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Bayesian Analysis of Multiply Imputed Synthetic Data under the

Multiple Linear Regression Model

Abhishek Guin1, Anindya Roy1,2 and Bimal Sinha1,2,*
1University of Maryland Baltimore County, 2U.S. Census Bureau

Abstract

In this paper we consider Bayesian inference of model parameters in a multiple linear re-
gression model when the response variable is sensitive and the covariates are not, analysis being
carried out based on multiple synthetic versions of the response variable. Two scenarios of
synthetic data generation are considered - plug-in sampling method and posterior predictive
sampling method. We also consider the case when part of the response is sensitive and describe
how to carry out full Bayesian analysis based on multiply imputed data.
Keywords: Credible sets, Partially sensitive response, Privacy

1 Introduction

For many statistical agencies such as the US Census Bureau it is customary to publish statistical
analysis of results collected from surveys as well as the original raw microdata so others can either
reproduce the analysis results or can do some further statistical analysis depending on their purpose.
When the response data is sensitive or confidential, a redirect release of such data is not possible
and statistical agencies often release what is known as a synthetic version of the original microdata.
Fortunately, there are several ways to accomplish this goal and valid statistical analysis of such
synthetic data is also quite often possible. In fact, there is a rich literature addressing methods to
generate synthetic data and also the appropriate statistical methods to analyze such synthetic data,
primarily based on a parametric model which is believed to generate the original data [7, 6, 5, 4, 3, 2].
We mention in passing that in this paper we deal with what is known as partially synthetic data
rather than fully synthetic data [8].

Under the assumption of a classical linear regression model (single or multiple), valid inference
about the regression coefficients and residual variance based on synthetic data has been successfully
established based on both single and multiple imputations [5, 4]. Broadly, two types of synthetic
data generation schemes have been considered - plug-in sampling method and posterior predictive
sampling method. Inference about the regression coefficients from a frequentist point of view was
extensively studied in [5, 4] and [2], based on both single imputation and multiple imputations. In

*Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC 20233, USA,
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this paper we investigate the inference problem from a Bayesian point of view under the multiple
linear regression model with multiple synthetic versions of the original data, thus extending the
results in [1] who studied the same problem under a single imputation.

Section 2 contains a brief description of synthetic data generation under plug-in sampling and
posterior predictive sampling for a very general scenario. In Section 3 we derive Bayesian inferential
results for the model parameters (regression coefficients and residual variance) under the plug-in
sampling method while Section 4 contains similar inferential results under the posterior predictive
sampling method. In Section 5 we consider the case when only a part of the response vector is
sensitive (called partially sensitive data) and provide details about how to carry out appropriate
inference under both the data generation schemes.

2 Generating Synthetic Data

We consider two ways of generating the m ≥ 1 synthetic copies of the original data namely, plug-in
sampling and posterior predictive sampling. In the former method, parameter estimates are plugged
in the model to generate synthetic data. In the latter one, posterior draws of the parameter are
generated using an imputed prior, which are then fed into the original model to get synthetic data.

Plug-in Sampling. The basic mechanism for generating synthetic data via plug-in sampling (PIS)
is described as follows: let Y = (y1, . . . ,yn) be the original confidential data, which are jointly
distributed according to the probability density function (pdf) fθ(Y ), where θ is the unknown
(scalar or vector) parameter. To generate partially synthetic data, let θ̂ = θ̂(Y ) be the observed
value of a point estimator of θ, and we plug it into the joint pdf of Y . The resulting pdf, with
the unknown θ replaced by the observed value θ̂(Y ) of the point estimator, is denoted by fθ̂. The
singly imputed synthetic data, denoted by Z, are then generated by drawing Z from the joint pdf
fθ̂. For the multiple imputation case, we draw m > 1 samples Z1, . . . ,Zm independently from fθ̂.

