

This work was written as part of one of the author's official duties as an Employee of the United
States Government and is therefore a work of the United States Government. In accordance
with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to
this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

A Framework for Situation-Aware Access Control in Federated Data-as-a-Service
Systems Based on Query Rewriting

Samson Oni∗, Zhiyuan Chen∗, Adina Crainiceanu†, Karuna P Joshi∗ and Don Needham†
∗ University of Maryland Baltimore County, Baltimore, MD

Email: {soni5, zhchen, karuna.joshi}@umbc.edu
†US Naval Academy, Annapolis, MD
Email: {adina, needham}@usna.edu

Abstract—Organizations often need to share mission-
dependent data in a secure and flexible way. Examples include
contact tracing for a contagious disease such as COVID-
19, maritime search and rescue operations, or creating a
collaborative bid for a contract. In such examples, the ability
to access data may need to change dynamically, depending on
the situation of a mission (e.g., whether a person tested positive
for a disease, a ship is in distress, or a bid offer with given
properties needs to be created). We present a novel framework
to enable situation-aware access control in a federated Data-as-
a-Service architecture by using semantic web technologies. Our
framework allows distributed query rewriting and semantic
reasoning that automatically adds situation based constraints
to ensure that users can only see results that they are allowed
to access. We have validated our framework by applying it to
two dynamic use cases: maritime search and rescue operations
and contact tracing for surveillance of a contagious disease.
This paper details our implemented solution and experimental
results of the two use cases. Our framework can be adopted by
organizations that need to share sensitive data securely during
dynamic, limited duration scenarios.

Keywords-Ontology, Federated Systems, Data-as-a-Service,
Semantic Web, Access Control

I. INTRODUCTION

Complex, evolving situations often require close inter-
action between multiple entities. An example is maritime
search and rescue (SAR) missions which often involve
collaboration between military organizations, government
agencies, private vessels, and even foreign vessels. Another
example is contact tracing of contagious disease exposure
which involves multiple entities like contact tracers, health-
care providers, and private businesses such as airlines and
hotels that provide data (e.g. passenger lists) to help identify
people in close contact with someone diagnosed with the
disease.

In these limited duration, dynamic scenarios, each entity
typically has data that needs to be kept private, as well
as data that needs to be shared with other collaborators
to accomplish the mission. Current approaches to data
sharing are centered around situation-aware access control,
also called policy-based or attribute-based access control
[1], [2]. Entities may join the mission at any time, and
data access decisions depend on situations like whether a

ship is in distress or a person tests positive for a disease.
However, these approaches only consider context-awareness
within a single organization and often do not account for
the challenges of securely sharing specific data elements
between multiple organizations where each organization may
have different data sharing policies.

One solution to supporting data sharing in collaborative
scenarios is a federated Data-as-a-Service system. Multiple
members form a federation and each provides a Data-as-
a-Service interface to allow other members to query data
stored at one or possibly multiple members’ local data store.
There are two main challenges to supporting situation-aware
access control in a federated Data-as-a-Service system: 1)
supporting distributed reasoning in evaluating access control
rules, as this may require data from multiple members, and
2) efficiency, especially in cases such as maritime SAR
with typically poor network connectivity. Existing work
supporting distributed reasoning [3] fails to address the first
challenge as highly specialized systems are required, making
them hard to deploy within an access-control framework.
Although significant work has been done on query rewriting
[2], [4]–[10], most of such work either does not focus
on access control or does not address the problem in a
distributed environment.

We have developed a novel framework that allows pol-
icy based situation aware access in federated Data-as-
a-Service systems. This framework facilitates automated
query-rewriting by adding necessary constraints to the origi-
nal query by checking organization’s access control policies.
We move away from a distributed reasoning focus into
a distributed query focus. Since many federated Data-as-
a-Service systems already support federated queries, our
approach can be easily integrated into existing systems.
Our approach also addresses the efficiency issue by using a
peer-to-peer architecture such that fragments of a rewritten
query can be executed locally, where data resides, reducing
communication overhead.

We make the following contributions: 1) a semantic web
based approach to defining situation-aware access control
policies. We use maritime search and rescue and contact
tracing for surveillance of a contagious disease as two

Preprint: In proceedings of IEEE International Conference on Services Computing (IEEE SCC), 2020

use cases, and develop an ontology and a set of rules
to define access control policies for each use case; 2) a
distributed reasoning framework based on query rewriting
that enforces these rules and can be easily integrated with
existing federated Data-as-a-Service architecture; 3) a peer-
to-peer architecture that reduces communication overhead
and is suitable for application scenarios, such as maritime
SAR, with limited network bandwidth.

In our preliminary work [11], we proposed an initial
proof-of-concept system for a situation-aware access control
framework. In this paper, we substantially extend our pre-
liminary work, including a new query rewriting algorithm,
a new use case, and extensive experiments.

The rest of the paper is organized as follows. Section II
describes the overall architecture of our framework. Section
III describes the semantic approach to representing situation-
aware access control rules, and the ontology and sample
rules developed for two use cases. Section IV presents our
query-rewriting based distributed reasoning framework. Sec-
tion V describes implementation and experimental results.
Section VI summarizes related work. Section VII gives our
conclusions and discusses future work.

II. SYSTEM ARCHITECTURE

Background: In this paper we assume that each member in
the system stores data in a common RDF format [12]. RDF
data are represented as triples, each containing a subject, a
predicate, and an object. For example, John (subject) has the
role (predicate) of Captain of a ship (object). The structure
of RDF data can be represented in an ontology language
such as OWL [13]. The data can be queried using a SQL-
like language such as SPARQL [14].

Consider the SPARQL query QS1 below which returns
all data from members of a SAR center.

QS1: PREFIX ns: <http://www.sar.org/ns#>
SELECT ?Result
WHERE {
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:has ?Result . }

SPARQL queries have a SELECT clause that indicates
the variables returned by the query and a WHERE clause
which specifies conditions the results need to satisfy.

