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ABSTRACT

We present an updated version of Lightning, a galaxy spectral energy distribution (SED) fitting

code that can model X-ray to submillimeter observations. The models in Lightning include the

options to contain contributions from stellar populations, dust attenuation and emission, and active

galactic nuclei (AGN). X-ray emission, when utilized, can be modeled as originating from stellar

compact binary populations with the option to include emission from AGN. We have also included a

variety of algorithms to fit the models to observations and sample parameter posteriors; these include

an adaptive Markov-Chain Monte-Carlo (MCMC), affine-invariant MCMC, and Levenberg-Marquardt

gradient decent (MPFIT) algorithms. To demonstrate some of the capabilities of Lightning, we present

several examples using a variety of observational data. These examples include (1) deriving the spatially

resolved stellar properties of the nearby galaxy M81, (2) demonstrating how X-ray emission can provide

constrains on the properties of the supermassive black hole of a distant AGN, (3) exploring how to

rectify the attenuation effects of inclination on the derived the star formation rate of the edge-on

galaxy NGC 4631, (4) comparing the performance of Lightning to similar Bayesian SED fitting codes

when deriving physical properties of the star-forming galaxy NGC 628, and (5) comparing the derived

X-ray and UV-to-IR AGN properties from Lightning and CIGALE for a distant AGN. Lightning

is an open-source application developed in the Interactive Data Language (IDL) and is available at

https://github.com/rafaeleufrasio/lightning.

Keywords: Extragalactic astronomy (506), Galaxy properties (615), Star formation (1569), Spectral
energy distribution (2129)

1. INTRODUCTION

The light emitted from a galaxy contains a plethora

of information about many physical properties of the

system, ranging from its star-formation history (SFH)

and dust content to the presence of an active galactic

nucleus (AGN) and the properties of its supermassive

black hole (SMBH). These properties are key to our cur-

rent understanding of how galaxies and SMBHs formed

and evolved, and, thus, the methods for deriving them

from spectral energy distributions (SEDs) have been the
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focus of substantial work (e.g., Silva et al. 1998; De-

vriendt et al. 1999; Dale et al. 2005; Groves et al. 2008;

Noll et al. 2009; Ciesla et al. 2015; Iyer & Gawiser 2017;

Leja et al. 2018; Shanks et al. 2021). The overarching

process of deriving the physical properties from an SED

is known as SED fitting (see Walcher et al. 2011 and

Conroy 2013 for recent reviews). At its core, this pro-

cess consists of fitting a model (e.g, stellar population

synthesis with dust attenuation) to the observed SED.

Once a best-fit model is determined using the chosen

statistical inferencing method, it can be used to infer

the physical properties of the observations.

Numerous SED fitting codes currently exist today for

the modeling and inferencing of galaxy properties from

their SEDs. Some of the more widely cited codes include
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CIGALE (Burgarella et al. 2005; Boquien et al. 2019),

Prospector (Johnson et al. 2021), MAGPHYS (da Cunha

et al. 2008), BAGPIPES (Carnall et al. 2018), and FAST

(Kriek et al. 2009); also see Pacifici et al. (2022) for a

more comprehensive list. Each code was designed to

help solve unanswered problems unique to their devel-

opers. Therefore, each code is unique and comes with

its own set of advantages and disadvantages.

Initially, SED fitting codes were developed to use

maximum-likelihood statistical inferencing methods

(e.g., linear and non-linear optimization) to estimate

galactic properties from optical to infrared (IR) observa-

tions (e.g., SEDfit, Sawicki & Yee 1998; Sawicki 2012;

STARLIGHT, Cid Fernandes et al. 2005; VESPA, Tojeiro

et al. 2007). These codes typically model the obser-

vations using simple stellar population (SSP) models

(e.g., Fioc & Rocca-Volmerange 1997; Bruzual & Char-

lot 2003; Conroy et al. 2009; Eldridge et al. 2017) with

simple parametric SFHs (e.g., exponentially declining)

and attenuation. The advantage of these codes is that

they are fast, simple to use, and return reliable best-

fit models. However, the major drawback is that they

can have difficulties computing accurate uncertainties on

the physical parameters, since these parameters can be

highly correlated and usually have non-Gaussian like-

lihoods. This difficulty is compounded as additional

model components are included to account for more

complex physical processes within galaxies: for example,

non-parametric SFHs (see Carnall et al. 2019 and Leja

et al. 2019 for overviews on the differences between para-

metric and non-parametric SFHs), dust emission (e.g.,

Draine & Li 2007; da Cunha et al. 2008; Casey 2012;

Dale et al. 2014), dusty torus emission from an AGN

(e.g., Fritz et al. 2006; Nenkova et al. 2008; Stalevski

et al. 2012, 2016), and nebular emission (e.g., Ferland

et al. 1998, 2013).

To estimate more accurate uncertainties, the next gen-

eration of SED fitting codes were developed to use a

gridded Bayesian statistical inferencing method (e.g.,

CIGALE, Burgarella et al. 2005; Boquien et al. 2019;

FAST, Kriek et al. 2009; MAGPHYS, da Cunha et al. 2008).

This method estimates galactic properties and their un-

certainties by gridding parameter space, fitting the cor-

responding gridded models to the observations, and then

weighting the models by their goodness-of-fit. The ad-

vantage of this method is that it can account for param-

eter degeneracies and non-Gaussian likelihoods, while

still being computationally fast. However, this compu-

tational speed excludes the time to create the grid of

models, which increases exponentially with the number

of parameters. Therefore, sampling of the full posterior

distribution becomes intractable in a reasonable amount

of time for complex models with many parameters unless

parameter space is sparsely sampled.

In order to better sample the parameter space of com-

plex models, new SED fitting codes were developed

to use Bayesian sampling statistical inferencing meth-

ods which utilize Markov Chain Monte Carlo (MCMC)

and/or nested sampling algorithms (Skilling 2004). This

approach (e.g., BAGPIPES, Carnall et al. 2018; BayeSED,

Han & Han 2012, 2014, 2019; BEAGLE, Chevallard &

Charlot 2016; Prospector, Johnson et al. 2021) has

the advantage of efficiently sampling parameter space

of complex models to generate posterior distributions

of parameters, while taking into account any prior in-

formation on the parameters. Additionally, models can

be changed without any computational cost unlike the

gridded Bayesian methods, which require the entire grid

of models to be recomputed. However, the disadvantage

of the Bayesian sampling approach is that sampling the

posterior distribution can take significantly longer com-

putational times on a per SED basis.

Some next generation SED fitting codes are trying

to bridge the gap between parameter estimation and

computational speed using machine learning. For these

codes (e.g., Lovell et al. 2019; mirkwood, Gilda et al.

2021), machine learning models are trained to learn

the relationship between input observations and inferred

properties using synthetic galaxy SEDs generated by

cosmological simulations. The major advantage of these

codes is that, once trained, fitting a new input SED is

incredibly fast and derived parameters can be more ac-

curate than the fully Bayesian approach (Gilda et al.

2021). However, in their current state of development,

machine learning SED fitting codes come with a few

serious drawbacks. The first is that they have an over-

reliance on theoretical models to explain how real galax-

ies should appear. Since they typically utilize a variety

of cosmological simulations, it can be difficult to create

a complete training set that is truly representative of all

observed galaxies (Genel et al. 2014; Schaye et al. 2015;

Somerville & Davé 2015). Additionally, over-training

(which can lead to over-fitting) can occur when an ap-

propriate test set or cross-validation set is not utilized.

This can lead to galaxy property estimates that have

high precision, which is a direct result of over-fitting

rather than a correct uncertainty estimate. Finally,

these codes cannot handle missing observations that are

commonly present in typical SEDs without retraining.

This comes at a significant computational cost if the

sample that is to be fit has a variety of observations.

Motivated to have a computationally fast yet fully

Bayesian code, we developed the SED fitting code

Lightning. Originally developed to derive the SFHs
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needed to empirically calibrate the X-ray luminosity

function (XLF) of X-ray binary (XRB) populations

(Eufrasio et al. 2017; Lehmer et al. 2017, 2020, 2022;

Gilbertson et al. 2022), Lightning has since been uti-

lized to check for enhanced star formation and AGN ac-

tivity in protoclusters (Monson et al. 2021), model local

analogs to high-redshift galaxies (Motiño Flores et al.

2021), investigate the inclination-dependence of derived

SFHs (Doore et al. 2021, 2022), and provide evidence

in favor of density wave theory (Abdeen et al. 2022).

Written in the Interactive Data Language (IDL), the

newest updates to Lightning now allow for modeling

of photometric SEDs from the X-rays to submillimeter

using efficient MCMC algorithms to fit physical models

that account for any combination of stellar, dust, and

AGN emission. In Section 2, we describe these physical

models and their dependencies. The statistical inferenc-

ing methods that fit these models to input SEDs are

described in Section 3. In Section 4, we demonstrate

the capability of Lightning by applying it to a variety

of examples. Finally, we summarize and discuss future

planned additions for Lightning in Section 5.

Lightning is an open-source, well-documented, and

publicly available SED fitting code available at https://

github.com/rafaeleufrasio/lightning. Since Lightning

has been in development over the past several years,

we include the references to past works that first de-

scribed each feature (i.e., models and statistical infer-

encing methods) and the motivation for their implemen-

tation in Table 1. In Sections 2 and 3, we reiterate the

details from these past works and clarify all assumptions

for replicability.

2. PHYSICAL MODELS

In this section, we describe the variety of physical
models available in Lightning to account for any com-

bination of stellar, dust, and AGN emission. To help

clarify the free parameters corresponding to each model,

we give a description of the parameters, their units, and

their allowed range in Table 2.

2.1. Stellar Emission Models

2.1.1. Simple Stellar Populations

The intrinsic UV-to-IR stellar emission in Lightning

is generated using the SSPs from the population synthe-

sis code PÉGASE (Fioc & Rocca-Volmerange 1997). The

SSPs, which are generated assuming the Kroupa (2001)

initial mass function (IMF), are instantaneous bursts

of star formation normalized to a unit star formation

rate (SFR) of 1 M� yr−1. We allow for a wide range

Table 1. References for previously published articles describing the
implementation of individual Lightning features.

Feature Reference

Models

Simple Stellar Populations Eufrasio et al. (2017)

Non-parametric SFH Eufrasio et al. (2017)

Stellar X-ray Emission Monson et al. (2023, submitted)

UV-to-IR AGN Emission Monson et al. (2023, submitted)

X-ray AGN Emission Monson et al. (2023, submitted)

Calzetti et al. (2000) Attenuation Eufrasio et al. (2017)

Inclination-dependent Attenuation Doore et al. (2021)

X-ray Absorption Monson et al. (2023, submitted)

Draine & Li (2007) Dust Emission Doore et al. (2021)

Fitting Algorithms

Gradient Descent (MPFIT) This work

Adaptive MCMC Doore et al. (2021)

Affine-Invariant MCMC Monson et al. (2023, submitted)

of metallicity options when generating the stellar popu-

lations (0.001, 0.004, 0.008, 0.01, 0.02, 0.05, and 0.1 in

terms of Z) along with the option to include the nebular

extinction and emission from PÉGASE (see Section 2.4 of

Fioc & Rocca-Volmerange 1997). While the nebular ex-

tinction affects SEDs of all ages, nebular emission is only

added to stellar populations with ages < 50 Myr. We

make this simplifying assumption since there is minimal

ionizing flux, which causes the nebular emission, for pop-

ulations with ages > 50 Myr (Smith et al. 2002; Byler

et al. 2017). In Figure 1, we show some example SSPs

used in Lightning at different ages for a metallicity of
Z = 0.02 (i.e., solar metallicity).

2.1.2. Star Formation History

To model complex SFHs while remaining compu-

tationally fast, Lightning assumes a simple non-

parametric SFH. Continuing with the original descrip-

tion in Eufrasio et al. (2017), we define this to be a

piece-wise constant SFH, where the free parameters for

the SFH are the SFRs (ψj) within the user-defined age

bins. This is given in analytical form as a function of

stellar age t by

ψ(t) = ψj for tj < t < tj+1, (1)

where tj and tj+1 are the respective lower and upper age

bin boundaries of the jth bin. The advantage of normal-

izing by SFR, versus stellar mass like other SED fitting

https://github.com/rafaeleufrasio/lightning
https://github.com/rafaeleufrasio/lightning


4 Doore et al.

Table 2. Summary of possible free parameters for each model SED component in Lightning.

Physical Model Component Parameter Unitsa Allowed Range Description

Stellar Emis. ψj M� yr−1 [0,∞) Star formation history coefficients

Calzetti et al. (2000) Atten. τDIFF,V · · · [0,∞) V -band optical depth of diffuse dust

δ · · · (−∞,∞) Power-law slope deviation

τBC,V · · · [0,∞) V -band optical depth of the birth cloud

SKIRTOR UV-to-IR AGN Emis.b log10 LAGN
c log10 L� [0, 20] UV-to-IR integrated AGN luminosity

τ9.7 · · · [3, 11] Edge-on optical depth of the AGN torus at 9.7 µm

cos iAGN · · · [0, 1] Cosine of the line-of-sight AGN torus inclination

qsosed X-ray AGN Emis. MSMBH M� [105, 1010] SMBH mass

log10 ṁ · · · [−1.5, 0.3] SMBH accretion rate, Eddington rate normalized

Inclination-dependent Atten.b cos i · · · [0, 1] Cosine of the line-of-sight galaxy inclination

τfB · · · [0, 8] Central B-band face-on optical depth

B/D · · · [0,∞) Bulge-to-disk ratio

F · · · [0, 0.61] Clumpiness factor

X-ray Absorption NH 1020 cm−2 [10−4, 105] HI column density along the line of sight

Draine & Li (2007) Dust Emis. α · · · [−10, 4] Power law slope of the intensity distribution

Umin · · · [0.1, 25] Minimum radiation field intensity

Umax · · · [103, 3× 105] Maximum radiation field intensity

γ · · · [0, 1] Dust mass fraction illuminated from Umin to Umax

qPAH · · · [0.0047, 0.0458] Mass fraction of PAHs in dust mixture

LTIR
d L� [0,∞) Total integrated IR luminosity

aParameters without units are unitless.

b The inclination-dependent attenuation and SKIRTOR AGN models are currently not compatible.

c LAGN is only a free parameter if fitting without the qsosed X-ray AGN model.

dLTIR is only a free parameter if fitting without energy balance.

codes, is that any bias toward rising SFHs is prevented,

while still allowing for bursty SFHs (Leja et al. 2019).