Posterior Predictive Sampling. An alternative method to generate partially synthetic data is to
use posterior predictive sampling (PPS) which proceeds as follows: suppose that Y = (y1, . . . ,yn)
are the original data which are jointly distributed according to the pdf fθ(Y ), where θ is the
unknown (scalar or vector) parameter. Assume a prior π(θ) for θ, then the posterior distribution
of θ given Y is obtained as π(θ |Y ) ∝ π(θ)fθ(Y ), and used to draw m ≥ 1 replications θ∗1, . . . ,θ

∗
m

(known as posterior draws). Next, for each posterior draw of θ, a corresponding replicate of Y is
generated, namely Zj = (zj1, . . . ,zjn)′ drawn from the pdf fθ∗j (X) independently for j = 1, . . . ,m.

We conclude this chapter with an observation regarding the existence of sufficient statistics in
the context of synthetic data. The proof is given in [2].

Lemma 2.1. Suppose that when the original data Y are observed, T (Y ) is a sufficient statistic for
θ. Then when the synthetic data Z = (Z1, . . . ,ZM ) are observed, (T (Z1), . . . , T (ZM )) is jointly
sufficient for θ. Furthermore, if M = 1, the sufficient statistic is simply T (Z1), and if M > 1,
then

∑M
i=1 T (Zi) is sufficient if fθ(Y ) = h(Y )ψ(θ) exp {γ(θ)′T (Y )}, i.e., if fθ(Y ) belongs to the

exponential family.
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3 Plug In Sampling method

Consider a standard multiple linear regression (MLR) model involving a sensitive response variable
y and a p× 1 dimensional vector of non-sensitive predictors x. We want to generate synthetic data
z1 = (z11, . . . , z1n)′, . . . ,zm = (zm1, . . . , zmn)′ for m > 1 under PIS. Consider the point estimates b
and RSS/(n − p), of β and σ2, respectively, where b = (X ′X)−1X ′y and RSS = (y −Xb)′(y −
Xb) = y′(In − PX)y with Ik as the k-dimensional identity matrix and PX = X(X ′X)−1X ′ is
the orthogonal projection matrix to the column space of X. The synthetic data are obtained by

drawing z1, . . . ,zm
iid∼ Nn

(
Xb, RSS

n−pIn

)
. Equivalently, the synthetic data are obtained by drawing

zji ∼ N(x′ib,
RSS
n−p), independently for i = 1, . . . , n and j = 1, . . . ,m.

Let z̄i = 1
m

∑m
j=1 zji, S

2
zi =

∑m
j=1 (zji − z̄i)2, and S2

z =
∑n

i=1 S
2
zi. If m > 1, then conditional on

b and RSS,

S2
z ∼

RSS

(n− p)
χ2
n(m−1), z̄i ∼ N

(
x′ib,

RSS

m(n− p)

)
, i = 1, . . . , n,

with these terms being (conditionally) independent. If m = 1, then z̄i = z1i and S2
zi = 0 for

i = 1, . . . , n, and hence S2
z = 0.

Let z̄ = (z̄1, . . . , z̄n)′ and b∗j = (X ′X)−1X ′zj . We define b∗ = (X ′X)−1X ′z̄ = 1
m

∑m
j=1 b

∗
j and

S2
comb = S2

z +m(z̄ −Xb∗)′(z̄ −Xb∗), and conditional on b and RSS,

b∗ ∼ Np

(
b,

RSS

m(n− p)
(X ′X)−1

)
, S2

comb ∼
RSS

(n− p)
χ2
n(m−1)+n−p

which are (conditionally) independent and are jointly sufficient for (β, σ2). From [2], we have the
following result.

Theorem 3.1. The joint pdf of (b∗, S2
comb) is given by

fβ,σ2(b∗, S2
comb) ∝

∫ ∞
0

e
− 1

2

[
(b∗−β)′(X′X)(b∗−β)

σ2(1+
ψ

m(n−p) )
+

(n−p)S2comb
σ2ψ

+ψ

]
(S2

comb)
nm−p

2
−1

σnmψ
n(m−1)+p+2

2

×
[
1 + m(n−p)

ψ

]−p/2
dψ (1)

3.1 Posterior distributions of β and σ2

For Bayesian inference on the other unknown parameters we assume non-informative improper
priors and assume that all unknown quantities are a priori independent. Specifically, we assume

π(β, σ2) = π(β)π(σ2)

where π(β) ∝ 1 and π(σ) ∝ σ−δ and hence the induced prior on σ2 is π(σ2) ∝ (σ2)−
δ+1
2 for δ > 0.

