuse Gaussian filters or Gabor filters with an EPF
to derive a new version of IRTS, called IRTS-GEPF and
IRT-Gabor-EPF, which improve IEPF performance.

5) It must be noted that IRTS is different from utilizing a
large amount of training samples to perform classification.
That is, IRTS can use a small number of training samples
to achieve the same performance by classification as when
using a large number of training samples without IRTS.

6) Finally, IRTS offers a new way to look into an issue of
using small sets of training samples. This is particularly
important when a complete ground truth is not available or
too costly to collect. An effort along this line is currently
being investigated.
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