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We investigated the optimal number of independent parameters required to accurately represent spectral remote
sensing reflectances (Rrs) by performing principal component analysis on quality controlled in situ and synthetic
Rrs data. We found that retrieval algorithms should be able to retrieve no more than four free parameters from Rrs

spectra for most ocean waters. In addition, we evaluated the performance of five different bio-optical models with
different numbers of free parameters for the direct inversion of in-water inherent optical properties (IOPs) from
in situ and synthetic Rrs data. The multi-parameter models showed similar performances regardless of the number
of parameters. Considering the computational cost associated with larger parameter spaces, we recommend bio-
optical models with three free parameters for the use of IOP or joint retrieval algorithms. © 2023 Optica Publishing

Group

https://doi.org/10.1364/AO.484082

1. INTRODUCTION

Ocean color sensors, including the Sea-Viewing Wide Field
of View Sensor (SeaWiFS), Moderate Resolution Imaging
Spectroradiometer (MODIS), Medium Resolution Imaging
Spectrometer (MERIS), Visible Infrared Imaging Radiometer
Suite (VIIRS), and Ocean and Land Color Instrument (OLCI),
have provided a continuous and synoptic view of the global
oceans for more than 20 years. Upcoming programs, such
as the Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE)
mission, will further extend the ocean color data record with
global, hyperspectral measurements of our home planet [1].
These observations have or will enhance our understanding
of the ocean’s ecological response to Earth’s changing climate
[2], its role in global carbon cycles [3], the dynamics of coastal
water quality [4,5], the health of aquatic fisheries [6], and the
distribution of aquatic primary production [7].

Ocean color remote sensing algorithms estimate spectral
water-leaving radiances from the total measured radiances
emanating from the coupled ocean and atmosphere system
by performing atmospheric correction (AC), which removes
atmospheric path radiance and ocean surface contributions
from the total signal observed by the satellite instrument [8].
Water-leaving radiances are then used to derive aquatic inherent
and apparent optical properties and biogeochemical properties.
The performance of these ocean color retrievals depends on the

accuracy of the AC process in the retrieval. Heritage AC algo-
rithms [9] applied under the black pixel approximation [10] in
the near infrared (NIR) work well for open ocean scenes, but are
less reliable for scenes involving complex coastal waters, where
the radiance in the NIR cannot be assumed zero or reliably
estimated, or for scenes involving complex atmospheres, such as
those that include absorbing aerosols [11–13]. In contrast, one-
step, or joint retrieval, algorithms directly fit the sensor-observed
radiance with forward model simulations, which are based on
the radiative transfer theory in Coupled Atmosphere and Ocean
Systems (CAOS). The least squares fitting algorithms are used
to perturb the state parameters of the atmosphere and ocean
properties to minimize the difference between measurements
and model simulations [14,15]. Most operational algorithms
applied to multispectral or hyperspectral radiance measure-
ments from single-viewing ocean color instruments utilize a
two-step approach, whereas one-step algorithms are a common
approach for multispectral, multi-angle polarimeters (MAPs)
[16,17]. Owing to the large information content in MAP mea-
surements [18–20], one-step algorithms can be successful under
conditions where two-step heritage algorithms fail [13] if the
CAOS models can adequately represent the observed scene.

One important component of all ocean color remote sensing
algorithms is the bio-optical model that represents and defines
the composition of the water under observation. Typically,
a bio-optical model is composed of analytical and empirical
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expressions or tabulated values for inherent optical properties
(IOPs; absorption and scattering coefficients; m−1) of different
hydrosols: phytoplankton particles, non-algal particles (NAPs),
colored dissolved organic matter (CDOM), and pure sea water
[21]. Waters where hydrosol IOPs and their magnitudes largely
covary with the concentration of the photosynthetic pigment
chlorophyll-a ([Chla]; mg m−3) are collectively referred to as
case I waters and typically represent clear, open ocean condi-
tions. The remaining waters, whose IOPs do not correlate well
with [Chla], are referred to as case II waters and require addi-
tional parameters beyond [Chla] to parametrize a bio-optical
model [21,22].

Broadly speaking, empirical [23,24] and semi-analytical
algorithm (SAA) [25–29] bio-optical models are generally
used to estimate IOPs or biogeochemical quantities of inter-
est from spectral remote sensing reflectances (Rrs(λ); s r−1),
defined as water-leaving radiances scaled to the downwelling
surface irradiance, with spectral dependence hereafter implied.
Empirical approaches relate optical or biogeochemical variables
statistically to Rrs based on observed or measured relationships.
For example, [Chla] is commonly derived from a blue-to-green
ratio of Rrs derived from a global dataset of in situ measurements
[30]. In contrast, SAAs predefine spectral parametrizations
of component IOPs and use spectral matching techniques to
retrieve IOP magnitudes that best reconstruct the input Rrs,
with the component spectral shapes often formulated via tab-
ulated values or, for example, as power laws or exponentials
with spectral slopes that are either taken as constants [25,31]
or based on empirical Rrs relationships [26,29]. SAAs employ
a combination of empirical and simplified solutions to the
radiative transfer equation and are most often based on linear or
nonlinear spectral optimization [25,31–33], step-wise spectral
deconvolution [28,34], or bulk inversion [35].