In this paper we only consider Basic Graph Pattern (BGP)
SPARQL queries in which the WHERE clause consists of
conjunctions of triple patterns. Each triple pattern has a sub-
ject, predicate, and object, but any of these components can
be a literal (e.g, ns:Location) or a variable (e.g. ?Result).

We consider a federated data-as-a-service system where
each member provides a service endpoint that supports
SPARQL 1.1 queries. A SPARQL 1.1 query can specify
parts of the query to be executed at each SPARQL service
endpoint and the results from all endpoints are put together
as the final results.

Federated Member 1

Cloud Based
Policy Repository

Data Access Policy
Ontology and Rules Federated Member 2

User 3

User 4

Local Data
File

Trusted Middleware

Access Control
Query Rewriting

Query Engine

User 1

User 2

Local
Data File

Trusted Middleware

Access Control
Query Rewriting

Query Engine

Figure 1. System Architecture for Situation-aware Access Control System

Overview of system architecture: Figure 1 illustrates the
overall architecture of our system, which consists of feder-
ated members each with its own users and local data files.

To implement situation-aware access control, we first
develop an ontology to help express access control rules for
each member. Members can then define their access control
rules using the ontology. These rules are stored in a cloud
based policy repository for ease of access by all members.
Each member can also store a local copy of the ontology if
the connection is unreliable.

Data-as-a-Service and situation-aware access control are
implemented in our architecture as a trusted middleware
layer at each member. The middleware consists of a query
engine as well as an access control query rewriting mod-
ule. The access control query rewriting module enforces
situation-aware access control rules by adding constraints
derived from these rules to each query such that only results
accessible by the user who asks the query are returned.
The query engine at each member communicates with the
query engines at other members and together they execute
federated queries using data stored at multiple members.

At run time, a user of a federated member submits a query
to the query engine. The access control query rewriting
module adds access-control constraints to the query and
rewrites the query using rules stored in the cloud based
policy repository. The rewritten query is executed by the
query engines of multiple members and the final results are
returned to the user. Note that query rewriting ensures that
the final results only contain data the user is allowed to
access based on the situation, as defined by the rules.
Peer-to-Peer vs. Trusted Coordinator architecture: Our
approach uses a peer-to-peer architecture where each mem-
ber’s middleware layer can directly query other members’
middleware. To simplify the process to join our system,
we assume that there is a known super-peer (e.g., in SAR
missions, there is a SAR center) and each member contacts
the super-peer to join the system. However, the super-peer
is not involved in query processing.

An alternative architecture is to have a single trusted
coordinator. In such an architecture, all queries are sent
to the coordinator. The coordinator rewrites a query based
on access control rules, and sends the query to the query
engines of multiple members to get final results. The final

SAR Coordinator
Can update destination
of SAR ship 2

Distressed Ship

SAR Ship 2

Distance < 100 KM

SAR Ship 1

Distance >100 KM

Figure 2. Example for rules RS1 and RS2

results are then sent to the member who initiates the query.
However this architecture has a single point of failure and
a bottleneck: the coordinator. In addition, most situation-
aware access control rules contain conditions concerning the
member who initiates the query, e.g., to verify that the user is
the captain of a vessel that is indeed in distress. Using our
peer-to-peer architecture, some fragments of the rewritten
query will be executed locally at the member where the
data resides. For example, the fragment to verify the role of
the captain will be executed at the vessel. Using the trusted
coordinator architecture, the coordinator needs to execute
all fragments of query remotely, which often leads to worse
performance due to higher network communication costs.
Section V compares these two approaches experimentally.

III. ONTOLOGY AND RULES

Situation-aware access control policies typically can be
represented using the following components [1]:
• U : the set of users.
• R: the set of roles. R has a hierarchical structure.
• UR ⊆ U ×R: the assignment of users to roles.
• O: the set of data that can be shared.
• PU,PO: properties of data or users.
• SE: set of situation expressions typically on properties

of users or objects (PU,PO).
• P : the set of permissions defined on O.
• RP ⊆ R× P : the assignment of permissions to roles.
• SEUR ⊆ 2SE × UR, the set of situation-aware

assignment of roles to users. 2SE is power set of SE.
• SERP ⊆ 2SE × RP , the set of situation-aware role

permission assignments.
We use the W3C Web Ontology Language (OWL) to

define an ontology for maritime search and rescue and
another ontology for contact tracing. Figure 3 and Figure 4
show major classes and relationships (red arrows) between
classes in these ontologies, respectively. The major classes
for Maritime SAR include the vessel in distress, organiza-
tions participating in the search and rescue mission, assets
(e.g., medical equipment) owned by these organizations, the
rescue coordination center, and their data to be shared in
the system, roles, users, allowed operations (read or write),
rescue missions in which they are involved, and tasks in the
mission, etc. The designed ontology contains 14 classes and
20 relationships between these classes.

The ontology for contact tracing includes major classes
such as person (being investigated), different types of data
about the person such as EHR data, air travel data, hotel

data, cruise travel data, users (e.g., contact tracers), roles,
and organizations (e.g., air lines, cruise ships, hotels, health-
care providers). The ontology contains 13 classes and 14
relationships. Many classes also have data properties. We
also assume that in both ontologies the User class can have
hasReadAccess or hasWriteAccess relationship to any other
classes or properties of classes other than the role class.

The rules define the situation-aware assignment of per-
missions (RP and SERP) or roles (SEUR). The rules
consist of conditions and consequences. Conditions are
typically predicates on the situation or roles of users, and
consequences are typically whether a user is allowed to carry
out a certain operation on a certain type of data item or
whether a certain situation occurs.
Sample Rules: The following are several SAR use case
sample rules. These rules are written in a format slightly
different from the standard OWL format to increase read-
ability.