For doing posterior computation, we use latent variable augmentation. Consider the latent variable
ψ = (σ̂/σ)2 where σ̂2 = RSS/(n − p). Then following the development in the single imputation
case in [1], we use the joint distribution of (b∗, S2

comb) conditional on the latent quantity ψ to
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perform posterior computation. Multiplying the prior with the conditional likelihood one obtains
the posterior distributions as:

β | b∗, S2
comb, σ

2, ψ ∼ Np

(
b∗, σ2(1 +

ψ

m(n− p)
)(X ′X)−1

)
σ2 | b∗, S2

comb, ψ ∼ Scale-inv-χ2

(
nm− p+ δ − 1,

(n− p)S2
comb

ψ(nm− p+ δ − 1)

)
ψ ∼ χ2

n−p+δ−1 (2)

The posterior distributions are proper as long as n > max{p, p − δ + 1} (this also ensures that
nm − p + δ − 1 > 0 since m > 1, which is necessary for the posterior distribution of σ2 to be
proper). For m = 1 in the above formula yields the same results as obtained for the singly imputed
plug-in sampling case in [1]. From the joint posterior of (b∗, S2

comb, ψ) the Bayes estimators of β
and σ2 follows immediately:

β̂BAYES = E(β | b∗, S2
comb) = Eψ Eσ2 E(β | b∗, S2

comb, σ
2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2BAYES = E(σ2 | b∗, S2
comb) = Eψ E(σ2 | b∗, S2

comb, ψ) = Eψ(
(n−p)S2

comb)

ψ(nm−p+δ−3))

=
(n−p)S2

comb
(nm−p+δ−3) Eψ( 1

ψ ) =
(n−p)S2

comb
(nm−p+δ−3)(n−p+δ−3)

3.2 Credible Sets for β and σ2

In this section we describe how to get credible sets for the regression parameters. Let U :=
1

σ2
.

Then following (2), we have

U |S2
comb, ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)S2

comb

2ψ

)
(3)

Define K :=
S2
comb
σ2 = U × S2

comb. Then from (3) and the fact that if X ∼ Γ(α, β) then cX ∼
Γ(α, β/c), it follows that K |S2

comb, ψ ∼ Γ
(
nm−p+δ−1

2 , (n−p)2ψ

)
. Since the right hand side is indepen-

dent of S2
comb, it follows that

K |ψ ∼ Γ

(
nm− p+ δ − 1

2
,
(n− p)

2ψ

)
. (4)

Using (4) and the fact that ψ ∼ χ2
n−p+δ−1, an (1− γ) level credible set for σ2 based on K is[

S2
comb

bn,p,δ;γ
,
S2
comb

an,p,δ;γ

]
where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1 − γ = P (an,p,δ;γ ≤ K ≤ bn,p,δ;γ).

The length of the credible interval is S2
comb

(
1

an,p,δ;γ
− 1

bn,p,δ;γ

)
. To obtain a credible set for β,

we define V := (β−b∗)′(X′X)(β−b∗)
σ2(1+ ψ

m(n−p) )
Then V | b∗, S2

comb, σ
2, ψ ∼ χ2

p and thus unconditionally V ∼ χ2
p.
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Also V is independent of (b∗, S2
comb, σ

2, ψ) and thus V is independent of U . If U∗ :=
U(n−p)S2

comb
ψ

then U∗ |S2
comb, ψ ∼ χ2

nm−p+δ−1, and unconditionally U∗ ∼ χ2
nm−p+δ−1. As V is independent of U ,

it is independent of U∗. Finally we define the pivot for β as

T 2
m :=

(β − b∗)′(X ′X)(β − b∗)
S2
comb

. To derive the posterior distribution of T 2
m, note that, conditionally given ψ,

T 2
m =

σ2V

(
1 +

ψ

m(n− p)

)
ψU∗

U(n− p)

=
V

U∗

[
1 + ψ

m(n−p)

ψ

]
(n− p)

∼
χ2
p

χ2
nm−p+δ−1

(
1

m
+
n− p
ψ

)
=

[
p

nm− p+ δ − 1

]
Fp, n−p+δ−1

(
1

m
+
n− p
ψ

)
Hence the pivot for β is computed from the the distribution of T 2

m which follows from

ψ ∼ χ2
n−p+δ−1

T 2
m |ψ ∼

[
p

nm− p+ δ − 1

] [
1

m
+
n− p
ψ

]
Fp, nm−p+δ−1.