In one-step AC retrieval algorithms, bio-optical models are
used to simulate spectral ocean water reflectances and thus
enable the separation of that signal from the atmospheric path
radiance contribution in the AC process [36], or to retrieve
in-water IOPs [15,37,38]. Many publications on one-step joint
retrieval algorithms [15,36,37,39] assume a case I bio-optical
model based on a single parameter: [Chla]. Only several algo-
rithms currently adopt case II bio-optical models [14,40,41]
with higher order parameterizations. In these studies, the one-
step algorithms were shown to perform better over complex
optical scenes when using case II bio-optical models in lieu of
single parameter case I models [38].

The retrieval uncertainties of one-step joint retrieval algo-
rithms partially depend on the size of the parameter space,
including that of the bio-optical models [38]. The balance
between the model fidelity and parameter space is crucial. In
the multi-angular polarimetric ocean color (MAPOL) joint
retrieval algorithm [14,38,42,43], a seven-parameter bio-
optical model for coastal waters is implemented in the forward
radiative transfer model [44,45]. If, however, the seven free
parameters can be reduced to a smaller number, this would
improve the stability as well as the efficiency of the retrieval algo-
rithm, as the number of forward model evaluations increases
with the number of retrieved parameters. It is theoretically
important to understand how many retrievable parameters

can be reliably and stably derived from ocean radiometric
measurements.

The goal of this study is two-fold. The first part focuses on
understanding the information content in Rrs, which can help
to better constrain the parameter space of aquatic bio-optical
models. The second part focuses on identifying an optimal
bio-optical model(s) that may have the smallest possible set of
parameters to result in greatest retrieval performance, defined
here as a balance among retrieval accuracy, computational
efficiency, and model robustness. The resultant bio-optical
model(s) can be used in one-step joint retrieval algorithms
[14,38] as well as those retrieving ocean IOPs from in-water
spectral radiometric measurements [28,35,46]. Sathyendranath
et al. [47] carried out a principal component analysis (PCA)
based on simulated data to understand the information con-
tent in Rrs. The methodology is similar to our current work.
However, in addition to the simulated dataset, our PCA also
includes in situ measurements acquired from a large variety
of global ocean waters (see Fig. 1), and thus we provide here
a more comprehensive and representative assessment of the
information content of Rrs and the potential number of free
bio-optical model parameters that can be confidently retrieved.
In the second part of our study, we provide a comprehensive
analysis of Rrs retrieval performances from a set of bio-optical
models with different numbers of free parameters, which is
corroborated by a PCA. While previous studies have concluded
that a three-parameter bio-optical model is generally sufficient
for Rrs inversion [29,31], these studies did not fully explore the
potential for retrieving additional information using higher
order parameterizations. Wang et al. [48] showed that spectral
shaped parameters are more difficult to retrieve relative to other
bio-optical model parameters. Brewin et al. [49] and Werdell
et al. [50] compared retrieval performances between two or
more aquatic bio-optical models, but did not specifically relate
the results with the number of parameters.

This paper includes two parts. In the first part, we attempt to
identify the fewest number of independent parameters required
to accurately represent spectral Rrs. A CPA was performed on
four sets of in situ and synthetic Rrs data (Section 2) covering
a large range of ocean waters. We evaluate both the explained
variance of the principal components (PCs) and the effect of
excluding the least significant PCs in reconstructing Rrs. In
the second part, we study the performance of five different
bio-optical models as applied in the direct inversion of Rrs to
obtain the IOPs of ocean waters. Four of the models used in
the study are case II models, and the remaining is a case I model
based on a single parameter [Chla]. Our case II models differ in
how they parametrize the particulate backscattering coefficient
and parameter space. Each model has two versions under two
different parameter spaces. The inversions are performed with
both in situ and synthetic Rrs measurements (Section 2).