To compute the intrinsic, rest-frame composite stellar

spectrum for the jth age bin, L̃?ν,j(ν)1, the SSPs are

integrated over the age bin after interpolating the SSP

evolution to a common time grid using a user-defined

time step (e.g., 0.5 Myr). The total composite stellar

spectrum for all ages, L̃?ν(ν), is then given by

L̃?ν(ν) =

n∑
j=1

ψjL̃
?
ν,j(ν), (2)

where L̃?ν,j(ν) is by construction normalized per unit

SFR, specifically 1 M� yr−1.

In Figure 2, we show composite stellar spectra for a

metallicity of Z = 0.02 using the default set of age bins

in Lightning (0–10 Myr, 10–100 Myr, 0.1–1 Gyr, 1–5

Gyr, 5–13.6 Gyr). These age bins were chosen such that

1 When symbolizing intrinsic emission (i.e., no attenuation), we
include a tilde over the variable to clarify that it is intrinsic.
Emission variables without a tilde signify attenuation/absorption
has been applied.

the youngest age bin encapsulates the stellar population

able to emit the majority of the ionizing flux, while the

second bin includes the stellar population which gener-

ates the remaining bulk of the UV emission. Finally, the

last three age bins were selected to have similar bolo-

metric luminosities as the second bin in the case of a

constant SFH.

2.1.3. X-ray Binary Model

We include stellar X-ray emission from compact object

binaries in Lightning with a power-law spectral model

given by

L̃ν ∝ exp (hν/Ecut) (hν)1−Γ, (3)

where we assume a photon index of Γ = 1.8 and cutoff

energy of Ecut = 100 keV. We set the normalization

of the power-law by its rest-frame 2–10 keV luminosity

L̃X, which we model to include contributions from both

high-mass XRB (HMXB) emission and low-mass XRB

(LMXB) emission:

L̃X = L̃HMXB
X + L̃LMXB

X . (4)
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Figure 1. The PÉGASE SSP SEDs used in Lightning at
various ages after ZAMS for a metallicity of Z = 0.02 and
initial mass of 1 M�. For an age of 1 Myr, nebular emission
lines can be clearly seen, while the older displayed ages do
not have any lines due to our simplifying assumption. Ad-
ditionally, as the population ages, the overall bolometric lu-
minosity decreases, and the peak wavelength of the emission
shifts from the UV into the NIR.

Our models of L̃HMXB
X and L̃LMXB

X are calculated using

the empirical parameterizations with stellar age from

Gilbertson et al. (2022):

L̃HMXB
X

M?
(t) = −0.24(log10(t)− 5.23)2 + 32.54, (5)

and

L̃LMXB
X

M?
(t) = −1.21(log10(t)− 9.32)2 + 29.09, (6)

where L̃X/M? has units of erg s−1 M−1
� and t is the stel-

lar age in yr. While studies have shown that the lumi-

nosity of HMXBs depends on metallicity (e.g., Lehmer

et al. 2021), we do not currently implement any metal-

licity dependence in our X-ray binary model. The age-

dependent relationship from Gilbertson et al. (2022) was

derived for galaxies with metallicities ranging from 0.40–

1.16 Z�. For larger metallicities, L̃X/M? may thus be

slightly overestimated for t . 100 Myr, while for lower

metallicites it may be similarly underestimated.

To calculate the scaling parameter L̃X, we first derive

the HMXB and LMXB contribution from each age bin

utilizing Equations 5 and 6. We calculate the stellar

mass of each bin (M?,j) as

M?,j = ψjM
coeff
?,j , (7)

where M coeff
?,j is the coefficient that converts SFR into

stellar mass. We then calculate L̃X/M? at the mean

0.1 1.0Wavelength, l [mm]
106

107

108

109

1010

n
L n [

L ô]

age bin 1: 0 - 10 Myr
age bin 2: 10 - 100 Myr
age bin 3: 0.1 - 1 Gyr
age bin 4: 1 - 5 Gyr
age bin 5: 5 - 13.47 Gyr

Figure 2. Example composite stellar spectrum for a
metallicity of Z = 0.02 using the default set of age bins
in Lightning. Similarly to the SSPs in Figure 1, the nebular
emission lines can be clearly seen in the youngest bin, while
the older bins lack any obvious emission features.

stellar age of each SFH bin, multiply by the stellar mass

in the bin, and sum the contributions from each bin

to derive the total contributions from the HMXBs and

LMXBs, which are then incorporated into Equation 4

to determine L̃X and finally the X-ray luminosity spec-

trum.

2.2. AGN Emission Models

2.2.1. AGN UV-to-IR Models

Lightning uses the SKIRTOR library of UV-to-IR

AGN SED templates (Stalevski et al. 2012, 2016), which

consist of a broken power law accretion disk component

and a clumpy two-phase dusty torus that reprocesses

light from the accretion disk into the NIR. Our imple-

mentation uses the default accretion disk power law from

the SKIRTOR library, where

λL̃λ ∝


λ1.2 0.001 µm ≤ λ ≤ 0.01 µm

λ0 0.01 µm < λ ≤ 0.1 µm

λ−0.5 0.1 µm < λ ≤ 5 µm

λ−3 5 µm < λ ≤ 50µm

. (8)

The full SKIRTOR templates have 6 free parameters:

τ9.7, the edge-on optical depth of the torus at 9.7 µm;

p, the power law index for the radial dust density gra-

dient; q, the power law index for the polar dust density

gradient; ∆, the opening angle of the dusty cone of the

torus; R, the ratio of the torus’ inner and outer radii;

and iAGN, the inclination angle from the pole to the line

of sight. To simplify the SKIRTOR models and allow
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n

L n/L
AG

N

iAGN = 0›

iAGN = 50›

iAGN = 55›

iAGN = 60›

iAGN = 90›

Figure 3. Examples of the SKIRTOR AGN emission
model generated by Lightning for a range of inclinations
with τ9.7 = 7 normalized by LAGN. The dashed and dashed-
dotted lines for the iAGN = 90◦ example are models where
τ9.7 = 3 and τ9.7 = 11, respectively. We only show the varia-
tion in τ9.7 for the edge-on example, since τ9.7 is the edge-on
optical depth of the torus. Therefore, changing its value for
face-on to moderately inclined viewing angles minimally ef-
fects the model.

us to sample the parameter space and interpolate be-

tween models, our implementation in Lightning only

allows for τ9.7 and cos iAGN to be free parameters. We

fix p = 1 and q = 0 (i.e., there is no polar dependence

of the dust density) as in Stalevski et al. (2016), and

fix ∆ = 40◦ based on their findings of typical covering

factors in the range of 0.6 − 0.7. At the moderate cov-

ering factor of sin 40◦ ≈ 0.64 that we assume, R has

only a small impact on the luminosity of the torus, so

we fix R = 20. To implement these simplified models,

we linearly interpolate the original gridded models both

in τ9.7 and cos iAGN-space for the desired free parameter

value. Then if no X-ray AGN model is used, the UV-to-

IR AGN model is scaled using its anisotropic integrated

luminosity, LAGN, as another free parameter. Examples

of these UV-to-IR AGN emission models for different

inclinations are shown in Figure 3.

We note that the UV-optical light that escapes the

torus is subject to being attenuated by the host galaxy

dust (see Section 2.3). When energy balance is enabled

(as discussed in Section 2.4), we integrate this attenu-

ated light over all lines of sight2 and add it to the bolo-

metric luminosity of the attenuated stellar light used

to scale the dust model. However, fully energetic self-

consistency is not maintained by the AGN model. The

ISM is assumed to be opaque to the ionizing Lyman-

continuum radiation from the AGN, and the ionizing

flux from the AGN does not currently contribute to

the nebular emission component, which is built into our

PÉGASE models.

2.2.2. AGN X-ray Models

X-ray observations can place powerful constraints on

the bolometric luminosity of AGN, and as such they

are very useful in AGN SED modeling. In Lightning,

we provide two different models to generate the X-ray

emission from the AGN component.

Since X-ray spectra of AGN are often empirically de-

scribed by power-law models, we provide this as a basic

option in Lightning. The equation for the power-law is

given in Equation 3, where we use a fixed photon index

of Γ = 1.8 and cutoff energy of Ecut = 300 keV. To

connect the X-ray model to the UV-optical AGN com-

ponent, we use the Lusso & Risaliti (2017) L̃2 keV−L̃2500

relationship, which is an empirically calibrated relation-

ship between the intrinsic monochromatic luminosities

of luminous AGN at 2 keV and 2500 Å. Therefore, the

power-law X-ray and UV-to-IR AGN models are both

scaled using LAGN as the only free parameter. We note

that while Lusso & Risaliti (2017) show that their rela-

tionship has a dispersion of ∼0.21 dex, we do not cur-

rently provide any increased flexibility by allowing for

a deviation from the best-fit L̃2 keV − L̃2500 relation.

Instead, one of our general philosophies in Lightning

is to provide model flexibility with physical parameters

wherever possible.

To account for the scatter in the L̃2 keV − L̃2500 re-

lationship in a physically-motivated way, we provide an

implementation of the qsosed X-ray AGN models from

Kubota & Done (2018), which reproduces the Lusso &

Risaliti (2017) relationship, including its scatter, as a

function of SMBH mass and Eddington ratio. These

models include an accretion disk component and two

Comptonizing regions, which produce the X-ray spec-

trum. Since these models include optical emission from

the accretion disk, the relationship between L̃2500 and

L̃2 keV is encoded in two model parameters: MSMBH, the

2 For simplicity, Lightning currently does not support the simul-
taneous usage of the SKIRTOR UV-to-IR AGN model and the
inclination-dependent attenuation model, due to the fact that
the lines of sight of the two models are not required to align (i.e.,
cos i 6= cos iAGN), which complicates the energy balance calcula-
tion.
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Figure 4. Examples of the qsosed AGN X-ray emission model connected with the SKIRTOR UV-to-IR model generated by
Lightning. The SKIRTOR model shape is fixed using iAGN = 0◦ and τ9.7 = 7 with the normalization being set by the qsosed

model. The variation in color in the left panel corresponds to a change in log10 ṁ with fixed MSMBH = 108 M�, while different
line styles in the right panel correspond to variations in MSMBH with fixed log10 ṁ = −1. The light gray line segments between
λ = 2–5 nm (E = 0.24–0.62 keV) show the linear connection of the two models for visualization purposes at the edge of the
X-rays. From these examples, it can be seen that log10 ṁ affects the shape of the X-ray emission, while MSMBH mainly affects
the normalization.

SMBH mass, and ṁ, the Eddington ratio of the AGN.

Kubota & Done (2018) show that their models repro-

duce the Lusso & Risaliti (2017) relationship, explaining

the dispersion around the relationship due to variance of

MSMBH and ṁ among AGN. Thus, when this model is

used, we normalize the UV-to-IR AGN model (see Sec-

tion 2.2.1) to the same L̃2500 as the X-ray model. This

allows the free parameters of MSMBH and ṁ to set the

normalization of the entire X-ray-to-IR AGN model and

encapsulate the variation in the L̃2 keV− L̃2500 relation-

ship, thereby replacing LAGN as a free parameter. Due

to its physically-motivated nature, we set the qsosed

model to the default X-ray AGN model in Lightning

and recommend its usage. However, we note that this

model is most appropriate for luminous, high-accretion

rate systems (log10 ṁ ranges from −1.5 to 0.3) and is

not appropriate for low-luminosity AGN and Compton-

thick AGN, the latter of which require more careful and

complicated X-ray modeling with reflection components.

We show some examples of the connected qsosed and

SKIRTOR UV-to-IR AGN models in Figure 4. While

the qsosed model extends to optical wavelengths and is

used to normalize the UV-to-IR SKIRTOR model, we

limit it to λ < 2 nm rather than directly joining the

two models across the extreme-UV wavelength range.

Therefore, the light gray line segments in Figure 4 show

a linear interpolation between the two models for visu-

alization purposes.

This implementation of the connection between the

X-ray, optical, and IR AGN emission is a half-step to

a fully energetically self-consistent model, in which the

X-ray and IR AGN spectra are generated from the same

assumed torus model and accretion disk spectrum. For

steps toward connecting X-ray and IR spectral models

using the same torus, see e.g. Tanimoto et al. (2020).

2.3. Dust Attenuation Models

To account for the variety of attenuation laws between

and within galaxies, we include several prescriptions for

attenuation in Lightning. For the UV-to-IR, these in-

clude the original and a variable form of the Calzetti

et al. (2000) attenuation curve and the inclination-

dependent attenuation curve from Doore et al. (2021).

For the X-rays, these include the tbabs absorption

model (Wilms et al. 2000) and the Sherpa atten model

from Rumph et al. (1994).3

3 Absorption is the dominant contribution to the attenuation of
high energy photons such as X-rays. Therefore, it is conventional
to only model absorption rather than attenuation, which includes
both absorption and scatter.
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Figure 5. Example modified Calzetti et al. (2000) attenuation curves generated by Lightning, normalized by τDIFF,V . The
black curve gives the base Calzetti et al. (2000) attenuation curve (i.e., δ = 0, τBC,V = 0, and no UV bump feature). The
variation in color in the left panel corresponds to a change in δ with fixed τBC,V = 0, while different line styles in the right panel
correspond to variations in τBC,V with fixed δ = 0.

2.3.1. Calzetti et al. (2000) Attenuation

We implement the commonly used Calzetti et al.

(2000) attenuation curve as the default in Lightning.