A (1− γ) level credible ellipsoid for β based on T 2
m is given by

{β : T 2
m ≤ dn,p,δ,m;γ}

where dn,p,δ,m;γ satisfies 1− γ = P (T 2
m ≤ dn,p,δ,m;γ). The volume of the credible ellipsoid is

Vβ(z1, . . . ,zm,X) =
πp/2

Γ
(p
2 + 1

) (dn,p,δ,m;γS
2
comb

)p/2 ∣∣X ′X∣∣−1/2 .
Remark 3.1. If one is interested in the credible set of a single regression coefficient or more
generally in the credible set of a linear combination of β, namely, Aβ = η where A is a k × p
dimensional matrix with rank(A) = k < p, we define T 2

m,η = (η − Ab∗)′{A(XX ′)−1A′}−1(η −
Ab∗)/S2

comb, and proceed by noting that

T 2
m,η |ψ ∼

[
k

nm− p+ δ − 1

] [
1

m
+
n− p
ψ

]
Fk, nm−p+δ−1 and ψ ∼ χ2

n−p+δ−1
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4 Posterior Predictive Sampling method

In this section we repeat the analysis done under PIS for PPS. We consider the setup described in
Section 3. The synthetic data are generated by repeating the following steps below independently
for each j = 1, . . . ,m.

(a) Draw (β∗j , σ
∗2
j ) from the posterior distribution (2).

(b) Draw zj = (zj1, . . . , zjn)′ ∼ Nn(Xβ∗j , σ
∗2
j In).

The released synthetic data are z1, . . . ,zm along with the matrix of predictor variables X. The suf-
ficient statistics for the synthetic data are: b∗j = (X ′X)−1X ′zj and RSS∗j = (zj −Xb∗j )′(zj−Xb∗j ),
for j = 1, . . . ,m. It can be shown that (b∗1,RSS∗1), . . . , (b

∗
m,RSS∗m) are jointly sufficient for (β, σ2).

In view of the sampling mechanism above, the joint distribution of b∗1, . . . , b
∗
m, RSS∗1, . . . ,RSS∗m,

β∗1, . . . ,β
∗
m, σ∗21 , . . . , σ

∗2
m , b and RSS has the following hierarchical structure:

b∗j |RSS∗1, . . . ,RSS∗m,β
∗
1, . . . ,β

∗
m, σ

∗2
1 , . . . , σ

∗2
m , b,RSS ∼ Np(β

∗
j , σ

∗2
j (X ′X)−1),

RSS∗j |β∗1, . . . ,β∗m, σ∗21 , . . . , σ∗2m , b,RSS ∼ σ∗2j χ
2
n−p,

β∗j |σ∗21 , . . . , σ∗2m , b,RSS ∼ Np(b, σ
∗2
j (X ′X)−1),

σ∗2j | b,RSS ∼ RSS

χ2
n−p+α−1

,

b ∼ Np(β, σ
2(X ′X)−1),

RSS ∼ σ2χ2
n−p.

which are generated independently for j = 1, . . . ,m, whenever applicable. Hence,

f(b∗1, . . . , b
∗
m,RSS∗1, . . . ,RSS∗m,β

∗
1 , . . . ,β

∗
m, σ

∗2
1 , . . . , σ

∗2
m , b,RSS) =

m∏
j=1

(2πσ∗2j )−p/2 |X ′X|1/2 exp

[
− 1

2σ∗2j
(b∗j − β∗j )′(X ′X)(b∗j − β∗j )

]

×
m∏
j=1

(RSS∗j )
n−p

2 −1

2
n−p

2 Γ(n−p2 )
(σ∗2j )−(n−p)/2 exp

[
−

RSS∗j
2σ∗2j

]