This paper is organized as follows. Section 2 overviews
the in situ and synthetic datasets used in the study; Section 3
describes the methodology of the two studies, and PC analysis
of Rrs data and Rrs inversions from five bio-optical models;
Section 4 presents and discusses the results; and finally, Section 5
summarizes the conclusions.
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2. DATA

In this study, we acquired in situ and simulated Rrs, the spectral
absorption coefficients of NAP + CDOM (adg) and phyto-
plankton particles (aph), spectral backscattering coefficients of
particulate matter (bbp), and [Chla] data from (1) the NASA
Bio-Optical Marine Algorithm Dataset (NOMAD) [51], (2)
the Valente et al. [52] dataset (VAL), (3) the IOCCG Ocean
Colour Algorithms Working Group dataset [21] (IOCCG),
and (4) the simulated dataset by Craig et al. [53] (CRG). The
NOMAD and VAL datasets include in situ measurements,
while the IOCCG and CRG datasets were simulated using
radiative transfer models defined by bio-optical relationships.
These data cover a wide dynamic range of optical water types,
from clear oceanic waters to highly turbid coastal waters. The
spectral availability of in situ data is scarce. To maximize the
sample size from in situ datasets we selected Rrs and IOP data
at the most common five wavelengths, 410, 440, 510, 555,
and 665 nm, from each dataset. In addition we selected Rrs and
IOP data with eight wavelengths, 410, 440, 490, 510, 532,
555, 617, and 665 nm [54], to investigate sensitivities in the
retrievability of ocean bio-optical parameters with increasing
spectral information. The actual wavelengths obtained from
each dataset may differ by ±5 nm. The global distribution of
in situ Rrs datasets under five and eight wavelengths is shown in
Fig. 1. The eight wavelength dataset obtained from NOMAD is
geographically limited. All in situ Rrs data are filtered following
a quality assurance (QA) system [55] to exclude any low quality
Rrs with a QA score smaller than 0.5.

There are more than 4000 stations available in NOMAD.
About 2300 Rrs spectra under five wavelengths and about 644
Rrs spectra under eight wavelengths remained after applica-
tion of the QA test. VAL is a compilation of global bio-optical
data from different sources including NOMAD, Aerosol
Robotic Network—Ocean Color (AERONET-OC) [56],

Fig. 1. Global geographic distribution of NOMAD (top) and VAL
(bottom) in situ Rrs measurements. Circles: five wavelength dataset.
Crosses: eight wavelength dataset.

SeaWiFS Bio-optical Archive and Storage System (SeaBASS),
etc., i.e., NOMAD is a subset of VAL. For a comparison with
previous studies in the literature, we have presented NOMAD
as a separate study. There are more than 50,000 cases in VAL
at 611 hyperspectral wavelengths. Following the QA test, we
obtained 12,167 and 3911 Rrs spectra under five and eight wave-
lengths, respectively. The sample sizes for IOP data from the two
in situ datasets differ from those of Rrs due to the instrumental
variabilities and availabilities in associated field campaigns.

The IOCCG synthetic data include 500 Rrs spectra generated
using an array of IOP conditions defined by bio-optical relation-
ships. We selected all available data to obtain datasets under five
and eight wavelengths without following any QA tests. CRG is a
hyperspectral synthetic dataset generated with IOP conditions
based on phytoplankton absorption coefficient measurements
from SeaBASS and eight other random parameters. It includes
few Rrs spectra corresponding to inland waters, and we have
excluded those in our study (based on NIR Rrs values). We
selected 630 spectra for both five and eight wavelength datasets.

3. METHODOLOGY

A. Principal Component Analysis

In the first study, we estimated the optimal number of inde-
pendent parameters that may be required to represent a given
Rrs spectrum using the PCA technique. Initially, we performed
PCA on in situ and synthetic Rrs datasets (Section 2) obtained
at five and eight different wavelengths within the 410–665 nm
range. Rrs is constructed using PCs in the form of

Rrs(λ)= Rr s 0 +

∑
i

αi Pi (λ), (1)

where Rr s 0 is the mean of Rrs, Pi (λ) are the PCs, andαi are their
respective coefficients.

The method we followed to estimate the optimal number of
independent parameters is as follows. For each dataset, we esti-
mated a number of PCs similar to the number of wavelengths.
Then we reconstructed each Rrs spectrum with the combina-
tions of PCs according to their rank in the explained variance
ratio. The first reconstruction is based on the PC capturing
the highest variance, next is based on the combination of the
first two PCs capturing highest variance, etc. We estimated the
spectral residual by comparing the reproduced Rrs [Eq. (1)]
with the corresponding true Rrs, which was then compared
to the PACE Rrs uncertainty requirements [1] to quantify the
fraction of reconstructed Rrs spectra with the residual at each
wavelength within the PACE uncertainty requirement. The
PACE Rrs uncertainty requirement is the community standard
for allowable uncertainties, and we used it for convenience.
It is spectrally dependent and originally defined for level 1
water-leaving reflectance ρ+w (from 400 to 600 nm, the absolute
uncertainty is 0.0020 and the relative uncertainty is 5.0%; from
600 to 710 nm, the absolute uncertainty is 0.00070 and the
relative uncertainty is 10.0%). For Rrs, absolute uncertainty
is obtained by scaling ρ+w with π , (Rrs = ρ

+
w /π ). If “relative

uncertainty ×Rrs” for a particular wavelength was less than
the absolute uncertainty, absolute uncertainty was used for the
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comparison. Otherwise, the relative uncertainty was used for
comparison.