Rule RS1 defines a dynamic situation: two ships are
within range if they are closer than 100km from each other.
Rule RS2 shows situation-aware assignment of permissions
in which the SAR coordinator can update the destination
of search and rescue ships that are near a vessel in distress.
Rule RS3 specifies that the captain of a vessel in distress can
have access to the assets of a member in the SAR mission,
and Rule RS4, specifies that the captain has access to the
location of members in the SAR mission.
• RS1: (?V ns:has ?VL) ∧ (?VL rdf:type ns:Location)
∧ (?O ns:has ?L) ∧ (?L rdf:type ns:Location)
∧ EuclideanDistance(?VL, ?L) < 100KM → (?O
ns:isWithinRangeOf ?V)

• RS2: (?U ns:hasRole ns:SARCoordinator) ∧ (?U
ns:belongsTo ?S) ∧ (?O ns:isMemberOf ?S) ∧ (?O
ns:has ?D) ∧ (?D rdf:type ns:Destination) ∧ (?V
ns:hasStatus ns:Distressed) ∧ (?O ns:isWithinRangeOf
?V) → (?U ns:hasWriteAccess ?D)

• RS3: (?U ns:belongsTo ?V) ∧ (?U ns:hasRole
ns:VesselCaptain) ∧ (?V ns:contacts ?S) ∧ (?V
ns:hasStatus ns:Distressed) ∧ (?O ns:isMemberOf ?S)
∧ (?O ns:has ?A) ∧(?A rdf:type ns:Asset) ∧(?V
ns:inMission ?M) ∧(?O ns:inMission ?M) → (?U
ns:hasReadAccess ?A)

• RS4: (?U ns:belongsTo ?V) ∧(?U ns:hasRole
ns:VesselCaptain) ∧ (?V ns:contacts ?S) ∧(?V
ns:hasStatus ns:Distressed) ∧(?O ns:isMemberOf ?S)
∧(?O ns:has ?L) ∧(?L rdf:type ns:Location) ∧(?O
ns:inMission ?M) ∧(?V ns:inMission ?M) → (?U
ns:hasReadAccess ?L)

According to rules RS1 and RS2, a user who is a SAR
coordinator can update the destination of SAR Ship 2 in
Figure 2 as it is within 100km of the ship in distress, but
cannot update SAR Ship 1 as it is not in the range.

Below are two sample rules in the contact tracing case.
Rule RC1 states that if a person A has status “Person Under

SARMission

User Task Vessel Mission
Private

Ship

InMission

Role Organization

Rescue
Coordination

Center Asset

createMission

InMission

headedBy

headedBy

inCommand

contacts
has

hasDistrict

hasRole

isMemberOf

requests
roleIn

AirForce

CoastGuard

CoastGuard
Command

CoastGuard
District

inMission

Class

Sub-Class

belongsTo

belongsTo

belongsTo

Figure 3. Ontology for Maritime SAR

Contact
Tracing

Person

EHR AirTravel
Data

owns

owns

AirLine

Health
Provider

Cruise
Ship

Hotel

recordIn

hasRole

flightRecordIn
Class

Sub-Class cruiseRecordIn

User

CriuseTravel
Data

Role Organization

…

hotelRecordIn

householdMemberOf

OrganizationData

HotelTravel
Data

Figure 4. Ontology for Contact Tracing

Investigation” (PUI) (usually when this person is diagnosed
with the disease), and a person B is a household member
of person A, then B has “close contact” status. Rule RC2
states that a user with the role contact tracer can have access
to EHR data about a person who has “close contact” status.
• RC1: (?PersonA td:status td:PUI)∧(?PersonB

td:householdMemberOf ?PersonA) → (?PersonB
td:status td:CloseContact)

• RC2: (?Person td:status td:CloseContact) ∧
(?Person td:recordIn ?EHR) ∧ (?User td:hasRole
td:ContactTracer) ∧ (?HealthCare td:owns ?EHR) ∧
→ (?User td:hasReadAccess ?EHR)

IV. DISTRIBUTED REASONING FRAMEWORK BASED ON
QUERY REWRITING

When a user asks a query in a federated data-as-a-
service system, the system needs to distributively reason
with situation-aware access control rules to only return
results the user is allowed to see.

To accomplish this, we propose a query rewriting
method, Situation-Aware-Access-Control-Rewrite (SAAC-
Rewrite), to convert distributed reasoning into distributed
query processing, which is easier to support in existing
data-as-a-service systems. As shown in Algorithm 1, the
algorithm consists of an offline pre-processing step, detailed
in Algorithm 2 and an online query rewriting step, detailed
in Algorithm 3. An early version of these algorithms was
proposed in our preliminary work [11]. In this paper we have
significantly extended Algorithm 3 to handle query rewriting
in a distributed environment.

In the following discussion, Q is a SPARQL query, RS
is the set of access control rules, u is the user issuing the
query, and I is the set of rule conditions that need to be
inferred (e.g., the isWithinRangeOf condition in rule RS1).
We also assume that policy rules are not recursive.

Preprocessing: Algorithm 2 preprocesses the access con-
trol rules such that any derived predicate that appears in
the condition part of a rule is replaced with predicates

Algorithm 1 : SAAC-Rewrite(RS, Q)

1: RS′ =Preprocess(RS) {Rewrite the rule to remove
derived conditions}

2: Rewrite-Online(RS′, Q) {Rewrite the query online}

that are in the raw data, so there is no need for runtime
inference. This essentially allows us to convert a distributed
reasoning problem to a federated query problem. This is
possible because we assume that access control rules are
not recursive. Algorithm 2 works in a manner similar to
backward chaining, i.e., by repeatedly replacing such a
predicate p (line 3) with predicates in the condition part
of a rule where p appears in the consequence (lines 4-5).