×
m∏
j=1

(2πσ∗2j )−p/2 |X ′X|1/2 exp

[
− 1

2σ∗2j
(β∗j − b)′(X ′X)(β∗j − b)

]

×
m∏
j=1

(RSS)(n−p+α−1)/2

2(n−p+α−1)/2 Γ
(
n−p+α−1

2

) (σ∗2j )−(n−p+α−1)/2−1 exp

[
−RSS

2σ∗2j

]

×(2πσ2)−p/2 |X ′X|1/2 exp

[
− 1

2σ2
(b− β)′(X ′X)(b− β)

]
× (RSS)

n−p
2 −1

2
n−p

2 Γ(n−p2 )
(σ2)−(n−p)/2 exp

[
−RSS

2σ2

]
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Patterned after Theorem 3.1, integrating out β∗j ’s, b, RSS, we get the relevant likelihood as

L(β,σ2, σ∗2j , j = 1, ...,m | b∗j ,RSS∗j , j = 1, . . . ,m) =

(2π)−p/2

(
1
σ2

)p/2 (∑m
j=1

1
2σ∗2

j

)p/2
(

1
σ2 +

∑m
j=1

1
2σ∗2

j

)p/2 |X ′X|1/2

× exp

−1

2

(
1
σ2

) (∑m
j=1

1
2σ∗2

j

)
(

1
σ2 +

∑m
j=1

1
2σ∗2

j

)
β − ∑m

j=1

b∗
j

2σ∗2
j∑m

j=1
1

2σ∗2
j

′ (X ′X)

β − ∑m
j=1

b∗
j

2σ∗2
j∑m

j=1
1

2σ∗2
j




×
m∏
j=1

(2π)
−p/2 (

2σ∗2j
)−p/2 |X ′X|1/2 exp

−1

2
· 1

2σ∗2j

b∗j −
∑m
j=1

b∗
j

2σ∗2
j∑m

j=1
1

2σ∗2
j

′ (X ′X)

b∗j −
∑m
j=1

b∗
j

2σ∗2
j∑m

j=1
1

2σ∗2
j




×

 m∑
j=1

1

2σ∗2j

−
p

2
 1

σ2
+

m∑
j=1

1

σ∗2j

−
(m+ 1)(n− p) +m(α− 1)

2

(σ2)

n− p
2

 m∏
j=1

(σ∗2j )

n− p+ α− 1

2
+
n− p

2
+ 1
 exp

− m∑
j=1

RSS∗j
2σ∗2j



×
Γ

(
m(n− p+ α− 1) + (n− p)

2

)
(

Γ

(
n− p+ α− 1

2

))m(
Γ

(
n− p

2

))m+1 (2π)p/2 |X ′X|−1/2
 m∏
j=1

(RSS∗j )
n−p

2 −1

2
n−p

2

 . (5)

Observe that the quantity inside the exponential in the second line vanishes for m = 1. Multiplying

the likelihood in (5) by the prior π(β, σ2) ∝ (σ2)−
δ+1
2 , and separating the parameters we get the

posteriors as:

β |σ2,
m∑
j=1

b∗j
σ∗2j

,
m∑
j=1

1

σ∗2j
∼ Np


∑m

j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j

,

1 + σ2

 m∑
j=1

1

σ∗2j

 (X ′X)−1

 ,

σ2

 m∑
j=1

1

σ∗2j

 |
 m∑
j=1

1

σ∗2j

 ∼ β′
(
m(n− p+ α− 1)− δ + 1

2
,
n− p+ δ − 1

2

)
(6)

Thus, σ2
(∑m

j=1 1/σ∗2j

)
is independent of both latent variables and data. The posterior distribu-

tions are proper as long as n > max
{
p, p− δ + 1, p− α+ 1, p− α+ 1 + δ−1

m

}
. The latent variables

7



have the following distribution:

g(σ∗21 , . . . , σ
∗2
m | b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m) ∝(∏m
j=1(σ

∗2
j )
)− 2n−p+α+1

2

(∑m
j=1

1
σ∗2j

)m(n−p+α−1)+p−δ
2

exp

−1

4

m∑
j=1

1

σ∗2j


b∗j −

∑m
j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j


′

(XX ′)

b∗j −
∑m

j=1

b∗j
σ∗2j∑m

j=1
1
σ∗2j

+ 2RSS∗j


.