The general details and format of this attenuation curve

as implemented in Lightning are presented in Sec-

tion 3.2 of Eufrasio et al. (2017). To briefly summarize

these details, we used the Calzetti et al. (2000) curve as

linearly extrapolated by Noll et al. (2009) at 1200 Å to

extend to the Lyman limit (912 Å). To allow for more

flexibility, we include the optional variable slope and

2175 Å bump feature modifications as presented in Noll

et al. (2009). Reformatting to use the optical depth,

rather than attenuation in magnitudes, this variable dif-

fuse dust attenuation curve is defined as

τDIFF(λ) =
τDIFF,V

4.05

(
k′(λ) +D(λ)

)( λ

0.55 µm

)δ
, (9)

where τDIFF is the optical depth of the diffuse dust at

wavelength λ, τDIFF,V is the V -band (0.55 µm) normal-

ization, k′(λ) is the Calzetti et al. (2000) attenuation

curve, D(λ) is the functional Drude profile parameter-

izing the 2175 Å bump feature, and δ is the parameter

controlling the variable slope. The Drude profile is de-

fined as

D(λ) =
Eb(λ ∆λ)2

(λ2 − λ2
0)2 + (λ ∆λ)2

, (10)

where we assume a bump strength of Eb = 0.85 − 1.9δ

following the results of Kriek & Conroy (2013), a bump

FWHM of ∆λ = 350 Å, and a central bump wavelength

of λ0 = 2175 Å. Finally, we also include an optional

birth-cloud attenuation component given by

τBC(λ) = τBC,V

(
λ

0.55 µm

)−1

, (11)

which is only applied to the youngest defined SFH age

bin (ψ1).4 Combining the diffuse dust and birth-cloud

components, the effective optical depth of the attenua-

tion curve for a given age bin j is given by

τj(λ) = τDIFF(λ) + δj1τBC(λ), (12)

where δj1 is the Kronecker delta (not to be confused with
the variable slope parameter δ). Therefore, the variable

Calzetti et al. (2000) attenuation has up to three free

parameters (τDIFF,V , δ, and τBC,V ) that define the shape

of the curve.

In Figure 5, we show several modified Calzetti et al.

(2000) attenuation curves as colored lines to compare

with the base Calzetti et al. (2000) attenuation curve

(i.e., δ = 0, τBC,V = 0, and no UV bump feature),

which is shown in black. The variation in color corre-

sponds to a change in δ (left panel), while different line

styles correspond to variations in τBC,V (right panel).

This comparison clearly shows how the variable slope

parameter δ affects the slope of UV attenuation. Ad-

4 We only recommend using birth cloud attenuation when ψ1 has
an upper age bin boundary of 10 Myr or less, as stars older than
10 Myr typically have migrated out of or cleared their birth cloud.
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ditionally, the inclusion of the birth cloud attenuation

increases the amount of attenuation at all wavelengths.

2.3.2. Inclination-dependent Attenuation

To allow for more accurate attenuation in disk galax-

ies, an inclination-dependent attenuation curve is also

included in Lightning, the description of which is pre-

sented in detail in Section 4.3 of Doore et al. (2021).

To give a brief description, the prescription is based on

the Tuffs et al. (2004) inclination-dependent attenua-

tion curves, as updated by Popescu et al. (2011), which

assume that disk galaxies are comprised of three com-

ponents, a young thin disk, an old thick disk, and an old

dustless bulge. The equation defining the curves in Tuffs

et al. (2004) was restructured to depend on the intrinsic

properties of these three components rather than their

observable properties. This resulted in the attenuation

curve being defined by

∆mλ = −2.5 log

(
r0,old

1 +B/D
10

∆mdisk
λ (i,τ

f
B

)

−2.5

+ (1− r0,old)(1− Ffλ)10
∆mtdisk

λ (i,τ
f
B

)

−2.5

+
(
r0,old − r0,old

1 +B/D

)
10

∆m
bulge
λ

(i,τ
f
B

)

−2.5

)
. (13)

Here, ∆mλ is the attenuation in magnitudes at a given

wavelength λ. r0,old is the fraction of intrinsic flux den-

sity from the old stellar components (i.e., thick disk and

bulge) compared to the total intrinsic flux density. B/D

is the intrinsic bulge-to-thick disk ratio. ∆mdisk
λ (i, τfB),

∆mtdisk
λ (i, τfB), and ∆mbulge

λ (i, τfB) are the attenuations

from the diffuse dust, parameterized by fifth-order poly-

nomials in Popescu et al. (2011), which are functions of

inclination, i, for tabulated values of the B-band face-on
optical depth as seen through the center of the galaxy,

τfB , and wavelength for the disk, thin disk, and bulge,

respectively. Finally, F is the birth cloud clumpiness

factor of the thin disk, and fλ is a tabulated function of

wavelength that provides F its wavelength dependence.

The restructuring of the original Tuffs et al. (2004)

equation to intrinsic properties was intentional so that

the non-parametric SFH in Lightning could be used to

effectively eliminate r0,old as a free parameter. This was

done by making r0,old a binary parameter, where each

SFH age bin is given its own value for r0,old based on

its age. A value of 0 indicates that the given SFH bin

is to be considered part of the young stellar population

(e.g., t < 500 Myr), while a value of 1 considers it part

of the old stellar population (e.g., t > 500 Myr). There-

fore, with r0,old tied to the SFH ages, the other four

parameters (i, τfB , B/D, and F ) are the free parameters

defining the shape of the inclination-dependent atten-

uation curve. Examples of these inclination-dependent

attenuation curves can be found in Figures 7 and 8 of

Doore et al. (2021).

2.3.3. X-ray Absorption

In Lightning, the X-ray absorption is modeled us-

ing one of two user-selected X-ray absorption mod-

els: the tbabs model with the default Wilms et al.

(2000) abundances or the Sherpa atten model which

combines cross-sections from Morrison & McCammon

(1983) and Rumph et al. (1994). The tabulated curves

used in Lightning were generated with Sherpa5 v4.13,

and normalized to a line-of-sight HI column density of

NH = 1020 cm−2. At energies larger than 10 keV, these

models produce negligible absorption; for convenience

we set the optical depth to 0 at > 12 keV.

The chosen X-ray absorption is first applied to the

SED model in the observed-frame to account for Galac-

tic absorption by the Milky Way, with the Galactic NH

being a user input for each galaxy. Further intrinsic ab-

sorption is then applied in the rest frame on the stellar

binary population and the AGN emission model, if ap-

plicable. If there is no X-ray AGN emission, the NH

of the stellar population becomes a free parameter in

the model. We show some examples of the X-ray stel-

lar model with varying levels of absorption and SFHs in

Figure 6. The inclusion of X-ray absorption primarily

impacts lower energy photons as higher energy X-rays

are less likely to be absorbed, with the intensity of the

absorption increasing with NH.

However, when the model includes an X-ray AGN

component, absorption of the stellar X-ray emission is

not a free parameter, and is instead linked to the V -band

attenuation via

NH = (22.4× 1020 cm−2)
2.5 τDIFF,V

ln(10)
. (14)

This scaling was chosen to be the average of observed

Milky Way NH − AV relationships (Predehl & Schmitt

1995; Nowak et al. 2012). In this case, the NH value

of the nuclear region becomes the free parameter in the

model, as we expect the X-ray emission from the AGN

to be the dominant component of the X-ray spectrum

in most cases.6

5 https://cxc.cfa.harvard.edu/sherpa/
6 If the value of NH is fixed by the user (if, e.g., a previous, reliable

measurement is available, or fitting only hard X-ray fluxes to
ignore the effects of absorption) when using the power law AGN
or X-ray binary models, the shape of the X-ray spectrum will be
completely fixed. However, in the current implementation of the
code, the complete X-ray spectrum will still be constructed and
integrated over the bandpass(es) at each model evaluation.

https://cxc.cfa.harvard.edu/sherpa/
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Figure 6. Example X-ray stellar spectra with and without X-ray absorption generated by Lightning. The used absorption
model is the tbabs model with Wilms et al. (2000) abundances. The variation in color in the left panel corresponds to a change
in the SFH parameters ψj with fixed NH = 1 (×1020 cm−2). (The age bins for these ψj values are the default set of age bins
in Lightning as discussed in Section 2.1.2.) The variation in lines styles in the right panel correspond to changes in NH with
fixed ψj = [1, 1, 1, 1, 1] M� yr−1. The blue line in the left panel shows an example of a spectrum dominated by young stars (i.e.
HMXBs), while the red line shows a spectrum dominated by old stars (i.e., LMXBs).

We note here that while NH is allowed to increase

above 1024 cm−2 in our implementation, our X-ray emis-

sion models are not currently appropriate for Compton-

thick sources, which typically require reflection compo-

nents that are not included in Lightning.

2.4. Dust Emission Models

We model IR dust emission in Lightning using the

Draine & Li (2007) model. To briefly summarize, the

model details how the dust mass, Mdust, is exposed to

a radiation field intensity, U . Analytically, this is given

by Equation 23 in Draine & Li (2007),

dMdust

dU
=(1− γ)Mdustδ(U − Umin)

+ γMdust
(α− 1)

(U1−α
min − U

1−α
max )

U−α, α 6= 1,

(15)

where the first additive component is a delta function

at the minimum radiation field intensity Umin and the

second component is a power-law of slope α derived be-

tween Umin and Umax, the maximum radiation field in-

tensity. The parameter γ in each additive component

dictates the fraction of the dust mass exposed to the

power-law compared to the delta function. Addition-

ally, the polycyclic aromatic hydrocarbon (PAH) index,

qPAH, is a hidden parameter in the model and defines

the strength of the PAH emission.

Rather than scaling the model with Mdust, we instead

use the total integrated IR (TIR) luminosity LTIR (i.e.,

the bolometric luminosity of the dust model), which is

proportional to Mdust. The reason we make this substi-

tution is because of the mechanism generating the dust

emission. Simply put, some fraction of UV-to-NIR emis-

sion in a galaxy is attenuated by dust. This attenuated

energy is conserved via radiation from dust particles at

longer wavelengths, mainly across the mid-to-far IR. To

account for this conservation of energy, it is expected

that the bolometric luminosity of the attenuated light

should be equal to the TIR luminosity. This energy
conservation (often termed “energy balance” in the SED

fitting community) is optional when fitting with the dust

emission model in Lightning. Therefore, when fitting

with energy balance, the dust model has five free pa-

rameters: α, Umin, Umax, γ, and qPAH; and when energy

balance is not assumed, LTIR becomes an additional free

parameter used for normalization.

In Figure 7, we show some examples of the Draine

& Li (2007) dust emission model for a variety of in-

put parameters. In these examples and as a default in

Lightning, we fix Umax = 3× 105 and α = 2. We make

this simplifying assumption as recommended by Draine

et al. (2007), since they found that the dust model is

not very sensitive to these two parameters and most ob-

served IR SEDs are well reproduced by Umax = 106 and

α = 2. We note the discrepancy between the fixed value

of Umin in Lightning and that recommended by Draine
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Figure 7. Examples of the Draine & Li (2007) dust emission model generated by Lightning, normalized by LTIR. The
parameters Umax and α are fixed to 3× 105 and 2, respectively. The variation in color in the left panel corresponds to a change
in Umin with fixed γ = 0.01 and qPAH = 0.02. The different lines styles in the middle panel correspond to variations in γ with
fixed Umin = 1 and qPAH = 0.02. As for the right panel, the different symbols on the dotted lines correspond to different values
of qPAH with fixed Umin = 1 and γ = 0.01. Decreasing the value of Umin can be seen to shift the peak of the emission to shorter
wavelengths, while qPAH independently increases the intensity of the PAH emission features.

et al. (2007). The reason for the discrepancy comes from

how Lightning computes the dust emission model from

the publicly available data. To allow for a variable α,

the δ-functions of U must be used. However, the largest

available δ-function is U = 3 × 105. Therefore, Umax is

limited to this largest available value, since extrapolat-

ing to U = 106 would add unwanted uncertainty to the

model.

3. STATISTICAL INFERENCING OF SEDS

3.1. Observational Information

To keep Lightning computationally fast, we restrict it

to modeling only photometric observations, since spec-

troscopic observations would require additional model-

ing assumptions. However, any combination of narrow-

to broad-band flux densities that have been corrected

for Galactic extinction can be used to make up the UV-

to-submillimeter input SED. Additionally, any number

of uniform sensitivity top-hat energy bands can be used

for X-ray observations, whose measurements can be in

the form of either net counts or fluxes.

Since the models in Lightning are in rest-frame lumi-

nosity units, an observed distance indicator is required

to convert the SED fluxes to the same luminosity units

as the model. The distance indicator can simply be a

luminosity distance, or it can be a redshift, where the lu-

minosity distance is calculated from the redshift via the

user chosen cosmology. We note that when using a red-

shift that the assumed age of the Universe, tage(z), will

decrease as redshift increases. To account for any effect

this will have on the SFH age bins, we have designed

Lightning to automatically adjust the user-defined age

bins such that upper bin boundaries of tj+1 > tage(z)

will be updated to tj+1 = tage(z), and bins with lower

bin boundaries of tj > tage(z) are completely omitted

from the SFH.

3.2. Loss Function

In order to fit a given model to any data, a loss func-

tion, which determines how well the model fits the data,

is required. In Lightning, we implement a χ2 loss func-

tion given by

− log(L) ∝ χ2 =

n∑
f=1

(Lobs
ν,f − L̄mod

ν,f )2

σ2
total,f

, (16)

where L is the likelihood probability of the model, Lobs
ν,f

is the observed luminosity in filter f as derived from the

input flux, L̄mod
ν,f is the model photometry in filter f ,

and σtotal,f is the total uncertainty associated with fil-

ter f . The model photometry is derived by integrating

the observed-frame model spectrum through the corre-

sponding filter f using

L̄mod
ν,f =

∫
Tf (λ)Lmod

ν (λ) dλ∫
Tf (λ) dλ

, (17)

where Tf (λ) is the filter transmission function in units of

energy, and Lmod
ν (λ) is the model spectrum. The total

uncertainty consists of both the observed uncertainty,

which is the Gaussian uncertainty of the measurement

plus any additional fractional calibration uncertainty,

and the model uncertainty added in quadrature or

σ2
total,f = σ2

obs,f + σ2
mod,f , (18)

where σobs,f and σmod,f are the observed and model

uncertainties, respectively. We include a model uncer-
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tainty component in Lightning to account for any over-

simplification of models and potential systematic uncer-

tainties in the models themselves (Charlot et al. 1996;

Percival & Salaris 2009; Conroy et al. 2009, 2010; Con-

roy & Gunn 2010). The model uncertainty is computed

simply as a user-defined fraction of the model photom-

etry that is constant for each filter or

σ2
mod,f = (σfrac

mod × L̄mod
ν,f )2 (19)

where σfrac
mod is the user-defined fractional model uncer-

tainty. Therefore, by including model uncertainties, our

formulation of the χ2 loss function accounts for both the

observational uncertainty and the inherent uncertainty

of the models being used.