The optimal number of free parameters is the sum of the
optimal number of PCs and another parameter for Rr s 0 . To
determine the impact of the number of wavelengths on the opti-
mal number of free parameters, we compared the PCA results
under five and eight wavelengths.

B. Performance Analysis of Bio-Optical Models

We adopted an SAA inversion approach for our bio-optical
model framework, which derives [Chla] and IOPs from Rrs. The
model parameters were estimated with spectral optimization.
The SAA is described in the following.

1. Semi-Analytical AlgorithmExpression

For optically deep waters, Rrs can be expressed as a function of
total absorption [a(λ)m−1] and backscattering [bb(λ)m−1]
coefficients of the water column [57]:

Rrs(λ)∝
bb(λ)

a(λ)+ bb(λ)
= u(λ). (2)

Rrs can be related to subsurface Rrs (rrs(λ, 0−)) by [34]

Rrs(λ)=
0.52rrs(λ)

1− 1.7rrs(λ)
. (3)

rrs(λ, 0−) can be related to u(λ)by [57]

rrs(λ)= G1u(λ)+ G2u(λ)2. (4)

We have adopted G1 = 0.0949 and G2 = 0.0794 [57].
Alternative G coefficients also exist in literature [34,58]. In
general, G i (s r−1), i = 1, 2 is a spectrally dependent coeffi-
cient that varies with illumination condition and geometry,
in-water IOPs (more specifically, particle phase functions),
and sea surface properties such as wind speed and bidirectional
effects [59]. The total absorption and backscattering coefficients
can be expanded as the sum of absorption and backscattering
coefficients of the independent subcomponents

a(λ)= aw(λ)+ aph(λ)+ ag (λ)+ ad (λ) (5)

and

bb(λ)= bbw(λ)+ bbp(λ), (6)

where subscripts w, ph, g , and d refer to seawater, phyto-
plankton, CDOM, and NAP, respectively. In Eq. (6), we
assume that CDOM has no contribution in scattering, and
consider phytoplankton and NAP together as particulates (indi-
cated in subscript p). Due to the similarity in spectral shapes,
CDOM and NAP absorption coefficients (adg) are also typically
combined as a single coefficient as adg in the remote sensing
paradigm:

a(λ)= aw(λ)+ aph(λ)+ adg(λ). (7)

Both aw(λ) [60] and bbw(λ) coefficients [61] are known from
experimental measurements.

2. Bio-OpticalModels

In this study, we explored the following five candidate bio-
optical models: C2MP5, C2NP5, C2MP3, C2NP3, and C1P1
for optically deep waters. In the names, the first two characters
indicate the water types, i.e., case II models (C2) and case I
(C1) model. In case II models, the third letters M and N indi-
cate different ways to represent the particulate backscattering
coefficient. In M models, an analytical expression for bbp is
used, whereas in N models, the parametrization of the non-
water extinction coefficient (c nw) and backscattering fraction
(B p ) are used. The last two characters in the model name show
the number of free parameters, i.e., P3 stands for three free
parameters. We have four case II models, and C1P1 is a single
parameter model based on [Chla] only. A detailed description of
the bio-optical models is given below.

C2MP5 [Eqs. (8)–(10)] is a five-parameter case II bio-optical
model adopted from [14]:

aph(λ)= Aph[Chla ]Eph(λ), (8)

adg(λ)= adg(440) exp[−Sdg(λ− 440)], (9)

bbp(λ)= bbp(660)

(
λ

660

)−Sbp

, (10)

where aph(λ) is parameterized in terms of [Chla] using Aph and
Eph coefficients obtained from [62]; adg(440) is the absorp-
tion coefficient of CDOM + NAP at 440 nm; bbp(660) is the
backscattering coefficient of ocean particles at 660 nm; Sdg is the
spectral exponential slope of adg in nm−1, and Sbp is the spectral
slope of the power law function of bbp. The five free parameters
are [Chla], adg(440), bbp(660), Sdg, and Sbp.