Algorithm 2 : Preprocess(RS)
1: repeat
2: for each r = cond→ cons ∈ RS do
3: for each p ∈ cond and p ∈ I where I is set of

derived predicates do
4: find rules r′1 = cd′1 → cs′1, r′2 = cd′2 → cs′2, . . .,

r′k = cd′k → cs′k ∈ RS such that ∀j, p ∈ cs′j
5: replace p in r with cd′1 ∨ cd′2 ∨ . . . ∨ cd′k
6: end for
7: end for
8: until no more rules are rewritten

Preprocessing example: When Algorithm 2 is applied to
the RS1 and RS2 rules introduced in Section III, the (?O
ns:isWithinRangeOf ?V) condition in rule RS2, which is the
same as the consequence in rule RS1, is replaced by the
conditions in rule RS1.
Access Control Query Rewriting: Algorithm 3 shows our
online query rewriting algorithm that enforces access control
rules. Step 1 initializes NQ to store rewritten query and C to
store the set of conditions to check permissions. In steps 2
to 3, for each returned variable vi in SELECT clause, a new
triple pattern ti is added to the query to check that the user
issuing the query has the correct permissions to access vi.
This is the key step in our proposed framework for situation-
aware access control as constraints are added to the query
to ensure that the end user only receives the results they
have permission to see. The algorithm then checks for each
rule whose consequence’s predicate matches the predicate in
ti (lines 4-7) and calls a function VariableMatch to rewrite
the rule such that the variables in the rule’s conditions are
replaced with matching variables or constants from the query
(line 5). The function returns a set of conditions of the
processed rule and adds them to C. Due to space constraints,
we omit pseudo code for the VariableMatch function, but
include an example below which illustrates how it works.

If multiple access control rules match the same triple
pattern ti, only one of them needs to be satisfied in order for
the user to have access to the result. In line 8, GenAllQueries
function generates all possible queries where each query has
the same conditions as Q except that each of the added

Algorithm 3 Rewrite-Online(RS, Q)
1: NQ = ∅; C = ∅
2: for each variable vi in SELECT do
3: add a triple ti = (u, hasReadAccess, ?vi) to Q
4: for each rule r ∈ RS whose consequence predicate

matches ti’s predicate do
5: add Cir =VariableMatch(r, Q, ti) to C
6: end for
7: end for
8: QS = GenAllQueries(Q,C)
9: for each query Qj ∈ QS do

10: P = ∅; Q′j = prefix and select clause of Q
11: for each triple pattern q ∈ Qj do
12: for each service endpoint pq do
13: add (pq, q) to P if pq returns non empty result

for q using SPARQL ASK query
14: end for
15: end for
16: sort items in P by endpoints and remove duplicates
17: for each service endpoint pq ∈ P do
18: if pq is not local then
19: add SERVICE keyword at pq to Q′j
20: end if
21: add to Q′j all triple patterns in P at pq
22: end for
23: add Q′j to NQ and add a UNION keyword if j > 1
24: end for
25: return NQ

triple ti is replaced with triple patterns (conditions) returned
by one matching rule. The final result is a union of results
generated by these queries (line 23).

Some of the triple patterns in these queries need to be
evaluated using a remote member’s data. Lines 11 to 15 use
SPARQL ASK queries to find the service end points that
have non-empty results for each triple pattern in a generated
query. Triple patterns belonging to the same endpoint are
then placed in the same group and duplicated triple pat-
terns are removed (line 16). If the endpoint is remote, the
SERVICE keyword is added to get results from that endpoint
(line 19). Finally, all queries generated in line 8 are unioned
in line 23 and the resulting query NQ is returned (line 25).

Query rewriting example: Consider query QS1 described
in Section II. Suppose that QS1 is issued by “John”, the
captain of a vessel in distress. Following Algorithm 3 line 3,
once QS1 is issued by “John”, the algorithm first adds
the triple pattern t1 = ns:John ns:hasReadAccess
?Result to the query. Both rules RS3 and RS4 in Section
III match the added triple pattern. Function VariableMatch
is invoked to replace variables in rule RS3 first.

The VariableMatch function tries to match every triple
in the rule with a triple pattern in the query (including
t1) based on their predicate. There are two cases: 1) the
subject or object (sr) of a triple in the rule is a variable so

it needs to be replaced with the subject or object (sq) of the
matching query triple; 2) sr is a constant but the matching
sq is a variable so sq needs to be bounded to sr. The second
case can be handled by using a BIND(sr AS sq) form and
replacing sq in other triple patterns in Q with sr.

In the above example, the triple pattern ?U
ns:hasReadAccess ?A in rule RS3 matches triple
pattern ns:John ns:hasReadAccess ?Result in
the query, so the variable ?U is replaced with ns:John.
Similarly ?A in the rule is replaced with ?Result.

After such replacement, the conditions of rule RS3 will
be returned. Similarly, the conditions of rule RS4 will be
returned. At step 8, two queries will be generated, each
containing conditions in one of these rules as well as triple
patterns in the original query.

Algorithm 3 then uses SPARQL ASK queries to find
the service end point matching each triple pattern. In our
experimental setup (discussed in Section V), triple patterns
with subject ?Organization or ?Result are matched using
the remote service endpoint. The other triple patterns are
matched locally. The algorithm repeats for the query gener-
ated from rule RS4 and unions the results from both rules
in line 23. The final rewritten query is:

PREFIX ns: <http://www.sar.org/ns#>
SELECT DISTINCT ?Result WHERE{{
ns:John ns:belongsTo ?V .
ns:John ns:hasRole ns:VesselCaptain .
?V ns:contacts ?SARCenter .
?V ns:hasStatus ns:Distressed.
?V ns:inMission ?M .
SERVICE <http://192.168.56.103:3030/AF> {
?Organization ns:has ?Result .
?Result rdf:type ns:Location .
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:inMission ?M .
} } UNION {
ns:John ns:belongsTo ?Vessel .
ns:John ns:hasRole ns:VesselCaptain .
?Vessel ns:contacts ?SARCenter .
?Vessel ns:hasStatus ns:Distressed .
?Vessel ns:inMission ?M .
SERVICE <http://192.168.56.103:3030/AF> {
?Organization ns:has ?Result .
?Result rdf:type ns:Asset .
?Organization ns:isMemberOf ?SARCenter .
?Organization ns:inMission ?M . } }}