When fitting X-ray data in terms of counts, we note

that Equation 16 will not be applicable, since the Pois-

sonian nature of the counts is not compatible with un-

certainty formulation. Instead, we calculate the χ2 con-

tribution of the X-ray counts as

χ2
X =

n∑
e=1

(Nobs
e −Nmod

e )2

σ2
N,e

, (20)

where χ2
X is X-ray counts contribution to the total χ2,

Nobs
e is the observed net counts (i.e., background sub-

tracted) in energy band e, Nmod
e is the model net counts

in energy band e, and σN,e is the approximate count

uncertainty in energy band e. Since the approximate

count uncertainty can be computed in a variety of ways

depending on the overall count rate, we allow for the

user to either input their own pre-computed count un-

certainties or use one of the two built-in methods in

Lightning. The first method simply sets the count un-

certainty equal to the square root of the counts (i.e.,

σN,e =
√
Nobs
e ), since this is the Gaussian approxima-

tion in the high count regime. The other uses the upper

uncertainty of the Gehrels (1986) approximation given

by

σN,e = 1 +
√

0.75 +Nobs
e , (21)

which is more appropriate for data in the low count

regime. User-supplied uncertainties may be used when

more flexibility is required, e.g., when the background

contributes strongly to the uncertainty.

3.3. Maximum-Likelihood Inferencing

3.3.1. MPFIT Algorithm

To allow for the determination of a rapid best-fit so-

lution to an SED without sampling the parameter pos-

teriors, we have added a new maximum-likelihood infer-

encing method to Lightning. The method utilizes the

MPFIT code (Moré 1978; Markwardt 2009), which con-

sists of the gradient-descent Levenberg–Marquardt al-

gorithm used to solve non-linear least squares problems.

We chose the MPFIT implementation since it allows for

several necessary constraints in Lightning, such as fix-

ing parameters and setting parameter bounds.

When searching for the best solution, one drawback

to gradient-decent algorithms like MPFIT is that they

are prone to getting stuck in local minima in χ2 space

before reaching the global minimum. To mitigate this

drawback, we have implemented the algorithm to run

a user-defined number of “solvers”, where each solver

is a fit to the SED using different starting locations in

parameter space (see Section 3.5). By running multiple

solvers from different starting locations, we can compare

the solver solutions. If the majority of the solvers have

converged to the same solution, then we can be confident

that this is likely the best solution and global minimum.

More specifically, we require that (1) at least 50% of the

solvers have χ2 − 4 ≤ χ2
best, where χ2

best is the mini-

mum χ2 value of all solvers, and (2) all of these solvers

satisfying criterion (1) have free parameter values that

are within a 1% difference of the best fit.7 Finally, once

convergence to the best solution has been confirmed, the

best-fit solver is considered the solution to the SED fit.

3.4. Bayesian Inferencing

To allow for a high quality sampling of the posterior to

an SED model, we implement two Bayesian inferencing

methods in Lightning. Both methods utilize MCMC

algorithms to sample the posterior distributions of the

free parameters, while incorporating prior distributions

of these parameters.

3.4.1. Prior Distributions

In terms of analytical priors, we only include two ba-

sic options in Lightning: truncated uniform and normal

(Gaussian) priors. We implement by default some trun-

cated priors, since practically all possible free parame-

ters have at least a lower bound. Therefore, limiting the

prior range to comply with the physically allowed val-

ues is required. Additionally, both analytical priors are

implemented in each parameter’s sampled space (e.g., a

parameter sampled in log space has a uniform or normal

prior in log space).

Besides the analytical priors, we include the option

for a user to input a prior of any shape in tabulated

7 The chosen difference in χ2 of 4 and the 1% difference are ar-
bitrarily chosen from our test fits to well behaved SEDs. We
include the χ2 result and the parameter values for each solver in
the output such that a user can further evaluate these cutoffs at
their discretion.



Lightning SED 13

form. The only restriction for the shape of these priors

is that they conform to a parameter’s physically allowed

range. Otherwise, any shape is allowed, which can be

useful for creating complex prior distributions for a given

parameter. However, we do note that no free parame-

ters can be linked together via the prior, tabulated or

analytical. We exclude user-specified parameter link-

ing in Lightning, which is common in other SED fit-

ting codes, to minimize the computational complexity

and increase computational speed. Additionally, we au-

tomatically link commonly correlated parameters (e.g.,

τDIFF,V and NH), which would potentially be linked by

the user.

With the priors specified, the posterior probability is

calculated using

log(Ppost) ∝ log(Pprior) + log(L), (22)

where Ppost is the posterior probability and Pprior is the

prior probability.8 Since the goal of the MCMC algo-

rithms is to sample Ppost, the loss function from Sec-

tion 3.2 is updated for these algorithms to include the

prior information such that we are minimizing and sam-

pling − log(Ppost) space rather than χ2 space.

3.4.2. Adaptive MCMC Algorithm

The original MCMC algorithm adopted in Lightning

was implemented and discussed in Doore et al. (2021).

The algorithm is an adaptive version of the standard

Metropolis–Hastings algorithm (Metropolis et al. 1953;

Hastings 1970) created by Andrieu & Thoms (2008).

The algorithm simply adjusts the proposal density dis-

tribution to achieve an optimal acceptance ratio. Ad-

ditionally, this adjustment of the proposal density is

vanishing, meaning the adaptiveness decreases with

each subsequent iteration. Therefore, after many it-

erations the adaptiveness is insignificant and the algo-

rithm is practically equivalent to the standard Metropo-

lis–Hastings algorithm.

Similar to the MPFIT algorithm, a single chain of the

adaptive MCMC algorithm is prone to getting stuck in

local minima in − log(Ppost) space. Once stuck, it can

take more than the user-specified number of trials to es-

cape and move towards the global minimum.9 To con-

firm if a chain reached the vicinity of the global mini-

mum, we have designed the adaptive MCMC algorithm

to run a user-defined number of independent chains in

8 The L here includes the contributions from both χ2 (UV-to-IR)
and χ2

X (X-ray).
9 All MCMC algorithms by design will reach and sample the global

minimum in − log(Ppost) space. However, this may take an ar-
bitrarily large number of trials.

parallel, where each chain is initialized using different

locations in parameters space (see Section 3.5). By run-

ning parallel chains from different starting locations, we

can compare the ending segment of each chain to see if

they converged to a single best solution. To test for con-

vergence, we have Lightning automatically perform the

Gelman-Rubin test (Gelman & Rubin 1992; Brooks &

Gelman 1998) and its multivariate version from Brooks

& Gelman (1998) on the ending segment of the chains,

whose length is user-defined. If the ending segments

from the parallel chains results in acceptable Gelman-

Rubin statistics (i.e.,
√
R̂ ≤ 1.2), then a user can confi-

dently concluded that convergence has been reached and

the posterior well sampled by the algorithm.

Since the ending portion of the full parallel chains,

which samples the posterior, is the main interest of a

user, Lightning automatically post-processes the full

chains to create a final post-processed chain portion.

For the adaptive MCMC algorithm, this post-processed

chain portion is determined as follows. First, each par-

allel chain has a user-defined number of initial trials

discarded as the burn-in phase. Next, these truncated

chains are thinned by a user-specified thinning factor

(i.e., only every n elements of each chain is kept). Fi-

nally, the thinned and truncated chain containing the

highest posterior probability is selected, and the ending

segment of this highest probability chain, whose length

is user-defined, is kept as the sampled posterior.

The reason for selecting the highest posterior proba-

bility chain is based on the assumption that convergence

may not have been reached. If convergence was reached,

then all parallel chains will have very similar distribu-

tions, and it does not matter which one is selected for

use. However, if convergence was not reached, selecting

the chain with the highest probability, guarantees that

the chain with the best solution is selected.

3.4.3. Affine-Invariant MCMC Algorithm

To more quickly sample the potentially skewed poste-

riors of the free parameters, we have recently added an

affine-invariant MCMC algorithm to Lightning (Mon-

son et al. 2023, submitted), which is our default al-

gorithm. This algorithm uses an ensemble of samplers

to adjust the proposal density distribution and sam-

ple the posterior distribution. The ensemble consists

of multiple chains (or walkers) that are run in paral-

lel and allowed to interact with one another so that

they can adapt their proposal densities. For our im-

plementation in Lightning, we use the affine-invariant

“stretch move” method as presented in Goodman &

Weare (2010), which was shown to more quickly sample
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non-Gaussian and skewed posteriors compared to the

Metropolis–Hastings MCMC algorithms.

Unlike the MPFIT and adaptive MCMC algorithms,

the ensemble nature of the affine-invariant MCMC al-

gorithm typically prevents it from getting stuck in local

minima in − log(Ppost) space, since each walker is ini-

tialized using different locations in parameters space (see

Section 3.5). However, it is still important to confirm

that the ensemble has converged to a stationary solu-

tion and to quantify any potential sampling error effects,

since each walker in the ensemble is not independent. To

test for this convergence, we have Lightning automati-

cally perform an autocorrelation analysis on the ensem-

ble (see Goodman & Weare 2010 and Foreman-Mackey

et al. 2013 for detailed discussions on autocorrelation

analyses). We briefly summarize the idea and methods

of the analysis as applied in Lightning below.

Autocorrelation, in the context of MCMC algorithms,

is how correlated a sample is with previous samples from

the same walker or chain. Specifically in Lightning, we

look at the integrated autocorrelation time, which is a

measure of the average number of iterations between in-

dependent samples. If the autocorrelation time is large,

then the samples in the ensemble are likely highly cor-

related and contain few independent samples. To con-

firm the ensemble has enough independent samples and

to quantify the Monte Carlo error, we have designed

Lightning to calculate the autocorrelation time and

check for convergence following the methods of Foreman-

Mackey et al. (2013). Their methods recommend that

the MCMC algorithm runs for a number of iterations at

least ∼50 times the integrated autocorrelation time in

order for one to trust that the autocorrelation time esti-

mate is accurate and convergence has been reached. A

factor fewer than∼50 can cause the autocorrelation time

to be underestimated, which could result in a highly cor-

related sampling with few independent samples. There-

fore, we have Lightning check if the user-defined num-

ber of iterations is large enough to have an accurate

autocorrelation time estimate (i.e., autocorrelation time

≥ 50) and flag fits that do not.

Similar to the adaptive MCMC, the ensemble is au-

tomatically post-processed by Lightning to produce

a final post-processed chain portion. For the affine-

invariant MCMC algorithm, the post-processed chain

portion is determined as follows. First, each walker in

the ensemble has its burn-in phase discarded, where the

burn-in phase is a number of iterations from the be-

ginning of the chain equal to either twice the longest

autocorrelation time of any parameter in the ensemble

(double the autocorrelation time typically encapsulates

the entire burn-in phase) or a user-defined value. Next,

the truncated ensemble is then thinned by a thinning

factor, which is either half the longest autocorrelation

time of any parameter in the ensemble (iterations at half

the autocorrelation time typically give fully indepen-

dent samples) or user-defined. Then, if a walker in the

thinned and truncated ensemble is classified as stranded

(we explain how we classify walkers as stranded below),

they are removed from the ensemble. Finally, the non-

stranded ensemble is flattened element-wise into a sin-

gle chain and the ending segment of this flattened chain,

whose length is user-defined, is kept as the sampled pos-

terior.

We designed Lightning to classify walkers as stranded

if they have an acceptance fraction less than a user-

specified number of standard deviations below the me-

dian ensemble acceptance fraction. Due to the bound-

aries of the free parameters, the affine-invariant MCMC

can have trouble accepting moves of walkers separated

from the ensemble (typically at higher − log(Ppost) val-

ues) when the ensemble is near a boundary. This re-

sults in the walkers becoming stranded and having very

low acceptance rates, since they are failing to have

any proposal jumps accepted. With enough iterations,

these walkers will eventually have a jump that rejoins

them with the ensemble. However, only a finite number

of iterations are allowed for this to occur. Therefore,

once the specified iteration limit has been reached, any

stranded walkers that may remain need to be removed,

since they would add faulty samples to the final sampled

posterior. We have found that the most effective auto-

matic method for correctly selecting stranded walkers is

to compare each walker’s acceptance fraction with that

of the median of the ensemble. Those that are classified

as stranded with abnormally low acceptance fractions

compared to the rest of the ensemble are consistently

considered stranded when using more robust and man-

ual visualization methods.

3.5. Algorithm Initialization

All three of the current algorithms in Lightning re-

quire initial starting values for each free parameter. To

select these starting values, Lightning randomly sam-

ples the user-specified prior distribution of each param-

eter independently. (For the MPFIT algorithm, there are

technically no priors, since it is not a Bayesian infer-

encing method. However, we assume uniform “priors”

for all parameters for the purpose of initialization.) Ad-

ditionally, since a given prior may have a much larger

range than what would constitute an appropriate start-

ing range, we allow the user to limit the initialization

to a specified range within the prior range. Therefore,

each initialization of the algorithms (i.e., each unique
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Section 4.1

M81 - Spatially
Resolved Galaxy

Sections 4.2
and 4.4.2

J033226.49-274035.5
z » 1 X-ray AGN

Section 4.3

NGC 4631 - Highly
Inclined Galaxy

Section 4.4.1

NGC 628 - Comparison
with Other SED Codes

Figure 8. Composite SDSS g, r, i (M81, NGC 4631, and NGC 628) and HST F435W, F606W, and F850LP
(J033226.49−274035.5) postage stamp images for the galaxies used in the example applications of Lightning in Section 4.

solver, chain, or walker) is initialized randomly from a

potentially limited range of the corresponding prior.