The C2NP5 model [Eqs. (11)–(13)] uses a power law
function to express c nw [63] instead of bbp:

c nw(λ)= c nw(660)

(
λ

660

)−γ
, (11)

b p(λ)= c nw(λ)− (aph(λ)+ adg(λ)), (12)

bbp(λ)= B p × b p(λ), (13)

where c nw(660);m−1 is the attenuation coefficient of non-
water components at 660 nm, and γ is the spectral slope of c nw.
We have assumed spectrally invariant backscattering fraction
B p for all oceanic waters [64]. The rest of the model is similar to
C2MP5, except we have fixed Sdg at 0.018 nm−1 [Eq. (9)] [65].
The five free parameters are [Chla], adg(440), c nw(660), γ , and
B p . The rationale for this approach relative to C2MP5 arises
from the greater likelihood that c nw(λ) follows a power law than
bbp(λ) [66].

C2MP3 is the three-parameter model derived from the
C2MP5 model [Eqs. (8)–(10)]. We fixed the spectral slopes Sdg

at 0.018 nm−1 and Sbp at 0.3. The value of Sbp was obtained
from a sensitivity analysis carried out with NOMAD and
IOCCG data. In the sensitivity analysis, we performed the Rrs

inversion with 30 Sbp values within 0−2.5 range, and found the
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Fig. 2. Summary of five different bio-optical models. Free parame-
ters of each model are indicated in bold.

use of Sbp = 0.3 leads to the best retrieval accuracy. However, in
literature [31,32], 1.0 is more commonly used for Sbp. The dif-
ference in the value we obtained might be due to the geolocation
distribution of NOMAD data, as Sbp tends to approach zero
for coastal waters. The free parameters of the model are [Chla],
adg(440), and bbp(660).

C2NP3 is the three-parameter model derived from the
C2NP5 model [Eqs. (8), (9), and (11)]. We fixed B p at 0.01
[Eq. (13)] [64] and γ at 0.8 [Eq. (11)]. The value of γ was
obtained by a similar procedure as used in determining the value
of Sbp. The free parameters are [Chla], adg(440), and c nw(660).

C1P1 is a [Chla] based single parameter case I model [38],
which is not representative of the complex case II waters. The
expressions for component IOPs in this model are derived from
the C2MP5 model [Eqs. (8)–(10)]. The absorption coefficient
of phytoplankton aph is the same as in Eq. (8). We adopted
the same expressions for adg as in the C2MP5 model, but the
parameters are specified in terms of [Chla] due to the sole
phytoplankton dependence. Sdg is also fixed at 0.018 nm−1:

adg(440)= p2aph(440), (14)

p2 = 0.3+
(5.7× 0.5aph(440))

(0.02+ aph(440)
. (15)

Similarly, bbp is also contributed only from phytoplankton
and is expressed in terms of [Chla] [67]:

bbp(λ)= b p(λ)× B p , (16)

b p(λ)= b p(660)(λ/(660)−Sbp , (17)

b p(660)= 0.347[Chla ]0.766. (18)

For 0.02< [Chla ]< 2 mgm−3,

Sbp =−0.5(log10[Chla ] − 0.3). (19)

For [Chla ]> 2 mgm−3, Sbp = 0,

B p = 0.002+ 0.01(0.5−0.25 log10[Chla ]). (20)

Figure 2 shows the summary of five bio-optical models.

Table 1. Upper and Lower Boundaries of Parameters
from Each Model

Parameter Model
Lower/Upper
Boundaries

[Chla ](mgm−3) All models 0.0, 30.0
adg(440)(m−1) C2MP5, C2NP5,

C2MP3, C2NP3
0.0, 2.5

Sdg(nm−1) C2MP5 0.005, 0.02
bbp(660)(m−1) C2MP5, C2MP3 0.0, 0.1
Sbp C2MP5 0.0, 2.5
c nw(660)(m−1) C2NP5, C2NP3 0.0, 3.0
γ C2NP5 0.0, 2.5
B p C2NP5 0.005, 0.06

3. RrsInversion

We retrieved the unknown free parameters from each model
through Levenburg Marquardt (LM) non-linear least squares
optimization [68]. LM does not explicitly support bounds on
parameters. We used an LM algorithm capable of handling
parameter bounds in terms of periodic boundary conditions
[69]. The upper and lower boundaries of each parameter are
listed in Table 1. The boundary values were derived from data
given in Section 2 and previous literature [28,34,41,64,70]. The
objective function [Eq. (21)]χ2 of optimization is