Complexity: Let nr be the number of rules, np be the
average number of conditions in a rule, nt be the number of
triple patterns in query Q, nv be the number of variables in
SELECT and ns be the number of service endpoints. The
function VariableMatch is called O(nvnr) times. Each call
costs O(npnt) as the function matches every query triple
pattern with a rule condition. In line 8, O(nnv

r) queries

can be generated because each added triple can match up
to nr rules. For each generated query, O((np + nt)ns)
ASK queries are executed. Sorting the items at line 16
of Algorithm 3 costs O((np + nt)ns log (np + nt)ns). The
total cost of Algorithm 3 is O(nvnpntnr + nnv

r (np +
nt)ns log (np + nt)ns). Note that nv is typically quite small.
For example, in the Lehigh University Benchmark [15], nv

ranges from 1 to 4 in the 14 test queries and the average of
nv is 1.78.

Correctness: Since the rewritten query is executed in a
trusted middleware in our architecture and users do not
see intermediate results, we only need to prove that our
query rewriting Algorithm 3 satisfies the following two
properties described in [16]: soundness (the rewritten query
only returns results in the initial query) and maximality (the
rewritten query returns as much information as possible).

The soundness of Algorithm 3 is straightforward as the
rewritten query still contains all existing triple patterns
(conditions) in the initial query, so any result returned by
the rewritten query also satisfies the initial query.

To prove that our algorithm is maximal, we need to show
that any result returned by the initial query, but not by
the rewritten query, must be a result that the user is not
authorized to see.

Line 3 of Algorithm 3 adds triple patterns to check
whether the user has access to each variable in SELECT. At
line 8, the algorithm generates a number of queries where
each is identical to the original query except that each triple
pattern added in line 3 is replaced with conditions of a
matching access control rule. Lines 11 to 22 of Algorithm
3 distribute the rewritten query to different members in the
system. The final result is union of all generated queries.

Let CQ be conditions in original query. Let RSi be
the set of rules matching a added triple ti for variable vi
in SELECT. Let Cij be conditions of rule rij ∈ RSi.
The result of each generated query satisfies conditions
(∧nv

i=1Cij)∧CQ, for some (ri1, . . . , rinv
) ∈ RS1×. . . RSnv

.
The rewritten query returns union of all possible queries.
So a result returned by the rewritten query must satisfy
∨(ri1,...,rinv)∈RS1×...RSnv

((∧nv
i=1Cij) ∧ CQ), which equals

(∨(ri1,...,rinv)∈RS1×...RSnv
(∧nv

i=1Cij)) ∧ CQ.
So any result returned by initial query satisfies

CQ, but not the rewritten query, must not satisfy
∨(ri1,...,rinv)∈RS1×...RSnv

(∧nv
i=1Cij). Thus the result does

not satisfy access control conditions ∧nv
i=1Cij checked by

any generated query. However if the user is authorized to
see the result, for each variable vi in SELECT, there must
be some access control rule whose conditions (Cij) are
satisfied. This contradicts with the above. So user is not
authorized to see the result.

V. IMPLEMENTATION AND EVALUATION

We have implemented a system in which the ontology
and rules are developed using Protégé [17]. We used Apache

Jena Fuseki [18] to store data as RDF triples and provide a
web service interface to support SPARQL 1.1. queries over
multiple endpoints. Each member of the federated system
was implemented as an Apache Jena Fuseki server. Apache
Jena Fuseki only supports local reasoning (both data and
rules are at the same endpoint). In our implementation, the
rules are stored in the cloud but data are stored at different
members. We implemented our middleware responsible for
enforcing access control rules using query rewriting.

A. Validation of Ontology and Rules

We validated the Maritime SAR proposed ontology with
SAR domain experts from the U.S. Coast Guard and U.S.
Navy1. The ontology for contact tracing has been validated
by a public health expert2. These experts confirmed that the
domain assumptions, classes, properties, and relationships
defined by our ontology support the extraction, aggregation,
and sharing of relevant information in each use case.

B. Experiment Setup

We assume that for each use case there are multiple
members and each member has its own data but shares the
same ontology. We created five Ubuntu virtual machines
to simulate different members. Each VM has 3 GB of
memory and 80GB of hard disk. Each VM runs a Jena
Fuseki Server as well as middleware implementing our query
rewriting algorithm. We varied the number of endpoints
in the experiments. We also simulated different network
delays, ranging from no delay, 50 ms (typical in a 4G
network), 100 ms (3G network), to 500 ms (typical in
satellite communication).

Methods: We compare the performance of the following
algorithms.

1) SAAC-Rewrite: this is our proposed algorithm using
the peer-to-peer architecture shown in Figure 1. Query
rewriting occurs at the member issuing the query. Parts
of the rewritten query are executed locally and other
parts are executed remotely.

2) Trusted-Coordinator: this is the alternative solution
discussed in Section II, where all queries are first sent
to a trusted coordinator. The trusted coordinator runs
a similar query rewriting algorithm and sends parts of
the rewritten query to different service end points. It
then puts together final results and sends them back
to the member who issued the query. Since data are
distributed at different members, all parts of the query
are executed remotely.

1Interviews with: Nautical Science Instructor (search and rescue domain
expert), U. S. Naval Academy, Feb 2019; retired U. S. Naval Officer, March
2019; Chief, Incident Management Division, Sector Maryland, U. S. Coast
Guard, April 2019.