3.6. Derived Quantities

After fitting an SED with the chosen algorithm, we de-

signed Lightning to automatically do additional post-

processing to derived typical quantities of interest. In

terms of physical properties that are not free parame-

ters in the model, the total and individual model com-

ponent spectra and photometry with and without atten-

uation are derived. When using an MCMC algorithm,

Lightning allows for a user to select and keep the model

spectra for a specified fraction of best-fit elements in

the final post-processed chain portion. This is useful for

deriving and quoting model uncertainties on new simu-

lated photometric data points as well as showing model

uncertainties in the spectra when plotting. Additional

physical properties are also derived, such as the stellar

mass and LTIR, if their corresponding model component

is included in the total model.

One other important quantity of interest that

Lightning automatically derives is a p-value from a

goodness-of-fit test for each SED fit. Goodness-of-fit

tests are often overlooked in SED fitting, but they are

important for determining if the chosen model can ac-

ceptably model the data and whether the uncertainties

are trustworthy. For the MPFIT algorithm, we use a χ2

goodness-of-fit test to derive the p-value using the χ2

and degrees of freedom as given by the MPFIT algorithm.

We caution against using this p-value to reject the null

hypothesis that the chosen model can acceptably model

the given SED. Since the effective number of free param-

eters is lower than the actual number (due to degenera-

cies and covariances between parameters), the number

of degrees of freedom is likely higher than what is given

by MPFIT. Therefore, this p-value can be underestimated

and can lead one to falsely conclude that the model is

not acceptable for the given SED.

As for the MCMC algorithms, since they are Bayesian

methods, Lightning performs a posterior predictive

check (PPC; Rubin 1984; Gelman et al. 1996) to derive a

p-value for the chosen model. A PPC is a goodness-of-fit

test that uses the model itself to estimate the distribu-

tion from which the p-value is derived. The model can

be considered an accurate description of the data if it

can generate simulated (replicated) data that is statis-

tically identical to the actual data. By considering the

replicated data as data that could have been measured,

the PPC tests whether the model encapsulates all of the

variability in the actual data.

In terms of the practical application in Lightning, a

PPC takes the following steps. First, replicated sets of

model photometry are randomly selected from the pos-

terior distribution (i.e., samples are bootstrapped from

the post-processed chain portion with the chance of se-

lection being weighted by their posterior probability).

Then, the replicated sets of photometry are randomly

perturbed by a Gaussian distribution with a variance

corresponding to the respective total uncertainty. Next,

likelihood probabilities are calculated (see Section 3.2)

by comparing the actual observations and the perturbed
replicated photometry with the unperturbed replicated

photometry. Finally, the p-value is computed as the

fraction of corresponding likelihood probabilities for the

perturbed replicated photometry that are smaller than

the likelihood probabilities for the actual observations.10

4. EXAMPLE APPLICATIONS

In this section, we present different example applica-

tions of Lightning to give interested users ideas of its

capabilities. In Figure 8, we show composite postage

stamp images of the galaxies used in each example,

along with a brief description of the example topic. We

note that, within the “examples” sub-directory of the

10 See Section 5.1 of Chevallard & Charlot 2016 for a more detailed
description of how PPCs are used in SED fitting.
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Lightning GitHub repository and online documenta-

tion11, we provide the scripts required to run the exam-

ples and generate their presented figures. For interested

users, we recommend following along in the online doc-

umentation in addition to the below text to get further

supplementary details.

For all of these examples, we adopt a cosmology with

H0 = 70 km s−1 Mpc−1, ΩM = 0.30, and ΩΛ = 0.70.

4.1. Property Maps of M81

To show the power and versatility of Lightning when

applied to a nearby galaxy, we fit the spatially resolved

UV-to-FIR photometry (SED map) of the nearby spiral

galaxy, M81 (NGC 3031). To generate the SED map,

we gathered 23 publicly-available photometric images

ranging in wavelength from GALEX FUV to Herschel

350 µm. We then pre-processed these images for fitting

by (1) subtracting foreground stars, (2) convolving each

image to a common 25′′ PSF, (3) re-binning them to a

common 10′′ pixel scale, (4) estimating the background

to update the photometric uncertainties, (5) correcting

each bandpass for Galactic extinction, and (6) combin-

ing the images into a data cube which contains the pixel-

by-pixel SEDs. Since any data pre-processing steps are

done external to running Lightning, we exclude the

intricate details on our image pre-processing methods

as the focus of this example is on the application of

Lightning rather than the creation of SED maps. In-

terested readers can refer to Section 2 of Eufrasio et al.

(2017) for a detailed description of the pre-processing

steps involved.

To model the SEDs, we used a stellar population with

solar metallicity (i.e, Z = 0.02) and SFH age bins of

0–10 Myr, 10–100 Myr, 0.1–1 Gyr, 1–5 Gyr, and 5–

13.6 Gyr. The stellar emission was attenuated using the

modified Calzetti et al. (2000) curve with the 2175 Å

bump feature and excluding any birth cloud attenua-

tion. Finally, the dust attenuation was set to be in en-

ergy balance with the Draine & Li (2007) dust emission

model, where we fixed Umax = 3×105 and α = 2, as rec-

ommended by Draine et al. (2007) and discussed in Sec-

tion 2.4. To fit the model to each SED, we utilized the

affine-invariant MCMC algorithm, which we ran for 104

trials with 75 walkers, assuming 5% model uncertainty.

For all free parameters, we implemented uniform priors

over either the entire available range or a broad range of

values if the available range is infinite. The values defin-

ing the priors associated with each free parameter in the

11 https://lightning-sed.readthedocs.io/en/latest/

Table 3. Summary of parameters used in the M81
example.

Parameter Prior Function Initialization Range

ψj U(0, 103) [0, 1]

τDIFF,V U(0, 10) [0, 1]

δ U(−2.3, 0.4) [−1, 0]

τBC,V Fixed 0

α Fixed 2

Umin U(0.1, 25) [0.1, 5]

Umax Fixed 3× 105

γ U(0, 1) [0, 0.1]

qPAH U(0.0047, 0.0458) [0.0047, 0.0458]

Note—U(a, b) indicates a uniform distribution from a to
b. Fixed parameters have their value listed in the ini-
tialization range column.

model, along with the limited initialization ranges, are

listed in Table 3.

With the described model and algorithm, we used

Lightning to fit a subset of the SEDs within the SED

map, assuming a luminosity distance to M81 of 3.5 Mpc

as given in Dale et al. (2017). The subset included all

SEDs that were inside the 25 mag arcsec−2 B-band

isophotal ellipse as given by HyperLeda12 (Makarov

et al. 2014), which limited our example to the general

extent of the optical emission of the galaxy. The fitting

process took 65.1 hours total to fit all 6972 SEDs using

one 32-core, 2.1 GHz CPU on the Arkansas High Per-

formance Computing Center (i.e., 0.30 core-hours per

SED), with Lightning automatically running each SED

fit in parallel to maximize CPU usage. To give a gen-

eral sense of fitting speed, other Bayesian sampling SED

fitting codes typically take 1-100 core-hours per SED de-

pending on the complexity of the chosen model, which

means Lightning fits & 1 order of magnitude faster

than other codes.

Once Lightning is finished fitting, it automatically

post-processes the fit to each SED as described in Sec-

tions 3.4.3 and 3.6 and combines the results into a sin-

gle file. When generating the final post-processed chain

portion, we manually set the length of the burn-in phase

and thinning factor for consistency rather than having

Lightning automatically determine them for each SED

from the autocorrelation times. We chose a burn-in

length of 8000 trials and a thinning factor of 250, which

is significantly larger than the overall maximum auto-

correlation time of 178. Therefore, each element in the

12 http://leda.univ-lyon1.fr

https://lightning-sed.readthedocs.io/en/latest/
http://leda.univ-lyon1.fr


Lightning SED 17

-5.5

-5.0

-4.5

-4.0

-3.5

lo
g 1

0(S
FR

 [M
ô
 y

r-
1 ])

(a)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

lo
g 1

0(M
š
 [M

ô
])

(b)

-12

-11

-10

lo
g 1

0(s
SF

R 
[y

r-
1 ])

(c)

0.1

0.2

0.3

0.4

t
DI

FF
, V

(d)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

lo
g 1

0(L
TI

R [
L ô

])

(e)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

lo
g 1

0(p
-

va
lu

e)

(f)

Figure 9. Maps of the derived spatially resolved properties of M81. The values of each pixel are the median value from the
corresponding posterior distribution (excluding the p-value, which is a single value, in panel (f )). The properties from the upper
left to bottom right are (a) the SFR of the last 100 Myr, (b) the stellar mass, (c) the sSFR of the last 100 Myr, (d) the diffuse
V -band optical depth, (e) the LTIR, and (f ) the p-value estimated from the PPC. From these maps, it can be seen that the
attenuation and recent star formation is concentrated in the spiral arms, while the stellar mass is concentrated in the bulge.
This age stratification is clear in the sSFR map, which uses a different color scheme to highlight younger populations in blue
and older populations in red.

final chain portions should be uncorrelated. Finally, we

only keep the final 250 elements of each chain so that

we can derive reasonable median and 16th and 84th per-

centile ranges, while minimizing the total memory of the

single post-processed file.

With the post-processed results, we first checked that

all SEDs converge to stationary solutions as determined

by their autocorrelation times derived from the full chain

(see Section 3.4.3). After confirming convergence, we

then mapped the derived quantities for each SED back

to its associated pixel to generate maps of the spatially

resolved properties of the galaxy. In Figure 9, we show

a variety of these derived spatially resolved properties,

with the values of each pixel being the median value

from the corresponding posterior distribution. The only

exception to this is the image of the p-values in panel (f ),

which only has a single value rather than a distribution.

From this image, it can be seen that the vast majority

of pixels are well fit by the model, with poor fits mainly

being associated with locations where foreground star

subtraction occurred. One stand out result from these

property maps is that the younger, star-forming popula-

tion, which is more highly obscured, is concentrated in

the spiral arms as seen in the SFR (SFR of the last 100

Myr) and V -band optical depth maps. Additionally, the

older, more massive population can clearly been seen to

reside in the bulge region, where the stellar mass is high

and SFR is low, resulting in a low specific star formation

rate (sSFR; sSFR = SFR/M?).

To further demonstrate how the spatially resolved re-

sults could be used to estimate properties for regions

of the galaxy, we separate the galaxy into two parts,
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Figure 10. (Left) Composite SDSS g, r, i color image of M81 after being convolved to a common PSF of 25′′ and re-binned
to a pixel scale of 10′′. Overlain are the 25 mag arcsec−2 B-band isophotal ellipse as given by HyperLeda in blue and one half of
the 20 mag arcsec−2 Ks-band isophotal ellipse as given by Jarrett et al. (2003) in orange. (Middle) Total best-fit model spectra
and component SEDs of the outer (upper plot) and inner (lower plot) regions of the galaxy derived by summing the individual
pixels, where the outer region is all pixels between the B-band ellipse and the half of the Ks-band ellipse (i.e., between blue
and orange ellipses) and the inner region is all pixels within the half of the Ks-band ellipse (i.e., inside orange ellipse). (Right)
Resulting SFH with uncertainty ranges for the outer and inner regions as the blue and orange lines, respectively. From the
SEDs and SFHs, it can be seen that the outer region has comparatively higher UV emission and lower NIR emission, which is
distinguished by the fit as an overall younger population compared to the inner region.

the outer and inner region. The outer region being de-

fined as the pixels between the 25 mag arcsec−2 B-band

isophotal ellipse as given by HyperLeda and one half of

the 20 mag arcsec−2 Ks-band isophotal ellipse as given

by Jarrett et al. (2003), and the inner region comprised

of pixels within one half of the 20 mag arcsec−2 Ks-band

isophotal ellipse. In the left of Figure 10, these regions

are shown overlaid on the convolved and re-binned SDSS

color image as the blue and orange ellipses, respectively.

By summing the results of each pixel within each region,

a total SED and SFH can be made as shown in the mid-

dle and right of Figure 10, respectively. These results

show, as inferred from the maps in Figure 9, that the

outer region has comparatively higher UV emission and

lower NIR emission, which is distinguished by the fit

as an overall younger population compared to the inner

region.

Finally, to give a sense of how the maximum likelihood

and Bayesian algorithms in Lightning compare, we re-

fit the B-band isophote subset of the SED map after

swapping the MCMC algorithm with the MPFIT algo-

rithm. Using 20 solvers to test for convergence, fitting

took 19.1 hours to fit all 6972 SEDs on one of the same

32-core, 2.1 GHz CPUs (i.e., 0.09 core-hours per SED),

which is 3.4 times faster than the MCMC algorithm. In

Figure 11, we show the same property maps as in Fig-

ure 9, except for the best fit as determined by MPFIT. As

expected, there are variations in the results between al-

gorithms, especially in the smoothness of the SFR and,

subsequently, sSFR maps. This loss of smoothness is

primarily due to the usage of the best fit rather than

medians of the posterior, since the median of the pos-

terior is rarely the same as the best-fit solution. For

example, the central region can be seen to have best-fit

solutions that are suggesting zero recent star formation

(the colorbar is truncated due to the log-scale and to

match the colorbar ranges in Figure 9). These zero val-

ues from MPFIT in low SFR regions are not unexpected,

since SFR posterior distributions from the MCMC algo-

rithm generally provide upper limits, with the maximum

probability coinciding with zero. To show how this vari-

ation in best fit and median affects the total SFR of the

galaxy, each pixel in the SFR map can be summed to

give a total SFR. This results in SFR = 0.22 M� yr−1

and SFR = 0.44 M� yr−1 for the MPFIT and MCMC

algorithms, respectively, a difference by a factor of two.
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Figure 11. Panels (a – e) are the same as Figure 9 except the values correspond to the best-fit values derived from the MPFIT

algorithm. The p-values in panel (f ) are estimated from the a χ2 goodness-of-fit test. The colorbar minimum and maximum
ranges have been truncated to match those in Figure 9. Comparing these maps to those in Figure 9, it can be seen that some of
these maps, particularly the SFR and sSFR, are not nearly as smooth, due to the use of best-fit values rather than the posterior
median.