χ2
=

Nλ∑
i=1

[Rrs(λi )− Rrs(λi )]
2

σ(λi )
2 , (21)

where Rrs is the remote sensing reflectance calculated from SAA
[Eqs. (1)–(3)] based on input parameters from each bio-optical
model, Rrs is the data, and Nλ is the number of wavelengths.
Due to the unavailability of Rrs uncertainties (σ(λi ); s r−1),
we carried out an unweighted optimization (σ(λi )= 1). The
maximum number of function evaluations was 1000. The con-
vergence was reached if the relative error in the desired sum of
squares was less than 10−7. We performed Rrs inversions using
both five and eight wavelength Rrs data under each dataset. The
validity of the retrievals was based on the criterion from [29]:

1. −0.05bbw(λ)≤ bbp(λ)≤ 0.1m−1,

2. −0.05aw(λ)≤ adg(λ)≤ 5m−1,

3. −0.05aw(λ)≤ aφ(λ)≤ 5m−1,

4. 1Rrs ≤ 33%,
where

1Rrs = 100%
1

Nλ

Nλ∑
i=1

[
Rrs(λi )− Rrs(λi )

]
Rrs(λi )

. (22)

As the Rrs values in longer wavelengths are typically smaller,
we considered only wavelengths ranging from 400 to 600 nm to
calculate 1Rrs. Considering the possible measurement uncer-
tainties in in situ Rrs data and modeling uncertainties in the
synthetic Rrs data, we considered negative IOP retrievals within
the aforementioned limitations to be valid. Cases resulting in
negative Rrs or Rrs that never reached convergence were regarded
as invalid.
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4. ValidationAnalysis

We performed a statistical evaluation to analyze the perfor-
mances of each bio-optical model to accurately invert the input
Rrs spectra. The performance is evaluated based on retrieved
IOPs. We adopted type II linear regression statistics [71] and
Bland and Altman (BA) analysis [72] to evaluate the accuracy
of retrieved IOPs against true IOPs [adg(440), bbp(660), and
aph(440)]. Since the IOP data are log normally distributed,
the analyses are based on log transformed data. The correlation
is based on Spearman’s rank correlation coefficient. (Figure 6
provides common statistical measures in the ocean color com-
munity (correlation coefficient, slope, and unbiased RMSE),
and Fig. 7 provides BA analysis [limits of agreement (LOA) and
mean bias]).

4. RESULTS AND DISCUSSION

A. Principal Component Analysis

We performed PCA on Rrs datasets obtained at five and eight
different wavelengths within the visible region of the electro-
magnetic spectrum. For all datasets, the first three PCs capture
more than 95% of the variance in Rrs data (Fig. 3). In com-
parison to the PCA from five wavelength Rrs data, the first PC
from eight wavelength Rrs data captures more variance. The
higher order PCs are slightly significant under eight wavelength
Rrs data compared to five wavelengths, due to the different
wavelength selection.

Using Eq. (1), the PCs can be used to reconstruct the Rrs

spectrum. Figure 4 shows the fraction of reconstructed Rrs spec-
tra whose residual is within the PACE baseline Rrs uncertainty
requirement. The residual is defined as the difference between
true Rrs and reconstructed Rrs from different numbers of PCs. It
shows that the numbers of PCs required to construct Rrs spectra
are similar across the four datasets.

The results under the five wavelength datasets indicate that
three PCs can be used to accurately reconstruct Rrs. For wave-
lengths shorter than 600 nm, around 95% of the four datasets
meet the PACE baseline uncertainty requirement. For the long
wavelength at 665 nm, three PCs can explain around 75% and
60% of the variability for in situ and synthetic datasets, respec-
tively. With eight wavelengths, around 90% of the four datasets
can be explained by three PCs when the wavelengths are shorter
than 600 nm. For longer wavelengths, it drops to around 80%.
The results show that the minimum number of PCs required for
optimal representation of Rrs (NPC = 3) is largely unaffected by
the number of visible wavelengths used in PCA. Overall, this
translates to about four independent parameters for optimal
representation of spectral Rrs [Eq. (1)].
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PCs are ranked with respect to their explained variance (1, PC with
the highest variance; 2, PC combination of first and second highest
variances, etc.). NPC is the number of PCs used in the reconstruction.

Hyperspectral Rrs data capture more spectral features such
as the contribution from chlorophyll-a fluorescence (around
685 nm). These features are less evident in synthetic data. The
availability of high quality in situ hyperspectral Rrs measure-
ments is extremely limited, so we have not examined the impact
of hyperspectral wavelengths on PCA. The PCA study based on
in situ hyperspectral Rrs measurements [73] (sample size= 191)
shows similar degrees of freedom (DoFs) for both hyperspectral
and multi-spectral Rrs (using hyperspectral Rrs coarsened for
MODIS wave bands), which agrees with our finding (i.e., four
independent parameters).