2Interviews with a public health expert at Johns Hopkins University, May
2020.

Data set Member 1 Member 2 Member 3
(Vessel in
Distress)

(Coast
guard)

(Air
Force)

Small 52 96 86
Medium 520 960 860
Large 5200 9600 8600

Table I
TOTAL NUMBER OF TRIPLES IN SMALL, MEDIUM AND LARGE DATA

SETS FOR SAR

Data Set Member 1 Member 2 Member 3
(Contact
Tracer)

(Healthcare
Provider)

(Airline)

Small 66 53 61
Medium 660 530 610
Large 6600 5300 6100

Table II
TOTAL NUMBER OF TRIPLES IN SMALL, MEDIUM AND LARGE DATA

SETS FOR CONTACT TRACING

3) Centralized: this is the case when all data are stored
at one place. The queries are still rewritten to verify
situation-aware access control conditions but without
the need to query remote nodes.

Datasets: It is difficult to obtain publicly available data
sets for the two use cases we consider. We generated three
synthetic data sets for each use case: Small, Medium, and
Large, based on the created ontology. We tried to model the
synthetic data as realistically as possible to the respective
use case. For the maritime SAR use case, we generated
data based on information from a large scale multinational
maritime search and rescue exercise conducted in 2016 [19].
For the contact tracing use case, we generated data based
on information available from the US Centers for Disease
Control and Prevention [20].

Table I shows the number of triples in the SAR data and
Table II shows the numbers in the contact tracing data. The
Medium data set is scaled by a factor of 10 over the Small
data set. The Large data set is scaled by a factor of 100 over
the Small data set.

In the SAR data sets, there are three members: a vessel in
distress, a member of the U.S. Coast Guard, and a member of
the U.S. Air Force. Each member stores data related to itself.
E.g., vessel in distress member stores data about passengers
and the incident.

Contact tracing data sets are distributed on three members:
a contact tracer who has data about people being diagnosed
with the disease, a healthcare provider which owns EHR
data of patients, and an airline which owns air travel data.

Queries: For each data set we used two queries in the
experiments. For SAR data sets, query QS1 is the same
as the example query in Section IV where the captain of a
vessel in distress asks for data about organizations belonging
to the SAR center that oversees the rescue mission.

Query QS2 is asked by the coordinator of an organization
participating in the rescue mission to get data about the

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

SAAC-Rewrite small data SAAC-Rewrite medium data
SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data
Centralized small data Centralized medium data
Centralized large data

Figure 5. Execution time of Query QS1 when varying network delay

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

SAAC-Rewrite small data SAAC-Rewrite medium data
SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data
Centralized small data Centralized medium data
Centralized large data

Figure 6. Execution time of Query QS2 when varying network delay

1 2 3 4 5
0

1

2

3

4

Number of endpoints

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

Small data Medium data
Large data

Figure 7. Execution time of Query QS1 using SAAC-Rewrite when
varying number of endpoints at 100ms delay.

2 4 6 8 10
0

1

2

3

4

Number of rules

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

Small data Medium data
Large data

Figure 8. Execution time of Query QS1 using SAAC-Rewrite when
varying number of rules with 100 ms network delay

Data # of results for
QS1

of results for
QS2

Small 4 6
Medium 17 21
Large 167 172

Table III
SIZE OF QUERY RESULTS

vessel that asked for help:

QS2: PREFIX ns: <http://www.sar.org/ns#>
SELECT ?Result
WHERE {
?Vessel ns:contacts ?SARCenter .
?Vessel ns:has ?Result . }

The rewritten query includes additional conditions from
access control rules such as whether the user is coordinator
of the SAR mission, and that the data is accessible by
coordinator. For example, general passenger data of the
vessel will be accessible, but not nationality of passengers
(which may discourage passengers from seeking help).

For the contact tracing data sets, we used two queries.
QC1 is asked by a contact tracer to return the electronic
health data and status of people where the EHR data is at a
healthcare provider’s site.

QC1: PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?status ?EHR
WHERE {
?Person rdfs:status ?status .
?Person td:recordIn ?EHR .};

According to the access control rules, status and person
are accessible by any users but only EHR data for people
with the status PUI or with the status “close contact” are
accessible by a contract tracer. So the rewritten query will
check these conditions at the contract tracer site. The query
also needs to retrieve EHR data for qualified people from
healthcare provider’s site.

QC2 is asked by a contract tracer John to get air travel
data (say passenger list) related to people under investigation
from an airline.

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

SAAC-Rewrite small data SAAC-Rewrite medium data
SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data
Centralized small data Centralized medium data
Centralized large data

Figure 9. Execution time of Query QC1 when varying network delay.

0 100 200 300 400 500
0

2

4

6

Network delay in milliseconds

E
xe

cu
tio

n
tim

e
in

se
co

nd
s

SAAC-Rewrite small data SAAC-Rewrite medium data
SAAC-Rewrite large data Trusted-Coordinator small data

Trusted-Coordinator medium data Trusted-Coordinator large data
Centralized small data Centralized medium data
Centralized large data

Figure 10. Execution time of Query QC2 when varying network delay.

QC2: PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?Status ?AirtravelData
WHERE {
?Person rdfs:status ?Status.
?person td:flightRecordIn ?AirtravelData.}

According to access control rules, only users with contact
tracer or case investigator roles can access air travel data
about flights where a person with PUI status is on that flight.
The rewritten query is shown below:

PREFIX td: <http://www.cdc.gov/td#>
SELECT ?Person ?Status ?AirtravelData
WHERE {{?Person td:status td:PUI.
td:John td:hasRole td:ContactTracer.
BIND (td:PUI AS ?Status)

SERVICE <http://192.168.56.103:3030/Trace>
{?Person td:flightRecordIn ?AirtravelData.
?Airline td:owns ?AirtravelData.}
} UNION { ?Person rdfs:status td:PUI.
td:John td:hasRole td:CaseInvestigator.
BIND (td:PUI AS ?Status)
SERVICE <http://192.168.56.103:3030/Trace>
{?Person td:flightRecordIn ?AirtravelData .
?Airline td:owns ?AirtravelData.}}}

We used 16 rules in the experiment for the SAR case,
where query QS1 and QS2 each matched 8 rules. For the
contact tracing use case we used 8 rules where query QC1

matched 3 rules and QC2 matched 2 rules.