In contrast, the stellar mass, in general, is better con-

strained by SED fits, and the best fit is typically closer

in value to the median of the posterior. Summing the

pixels for the masses gives M? = 4.05 × 1010 M� and

M? = 4.26 × 1010 M� for the MPFIT and MCMC algo-

rithms, respectively, a difference of only 5%. Thus, the

best-fit mass map from MPFIT appears nearly identical

to the median mass map from the MCMC.

4.2. Deep Field AGN

Here, we demonstrate how the AGN module in

Lightning can be used with and without X-ray data

by fitting the SED of J033226.49−274035.5, an X-ray

detected AGN in the Chandra Deep Field South at

z = 1.03. For both fits, the UV-to-NIR photome-

try were retrieved from the Guo et al. (2013) CAN-

DELS catalog, which covers the U -band to Spitzer

IRAC 8.0 µm. From this data, we excluded the

VLT/VIMOS U and HST/ACS F435W bands from our

SED, due to potential contamination by broad-line emis-

sion, since J033226.49−274035.5 is classified from op-

tical spectra as a type 1 AGN (Szokoly et al. 2004).

We additionally included the FIR data (Spitzer MIPS

24 µm to Herschel SPIRE 250 µm) from Barro et al.

(2019). We corrected the CANDELS photometry for

Galactic extinction using the Fitzpatrick (1999) curve,

with AV = 0.025, as retrieved from the IRSA DUST

tool13. To retrieve the X-ray products needed for our

fits, we queried the Chandra Source Catalog (CSC) by

performing a cone search in 1′′ around the source posi-

tion, finding a unique match, 2CXO J033226.4−274035,

within 0.41′′. We utilized the level 3 CSC spectrum

and response files for the single deepest (≈ 163 ks) ob-

13 https://irsa.ipac.caltech.edu/applications/DUST/

https://irsa.ipac.caltech.edu/applications/DUST/
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servation of the source (ObsID 5019). To produce the

X-ray photometry used for our fits, we subtracted the

scaled background from the spectrum and grouped the

X-ray counts into 15 log-spaced bins spanning 0.5–6.0

keV using Sherpa v4.13. We chose this energy range

and binning such that the SNR in each bin is > 2.

We modeled the resulting SED for J033226.49−274035.5

both with and without an X-ray model. In both cases,

we used a stellar population with solar metallicity (i.e.,

Z = 0.02) and stellar age bins spanning 0–10 Myr, 10–

100 Myr, 0.1–1 Gyr, 1–5 Gyr, and 5–5.6 Gyr (the age

of the Universe at z = 1.03). Both models also included

the SKIRTOR UV-to-IR AGN model. Simultaneously

constraining the viewing angle and optical depth of the

torus is difficult, so we simplified the model by setting

τ9.7 = 7, the middle of the SKIRTOR model’s allowed

range. Additionally, since J033226.49−274035.5 is clas-

sified as a type 1 AGN, we implemented a prior on the

cosine of the viewing angle to limit our models to a type

1 AGN. For the fit without an X-ray component, we

allow the log of the integrated luminosity of the AGN

model to vary between 11.0 and 13.0, with a uniform

prior. To attenuate the UV-to-NIR emission (both the

stellar and AGN emission that escapes the torus; see

Section 2.2.1), we used the base Calzetti et al. (2000)

curve. The dust attenuation was set to be in energy bal-

ance with the Draine & Li (2007) dust emission model,

with Umax = 3× 105, α = 2, and qPAH = 0.0047. We fix

qPAH to the minimum allowed value for this example,

since high-redshift galaxies like J033226.49−274035.5

are not expected to have strong PAH emission.

For the X-ray model in this example, Lightning au-

tomatically includes a stellar component when using an

X-ray model, and we additionally use the qsosed X-ray

model for the AGN X-ray emission component. X-ray

absorption was modeled using the tbabs model, with

Wilms et al. (2000) abundances and a Galactic HI col-

umn density fixed atNH = 9.19×1019 cm−2, as retrieved

using the prop_colden tool in CIAO. We fit both mod-

els using the affine-invariant MCMC sampler, with an

ensemble of 75 walkers running for 4×104 steps, assum-

ing 10% model uncertainty. We adjusted the proposal

distribution width parameter a to 1.8 to achieve accep-

tance fractions > 20%. The free parameters and associ-

ated priors for these fits are summarized in Table 4. We

set Lightning to automatically generate the final chain

portion of the posterior distributions from the MCMC

chains and keep the last 1000 posterior samples, with

the autocorrelation times indicating convergence of the

runs.

The photometry and resulting best-fitting models are

shown in Figure 12. In Figure 13, we show a corner plot

Table 4. Summary of parameters used in the
J033226.49−274035.5 example.

Parameter Prior Function Initialization Range

All Models

ψj U(0, 103) [0, 100]

τDIFF,V U(0, 10) [0, 3]

α Fixed 2

Umin U(0.1, 25) [0.1, 10]

Umax Fixed 3× 105

γ U(0, 1) [0, 0.5]

qPAH Fixed 0.0047

τ9.7 Fixed 7

cos iAGN U(0.75, 1) [0.75, 1]

AGN Model − No X-ray Component

logLAGN U(11, 13) [12.0, 12.5]

AGN Model − With X-ray Component

NH U(10−4, 105) [100, 102]

MSMBH U(105, 1010) [106, 108]

log ṁ U(−1.5, 0.3) [−1.0, 0.0]

Note—U(a, b) indicates a uniform distribution from a
to b. Fixed parameters have their value listed in the
initialization range column.

of the posterior distributions on the AGN parameters.

Since the X-ray AGN model directly normalizes the UV-

to-IR AGN model, we calculated the equivalent LAGN

from its UV-to-IR model to compare with the LAGN

estimated from the model without X-ray data. In the

bottom right corner of the corner plot, it can be seen

that the addition of the X-ray emission results in highly

consistent AGN viewing angle (cos iAGN) and luminosity

(LAGN) estimates when including and excluding X-ray

emission. Additionally, the incorporation of X-ray data

also gives us estimates of MSMBH and ṁ when using

the qsosed model, and a separate independent estimate

of the obscuration of the source in NH, which indicates

that this source is unabsorbed, consistent with its spec-

troscopic identification in the literature. In cases where

MIR data is minimal or unavailable, adding the X-ray

data can also give independent constraints on obscu-

ration and add reliability to AGN IR luminosity esti-

mates. Therefore, including X-ray observations when

fitting the SED of an AGN can add valuable insights

on the properties giving rise to the X-ray emission itself
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Figure 12. The X-ray-to-IR SED fit for J033226.49−274035.5. In the left panels, we show the instrumental X-ray spectrum
(in terms of count rate density) with its best-fit model and residuals. In the right panels, we show the observed UV-to-IR
SED (in terms of luminosity), its best-fitting model, and residuals. The best-fit model minimizes the total X-ray and UV-to-IR
− log(Ppost). The Lightning X-ray model implementation can provide rudimentary X-ray spectral fits, and directly connect
them to the UV-to-IR SED fit.

and place powerful constraints on the derived properties

of the UV-to-IR component of the AGN.

4.3. Stellar X-ray Emission in an Inclined Galaxy

To demonstrate how X-rays emitted from the stellar

binary population can be used to help constrain the SFR

for an inclined galaxy (since X-rays are less sensitive

to dust attenuation), we fit the global broadband pho-

tometry of the edge-on nearby galaxy, NGC 4631. For

the UV-to-submillimeter photometry, we utilized the 30-

band SINGS/KINGFISH data presented in Table 2 of

Dale et al. (2017). We then corrected the data for Galac-

tic extinction before fitting, using the E(B−V ) values in

Table 1 and AV -normalized extinction values in Table 2

of Dale et al. (2017).

For the X-ray photometry, we made use of the Chan-

dra ACIS-I data for a single ≈58 ks observation (Ob-

sID 797). These data were reduced and point-source cat-

alogs were produced following the procedures detailed in

Section 3.2 of Lehmer et al. (2019) using CIAO v.4.13. To

obtain spectral constraints, we utilized the specextract

routine to extract cumulative point-source and back-

ground spectral data. For the point-source spectrum,

we chose to utilize circular apertures with radii that

were 4 times the 90% encircled energy fraction and cen-

tered on the 22 X-ray detected point sources within

the Ks-band footprint of the galaxy (see Jarrett et al.

2003, for details on this region). We extracted the back-

ground spectrum from four large regions (circles with

radii spanning 1–1.5 arcmin) outside the galactic foot-

print that were chosen to be free of bright X-ray detected

point-sources. Using Sherpa we fit the background-

subtracted point-source spectrum using a model that

consisted of both thermal and absorbed power-law com-

ponents (i.e., apec + tbabs × pow) to account for dif-

fuse gas and the X-ray binary emission, respectively.

Using the best-fit model, we calculated X-ray fluxes

in the energy bands of 0.5–1, 1–2, 2–4, and 4–7 keV,

with 10% uncertainty on the fluxes. When fitting this

X-ray data with Lightning, we accounted for Galac-
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to the SED results in highly consistent UV-to-IR AGN bolometric luminosity and inclination parameters compared to the fit
without X-rays. In addition, the theoretical qsosed model also provides indirect estimates of the SMBH mass MSMBH and
Eddington ratio ṁ = Ṁ/Ṁedd.

tic absorption by assuming a Galactic HI column den-

sity of NH = 1.29 × 1020 cm−2, as derived from the

prop colden tool in CIAO.

To show the effects of including X-rays and

inclination-dependence, we modeled and fit the SED

using four different permutations that include or ex-

clude X-ray data with either the Calzetti et al. (2000)

or inclination-dependent attenuation curves. For all four

fits, we used a stellar population with solar metallicity

(i.e, Z = 0.02) and SFH age bins of 0–10 Myr, 10–

100 Myr, 0.1–1 Gyr, 1–5 Gyr, and 5–13.6 Gyr. Addi-

tionally, all fits included the Draine & Li (2007) dust

emission model with the fixed values of Umax = 3× 105

and α = 2. As for the dust attenuation, which was set to

be in energy balance with the dust emission, the mod-

els with the Calzetti et al. (2000) curve utilized the base

curve extrapolated to the Lyman limit. For the fits with

the inclination-dependent curve, we assumed the galaxy
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to be disk dominated and have a minimal contribution

from the bulge (i.e., B/D = 0), a choice motivated by

visual inspection. We further assume the youngest three

age bins to be part of the young stellar population (i.e.,

r0,old = 0 for 0 – 1 Gyr and r0,old = 1 otherwise). Fi-

nally, X-ray absorption was included using the tbabs

model with Wilms et al. (2000) abundances for the fits

that included X-rays.

To fit the four models to the SED, we utilized the

affine-invariant MCMC algorithm with 5% model un-

certainty, which we ran with 75 walkers for 104 and

5×104 trials for the Calzetti et al. (2000) and inclination-

dependent models, respectively. The drastic increase in

trials for the inclination-dependent models is required

to reach convergence (i.e., autocorrelation times ≥ 50)

of the cos i and τfB parameters, since they are gener-

ally highly correlated (Doore et al. 2021). For all free

parameters, we implemented the priors and limited ini-

tialization ranges as listed in Table 5. Since we know

that NGC 4631 is an edge-on galaxy, we set a tabulated

prior on cos i generated from the Monte Carlo method

described in Section 3 of Doore et al. (2021), which con-

verts an axis ratio into a distribution of inclination. The

axis ratio and its uncertainty were retrieved from Hyper-

Leda, which provides the axis ratio calclated from the

25 mag arcsec−2 B-band isophote.

With the described models and algorithm, we used

Lightning to fit each model to the SED, assuming a

luminosity distance to NGC 4631 of 7.62 Mpc as given

in Dale et al. (2017). For each model, we set Lightning

to automatically generate the final post-processed chain

portion from the autocorrelation times and keep the final

2000 posterior samples. After confirming convergence of

the fits from the autocorrelation time, we compared how

the inclusion of X-rays influenced the derived properties.

In the right panels of Figure 14, we show the his-

tograms of the resulting posterior distributions of the

recent SFR of the last 100 Myr. From these distribu-

tions, each of the four models can be seen to have general

agreement. However, the Calzetti et al. (2000) mod-

els have a stronger variation when including the X-rays

compared to the inclination-dependent models, since the

Calzetti et al. (2000) attenuation model, which assumes

a uniform, spherical distribution of stars and dust, is too

simplistic for edge-on galaxies. Including the inclination

dependence allows for a more accurate estimate of the

SFR, with the inclusion of the X-rays increasing the pre-

cision of the estimate as would be expected when adding

additional data. Further, the X-ray data rules out some

higher SFR solutions (i.e., SFR > 8 M� yr−1), as they

become more unlikely with the X-ray data constraint.

Table 5. Summary of parameters used in the
NGC 4631 example.

Parameter Prior Function Initialization Range

All Models

ψj U(0, 103) [0, 10]

α Fixed 2

Umin U(0.1, 25) [0.1, 5]

Umax Fixed 3× 105

γ U(0, 1) [0, 0.1]

qPAH U(0.0047, 0.0458) [0.0047, 0.0458]

Calzetti et al. (2000) Models

τDIFF,V U(0, 10) [0, 1]

Inclination-dependent Models

cos i Tabulateda [0, 0.2]

τfB U(0, 8) [0, 4]

B/D Fixed 0

F U(0, 0.61) [0, 0.61]

X-ray Models

NH U(10−4, 105) [10−1, 102]

Note—U(a, b) indicates a uniform distribution from a to
b. Fixed parameters have their value listed in the ini-
tialization range column.

aGenerated using the Monte Carlo method described in
Section 3 of Doore et al. (2022).