Defining σ2j = 1/σ∗2j , we have the joint posterior of the transformed latent variables as

h(σ21, . . . , σ
2
m | b∗1, . . . , b∗m,RSS∗1, . . . ,RSS∗m) ∝(∏m
j=1(σ

2
j )
) 2n−p+α−1

2

(∑m
j=1 σ

2
j

)m(n−p+α−1)+p−δ
2

exp

−1

4

m∑
j=1

σ2j

{(
b∗j −

∑m
j=1 σ

2
jb
∗
j∑m

j=1 σ
2
j

)′
(XX ′)

(
b∗j −

∑m
j=1 σ

2
jb
∗
j∑m

j=1 σ
2
j

)
+ 2RSS∗j

}. (7)

Let us denote the quantity inside the exponential of (7) as Q. Our goal here is to sample from (7).

4.1 Approach I:

To suitably transform σ21, . . . , σ
2
m to draw a sample, our first method is to use

v1 = σ21, v2 =
σ22
σ21
, . . . , vm =

σ2m
σ21

(8)

so that (v1, v2, . . . , vm) can be sampled as

v1 | v2, . . . , vm,data ∼
2χ2

nm−p+δ−1
Q

,

π(v2, . . . , vm | data) ≤
B
(
2n−p+α−1

2 , . . . , 2n−p+α−12

)
(RSS∗min)

nm−p+δ−1
2

gInvDir(v2, . . . , vm), (9)

where gInvDir(v2, . . . , vm) is the pdf of an mth order Inverse-Dirichlet
(
2n−p+α−1

2 , . . . , 2n−p+α−12

)
distribution.

4.2 Approach II:

One could also use the following transformation:

v1 = σ21, v2 =
σ21
σ22
, v3 =

σ21 + σ22
σ23

, . . . , vm =
σ21 + · · ·+ σ2m−1

σ2m
, (10)
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so that (v1, v2, . . . , vm) can be sampled as

v1 | v2, . . . , vm,data ∼
2χ2

nm−p+δ−1
Q

,

π(v2, . . . , vm | data) ≤

∏m
j=2 B

(
(2n−p+α−1)(j−1)

2 , 2n−p+α−12

)
(RSS∗min)

nm−p+δ−1
2

 m∏
j=2

g′j(vj)

 , (11)

where g′j(vj) is the pdf of a Beta-Prime
(
(2n−p+α−1)(j−1)

2 , 2n−p+α−12

)
distribution, independently

for j = 2, . . . ,m. Since if X ∼ β′(a, b) then X−1 ∼ β′(b, a), the reciprocal transformation would
also work in (11).

5 Partially Sensitive Data

In this section we discuss the situation when only a part of the response vector y, say (y1, ....., yr)
is sensitive and hence needs to be protected. We provide two methods, depending on the nature of
imputation of the synthetic data.

Method I: Using whole data estimates to impute synthetic data

Plug-In Sampling

The original data now has the same setup as in Section 3 with both r > p and n− r > p assumed
to hold. We synthesize m copies of the original data y = (y1,y2) given by {y∗j = (y∗j1 ,y2) : j =
1, . . . ,m} whose sufficient statistics are given by (b∗11 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2). We

denote b∗1 = 1
m

∑m
j=1 b

∗j
1 . Then we can derive the following posterior distributions in a similar

manner as before

β |σ2, ψ, b∗1, b2 ∼ Np

[(
X ′1X1

1 + ψ
+
X ′2X2

m

)−1(X ′1X1

1 + ψ
b∗1 +

X ′2X2

m
b2

)
,
σ2

m

(
X ′1X1

1 + ψ
+
X ′2X2

m

)−1]
,

σ2 |ψ, b∗11 , . . . , b∗m1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2 ∼ Scale-inv-χ2
(
ν, τ21

)
,

π(ψ | b∗11 , . . . , b∗m1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2),

∝
∣∣∣∣X ′1X1

1 + ψ
+
X ′2X2

m

∣∣∣∣− 1
2

ψ−
(m−1)(r−p)

2
−1(1 + ψ)−

mp
2 e

(r−p)ψ
2

{
ντ21
}− ν

2

where ν = n+ (m− 1)r − p+ δ − 1 and

ντ21 =

m∑
j=1

(
b∗j1 − b∗1

)′ X1
′X1

1 + ψ

(
b∗j1 − b∗1

)
+m

(
b∗1 − b2

)′ (
(1 + ψ)

(
X1
′X1

)−1
+
(
X2
′X2

)−1)−1 (
b∗j1 − b∗1

)
+

m∑
j=1

RSS∗j1
ψ

+ RSS2.