C. Results

Correctness of Query Rewriting Algorithm: We compared
returned query results of the proposed SAAC rewriting al-
gorithm to the centralized solution. Table III reports the size
of the result set when executing the queries for various data
sets for the SAR case. The query results of our algorithm

are identical to the centralized solution, the experiment thus
validating our theoretical result that our proposed distributed
query rewriting algorithm is correct. The results for contact
tracing are similar and omitted.

Results when varying network delay: Figure 5 shows the
execution time of QS1 and Figure 6 shows the execution
time of QS2 where we vary the network delay from no
delay to 50ms, 100ms, 200ms, and 500ms for the three
data set sizes, each distributed across three endpoints for
the SAR use case. Figure 9 and Figure 10 show the results
for QC1 and QC2 over three data sets for the contact tracing
case with three endpoints but only data from two endpoints
(member 1 and 2 for QC1 and member 1 and 3 for QC2)
are needed to answer each query.

The execution time includes both query rewriting time and
time to execute the rewritten query. The time is recorded in
seconds. The query rewriting time is quite small compared
to the execution time of the rewritten query.

The execution time of the centralized case (i.e., when
all data are in one place) and Trusted-Coordinator are also
reported. The execution time of the centralized case is flat
because all data are stored at one place, so network delay
has no impact on execution time.

The results show that the execution time of the SAAC-
Rewrite method increases almost linearly with network
delay. Although its execution time is higher than that of
the centralized case, it is still acceptable, e.g., at only 4.39
seconds on the Large SAR data set with 500 ms delay.

The execution time of the Trusted-Coordinator approach
is in the range of 30% to 110% higher than that of SAAC-
Rewrite on SAR data sets and is in the range of 50% to
150% higher than that of SAAC-Rewrite on contact tracing
data sets, mainly because Trusted-Coordinator has to execute
all parts of a query remotely while SAAC-Rewrite executes
part of the query locally. The local part also always contains

user information (e.g., to verify the role of the user), so the
result size of the local part of the query is very small. Since
the results from remote queries need to be joined with local
results, this also reduces overall execution time.

Our results also show that when data size increases,
execution time of SAAC-Rewrite increases just slightly. The
reason is that each query is asked by a specific user. To
check whether the user has access to the results, triples
with subject or object equal to the user are added to
the rewritten query. For example in QS2, triples “ns:Peter
ns:hasRole ns:SARCoordinator” and “ns:Peter ns:belongsTo
?Organization” are added during rewriting. This makes the
query more selective and thus more efficient to execute
because not many intermediate results need to be sent over
the network.

Results when varying number of endpoints: Figure 7
shows execution time of query QS1 using SAAC-Rewrite
when we vary the number of endpoints from 1 to 5 with
100 ms network delay for the SAR use case. The results for
QS2 and the contact tracing case are similar and omitted.

The case with one endpoint is the centralized case. When
there are two endpoints, we include Member 1 and Member
2 in Table I. When there are four or five endpoints, we
generate data similar to Member 2 for Members 4 and 5.
The results indicate that execution time of SAAC-Rewrite
increases roughly linearly with the number of endpoints for
two reasons. First, each endpoint has its own set of data so
when the number of endpoints increases, more data needs to
be queried and this increases execution time. Second, since
there are more data, more intermediate and final results need
to be transferred between endpoints, which also increases
execution time.

Results when varying number of rules: Figure 8 shows
execution of QS1 using SAAC-Rewrite when we vary the
number of rules matching the query from 1 to 10 on various
data sets with three endpoints and 100 ms network delay.
The results show that the execution time of the proposed
SAAC-Rewrite method increases linearly with the number
of rules involved. The results for other queries are similar
and omitted.

VI. RELATED WORK
Yau et al. [1] proposed a situation-aware access control

framework for distributed settings with a model for repre-
senting access control rules. We used a similar model in our
approach. However, instead of query rewriting, they assume
that users explicitly request access to individual objects and
then their solution decides whether a user is allowed to have
access. This will not be efficient for cases in which a user
asks a query that may return many thousands of objects.

There has been work on using semantic web technologies
to enforce access control or privacy preferences. Beimel
and Peleg [2] propose a situation-aware access control

model based on OWL ontology and SWRL rules. A sim-
ilar semantic-based approach was proposed by Sun et al.
[7] and applied to e-Healthcare. Kayes et al. [8] used
an ontology-based solution to represent purpose-oriented
situations and use that in access control of software services.
Oulmakhzoune et al. [9] used ontologies and query rewriting
to enforce privacy preferences for data stored at a single
place. Padia et al. [10] applied a query rewriting approach
to enforce fine-grained access control to RDF data stored
at a single place. However, none of these works considers
distributed environments, where distributed reasoning and
efficiency are two major challenges. Our work addresses
these two challenges in a distributed environment.

Query rewriting has been used to answer queries over data
with different schema or ontologies. Two popular techniques
for relational data are Local-as-View (LAV) and Global-as-
View (GAV). LAV represents the local schema as a view
of the mediated global schema, and GAV represents the
global schema as a view of local schema [4]. Thieblin et
al. [5] proposed a rewriting method when there exists 1 to
M mappings between two ontologies. Venetis et al. [6] pro-
posed a method that can expand an existing rewritten query
when the ontology is expanded. However, none of these
efforts considers access control in a distributed environment
which is addressed by our work. Our work currently does
not consider multiple ontologies but we can certainly extend
our work to multiple ontologies in the future.