4.4. Comparison with other SED Fitting Codes

4.4.1. Bayesian Sampling Code Comparison

To show how Lightning compares with other

Bayesian sampling SED fitting codes, we fit the global

broadband photometry of the face-on nearby spiral

galaxy, NGC 628 using Lightning, Prospector14, and

BAGPIPES15. These two comparison codes are by no

means a complete sample of the other Bayesian SED

fitting codes currently available. However, we have cho-

sen to compare directly with Prospector and BAGPIPES

due to their inclusion of similar models and algorithms

(e.g., non-parametric SFHs and Bayesian sampling algo-

14 https://github.com/bd-j/prospector
15 https://github.com/ACCarnall/bagpipes

https://github.com/bd-j/prospector
https://github.com/ACCarnall/bagpipes


24 Doore et al.

0.0

0.1

0.2

0.3

0.4
P(

SF
R)

0 2 4 6 8 10 12
SFR [Mô yr-1]

0.0

0.1

P(
SF

R)

10-2 100 102

Observed-Frame Wavelength [mm]
104

105

106

107

108

109

1010

n
L n

 [L
ô
]

10-610-410-2100
Observed-Frame Energy [keV]

0.0 0.2 0.4 0.6 0.8 1.0
1 - cos(i)

0

2

4

6

8

P(
1 

- c
os

 i)

Inc-Dep with X-rays
Inc-Dep no X-rays
Calzetti with X-rays
Calzetti no X-rays

Figure 14. (Left) Histograms of the posterior distribution functions of the SFR of the last 100 Myr for NGC 4631, which
are area normalized. The Calzetti et al. (2000) models are shown in the upper panel and the inclination-dependent models
are shown in the lower panel. (Right) The total best-fit model spectrum to the observed SED for each of the four models.
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Table 6. Summary of the components used when fitting with each Bayesian sampling SED fitting code.

Code SSP IMF Metal. SFH Dust att. Dust em. Sampler

Lightning PÈGASE K01 Z = 0.02 Non-param. Calzetti et al. (2000) Draine & Li (2007) Affine-in. MCMC

Prospector MILES+MIST K01 Z = 0.02 Non-param. Calzetti et al. (2000) Draine & Li (2007) Affine-in. MCMC

BAGPIPES BC03 KB02 Z = 0.02 Non-param. Calzetti et al. (2000) Draine & Li (2007) Nested Sampling

Note—Column 1: SED fitting code. Column 2: Stellar population synthesis models (MILES+MIST = MILES spectral library (Falcón-Barroso
et al. 2011) with MIST isochones (Dotter 2016; Choi et al. 2016); BC03 (Bruzual & Charlot 2003)). Column 3: Initial mass function (K01
(Kroupa 2001); KB02 (Kroupa & Boily 2002)). Column 4: Metallicity, set to the specified constant value for all ages of SFH. Column
5: SFH form, all codes used the same age bins of 0 – 10 Myr, 10 – 100 Myr, 0.1 – 1 Gyr, 1 – 5 Gyr, and 5 – 13.4 Gyr. Column 6: Dust
attenuation curve, all codes used the base Calzetti et al. (2000) curve extrapolated to the Lyman limit. Column 7: Dust emission model,
all codes used the Draine & Li (2007) model with energy balance and fixed α = 2. Prospector and BAGPIPES have Umax = 106, while
Lightning has Umax = 3× 105 (these differences in Umax have minimal effects on the models). Column 8: Bayesian sampler, Lightning
and Prospector use the same affine-invariant MCMC algorithm, while BAGPIPES uses the MultiNest nested sampling algorithm.

rithms) as Lightning in the interest of a “fair” compar-

ison.16 While the codes can be set to have many match-

16 For a more complete comparison of the most established SED
fitting codes, we recommend Pacifici et al. (2022) and note that
Lightning is not included in their comparison due to its more
recent development.

ing components, there remain some differences between

them that will generate differences in their results. We

list the components of each code in Table 6 for ease in

comparison and note that the differences in IMFs are

likely to cause the most variation in results (Kennicutt

& Evans 2012; Conroy 2013).
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Table 7. Summary of parameters used in the NGC 628 example.

Parameter Prior Function Lightning Init.a Prospector Init.b BAGPIPES Init.c

All Models

τDIFF,V
d U(0, 10) [0, 3] [1, 0.5] · · ·

α Fixed 2 2 2

Umin U(0.1, 25) [0.1, 10] [5, 1] · · ·
Umax Fixed 3× 105 106 106

γ U(0, 1) [0, 0.5] [0.1, 0.5] · · ·
qPAH U(0.0047, 0.0458) [0.0047, 0.0458] [0.02, 0.01] · · ·

Lightning SFH

ψj U(0, 103) [0, 10] · · · · · ·

Prospector and BAGPIPES SFH

Mj
e U(0, 1012) · · · [107, 107] · · ·

Note—U(a, b) indicates a uniform distribution from a to b. Fixed parameters have their value listed in the initialization range columns.

aThe initialization range specified for Lightning.

b The initialization parameters specified for Prospector. The first value is the median starting point, and the second is the dispersion scale
around that point.

cThe nested sampling algorithm in BAGPIPES does not require initialization. However, we list this column to show the fixed parameter
values.

dBAGPIPES normalizes the Calzetti et al. (2000) curve with AV , which we convert to τV via τV = 0.4 ln(10)AV .

eThe stellar mass parameter in M�. Prospector and BAGPIPES normalize their SFH bins to unit stellar mass, where Lightning normalizes
to unit SFR. Therefore, the priors on the parameters are different.

The UV-to-submillimeter photometry of NGC 628

used for this comparison was taken from the 30-band

SINGS/KINGFISH data presented in Table 2 of Dale

et al. (2017), which we corrected for Galactic extinc-

tion using the extinction values given in Table 1 and 2

of Dale et al. (2017). Since Prospector and BAGPIPES

do not have a built in model uncertainty method like

Lightning, we added in quadrature an additional 10%

uncertainty to the quoted uncertainties in Dale et al.

(2017) to act as model uncertainties in our fits. We note

that this is the typically utilized method in SED fitting

to account for model uncertainties, and therefore it is a

reasonable method for accounting for additional uncer-

tainty not contained within the data.

For the models in each code, we used a stellar popu-

lation, as given in Table 6, with constant solar metal-

licity (i.e, Z = 0.02) and SFH age bins of 0–10 Myr,

10–100 Myr, 0.1–1 Gyr, 1–5 Gyr, and 5–13.4 Gyr. We

attenuated the stellar emission in all codes using the

original Calzetti et al. (2000) curve extrapolated to the

Lyman limit. Finally, the dust attenuation was set to be

in energy balance with the Draine & Li (2007) dust emis-

sion model, where α = 2, Umax = 3×105 for Lightning,

and Umax = 106 for Prospector and BAGPIPES (the dif-

ferences in Umax have minimal effects on the models, see

Section 2.4).

To fit the SED with each code, we utilized their

Bayesian sampling algorithms to generate posterior dis-

tributions containing 2000 samples. For Lightning and

Prospector, we ran their affine-invariant MCMC algo-

rithm for 104 trials with 75 walkers, which was sufficient

for each code to reach convergence using the autocor-

relation times. The resulting chains were then post-

processed (i.e., burn-in removed and thinned) to the

2000 samples using the longest autocorrelation time of

any parameter.17 For BAGPIPES, we used the available

MultiNest (Feroz et al. 2009, 2019) nested sampling al-

gorithm, which we ran using 1000 live points. We note

17 Prospector also has a nested sampling algorithm. However, we
chose to use the affine-invariant MCMC algorithm to have the
closest possible comparison with Lightning.
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that we increased the number of live points from the de-

fault of 400 to 1000 after testing showed that we could

get significant variation in the posteriors between runs

when using fewer than 1000 live points for our chosen

model. In Table 7, we list the free parameters in each

model along with their utilized prior function. We note

that we used the same priors across each code, except for

the SFH parameters. Unlike Lightning, Prospector

and BAGPIPES normalize their SFHs by stellar mass

rather than SFR. Therefore, they require different priors

to accommodate the change in normalization, which is

expected to cause minimal to no effects on the fits due

to the utilization of the same SFH bins.

With the results from the fits, we first compared the

computational performance of each code. All codes

were run sequentially on the author’s 2016 MacBook,

which contains a 2-core, 1.2 GHz CPU. Lightning,

Prospector, and BAGPIPES took 1279.7 s, 4864.2 s, and

920.0 s, respectively, to complete their fitting. While

BAGPIPES can be seen to be almost 1.4 times faster than

Lightning (which is 3.8 times faster than Prospector),

it is important to note that this is due to the fewer

likelihood evaluations needed by the nested sampling

algorithm, which was designed (in part) to reduce the

number of model evaluations required to produce a full

sampling of the posterior (see, e.g., Feroz et al. 2009,

2019). Where Lightning and Prospector each took

1.125 × 106 likelihood evaluations, BAGPIPES only per-

formed an order of magnitude fewer (115,921 evalua-

tions) to fit. Therefore, the difference in algorithms al-

lowed for an overall similar fitting time as Lightning.

However, in terms of likelihood evaluations per second

(which is a better comparison of the practical speed

of different SED fitting codes), Lightning is almost 7

times faster than BAGPIPES, which is a result of its de-

signed computational efficiency.

To show how the derived results compare at a base

level, we show the observed photometry and best-fitting

model spectra in Figure 15. In the lower residual pan-

els for each fit, we also show the derived p-value for the

fits calculated from a PPC. From the p-values and resid-

uals, it can be seen that all codes appropriately model

the data. It is interesting to note that the best-fit model

spectra and resulting residuals from the Lightning and

Prospector fits are highly similar, since their models

only differ by the SSPs. However, BAGPIPES identifies

a comparatively unique best-fit spectrum and residuals

in the UV-to-NIR. This variation is expected, since the

different IMF in BAGPIPES can create a substantial vari-

ation in the UV-to-NIR stellar emission models.
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Figure 15. The total best-fit model spectra to the observed
SED of NGC 628 and the associated residuals as generated
by Lightning, Prospector, and BAGPIPES as the blue, green,
and orange lines, respectively. For each code, the p-value
from a PPC is shown in the upper left of each residual plot.
In general, it can be seen that all three codes model the data
well, both from the PPC and the residuals.

Finally, in Figure 16, we show the derived SFHs and

posterior distributions for five commonly derived pa-

rameters from SED fitting: the (surviving) stellar mass

(M?), the SFR of the last 100 Myr, the sSFR of the

last 100 Myr, the V -band attenuation (AV ), and LTIR

(i.e., the bolometric luminosity from 8–1000 µm). From

these distributions in the lower left, it can be seen that

all three codes have derived parameters, except stellar

mass, that are in excellent agreement. The variation

in stellar mass between codes is expected and entirely

due to the differences in SSPs and IMFs, which dic-

tate the surviving stellar mass of the populations over

time. As for the other parameters and SFHs, Lightning

and Prospector have near identical results, which is a

quality indicator given that both codes were run using

almost identical models and were independently devel-

oped. As for the differences with BAGPIPES, these are a

combination of the differences in fitting algorithms and

IMFs, especially for the SFH. However, overall for both
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Figure 16. (Lower Left) A corner plot of the derived parameters for NGC 628. These parameters include the stellar mass
(M?), the recent SFR of the last 100 Myr, the sSFR of the last 100 Myr, the V -band attenuation (AV ), and the LTIR for
each SED fitting code. (Upper Right) The median SFH with the 16th and 84th percentile uncertainty range given as the offset
vertical lines for each SED fitting code. For all plots, the results from Lightning, Prospector, and BAGPIPES are given as the
blue, green, and orange lines, respectively. From these plots, it can be seen that the results from Lightning and Prospector

are highly consistent, while the BAGPIPES results vary in consistency, especially for the SFH.

Lightning and SED fitting as a whole, it is reassuring

that codes with different models and algorithms gen-

erally return derived parameters that are in statistical

agreement.

4.4.2. X-ray AGN Code Comparison

With the new additions to Lightning making it ca-

pable of fitting the X-ray-to-IR SEDs of AGNs, we ex-

amined how its derived AGN properties compared to

the only other SED fitting code publicly available (at

the time of publication) also capable of modeling X-

ray-to-IR AGN emission, CIGALE18 (Boquien et al. 2019;

Yang et al. 2020, 2022). Unlike the comparison in Sec-

18 https://cigale.lam.fr

https://cigale.lam.fr
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Table 8. CIGALE gridded or non-default parameters.

Module Parameter Values

SFH; SFR ∝ t exp(−t/τ) Stellar e-folding time 0.1, 0.5, 1, 5 Gyr

Stellar age 0.5, 1, 3, 5,7 Gyr

SSP; (Bruzual & Charlot 2003) IMF Chabrier (2003)

Metallicity, Z 0.02

Dust att.; Calzetti et al. (2000) Color excess, E(B − V ) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9 mag

Dust em.; Dale et al. (2014) α slope in dMdust ∝ U−αdU 1.5, 2.0, 2.5

AGN (UV-to-IR) SKIRTOR AGN contribution to IR luminosity, fracAGN 0.01 to 0.99 (step 0.1)

Wavelength range used to calculate fracAGN 5–1000 µm

Viewing angle, θ 0, 10, 20, 30, 40◦

Polar-dust color excess, E(B − V ) 0, 0.05, 0.1, 0.15, 0.2, 0.3 mag

Modified optical slope power-law index, δAGN −1 to 1 (step 0.25)

X-ray Power-law slope, αOX, of the L̃2 keV − L̃2500 relationship −1.9 to −1.1 (step 0.1)

Note—For all other parameters not listed, their default values were utilized.

tion 4.4.1, Lightning and CIGALE have notably different

models and algorithms. For example, commonalities for

both include the modified Calzetti et al. (2000) atten-

uation curve, Draine & Li (2007) dust emission mod-

els, SKIRTOR AGN templates, and power-law X-ray

AGN models. However, Lightning implements non-

parametric SFHs, while CIGALE mainly relies on para-

metric SFHs. Additionally, when fitting the models to

data, Lightning can utilize either Bayesian sampling or

maximum-likelihood inferencing, while CIGALE only uti-

lizes a gridded Bayesian statistical inferencing method.