The posterior distributions are proper as long as r > p, n− r > max{p, p− rm− δ + 1}.
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Let X ′Xψ,m =
X ′1X1

1 + ψ
+
X ′2X2

m
. Note that

X ′Xψ,m ≥
X ′X

m(1 + ψ)
=⇒

∣∣X ′Xψ,m

∣∣− 1
2 ≤ m

p
2 (1 + ψ)

p
2

∣∣X ′X∣∣− 1
2 ντ21 ≥

m∑
j=1

RSS∗j1
ψ

. Here A ≥ B is used to mean (A − B) is positive semidefinite. Now using the fact that (1 +

ψ)−
(m−1)p

2 ≤ 1 (as ψ > 0), we can sample from the distribution of latent variables using the
Accept-Reject algorithm as follows:

π(ψ |data) ≤
m

p
2 |X ′X|−

1
2 2

n+(m−2)p+δ−1
2 Γ

(
n+(m−2)p+δ−1

2

)
(r − p)

n+(m−2)p+δ−1
2

(∑m
j=1 RSS∗j1

)n+(m−1)r−p+δ−1
2

f̃ScaledChi(ψ)

where f̃ScaledChi(ψ) is the pdf of a Gamma
(
n+(m−2)p+δ−1

2 , r−p2

)
distribution. We also assume

n+ (m− 2)p+ δ− 1 > 0. All expressions in the partially sensitive case coincide with the results in
the fully sensitive case when all of y is sensitive.

Posterior Predictive Sampling

We follow the same process as in Section 5 for the PPS case to derive the following posterior
distributions

β |σ2, ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1 , b2

∼ Np

 m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

−1 m∑
j=1

X ′1X1

1 + 2ψj
b∗j1 +X ′2X2b2

 , σ2

 m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

−1 ,
σ2 |ψ1, . . . , ψm, b

∗1
1 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2 ∼ Scale-inv-χ2

(
ν, τ21

)
,

π(ψ1, . . . , ψm | b∗11 , . . . , b∗m1 ,RSS∗11 , . . . ,RSS∗m1 , b2,RSS2)

∝

∣∣∣∣∣∣
m∑
j=1

X ′1X1

1 + 2ψj
+X ′2X2

∣∣∣∣∣∣
− 1

2
 m∏
j=1

ψ−1j (1 + 2ψj)
− p

2 (1 + ψj)
− 2r−2p+α−1

2

{ντ22}− ν2
where ν = n+ (m− 1)r − p+ δ − 1 and

ντ22

=

m∑
j=1

b∗j1 −
 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj



′

X1
′X1

1 + 2ψj

b∗j1 −
 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj




+


 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj

− b2

′
 m∑
j=1

1

1 + 2ψj

−1 (X1
′X1

)−1
+
(
X2
′X2

)−1
−1


 m∑
j=1

1

1 + 2ψj

−1 m∑
j=1

b∗j1
1 + 2ψj

− b2
 +

m∑
j=1

RSS∗j1
ψj

+ RSS2.
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The posterior distributions are proper as long as r > max
{
p, p− α+ 1, n+(2m−1)p−αm+δ+m−1

m+1

}
,

n− r > max{p, p− rm− δ + 1}. Note that m∑
j=1

1

1 + 2ψj

X ′1X1 +X ′2X2 ≥

 m∏
j=1

1

1 + 2ψj

X ′1X1 +X ′2X2 ≥

 m∏
j=1

1

1 + 2ψj

X ′X
and hence using rejection sampling one can sample the latent variables as:

π(ψ1, . . . , ψm | data) ≤

(∏m
j=1 B

(
n+(m−1)r−p+δ−1

2m , (m+1)r−n−(2m−1)p+mα−δ−m+1
2m

))
|X ′X|

1
2

(
m
∏m
j=1 RSS∗j

1
m

)n+(m−1)r−p+δ−1
2

 m∏
j=1

gj
′(ψj)

 ,

where gj
′(ψj) is the pdf of a Beta-Prime

(
n+(m−1)r−p+δ−1

2m , (m+1)r−n−(2m−1)p+mα−δ−m+1
2m

)
distribu-

tion, independently for j = 1, . . . ,m.

Method II: Using only estimates of sensitive part to impute synthetic data

Plug-In Sampling

As in Section 5, our analysis in this case will be based solely on the synthetic part. We require only
r > p. The posterior distributions are given by

β |σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2

(
(X ′X)−1 +

ψ

m
(X ′1X1)

−1
))

,

σ2 |ψ, b∗11 , . . . , b∗m1 ,RSS∗11 , . . . ,RSS∗m1 ∼ Scale-inv-χ2
(
ν̃, τ̃21

)
,

ψ ∼
χ2
n−p+δ−1
n− p

≡ Γ

(
n− p+ δ − 1

2
,
n− p

2

)

where ν̃ = rm− p+ δ − 1, ν̃τ̃1
2 = 1

ψ

(∑m
j=1 RSS∗j1 +

∑m
j=1

(
b∗j1 − b∗1

)′
(X1

′X1)
(
b∗j1 − b∗1

))
. The

posterior distributions are proper as long as r > max
{
p, p−δ+1

m

}
, n > p − δ + 1 and the results

match our expressions from Section 3 when r = n.

Posterior Predictive Sampling

Following the derivations in the plug-in sampling case for partially sensitive response, one can derive
analogous expressions for the posterior in the posterior predictive sampling scheme. The posteriors
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are

β |σ2, ψ1, . . . , ψm, b
∗1
1 , . . . , b

∗m
1

∼ Np

 m∑
j=1

ψ−1j

−1 m∑
j=1

b∗j1
ψj

 , σ2

 m∑
j=1

ψ−1j

−1 ((X ′1X1

)−1
+
(
X ′X

)−1)
+
(
X ′X

)−1 ,
σ2 |ψ1, . . . , ψm, b

∗1
1 , . . . , b

∗m
1 ,RSS∗11 , . . . ,RSS∗m1 ∼ Scale-inv-χ2

(
ν, τ̃2

2
)
,

π(ψ1, . . . , ψm | b∗11 , . . . , b∗m1 ,RSS∗11 , . . . ,RSS∗m1 )

∝

 m∏
j=1

ψj

−
n−p+r+α+1

2
 m∑
j=1

ψ−1j

−
p
2
1 +

 m∑
j=1

ψ−1j

−
2n−2p+α−1

2 {
ντ̃2

2
}− ν

2

where ν = m(r − 2)− p+ δ + 1 as before and

ντ̃2
2 =

m∑
j=1

b∗j1 −
 m∑
j=1

ψ−1j

−1 m∑
j=1

b∗j1
ψj

−1

′ (

(X ′1X1)−1 + (X ′X)−1
)−1

ψjb∗j1 −
 m∑
j=1

ψ−1j

−1 m∑
j=1

b∗j1
ψj

−1
+

m∑
j=1

RSS∗j1
ψj

The latent variables can be sampled using Accept-Reject algorithm similarly as before, using an
Inverse-Dirichlet distribution as proposal distribution.

6 Discussion

We have described how to perform full Bayesian analysis in the multiple regression model based
on multiply imputed synthetic data. The priors used are non-informative priors. The frequentist
coverage of the credible set (based on a limited simulation study that is not reported here) is
sensitive to the choice of the hyperparameter and depending on the value the coverage may be
significantly lower than the nominal level. This is expected due to the latent variable structure of the
problem. However, more investigation is needed to understand the impact of the hyperparameters.
The analysis can be extended to related cases such as where all or some of the independent variables
are also sensitive or when the response is multivariate. We will consider such an investigation in
the future.
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