In terms of application domains, Bruggemann et al. pro-
pose an ontology based approach to track vessel movement
and detect abnormal behavior [21], and an ontology for
surveillance of COVID-19 has been proposed [22].

VII. CONCLUSION AND FUTURE WORK

Existing work supporting distributed reasoning requires
special systems, making such reasoning hard to deploy in
current systems. Efficiency can also be a challenge in a
resource limited environment such as maritime SAR. In
this paper we propose an approach to supporting situation-
aware access control in federated Data-as-a-Service systems
using semantic reasoning that can be easily integrated with
existing systems through query rewriting. Our peer-to-peer
architecture allows the rewritten query fragments to be eval-
uated where the data resides, reducing the communication
overhead.

For future work, we plan to extend our proposed ontolo-
gies and use real data to evaluate our approach. We also
plan to develop methods for distributed trust management, as
data sharing in federated systems depends on trust between
members.

ACKNOWLEDGEMENT

This work was partially supported by Office of Naval
Research grant# N00014-18-1-2452.

REFERENCES

[1] S. S. Yau, Y. Yao, and V. Banga, “Situation-aware access con-
trol for service-oriented autonomous decentralized systems,”
in Autonomous Decentralized Systems. IEEE, 2005, pp. 17–
24.

[2] D. Beimel and M. Peleg, “Using owl and swrl to represent
and reason with situation-based access control policies,” Data
& Knowledge Engineering, vol. 70, no. 6, pp. 596–615, 2011.

[3] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije,
and F. van Harmelen, “Marvin: Distributed reasoning over
large-scale semantic web data,” Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 7, no. 4,
pp. 305–316, 2009.

[4] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration:
The teenage years,” in Proceedings of the 32nd international
conference on Very large data bases, 2006, pp. 9–16.

[5] É. Thiéblin, F. Amarger, O. Haemmerlé, N. Hernandez, and
C. T. dos Santos, “Rewriting select sparql queries from
1: n complex correspondences.” in The 11th International
Workshop on Ontology Matching, 2016, pp. 49–60.

[6] T. Venetis, G. Stoilos, and G. Stamou, “Query rewriting under
query extensions for owl 2 ql ontologies,” in The 7th Interna-
tional Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS 2011), 2011, p. 59.

[7] L. Sun, H. Wang, J. Yong, and G. Wu, “Semantic access
control for cloud computing based on e-healthcare,” in Pro-
ceedings of the 2012 IEEE 16th International Conference on
Computer Supported Cooperative Work in Design (CSCWD).
IEEE, 2012, pp. 512–518.

[8] A. Kayes, J. Han, and A. Colman, “An ontological frame-
work for situation-aware access control of software services,”
Information Systems, vol. 53, pp. 253–277, 2015.

[9] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, and
S. Morucci, “Privacy policy preferences enforced by sparql
query rewriting,” in 2012 Seventh International Conference
on Availability, Reliability and Security, 2012, pp. 335–342.

[10] A. Padia, T. Finin, A. Joshi et al., “Attribute-based fine
grained access control for triple stores,” in 3rd Society, Pri-
vacy and the Semantic Web-Policy and Technology workshop,
14th International Semantic Web Conference, 2015.

[11] S. Oni, Z. Chen, A. Crainiceanu, K. Joshi, and D. Needham,
“Situation-aware access control in federated data-as-a-service
for maritime search and rescue,” in 2019 IEEE International
Conference on Services Computing (SCC), 2019, pp. 228–
230.

[12] O. Lassila and R. R. Swick, “Resource description framework
(rdf) model and syntax specification,” WWW Consortium,
1999.

[13] D. L. McGuinness, F. Van Harmelen et al., “Owl web
ontology language overview,” W3C recommendation, vol. 10,
no. 10, 2004.

[14] The W3C SPARQL Working Group, “Sparql 1.1 overview,”
March 2013, accessed June 2, 2020. [Online]. Available:
https://www.w3.org/TR/sparql11-overview/

[15] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark
for owl knowledge base systems,” Web Semantics, vol. 3,
no. 2-3, pp. 158–182, Oct. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2005.06.005

[16] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-
W. Byun, “On the correctness criteria of fine-grained access
control in relational databases,” in Proceedings of the 33rd
international conference on Very large data bases. VLDB
Endowment, 2007, pp. 555–566.

[17] M. A. Musen, “The protégé project: A look back and a look
forward,” AI Matters, vol. 1, no. 4, p. 4–12, Jun. 2015.

[18] Apache Jena, “Apache jena: A free and open source java
framework for building semantic web and linked data
applications,” accessed June 2, 2020. [Online]. Available:
https://jena.apache.org/

[19] Crystal Cruises, the Canadian Coast Guard, Transport
Canada, and the U. S. Department of Defense (U.S.
Air Force, and U.S. Coast Guard), “Northwest Passage
(NWP 16) 2016 Exercise – After Action Report,” July
2016, accessed Feb 7, 2019. [Online]. Available: https:
//www.hsdl.org/?view&did=802138

[20] Centers for Disease Control and Prevention, “Contact
Tracing,” May 2020, accessed May 12, 2020. [Online].
Available: https://www.cdc.gov/coronavirus/2019-ncov/php/
open-america/contact-tracing-resources.html

[21] S. Brüggemann, K. Bereta, G. Xiao, and M. Koubarakis,
“Ontology-based data access for maritime security,” in In-
ternational Semantic Web Conference. Springer, 2016, pp.
741–757.

[22] H. Liyanage, S. de Lusignan, and J. Williams, “Covid-19
surveillance ontology,” March 2020, accessed May 26,
2020. [Online]. Available: https://bioportal.bioontology.org/
ontologies/COVID19

	ScholarWorksCoverSheet
	1036