Therefore, rather than attempting to use similar mod-

els and algorithms like we did in Section 4.4.1, in this

example, we fit using the recommended settings of each

code when modeling sources that include an X-ray AGN

to see how the derived results compare.

For this comparison, we utilized the same X-ray AGN
presented in Section 4.2, J033226.49−274035.5. The fit

we performed in Section 4.2 already utilized our rec-

ommended models and the vast majority of our recom-

mended model settings (see Table 4). The only differ-

ence from the recommendation is fixing qPAH and limit-

ing the prior range of cos iAGN. We retain these setting

for this example, as qPAH would be a nuisance parameter

if not fixed (as can be seen from the negligible contri-

bution to the MIR by the dust emission in Figure 12)

and the cos iAGN prior restrics modeling to type 1 AGN.

Therefore, we utilized our results from the X-ray model

fit in Section 4.2 for this comparison.

For the CIGALE settings, we utilized their recom-

mended settings for an X-ray AGN using the example in

their online documentation19. This model consisted of

a delayed exponential SFH with a Chabrier (2003) IMF

and metallicity of Z = 0.02, UV-to-IR AGN emission us-

ing the SKIRTOR templates with the Schartmann et al.

(2005) intrinsic-disk type, X-ray AGN emission from

a power-law model assuming Γ = 1.8, Calzetti et al.

(2000) dust attenuation, and Dale et al. (2014) dust

emission. The list of all gridded or non-default parame-

ters used for each model are given in Table 8. We note

that we deviated slightly from their recommended set-

tings for two parameters in the model: θ (the AGN view-

ing angle, equivalent to iAGN in Lightning) and δAGN

(the deviation from the default UV/optical slope of the

AGN model). We limit the grid points for θ to all possi-

ble options for type 1 AGN views and allow δAGN to vary

as is recommended when modeling type 1 AGN (Yang

et al. 2022). Additionally, we set “lambda fracAGN” to

define the AGN IR fraction as the integrated luminosity

between observed-frame 5–1000 µm for ease in compar-

ison with Lightning.

Utilizing the same observational data of

J033226.49−274035.5 given in Section 4.2, we then fit

the data using CIGALE. We do note that while we used

the same UV-to-IR data, CIGALE requires X-ray data be

input as absorption-corrected X-ray fluxes rather than

the instrumental counts input into Lightning. This

conversion to absorption-corrected fluxes requires one

to either assume or fit a spectral model to the X-ray

spectrum prior to performing the full SED fit, in order

to include the X-ray data. For this example, we chose

19 https://gitlab.lam.fr/cigale/manual/-/blob/master/examples/
akari nep xray agn/pcigale.ini

https://gitlab.lam.fr/cigale/manual/-/blob/master/examples/akari_nep_xray_agn/pcigale.ini
https://gitlab.lam.fr/cigale/manual/-/blob/master/examples/akari_nep_xray_agn/pcigale.ini
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to fit the X-ray spectrum with an absorbed power-law

(i.e. tbabs × pow) using Sherpa v4.13, finding a best-

fit Γ = 1.96 and NH < 1 × 1020 cm−2. From this

X-ray spectrum fit, we then calculated the absorption-

corrected fluxes for input into CIGALE in 15 log-spaced

bands from 0.5–6.0 keV (the same energy bands used in

Section 4.2).

Both codes were then run sequentially on the author’s

2016 MacBook, which contains a 2-core, 1.2 GHz CPU.

Lightning and CIGALE took ≈1 hr and ≈10 hr, respec-

tively, to complete their fitting. While Lightning fit

an order of magnitude faster in absolute terms, like in

Section 4.4.1, it is better to compare the likelihood eval-

uations per time interval for an equivalent speed com-

parison. For this fit, Lightning performed 3× 106 like-

lihood evaluations, while CIGALE performed a factor of

four more (12,830,400 evaluations) to fit. Therefore,

Lightning is approximately two times faster in terms

of likelihood evaluations, which again is a result of its

designed computational efficiency.

With the results from both fits, we compared the de-

rived physical properties from Lightning to those de-

rived by CIGALE. In Figure 17, we show the best-fit

model SED for both codes, with the gray and magenta

colored data points in the X-rays correspond to each

codes input data, since Lightning had inputs in units

of observed counts (which are converted to model de-

pendent luminosities for plotting) and CIGALE had in-

puts in units of absorption-corrected fluxes. Addition-

ally, since Lightning uses an MCMC algorithm, we gen-

erated the range of the top 64% of the best-fit mod-

els, in terms of the posterior, to create an uncertainty

range on the model SEDs. With the uncertainty range,

it can be seen that the best-fit model SED for both

codes are highly consistent in the UV-to-IR, but dif-

fer in the X-rays. This difference in the X-ray is mainly

caused by the difference in models (Lightning uses the

more flexible qsosed model, while CIGALE uses a more

rigid power-law) and input data (Lightning uses the ob-

served counts, while CIGALE uses absorption-corrected

fluxes). Therefore, differences are to be expected for the

models in the X-rays.

Finally, we list the commonly quoted parameters

(mainly focusing on X-ray and AGN parameters) de-

rived from each code in Table 9. These parameters

include: the recent SFR over the last 100 Myr, the

surviving stellar mass (M?), the total integrated IR lu-

minosity of the dust emission model (LTIR), the AGN

torus inclination (iAGN), the UV-to-IR AGN bolomet-

ric luminosity (LAGN), the fraction of AGN IR lu-
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Figure 17. The total best-fit model spectra to the observed
SED of J033226.49−274035.5 and the associated residuals as
generated by Lightning and CIGALE as the gray and magenta
lines, respectively. The gray and magenta colored data points
in the X-rays correspond to each codes input data, since
Lightning had inputs in units of observed counts (which are
converted to model dependent luminosities for plotting) and
CIGALE had inputs in units of absorption-corrected fluxes.
For the Lightning fit, we include each model component as
in Figure 12. Additionally, we include the range of the top
64% of best-fit models from the MCMC posterior as the cor-
respondingly colored shaded regions to show the uncertainty
range on the component SEDs. For each code, we also show
the best-fit χ2 value in the center of each residual plot. In
general, it can be seen that both codes model their data well
from the best-fit χ2 and the residuals.

minosity to the total IR luminosity from 5–1000 µm

(fracAGN), and the slope of the L̃2 keV − L̃2500 relation-

ship (αOX). Since Lightning does not calculate fracAGN

or αOX by default, we derived these values from the

post-processed results. We calculated fracAGN as the

fraction of the model AGN IR luminosity to the to-

tal IR luminosity between observed-frame 5–1000 µm.

For αOX, we first derived monochromatic luminosities at

rest-frame 2 keV and 2500 Åand computed it as αOX =

−0.3838 log10(L
2500Å

/L2keV) (Equation 5 in Yang et al.

2020).

From the data in Table 9, it can be seen that these

commonly used properties are in excellent statistical

agreement between the two codes. Of the derived prop-
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Table 9. Derived parameters from Lightning and CIGALE.

Code SFR log10(M?) log10(LTIR) iAGN log10(LAGN)

[M� yr−1] [M�] [L�] [degrees] [L�]

(1) (2) (3) (4) (5) (6)

Lightning 47.7+34.6
−20.9 10.64+0.22

−0.24 11.98+0.05
−0.05 40.3+0.9

−6.6 12.10+0.04
−0.04

CIGALE 68.6± 17.4 10.70± 0.43 11.90± 0.10 33.1± 10.7 12.26± 0.07

Code fracAGN αOX log10(MSMBH) log10 ṁ δAGN

[M�]

(1) (7) (8) (9) (10) (11)

Lightning 0.45+0.03
−0.04 −1.29+0.02

−0.01 9.05+0.02
−0.02 −1.45+0.02

−0.02 · · ·
CIGALE 0.47± 0.13 −1.32± 0.04 · · · · · · −0.18± 0.26

Note—For Lightning, the uncertainties are listed as the 16th and 84th percentile range.
For CIGALE, the uncertainties are listed as the derived 1σ uncertainties. Column 1: SED
fitting code. Column 2: Recent SFR of the last 100 Myr. Column 3: Surviving stellar
mass. Column 4: Total integrated IR luminosity of the dust emission model. Col-
umn 5: Line-of-sight AGN torus inclination. Column 6: UV-to-IR AGN bolometric
luminosity. Column 7: Fraction of the AGN IR luminosity to the total IR luminosity
between observed-frame 5–1000 µm. Column 8: Slope of the L̃2 keV− L̃2500 relationship
(αOX = −0.3838 log10(L

2500Å
/L2keV)). Column 9: SMBH mass (unique to Lightning).

Column 10: SMBH accretion rate, Eddington rate normalized (unique to Lightning).
Column 11: Modified optical slope power-law index of the SKIRTOR templates.

erties, the SFRs and stellar masses have the largest un-

certainty. This is caused by the uncertainty in the stellar

models, since the type 1 AGN contributes a significant

fraction of the emission at optical wavelengths. As for

the AGN parameters, we find that only LAGN disagrees

between codes at ≥1σ level, but their values are simi-

lar. The slight disagreement arises from the small un-

certainties for both fits that are caused by the highly

constraining 15 band X-ray data, which strongly limits

the allowable AGN luminosity in the UV-to-IR. Com-

paratively, fracAGN is highly consistent between codes,

indicating common contributions from the AGN to the

total IR model. Overall, just like the comparison in Sec-
tion 4.4.1, it is reassuring, for these results and SED fit-

ting in general, that both Lightning and CIGALE return

derived parameters that are in excellent statistical agree-

ment despite using different models and algorithms.

5. SUMMARY AND PLANNED ADDITIONS

In this paper, we have presented the most recent ver-

sion of the SED fitting code Lightning. The new ver-

sion of Lightning contains a variety of models and algo-

rithms that can be used to account for any combination

of stellar, dust, and AGN emission in an observed X-ray

to submillimeter SED. A brief review of each of these

models and algorithms is as follows:

• Stellar emission can be modeled using the SSPs

from PÉGASE integrated over the age bins given by

the user-defined non-parametric SFH. Stellar X-

ray emission from the XRBs is linked to the SFH

using a power-law spectral model and the empir-

ical parameterizations of LX/M? with stellar age

given in Gilbertson et al. (2022).

• AGN emission can be modeled in the UV-to-IR

using a subset of the SKIRTOR models. X-ray

AGN emission can be modeled as (1) a simple rigid

power-law spectra, which is tied to the UV-to-IR

AGN emission using the Lusso & Risaliti (2017)

L̃2 keV − L̃2500 relationship or (2) the physically-

motivated qsosed models from Kubota & Done

(2018), which directly scale the UV-to-IR emission

as a function of the mass and Eddington ratio of

the SMBH.

• Dust attenuation of the UV-to-NIR emission can

be modeled using either a modified form of the

Calzetti et al. (2000) curve or the inclination-

dependent curve described in Doore et al. (2021).

Absorption of X-ray emission, when included, is

modeled using either the tbabs or the Sherpa

atten models.

• Dust emission can be modeled using the Draine

& Li (2007) model. When included, dust emis-

sion can be set to be in energy balance with the

dust attenuation, which requires the bolometric

luminosity of the dust emission to be equal to the

bolometric luminosity of the attenuated light.

• Algorithms for fitting the models to the data

include both maximum likelihood and Bayesian
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methods. For the maximum likelihood method,

Lightning uses the MPFIT implementation of

the gradient-descent Levenberg–Marquardt algo-

rithm. For the Bayesian methods, Lightning

includes two MCMC algorithms, an adaptive

Metropolis-Hastings algorithm from Andrieu &

Thoms (2008) and an implementation of the

Goodman & Weare (2010) affine-invariant algo-

rithm.

With these models and algorithms, we presented dif-

ferent example applications of Lightning. These ex-

amples included (1) deriving spatially resolved stellar

properties of M81 using an SED map, (2) demonstrat-

ing how the SMBH properties of an AGN can be de-

rived by including X-ray emission, (3) exploring how

X-ray emission and inclination-dependent attenuation

can be used to constrain the SFR of an edge-on galaxy,

(4) comparing the performance of Lightning to similar

Bayesian sampling SED fitting codes (Prospector and

BAGPIPES), and (5) comparing the X-ray-to-IR AGN

properties derived from Lightning and CIGALE. From

these examples, we clearly demonstrate the capabilities

of Lightning and some of its potential uses.

In future updates to Lightning, we plan to expand

our current PÉGASE stellar models. This will include

adding additional IMF choices and allowing for a con-

stant but continuous metallicity, which, like other SED

fitting codes, we plan to have as an optional free param-

eter. Additionally, Lightning is currently restricted to

using an exact redshift value if it is used as the distance

indicator. We plan to allow for increased flexibility in

redshift, where it can have an associated prior distribu-

tion when fitting using a Bayesian method. This would

allow for better propagation of uncertainty when using

photometric redshifts, which can have large associated

uncertainties.

Further, since Lightning was originally developed to

be used in XRB population studies, we plan to add new

SSPs like BPASS20 (Eldridge et al. 2017; Stanway & El-

dridge 2018) and/or POSYDON21 (Fragos et al. 2022) that

include binary population evolution. This would allow

for more accurate stellar emission models, as binary pop-

ulations can significantly influence the stellar emission

(Eldridge & Stanway 2020). Additionally, binary stars

are the progenitors of compact object binaries. Future

versions of binary stellar population models may pro-

vide predictions for the observed X-ray binary luminos-

ity function and its evolution with age and metallicity,

based on the same prescriptions that govern the age

and metallicity evolution of the stellar population. By

adopting such models, we can self-consistently produce

LX/M? with our stellar population models rather than

relying on empirical relations.
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Moré, J. J. 1978, in Lecture Notes in Mathematics, Berlin

Springer Verlag, Vol. 630, 105–116,

doi: 10.1007/BFb0067700

Morrison, R., & McCammon, D. 1983, ApJ, 270, 119,

doi: 10.1086/161102

Motiño Flores, S. M., Wiklind, T., & Eufrasio, R. T. 2021,

ApJ, 921, 130, doi: 10.3847/1538-4357/ac18cc

Nenkova, M., Sirocky, M. M., Ivezić, Ž., & Elitzur, M.
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