Since PCs have defined their own space, they are less
interpretable and cannot be related to physical variables.
Furthermore, the parameters we adopt in bio-optical models are
often correlated with each other. Hence, the optimal number of
independent parameters may not be directly related to the num-
ber of optimal model parameters we use in a bio-optical model
for retrieval. The significance of the PCA is two-fold. On one
hand, it can be used as a guideline for the maximum number of
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Fig. 5. Percentage of valid retrievals, NVAL(%), under each model
with the four datasets: NOMAD, VAL, IOCCG, and CDG. Left: five
wavelength datasets. Right: eight wavelength datasets.

free retrieval parameters. This will provide crucial information
on designing aquatic bio-optical models for hyperspectral Rrs

spectra. In addition, PCs can be used as an alternate method to
replace bio-optical models [74].

B. Performance Analysis of Bio-Optical Models in
Inversion

We used the five bio-optical models (C1P1, C2NP3, C2MP3,
C2NP5, and C2MP5) in retrieving IOPs with our inversion
algorithm as summarized in Section 3.B. The validation statis-
tics from the inversion under the four datasets are summarized
in Figs. 5 and 6. The statistics are based on retrieved and true
IOPs: adg(440), aph(440), and bbp(660) from the four datasets:
NOMAD, VAL, IOCCG, and CRG using only successful
retrievals (Fig. 5).

Overall, the Rrs inversion results from case II bio-optical
models (Fig. 5) show performance superior to that of the case
I model, confirming that the C1P1 [Chla] based model is less
applicable over a large range of waters. Hereafter, the results
from C1P1 will not be included in the discussion. More than
90% of retrievals from case II models were valid for the five
and eight wavelength datasets. An exception was seen in the
eight wavelength NOMAD dataset, which is geographically
limited. This may affect the reported inversion performance.
For IOCCG and CRG, more than 95% of cases were valid, and
for NOMAD and VAL, it was more than 90%. None of the
inversions from any datasets resulted in convergence failures.
For both five and eight wavelength datasets, an average of 3%
and 0.5% cases failed when the IOPs were invalid and when
1Rrs > 33%, respectively. Based on the validity, inversions
from P3 models correspond to less than 2% invalid cases. The
C2NP5 and C2NP3 models resulted in few invalid cases, which
is attributed to negative Rrs, originated from the retrieval of
negative bbp values, as we consider the difference between c nw

and aph + adg to derive bbp.
For all case II models, inversion results are similar under

the five and eight wavelength datasets. Inversions based on the
eight wavelength datasets could be less accurate compared to
the five wavelength inversions due to the increased tendency of
overfitting. Note that the inversion results from the NOMAD
eight wavelength dataset are expected to be different from the
five wavelength dataset due to the limited geographical distribu-
tion. The variability in statistics (Fig. 6) is more prominent for
in situ data compared to synthetic data, specifically in adg(440)
and adg(440). The lowest variability is seen for bbp(660). The
in situ measurements include measurement uncertainties. On
the other hand synthetic measurements are generated with

Fig. 6. Regression statistics (correlation coefficient, regression
slope, and unbiased RMSE) from the five bio-optical models using
NOMAD, VAL, IOCCG, and CDG datasets. Unbiased RMSE
is the root mean square error corrected for mean bias. Data are log
transformed except for unbiased RMSE. Correlation coefficient is the
Spearman rank correlation coefficient. Different markers indicate each
dataset. (O: NOMAD, ?: VAL, F: IOCCG, and×: CRG) Solid lines:
statistics from five wavelength datasets. Dashed lines: statistics from
eight wavelength datasets.

parametrizations similar to what we have employed in our
bio-optical models. For these reasons, we expect the synthetic
data to show more robust results compared to in situ data. Out
of the four models, C2MP5 shows the highest correlation with
true IOPs (adg(440)). C2MP3 and C2NP3 are comparable.
Both C2MP3 and C2NP3 show regression slopes closer to
one [adg(440) and aph(440)]. The lowest unbiased RMSE is
obtained for C2MP3 and C2NP3. However, overall statistics
suggest that the P3 case II models are comparable to P5 case II
models.

Referring to literature, the inversion statistics from NOMAD
and IOCCG data under the case II models are comparable to the
generalized IOP model—default configuration (GIOP-DC)
[29], but with slight differences in the regression slope. This
could be explained by the Rrs dynamic empirical spectral slope
relationship for bbp adopted in GIOP-DC, which is based on an
Rrs band ratio [34]. Dynamic spectral slopes can better represent
natural waters, but cannot be directly used in one-step joint
retrieval algorithms where the input is not Rrs.

For further validation, we performed BA analysis on retrieved
and true IOPs, considering only succssful retrievals (Fig. 5).
Given that NOMAD data are widely used and consist of high
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quality in situ measurements, we narrowed the BA analysis to
the NOMAD five wavelength dataset. The LOA and mean bias
were calculated based on the bias (IOPretrieved − IOPtrue) and
mean ((IOPretrieved + IOPtrue)/2) from log transformed data.
Figure 7 shows the results from BA analysis. We saw slightly
reduced mean biases in the P5 models compared to the P3
models. It is more prominent for adg(440), but the LOA are
smaller for adg(440) with P3 models. In the two P3 models,
C2MP3 shows smaller overall mean biases than C2NP3. The
C1P1 model shows a similar performance in retrieving adg(440)
as case II models. However, its performance is much worse than
case II models in terms of aph(440) and bbp(660); thus it is not
recommended in IOP retrieval algorithms. There is a light trend
in the retrieval of adg (C2MP5) and aph (C1P1), which may be
due to the representativeness of the bio-optical models used.
It remains a future research subject to fine tune the retrieval
algorithms to reduce the retrieval bias and uncertainties.

All the analyses based on the five and/or eight wavelength
datasets show that the Rrs inversion performances across the four
case II models are similar regardless of the number of parameters
(P3 or P5). This suggests that there is a possibility to reduce the
size of bio-optical model parameter space of one-step retrieval
algorithms while preserving the retrieval performance in terms
of uncertainty, and improving efficiency.

C. Limitations of the Study

We performed this study in search of an optimal bio-optical
model for retrieving aquatic IOPs from spectral Rrs with a

particular focus on their use in one-step AC algorithms. The
optimal bio-optical model for such use in one-step AC should
result in the greatest inversion performance while having
the smallest possible number of free parameters. Due to the
unavailability of Rrs measurement uncertainties, we carried out
unweighted Rrs inversions. This might have affected the model
performances discussed above. In addition, modeling errors
can arise due to the spectral shape assumptions of adg, bbp, and
c nw, assumption of spectrally invariant backscattering fraction,
fixed spectral slopes, and assumptions of Rrs–IOP relationships
[e.g., the G1 and G2 values in Eq. (4)]. We have adopted the
model of Bricaud et al. to represent aph spectra, which is an
average of in situ measurements from ocean waters. Hence it
may not necessarily account for all types of waters including
in-land waters. Our study does not consider in-land waters. We
acknowledge that none of these models ideally represents all
types of water conditions. Finally, the optimization techniques
adopted in the inversions may also cause some uncertainty.

5. CONCLUSIONS

We have performed two studies to understand the implication
of bio-optical model parameter space in the retrieval of aquatic
IOPs. The study is two-fold. In the first part, we examined
the optimal number of independent parameters that may be
required to represent the spectral behavior of Rrs using PCA.
The study was based on the four datasets NOMAD, VAL,
IOCCG, and CRG under two different selections of wave-
lengths. It was found that a minimum of three PCs is required
to accurately represent an Rrs spectrum at either five or eight
wavelengths within 410–665 nm range, regardless of the water
condition. This suggests that the maximum number of retriev-
able free parameters is approximately four for most ocean
waters. Due to the possible correlations within model param-
eters, the minimum number of model parameters required to
represent Rrs is likely higher than the minimum number of free
and independent parameters. This study also demonstrates the
use of PCA as a tool to evaluate the free parameter selection of
bio-optical models.

In the second part of the study, we evaluated the performances
of five different bio-optical models (four case II water models,
C2MP5, C2NP5, C2MP3, and C2NP3, and one case I water
model, C1P1) in retrieving aquatic IOPs from Rrs data at five
and eight wavelengths. Regardless of the number of parame-
ters and the number of wavelengths used in the inversion, all
case II models (three and five parameters) showed a similar
performance in Rrs inversion with SAA. This implied the pos-
sibility to reduce bio-optical model parameter space without
substantially altering the retrieval performances. In the two
three-parameter models, C2MP3 shows smaller mean biases
and range of variability than C2NP3.

In the future, we intend to implement a three-parameter
bio-optical model in the MAPOL algorithm [14,38]. MAPOL
is a joint retrieval algorithm that retrieves aerosol and ocean
properties from MAP measurements. The algorithm employs
ocean color bio-optical models to characterize the water-leaving
radiance. The number of bio-optical model parameters directly
affects the accuracy of AC based on MAPOL. As a validation
study, we will perform polarimetric retrievals with the MAP
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measurements from Research Scanning Polarimeter (RSP)
[75,76], AirHARP [77], and SPEX airborne [78,79] to demon-
strate C2MP3’s capability in one-step retrieval algorithms.
This study will further facilitate the ocean color remote sensing
community with necessary guidance to take future directions
in advancing bio-optical models for one-step algorithms and
SAAs.
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